
Filomat 39:27 (2025), 9363–9370
https://doi.org/10.2298/FIL2527363G

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

On characterizations of convex and
approximately subadditive sequences

Angshuman R. Goswamia

aDepartment of Mathematics, University of Pannonia, H-8200 Veszprem, Hungary

Abstract. A sequence
(
un

)∞
n=0

is said to be convex if it satisfies the following inequality

2un ≤ un−1 + un+1 for all n ∈N.

We present several characterizations of convex sequences and demonstrate that such sequences can be
locally interpolated by quadratic polynomials. Furthermore, the converse assertion of this statement is also
established.

On the other hand, a sequence
(
un

)∞
n=1

is called approximately subadditive if for a fixed ϵ > 0 and for
any partition n1, · · · ,nk of n ∈N; the following discrete functional inequality holds true

un ≤ un1 + · · · + unk + ε.

We show Ulam’s type stability result for such sequences. We prove that an approximately subadditive
sequence can be expressed as the algebraic summation of an ordinary subadditive and a non-negative
sequence bounded above by ε.

A proposition portraying the linkage between the convex and subadditive sequences under minimal
assumption is also included.

The motivation, research background, important notions, and terminologies are discussed in the intro-
duction section.

Introduction

Throughout this paperN,R, andR+ denote the sets of natural, real, and positive numbers respectively.
This paper primarily aims to introduce multiple characterizations of convex sequences and to present a
decomposition result concerning approximately subadditive sequences.
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A sequence
(
un

)∞
n=0

is said to be sequentially convex (or a convex sequence) if for all n ∈ N, it satisfies the
following functional inequality

2un ≤ un−1 + un+1. (1)

If the converse of the above inequality holds,
(
un

)∞
n=0

would be termed as a concave sequence. Arithmetic,
geometric, Fibonacci, and many other notable sequences can be analyzed within the framework of convex
sequences.

Although the first mention of the convex sequence is not very clear; based on limited evidence, most
mathematicians believe that the terminology of sequential convexity first appeared in the book of [22].
Some of the early works in this direction can be found in the papers [3, 6, 24].

Since then, mathematicians have also explored various aspects of sequential convexity, including dis-
crete analogous of the Hermite-Hadamard inequality, linkage with difference equations, applications in
numerical estimation and trigonometric functions etc. Relevant findings can be found in the works of
[19, 23, 27].

In recent times, researchers have studied several new versions of convex sequences. For example,
investigations into higher-ordered convex, relatively convex, symmetrized convex, approximately convex,
and α-convex sequences have been carried out. The findings enhance the understanding of functional
inequalities in discrete settings. The studies in [1, 2, 7, 8, 15, 17, 20, 21, 26] offer insight into these topics.

In the first section of this paper, we provide some characterizations of convex sequences. We show that

for a convex sequence
(
un

)∞
n=0

, there exists an underlying monotone sequence
(
vn

)∞
n=0

that tracks the discrete
slope between successive terms. Also, we prove that any convex sequence can be locally interpolated by a
quadratic polynomial. More details regarding such generalizations, characterizations, decompositions, and
other such related research of different function and sequence classes can be found in the books [12, 18, 25].

For any chosen n ∈N, a finite collection {n1, · · · nk} ⊂N is called a partition of n if
n = n1 + · · · + nk holds. Partitions play a significant role in the field of number theory. Using the concept of
partition, we define sequential subadditivity.

Let ε > 0 and n ∈ N be arbitrary. A sequence
(
un

)∞
n=1

is said to be approximately subadditive if for any
partition n1, · · · ,nk of n, the following discrete functional inequality holds true

un ≤ un1 + · · · + unk + ε. (2)

On the other hand, if the sequence
(
un

)∞
n=1

satisfies the above inequality without the ϵ; in such case we said
it as an ordinary subadditive sequence.

Discrete subadditivity is at the center of many important mathematical results. One can look into Fekete’s
subadditive lemma [4], Kingman’s subadditive Ergodic theorem [16], Hammersley’s subadditive theorem
[11] etc. In recent years, researchers investigated several new variations of sequential subadditivities. Al-
ternative proofs for some of the well-known results concerning subadditive sequences are also provided.
To explore this further, see the results reported in [5, 9]. Based on all these research several applications
in optimal transport, machine learning, information theory, and mathematical modelling are also proposed.

’Ulam-type stability’ studies when an approximate solution to a functional equation implies the existence
of a true solution nearby. Originating from Ulam’s 1940 problem and Hyers’ subsequent answer, it formal-
izes that small deviations in functional relations do not drastically alter the solution space. This notion has
been extended to various mathematical settings, including differential equations, group homomorphisms,



A. R. Goswami / Filomat 39:27 (2025), 9363–9370 9365

and convexity. Stability results of this type are fundamental in understanding the robustness and rigidity
of mathematical structures. Additional details are available in the classical papers [13, 14].

However, stability analysis is relatively a new concept in sequence settings. In the second section of this
paper, we propose a Ulam-type stability theorem for subadditive sequences.

It is evident that if
(
vn

)∞
n=1

possesses sequential subadditivity and
(
wn

)∞
n=1

is a non-negative sequence

bounded above by ε, then the derived sequence
(
un

)∞
n=1

:=
(
vn

)∞
n=1
+

(
wn

)∞
n=1

is a approximately subadditive

majorant of
(
vn

)∞
n=1

. Also, we estalished that if a sequence
(
un

)∞
n=1

satisfies the inequality (2), then it can be

expressed as the algebraic summation of two sequences
(
vn

)∞
n=1

and
(
wn

)∞
n=1

. Where
(
vn

)∞
n=1

is a subadditive

minorant of
(
un

)∞
n=1

; while
(
wn

)∞
n=1

is a non-negative sequence bounded above by ε.

It is a interesting observation that the ordering of convex sequences starts from index 0, whereas for
approximately subadditive (or ordinary subadditive) sequences, we begin with index 1. This distinction
arises because, in subadditive sequence classes, the ordering is crucial. For instance, in order for (2) to
hold, it is important first to consider all partitions of the positive integer n, followed by the corresponding
sequential values at the partitioning points. In contrast, each term in a convex sequence depends only on
the average of its two neighbouring terms, making the global ordering redundant. These distinctions are
discussed in detail in [10].

Now, we start our investigation from convex sequences.

1. Characterization of Convex Sequences

We begin with a fundamental fractional inequality that will play a central role in several subsequent
results. This inequality is also mentioned in one of our recently submitted papers. However, for readability
purposes, we state the statement and propose a shorter proof.

Lemma 1.1. Let a1, · · · , an ∈ R and b1, · · · , bn ∈ R+, then the following discrete functional inequality is satisfied

min
(

a1

b1
, · · · ,

an

bn

)
≤

a1 + · · · + an

b1 + · · · + bn
≤ max

(
a1

b1
, · · · ,

an

bn

)
. (3)

Proof. The expression
a1 + · · · + an

b1 + · · · + bn
can be re-written as the following convex combination

b1

b1 + · · · + bn

(
a1

b1

)
+ · · · +

bn

b1 + · · · + bn

(
an

bn

)
.

Hence by mean property the inequality (3) is obvious.

Theorem 1.2. Let
(
un

)∞
n=0

be a real-valued sequence. Then the following conditions are equivalent to each other

(i)
(
un

)∞
n=0

is convex.

(ii) For all n1,n2,n3 ∈N ∪ {0} with n1 < n2 < n3, it satisfies

un2 − un1

n2 − n1
≤

un3 − un2

n3 − n2
. (4)
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(iii) There exists a monotonically increasing sequence
(
vn

)∞
n=0

such that for all m,n ∈N ∪ {0},

un − um ≤ vn(n −m) (m,n ∈N ∪ {0}). (5)

Proof. (i)→(ii): Assume that
(
un

)∞
n=0

possesses sequential convexity and let n1,n2 and n3 ∈ N ∪ {0} with
n1 < n2 < n3. Using the inequality (3), we proceed as follows

un2 − un1

n2 − n1
=

un2 − un2−1 + · · · + un1+1 − un1

1 + · · · + 1

≤ max
(
un2 − un2−1, · · · ,un1+1 − un1

)
= un2 − un2−1.

(6)

Similarly,
un3 − un2

n3 − n2
=

un3 − un3−1 + · · · + un2+1 − un2

1 + · · · + 1

≥ min
(
un3 − un3−1, · · · ,un2+1 − un2

)
= un2+1 − un2 .

(7)

Convexity of the sequence
(
un

)∞
n=0

implies un2 − un2−1 ≤ un2+1 − un2 . This along with (6) and (7) establishes
(4) and completes the assertion.

(ii)→(iii): Assume that (ii) holds. We define the sequence
(
vn

)∞
n=0

as follows

vn := inf
n≤n1<n2

(
un2 − un1

n2 − n1

)
(n1,n2 ∈N ∪ {0}).

In view of condition (ii), for all n1 < n2 < n3 inN ∪ {0}, we can conclude

un2 − un1

n2 − n1
≤ vn2 ≤

un3 − un2

n3 − n2
. (8)

From the left-most inequality of (8), we get

un2 − un1 ≤ vn2 (n2 − n1) (n1,n2 ∈N ∪ {0} with n1 < n2). (9)

Similarly, from the right-most inequality of (8) (replacing n3 with n1), it follows that

un2 − un1 ≤ vn2 (n2 − n1) (n1,n2 ∈N with n2 < n1).

Also, by definition of
(
vn

)∞
n=0

, it is obvious that v0 ≤ u1 − u0. This together with the above inequality yields

un2 − un1 ≤ vn2 (n2 − n1) (n1,n2 ∈N ∪ {0} with n2 < n1). (10)

The combined (9) and (10) can be represented as the following generalized form of inequality

un − um ≤ vn(n −m) ( for all m,n ∈N ∪ {0} ).

This is the inequality (5) which was needed to be established.

Now to show the monotonicity of the sequence
(
vn

)∞
n=0

, we assume m,n ∈N ∪ {0}with m < n. Then the
assertion (iii) provides the following two discrete inequalities

un − um ≤ vn(n −m) and um − un ≤ vm(m − n).
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Summing up these two inequalities side by side, we arrive at

0 ≤ (vn − vm)(n −m) m,n ∈N ∪ {0} with m < n.

This implies vm ≤ vn. Since m,n ∈N ∪ {0} are arbitrarily chosen, hence
(
vn

)∞
n=0

possesses monotonicity.

(iii)→(i): Now we assume that the condition (iii) holds. Let n ∈ N be arbitrary. By replacing m with
n − 1 and n + 1 respectively in the inequality (5), we obtain the following two inequalities

un − un−1 ≤ vn(n − (n − 1)) and un − un+1 ≤ vn(n − (n + 1)).

Summing up these two inequalities side by side, we arrive at (1). This implies convexity of the sequence(
un

)∞
n=0

and completes the proof.

The Lagrange polynomial of degree n associated with the sequence
(
un

)∞
n=0

can be expressed as follows

Pn(x) :=
n∑

i=0

(∏
i, j

x − x j

i − j
ui

)
(n ∈N).

For a convex sequence
(
un

)∞
n=0

, the interpolating Lagrange polynomial does not possess convexity. For
instance (0,-1,1,3) is a convex sequence. But the corresponding Lagrange polynomial

P3(x) = −
1
2

x3 + 3x2
−

7
2

x, x ∈ [0, 3]

is neither convex nor concave. However, in the next proposition, we will see that any convex sequence can
be locally interpolated by a spline of degree 2.

To construct the result, corresponding to the sequence
(
un

)∞
n=0

, for each n ∈ N, we define Lagrange
polynomials of degree 2 in [n − 1,n + 1] as follows

P
n

2
(x) :=

(un−1 + un+1

2
− un

)
x2 +

(
un+1 − un−1

2
− 2

(un−1 + un+1

2
− un

)
n
)
x

+

((un−1 + un+1

2
− un

)
n2
−

(un+1 − un−1

2

)
n + un

)
.

(11)

Proposition 1.3. A sequence
(
un

)∞
n=0

is convex if and only if the quadratic polynomial Pn

2
(x) defined in (11) is convex

for each n ∈N.

Proof. To prove the proposition, first we assume that
(
un

)∞
n=0

is convex. Using convexity of the sequence, it
can be easily observed that (

P
n

2

)′′
= un−1 − 2un + un+1 ≥ 0 for all n ∈N ; (12)

where
(
Pn

2

)′′
denotes the second derivative of Pn

2
. Hence, Pn

2
is convex on the interval [n − 1,n + 1] for each

n ∈N.

To prove the converse part, we assume that for each n ∈N the polynomial Pn

2
is convex. In other words,

(12) is satisfied. The right-most inequality of (12) is just re-arranged form of (1). This establishes that the

sequence
(
un

)∞
n=0

is convex and completes the proof.
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2. Decomposition of Approximately Subadditive Sequences

In this section, we discuss the decomposition of approximately subadditive sequences. The proof of the
proposed result extensively utilizes proposition 1.2 of our paper [10].

Proposition 2.1. The sequence
(
un

)∞
n=1

is approximately subadditive if and only if it can be expressed as the alge-

braic summation of a subadditive minorant
(
vn

)∞
n=1

and a non-negative sequence
(
wn

)∞
n=1

which is bounded above by ε.

Proof. First, we consider n ∈ N to be arbitrary and n1, · · · ,nk to be its arbitrary partition. Let
(
vn

)∞
n=1

be a

subadditive sequence, and
(
wn

)∞
n=1

a non-negative sequence, which is bounded above by ε. Then we can
compute the following

vn + wn ≤ vn1 + · · · + vnk + ε. (13)

We define
(
un

)∞
n=1
=

(
vn

)∞
n=1
+

(
wn

)∞
n=1
. Here, the non-negativity of the sequence

(
wn

)∞
n=1

implies vn ≤ un for
all n ∈N. Hence, the inequality (13) can be extended as follows

un ≤ vn1 + · · · + vnk + ε ≤ un1 + · · · + unk + ε.

This shows that the sequence
(
un

)∞
n=1

is approximately subadditive.

To prove the converse part, we assume that
(
un

)∞
n=1

be approximately subadditive. In other words, for

the sequence
(
un

)∞
n=1

, the inequality (2) is satisfied. Now, we assume n ∈ N and n1, · · · ,nk be any arbitrary

partition of it. We construct the sequence
(
vn

)∞
n=1

as follows

vn := min
{
un1 + · · · + unk

∣∣∣∣ n1, · · · ,nk ∈N satisfying n1 + · · · + nk = n
}
. (14)

Clearly vn ≤ un holds for all n ∈N. We only need to show that the sequence
(
vn

)∞
n=1

is subadditive.

We consider m,n ∈N and have their respective partitions such that m = m1+ · · ·+ml and n = n1+ · · ·+nk
satisfying the following two discrete functional equalities

vm = um1 + · · · + uml and vn = un1 + · · · + unk . (15)

The combined partitions of m and n provide a partition for m+n as well. This can be represented as follows

m + n = m1 + · · ·ml + n1 + · · · + nk.

From the construction of the sequence
(
vn

)∞
n=1

(inequality (14)) and using (15), we can conclude the
following inequality

vm+n ≤ um1 + · · · + uml + un1 + · · · + unk = vm + vn.

This yields that sequence
(
vn

)∞
n=1

is subadditive.

Now we define
(
wn

)∞
n=1

:=
(
un

)∞
n=1
−

(
vn

)∞
n=1

. This ensures the non-negativity of the sequence
(
wn

)∞
n=1
. To

determine its upper bound, first, we consider any point wn from the sequence
(
wn

)∞
n=1

. For the n ∈N, there
must exists a partition {n1, · · · ,nk} that satisfies the second equality of (15). Using this together with (2), we
can proceed as follows

wn = un − vn ≤ (un1 + · · · + unk + ε) − (un1 + · · · + unk ) = ε.

This shows that the sequence
(
wn

)∞
n=1

is bounded above by ε and completes the proof.
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The following proposition is self-verifiable. Hence the proof is left for the reader.

Proposition 2.2. If all the elements of the decreasing sequence
(
vn

)∞
n=1

are non-negative, then it also possesses
sequential subadditivity.

The next proposition establishes a connection between the concave and subadditive sequences

Proposition 2.3. If all the elements of concave and monotone(increasing) sequence
(
un

)∞
n=0

are non-negative, then

the corresponding sequence
(
un − un−1

)∞
n=1

is subadditive. Conversely, if the sequence(
un − un−1

)∞
n=1

is decreasing, then the corresponding sequence
(
un

)∞
n=0

is concave.

Proof. The concavity of the sequence
(
un

)∞
n=0

implies the inverse of inequality (1). This together with the

monotonicity of
(
un

)∞
n=0

yields the following inequality

un − un−1 ≥ un+1 − un ≥ 0 (n ∈N). (16)

This shows that
(
un − un−1

)∞
n=1

is a decreasing sequence with non-negative terms. Using Proposition 2.2, we

can conclude that
(
un − un−1

)∞
n=1

is a subadditive sequence. This establishes our first assertion.

The decreasingness of the sequence
(
un − un−1

)∞
n=1

can be denoted by the left-most inequality of (16).
Arranging the terms we arrive at

un+1 + un−1 ≤ 2un (n ∈N).

It proves concavity of the sequence
(
un

)∞
n=0

and establishes the result.

These findings open several avenues for future research, including the characterization of various gen-
eralized forms of convex sequences. Similarly one can explore the stability results for newly derived
subadditive sequences.
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