

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On characterizations of convex and approximately subadditive sequences

Angshuman R. Goswamia

^aDepartment of Mathematics, University of Pannonia, H-8200 Veszprem, Hungary

Abstract. A sequence $(u_n)_{n=0}^{\infty}$ is said to be convex if it satisfies the following inequality

$$2u_n \le u_{n-1} + u_{n+1}$$
 for all $n \in \mathbb{N}$.

We present several characterizations of convex sequences and demonstrate that such sequences can be locally interpolated by quadratic polynomials. Furthermore, the converse assertion of this statement is also established.

On the other hand, a sequence $(u_n)_{n=1}^{\infty}$ is called approximately subadditive if for a fixed $\epsilon > 0$ and for any partition n_1, \dots, n_k of $n \in \mathbb{N}$; the following discrete functional inequality holds true

$$u_n \le u_{n_1} + \cdots + u_{n_k} + \varepsilon$$
.

We show Ulam's type stability result for such sequences. We prove that an approximately subadditive sequence can be expressed as the algebraic summation of an ordinary subadditive and a non-negative sequence bounded above by ε .

A proposition portraying the linkage between the convex and subadditive sequences under minimal assumption is also included.

The motivation, research background, important notions, and terminologies are discussed in the introduction section.

Introduction

Throughout this paper \mathbb{N} , \mathbb{R} , and \mathbb{R}_+ denote the sets of natural, real, and positive numbers respectively. This paper primarily aims to introduce multiple characterizations of convex sequences and to present a decomposition result concerning approximately subadditive sequences.

2020 Mathematics Subject Classification. Primary 39A12; Secondary 39B22, 39B62.

 ${\it Keywords.}\ {\it convex}\ {\it and}\ {\it subadditive}\ {\it sequences}, Characterization, Ulam's\ type\ {\it stability}\ {\it results.}$

Received: 20 May 2025; Revised: 28 July 2025; Accepted: 06 August 2025

Communicated by Eberhard Malkowsky

The author's research was supported by 'Ipar a Veszprémi Mérnökképzésért' Foundation. Email address: goswami.angshuman.robin@mik.uni-pannon.hu (Angshuman R. Goswami)

ORCID iD: https://orcid.org/0009-0003-2457-2003 (Angshuman R. Goswami)

A sequence $(u_n)_{n=0}^{\infty}$ is said to be *sequentially convex* (or a *convex sequence*) if for all $n \in \mathbb{N}$, it satisfies the following functional inequality

$$2u_n \le u_{n-1} + u_{n+1}. \tag{1}$$

If the converse of the above inequality holds, $(u_n)_{n=0}^{\infty}$ would be termed as a *concave sequence*. Arithmetic, geometric, Fibonacci, and many other notable sequences can be analyzed within the framework of convex sequences.

Although the first mention of the convex sequence is not very clear; based on limited evidence, most mathematicians believe that the terminology of sequential convexity first appeared in the book of [22]. Some of the early works in this direction can be found in the papers [3, 6, 24].

Since then, mathematicians have also explored various aspects of sequential convexity, including discrete analogous of the Hermite-Hadamard inequality, linkage with difference equations, applications in numerical estimation and trigonometric functions etc. Relevant findings can be found in the works of [19, 23, 27].

In recent times, researchers have studied several new versions of convex sequences. For example, investigations into higher-ordered convex, relatively convex, symmetrized convex, approximately convex, and α -convex sequences have been carried out. The findings enhance the understanding of functional inequalities in discrete settings. The studies in [1, 2, 7, 8, 15, 17, 20, 21, 26] offer insight into these topics.

In the first section of this paper, we provide some characterizations of convex sequences. We show that for a convex sequence $(u_n)_{n=0}^{\infty}$, there exists an underlying monotone sequence $(v_n)_{n=0}^{\infty}$ that tracks the discrete slope between successive terms. Also, we prove that any convex sequence can be locally interpolated by a quadratic polynomial. More details regarding such generalizations, characterizations, decompositions, and other such related research of different function and sequence classes can be found in the books [12, 18, 25].

For any chosen $n \in \mathbb{N}$, a finite collection $\{n_1, \dots n_k\} \subset \mathbb{N}$ is called a *partition* of n if $n = n_1 + \dots + n_k$ holds. Partitions play a significant role in the field of number theory. Using the concept of partition, we define sequential subadditivity.

Let $\varepsilon > 0$ and $n \in \mathbb{N}$ be arbitrary. A sequence $(u_n)_{n=1}^{\infty}$ is said to be *approximately subadditive* if for any partition n_1, \dots, n_k of n, the following discrete functional inequality holds true

$$u_n \le u_{n_1} + \dots + u_{n_k} + \varepsilon. \tag{2}$$

On the other hand, if the sequence $(u_n)_{n=1}^{\infty}$ satisfies the above inequality without the ϵ ; in such case we said it as an ordinary *subadditive sequence*.

Discrete subadditivity is at the center of many important mathematical results. One can look into Fekete's subadditive lemma [4], Kingman's subadditive Ergodic theorem [16], Hammersley's subadditive theorem [11] etc. In recent years, researchers investigated several new variations of sequential subadditivities. Alternative proofs for some of the well-known results concerning subadditive sequences are also provided. To explore this further, see the results reported in [5, 9]. Based on all these research several applications in optimal transport, machine learning, information theory, and mathematical modelling are also proposed.

'Ulam-type stability' studies when an approximate solution to a functional equation implies the existence of a true solution nearby. Originating from Ulam's 1940 problem and Hyers' subsequent answer, it formalizes that small deviations in functional relations do not drastically alter the solution space. This notion has been extended to various mathematical settings, including differential equations, group homomorphisms,

and convexity. Stability results of this type are fundamental in understanding the robustness and rigidity of mathematical structures. Additional details are available in the classical papers [13, 14].

However, stability analysis is relatively a new concept in sequence settings. In the second section of this paper, we propose a Ulam-type stability theorem for subadditive sequences.

It is evident that if $\left(v_n\right)_{n=1}^{\infty}$ possesses sequential subadditivity and $\left(w_n\right)_{n=1}^{\infty}$ is a non-negative sequence bounded above by ε , then the derived sequence $\left(u_n\right)_{n=1}^{\infty}:=\left(v_n\right)_{n=1}^{\infty}+\left(w_n\right)_{n=1}^{\infty}$ is a approximately subadditive majorant of $\left(v_n\right)_{n=1}^{\infty}$. Also, we established that if a sequence $\left(u_n\right)_{n=1}^{\infty}$ satisfies the inequality (2), then it can be expressed as the algebraic summation of two sequences $\left(v_n\right)_{n=1}^{\infty}$ and $\left(w_n\right)_{n=1}^{\infty}$. Where $\left(v_n\right)_{n=1}^{\infty}$ is a subadditive minorant of $\left(u_n\right)_{n=1}^{\infty}$; while $\left(w_n\right)_{n=1}^{\infty}$ is a non-negative sequence bounded above by ε .

It is a interesting observation that the ordering of convex sequences starts from index 0, whereas for approximately subadditive (or ordinary subadditive) sequences, we begin with index 1. This distinction arises because, in subadditive sequence classes, the ordering is crucial. For instance, in order for (2) to hold, it is important first to consider all partitions of the positive integer n, followed by the corresponding sequential values at the partitioning points. In contrast, each term in a convex sequence depends only on the average of its two neighbouring terms, making the global ordering redundant. These distinctions are discussed in detail in [10].

Now, we start our investigation from convex sequences.

1. Characterization of Convex Sequences

We begin with a fundamental fractional inequality that will play a central role in several subsequent results. This inequality is also mentioned in one of our recently submitted papers. However, for readability purposes, we state the statement and propose a shorter proof.

Lemma 1.1. Let $a_1, \dots, a_n \in \mathbb{R}$ and $b_1, \dots, b_n \in \mathbb{R}_+$, then the following discrete functional inequality is satisfied

$$\min\left(\frac{a_1}{b_1}, \cdots, \frac{a_n}{b_n}\right) \le \frac{a_1 + \cdots + a_n}{b_1 + \cdots + b_n} \le \max\left(\frac{a_1}{b_1}, \cdots, \frac{a_n}{b_n}\right). \tag{3}$$

Proof. The expression $\frac{a_1 + \cdots + a_n}{b_1 + \cdots + b_n}$ can be re-written as the following convex combination

$$\frac{b_1}{b_1+\cdots+b_n}\left(\frac{a_1}{b_1}\right)+\cdots+\frac{b_n}{b_1+\cdots+b_n}\left(\frac{a_n}{b_n}\right).$$

Hence by mean property the inequality (3) is obvious. \Box

Theorem 1.2. Let $(u_n)_{n=0}^{\infty}$ be a real-valued sequence. Then the following conditions are equivalent to each other

(i)
$$\left(u_n\right)_{n=0}^{\infty}$$
 is convex.

(ii) For all $n_1, n_2, n_3 \in \mathbb{N} \cup \{0\}$ with $n_1 < n_2 < n_3$, it satisfies

$$\frac{u_{n_2} - u_{n_1}}{n_2 - n_1} \le \frac{u_{n_3} - u_{n_2}}{n_3 - n_2}.$$
(4)

(iii) There exists a monotonically increasing sequence $(v_n)_{n=0}^{\infty}$ such that for all $m, n \in \mathbb{N} \cup \{0\}$,

$$u_n - u_m \le v_n(n - m) \qquad (m, n \in \mathbb{N} \cup \{0\}). \tag{5}$$

Proof. (*i*) \rightarrow (*ii*): Assume that $\left(u_n\right)_{n=0}^{\infty}$ possesses sequential convexity and let n_1, n_2 and $n_3 \in \mathbb{N} \cup \{0\}$ with $n_1 < n_2 < n_3$. Using the inequality (3), we proceed as follows

$$\frac{u_{n_2} - u_{n_1}}{n_2 - n_1} = \frac{u_{n_2} - u_{n_2 - 1} + \dots + u_{n_1 + 1} - u_{n_1}}{1 + \dots + 1} \\
\leq \max \left(u_{n_2} - u_{n_2 - 1}, \dots, u_{n_1 + 1} - u_{n_1} \right) \\
= u_{n_2} - u_{n_2 - 1}.$$
(6)

Similarly,

$$\frac{u_{n_3} - u_{n_2}}{n_3 - n_2} = \frac{u_{n_3} - u_{n_3 - 1} + \dots + u_{n_2 + 1} - u_{n_2}}{1 + \dots + 1}$$

$$\geq \min \left(u_{n_3} - u_{n_3 - 1}, \dots, u_{n_2 + 1} - u_{n_2} \right)$$

$$= u_{n_2 + 1} - u_{n_2}.$$
(7)

Convexity of the sequence $(u_n)_{n=0}^{\infty}$ implies $u_{n_2} - u_{n_2-1} \le u_{n_2+1} - u_{n_2}$. This along with (6) and (7) establishes (4) and completes the assertion.

(ii) \rightarrow (iii): Assume that (ii) holds. We define the sequence $\left(v_n\right)_{n=0}^{\infty}$ as follows

$$v_n := \inf_{n \le n_1 < n_2} \left(\frac{u_{n_2} - u_{n_1}}{n_2 - n_1} \right) \qquad (n_1, n_2 \in \mathbb{N} \cup \{0\}).$$

In view of condition (ii), for all $n_1 < n_2 < n_3$ in $\mathbb{N} \cup \{0\}$, we can conclude

$$\frac{u_{n_2} - u_{n_1}}{n_2 - n_1} \le v_{n_2} \le \frac{u_{n_3} - u_{n_2}}{n_3 - n_2}.$$
(8)

From the left-most inequality of (8), we get

$$u_{n_2} - u_{n_1} \le v_{n_2}(n_2 - n_1)$$
 $(n_1, n_2 \in \mathbb{N} \cup \{0\} \text{ with } n_1 < n_2).$ (9)

Similarly, from the right-most inequality of (8) (replacing n_3 with n_1), it follows that

$$u_{n_2} - u_{n_1} \le v_{n_2}(n_2 - n_1)$$
 $(n_1, n_2 \in \mathbb{N} \text{ with } n_2 < n_1).$

Also, by definition of $(v_n)_{n=0}^{\infty}$, it is obvious that $v_0 \le u_1 - u_0$. This together with the above inequality yields

$$u_{n_2} - u_{n_1} \le v_{n_2}(n_2 - n_1)$$
 $(n_1, n_2 \in \mathbb{N} \cup \{0\} \text{ with } n_2 < n_1).$ (10)

The combined (9) and (10) can be represented as the following generalized form of inequality

$$u_n - u_m \le v_n(n-m)$$
 (for all $m, n \in \mathbb{N} \cup \{0\}$).

This is the inequality (5) which was needed to be established.

Now to show the monotonicity of the sequence $(v_n)_{n=0}^{\infty}$, we assume $m, n \in \mathbb{N} \cup \{0\}$ with m < n. Then the assertion (iii) provides the following two discrete inequalities

$$u_n - u_m \le v_n(n-m)$$
 and $u_m - u_n \le v_m(m-n)$.

Summing up these two inequalities side by side, we arrive at

$$0 \le (v_n - v_m)(n - m)$$
 $m, n \in \mathbb{N} \cup \{0\}$ with $m < n$.

This implies $v_m \le v_n$. Since $m, n \in \mathbb{N} \cup \{0\}$ are arbitrarily chosen, hence $(v_n)_{n=0}^{\infty}$ possesses monotonicity.

(iii) →(i): Now we assume that the condition (iii) holds. Let $n \in \mathbb{N}$ be arbitrary. By replacing m with n-1 and n+1 respectively in the inequality (5), we obtain the following two inequalities

$$u_n - u_{n-1} \le v_n(n - (n-1))$$
 and $u_n - u_{n+1} \le v_n(n - (n+1))$.

Summing up these two inequalities side by side, we arrive at (1). This implies convexity of the sequence $\left(u_n\right)_{n=0}^{\infty}$ and completes the proof. \Box

The Lagrange polynomial of degree n associated with the sequence $\left(u_n\right)_{n=0}^{\infty}$ can be expressed as follows

$$P_n(x) := \sum_{i=0}^n \left(\prod_{i \neq j} \frac{x - x_j}{i - j} u_i \right) \qquad (n \in \mathbb{N}).$$

For a convex sequence $(u_n)_{n=0}^{\infty}$, the interpolating Lagrange polynomial does not possess convexity. For instance (0,-1,1,3) is a convex sequence. But the corresponding Lagrange polynomial

$$P_3(x) = -\frac{1}{2}x^3 + 3x^2 - \frac{7}{2}x, \qquad x \in [0, 3]$$

is neither convex nor concave. However, in the next proposition, we will see that any convex sequence can be locally interpolated by a spline of degree 2.

To construct the result, corresponding to the sequence $(u_n)_{n=0}^{\infty}$, for each $n \in \mathbb{N}$, we define Lagrange polynomials of degree 2 in [n-1,n+1] as follows

$$P_{2}^{n}(x) := \left(\frac{u_{n-1} + u_{n+1}}{2} - u_{n}\right)x^{2} + \left(\frac{u_{n+1} - u_{n-1}}{2} - 2\left(\frac{u_{n-1} + u_{n+1}}{2} - u_{n}\right)n\right)x + \left(\left(\frac{u_{n-1} + u_{n+1}}{2} - u_{n}\right)n^{2} - \left(\frac{u_{n+1} - u_{n-1}}{2}\right)n + u_{n}\right).$$

$$(11)$$

Proposition 1.3. A sequence $(u_n)_{n=0}^{\infty}$ is convex if and only if the quadratic polynomial $P_2^n(x)$ defined in (11) is convex for each $n \in \mathbb{N}$.

Proof. To prove the proposition, first we assume that $(u_n)_{n=0}^{\infty}$ is convex. Using convexity of the sequence, it can be easily observed that

$$(P_2^n)^{"} = u_{n-1} - 2u_n + u_{n+1} \ge 0 \quad \text{for all} \quad n \in \mathbb{N} ;$$
 (12)

where $(P_2^n)^n$ denotes the second derivative of P_2^n . Hence, P_2^n is convex on the interval [n-1, n+1] for each $n \in \mathbb{N}$.

To prove the converse part, we assume that for each $n \in \mathbb{N}$ the polynomial P_2^n is convex. In other words, (12) is satisfied. The right-most inequality of (12) is just re-arranged form of (1). This establishes that the sequence $\left(u_n\right)_{n=0}^{\infty}$ is convex and completes the proof. \square

2. Decomposition of Approximately Subadditive Sequences

In this section, we discuss the decomposition of approximately subadditive sequences. The proof of the proposed result extensively utilizes proposition 1.2 of our paper [10].

Proposition 2.1. The sequence $(u_n)_{n=1}^{\infty}$ is approximately subadditive if and only if it can be expressed as the algebraic summation of a subadditive minorant $(v_n)_{n=1}^{\infty}$ and a non-negative sequence $(w_n)_{n=1}^{\infty}$ which is bounded above by ε .

Proof. First, we consider $n \in \mathbb{N}$ to be arbitrary and n_1, \dots, n_k to be its arbitrary partition. Let $(v_n)_{n=1}^{\infty}$ be a subadditive sequence, and $(w_n)_{n=1}^{\infty}$ a non-negative sequence, which is bounded above by ε . Then we can compute the following

$$v_n + w_n \le v_{n_1} + \dots + v_{n_k} + \varepsilon. \tag{13}$$

We define $(u_n)_{n=1}^{\infty} = (v_n)_{n=1}^{\infty} + (w_n)_{n=1}^{\infty}$. Here, the non-negativity of the sequence $(w_n)_{n=1}^{\infty}$ implies $v_n \le u_n$ for all $n \in \mathbb{N}$. Hence, the inequality (13) can be extended as follows

$$u_n \leq v_{n_1} + \cdots + v_{n_k} + \varepsilon \leq u_{n_1} + \cdots + u_{n_k} + \varepsilon.$$

This shows that the sequence $(u_n)_{n=1}^{\infty}$ is approximately subadditive.

To prove the converse part, we assume that $(u_n)_{n=1}^{\infty}$ be approximately subadditive. In other words, for the sequence $(u_n)_{n=1}^{\infty}$, the inequality (2) is satisfied. Now, we assume $n \in \mathbb{N}$ and n_1, \dots, n_k be any arbitrary partition of it. We construct the sequence $(v_n)_{n=1}^{\infty}$ as follows

$$v_n := \min \left\{ u_{n_1} + \dots + u_{n_k} \mid n_1, \dots, n_k \in \mathbb{N} \quad \text{satisfying} \quad n_1 + \dots + n_k = n \right\}. \tag{14}$$

Clearly $v_n \le u_n$ holds for all $n \in \mathbb{N}$. We only need to show that the sequence $(v_n)_{n=1}^{\infty}$ is subadditive.

We consider $m, n \in \mathbb{N}$ and have their respective partitions such that $m = m_1 + \cdots + m_l$ and $n = n_1 + \cdots + n_k$ satisfying the following two discrete functional equalities

$$v_m = u_{m_1} + \dots + u_{m_l}$$
 and $v_n = u_{n_1} + \dots + u_{n_k}$. (15)

The combined partitions of m and n provide a partition for m + n as well. This can be represented as follows

$$m+n=m_1+\cdots m_l+n_1+\cdots+n_k.$$

From the construction of the sequence $\left(v_n\right)_{n=1}^{\infty}$ (inequality (14)) and using (15), we can conclude the following inequality

$$v_{m+n} \leq u_{m_1} + \cdots + u_{m_l} + u_{n_1} + \cdots + u_{n_k} = v_m + v_n.$$

This yields that sequence $(v_n)_{n=1}^{\infty}$ is subadditive.

Now we define $(w_n)_{n=1}^{\infty} := (u_n)_{n=1}^{\infty} - (v_n)_{n=1}^{\infty}$. This ensures the non-negativity of the sequence $(w_n)_{n=1}^{\infty}$. To determine its upper bound, first, we consider any point w_n from the sequence $(w_n)_{n=1}^{\infty}$. For the $n \in \mathbb{N}$, there must exists a partition $\{n_1, \cdots, n_k\}$ that satisfies the second equality of (15). Using this together with (2), we can proceed as follows

$$w_n = u_n - v_n \le (u_{n_1} + \dots + u_{n_k} + \varepsilon) - (u_{n_1} + \dots + u_{n_k}) = \varepsilon.$$

This shows that the sequence $(w_n)_{n=1}^{\infty}$ is bounded above by ε and completes the proof. \square

The following proposition is self-verifiable. Hence the proof is left for the reader.

Proposition 2.2. If all the elements of the decreasing sequence $(v_n)_{n=1}^{\infty}$ are non-negative, then it also possesses sequential subadditivity.

The next proposition establishes a connection between the concave and subadditive sequences

Proposition 2.3. If all the elements of concave and monotone(increasing) sequence $(u_n)_{n=0}^{\infty}$ are non-negative, then the corresponding sequence $(u_n - u_{n-1})_{n=1}^{\infty}$ is subadditive. Conversely, if the sequence $(u_n - u_{n-1})_{n=1}^{\infty}$ is decreasing, then the corresponding sequence $(u_n)_{n=0}^{\infty}$ is concave.

Proof. The concavity of the sequence $\left(u_n\right)_{n=0}^{\infty}$ implies the inverse of inequality (1). This together with the monotonicity of $\left(u_n\right)_{n=0}^{\infty}$ yields the following inequality

$$u_n - u_{n-1} \ge u_{n+1} - u_n \ge 0 \qquad (n \in \mathbb{N}).$$
 (16)

This shows that $(u_n - u_{n-1})_{n=1}^{\infty}$ is a decreasing sequence with non-negative terms. Using Proposition 2.2, we can conclude that $(u_n - u_{n-1})_{n=1}^{\infty}$ is a subadditive sequence. This establishes our first assertion.

The decreasingness of the sequence $(u_n - u_{n-1})_{n=1}^{\infty}$ can be denoted by the left-most inequality of (16). Arranging the terms we arrive at

$$u_{n+1} + u_{n-1} \le 2u_n \qquad (n \in \mathbb{N}).$$

It proves concavity of the sequence $(u_n)_{n=0}^{\infty}$ and establishes the result. \Box

These findings open several avenues for future research, including the characterization of various generalized forms of convex sequences. Similarly one can explore the stability results for newly derived subadditive sequences.

Acknowledgement: The author would like to extend his gratitude to the anonymous referee for his/her valuable time, insightful comments, and constructive feedback.

References

- [1] Abdellaoui, Mohamed Amin, Houda Mebarki, Zoubir Dahmani, and Mehmet Zeki Sarikaya. New Results on Symmetrized Convex Sequences. Mathematical Inequalities & Applications 27, no. 1 (2024): 173-184.
- [2] El Farissi, A., Latreuch, Z., Taf, S. et al. On Relative Convex Sequences. Results in Math 79, 280 (2024).
- [3] Essén, Matts. A theorem on convex sequences. Analysis 2, no. 1-4 (1982): 231-252.
- [4] Fekete, Michael. Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten. Mathematische Zeitschrift 17, no. 1 (1923): 228-249.
- [5] Füredi, Z., and Ruzsa, I. Z., Nearly subadditive sequences, Acta Mathematica Hungarica, 161(2), 2020, 401-411.
- [6] Gaubert, Stéphane, Peter Butkovic, and Raymond Cuninghame-Green. Minimal (max,+) realization of convex sequences. SIAM Journal on Control and Optimization 36, no. 1 (1998): 137-147.
- [7] Goswami, Angshuman Robin. Decomposition of Approximately Monotone and Convex Sequences. arXiv preprint arXiv:2404.15362 (2024).
- [8] Goswami, Angshuman Robin. On approximately Convex and Affine Sequences. arXiv preprint arXiv:2406.15380 (2024).
- [9] Goswami, Angshuman R. Generalization of Subadditive, Monotone and Convex Functions. arXiv preprint arXiv:2308.00704 (2023).
- [10] Goswami, Angshuman R. Revisiting Fekete's Lemma, Subadditive and Periodic Sequences. Results in Mathematics 80 (5): 1-18.
- [11] Hammersley, J. M. (1972). A Few Seedlings of Research. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1 (pp. 345–394).
- [12] Hardy, G. H., Littlewood, J. E., and Pólya, G. Inequalities, Cambridge University Press, Cambridge, 1934, (first edition), 1952 (second edition). MR 13,727e

- [13] Hyers, Donald H. On the stability of the linear functional equation. Proceedings of the National Academy of Sciences 27, no. 4 (1941): 222-224.
- [14] Hyers, Donald H., George Isac, and Themistocles M. Rassias. Approximately convex functions. In Stability of Functional Equations in Several Variables, pp. 166-179. Boston, MA: Birkhäuser Boston, 1952.
- [15] Jiménez-Garrido, Javier, Javier Sanz, and Gerhard Schindl. Log-convex sequences and nonzero proximate orders. Journal of Mathematical Analysis and Applications 448, no. 2 (2017): 1572-1599.
- [16] Kingman, J. F. C. The Ergodic Theory of Subadditive Stochastic Processes. Journal of the Royal Statistical Society: Series B (Methodological), 30(3), 499–510.
- [17] Krasniqi, Xhevat Z. On α -convex sequences of higher order. Journal of Numerical Analysis and Approximation Theory 45, no. 2 (2016): 177-182.
- [18] Kuczma, M. (1985) An Introduction to the Theory of Functional Equations and Inequalities. Polish Scientific Editors and Silesian University, Warszawa-Krakow-Katowice
- [19] Latreuch, Zinelaâbidine, and Benharrat Belaidi. New inequalities for convex sequences with applications. Int. J. Open Problems Comput. Math 5, no. 3 (2012): 15-27.
- [20] Mercer, A. McD. Polynomials and convex sequence inequalities. J. Inequal. Pure Appl. Math 6, no. 1 (2005).
- [21] Milovanovic, I. Z., and E. I. Milovanovic. Some properties of Lk p-convex sequences. Bull. Int. Math. Virtual Inst 5, no. 1 (2015):
- [22] Mitrinovic, Dragoslav S., and Petar M. Vasic. Analytic inequalities. Vol. 1. Berlin: Springer-verlag, 1970.
- [23] Molnár, Gábor Marcell, and Zsolt Páles. On convex and concave sequences and their applications.. Mathematical Inequalities & Applications 25, no. 1 (2022): 727-750.
- [24] Pečarić, Josip E. On some inequalities for convex sequences. Publications de l'Institut Mathématique. Nouvelle Série 33 (1983): 173-178.
- [25] Schechter, Eric. Handbook of Analysis and its Foundations. Academic Press, 1996.
- [26] Sofonea, Daniel Florin, Ioan Tincu, and Ana Maria Acu. Convex sequences of higher order. Filomat 32, no. 13 (2018): 4655-4663.
- [27] Wu, Shanhe, and Lokenath Debnath. Inequalities for convex sequences and their applications. Computers & Mathematics with Applications 54, no. 4 (2007): 525-534.