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Existence, uniqueness and stability of mild solutions for fractional
hybrid semilinear equations with boundary conditions

Abdelmjid Benmerrous®, Fatima Ezzahra Bourhim?®, M’hamed Elomari?, Ali ElImfadel®

Laboratory of Applied Mathematics and Scientific Computing, Sultan Moulay Slimane University, PO Box 532, Beni Mellal, 23000, Morocco

Abstract. In this paper, we study the existence of mild solutions for hybrid fractional semilinear evolution
equations with boundary conditions. Additionally, we prove four different types of Mittag-Leffler-Ulam-
Hyers stability results for mild solutions. The existence of mild solutions is proved by the Dhage fixed
point theorem. Finally, we provide an example to demonstrate our findings.

1. Introduction

Fractional differential equations have found applications across a wide array of disciplines including
economics, engineering, chemistry, aerodynamics and control of dynamical systems. The burgeoning inter-
est in fractional calculus stems from its ability to provide more accurate descriptions of certain dynamical
systems compared to those relying solely on integer-order derivatives. Notably, fractional calculus offers
more realistic models that unveil hidden dynamics in systems such as spring pendulums, particle motion
in circular cavities, and epidemic models (see e.g. [12], [13], [14], [15], [16] and references therein).
Researchers are currently investigating multiple facets of fractional differential equations, encompassing
the exploration of solution existence and uniqueness, stability analysis, and techniques for deriving explicit
and numerical solutions. Methods such as fixed point theorems, upper-lower solutions, iterative tech-
niques, and numerical methods are frequently utilized to verify the existence and uniqueness of solutions
in fractional differential equations. Stability analysis often focuses on exploring the dependence of solutions
on initial conditions and parameters, with particular attention to concepts like Mittag-Leffler-Ulam-Hyers-
Rassias stability (see e.g. [1], [8], [29], [23] and reference therein).

Almeida [6] extended the definition of the Caputo derivative by introducing dependencies on another
function, thereby enhancing the accuracy of models with increased adaptability.

Lately, Jarad et al [30] presented a generalized Laplace transform and its inverse, which streamline the
solution process for fractional differential equations involving generalized Caputo fractional derivatives.

This innovation has facilitated more efficient approaches to analyzing and solving such equations in math-
ematical research.
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Inspired by the research presented in [36], we delve into the analysis of the existence and different classifi-
cations of Ulam-Hyers stability outcomes for mild solutions for the semilinear fractional hybrid differential
equations that include the p—Caputo fractional derivative of order 0 < g < 1.

{ cDﬁP( u(s) ) y(( u(s) )+h(s,u(s)), s€[0,T,0<p<1,

g(s u() EE) (1.1)
u(0) =

Where T > 0, A is the infinitesimal generator of Co—semigroup (T(s))sz0 on a Banach space X, g €
C([0, T] x X, X\ {0}) and h € C([0, T] x X, X).

The article is arranged as follows: Section 2 provides preliminaries, Section 3 presents the existence
and uniqueness of the mild solution of the problem, Section 4 prove four different types of Mittag-Leffler-
Ulam-Hyers stability results for mild solutions, after that section 5 provide an example to demonstrate our
findings and finally, Section 6 offers a concise conclusion.

2. Preliminaries

Consider X as a Banach space, and let C([0, T], X) denote the Banach space of continuous functions from
[0, T] to X. In this space, the norm ||u|| is defined as |[u|| = sup [[u(s)]|.
s€[0,T]
Definition 2.1. [13] Let § > 0, f be an integrable function defined on [a,b] and p : [a,b] — R that is an increasing
differentiable function such that p’(s) # 0, for all s € [a, D].
The p-Riemann-Liouville fractional integral operator of order p applied to a function f is defined as

B,
2050 = 5 [ o006 - p) st

Definition 2.2. [13] Let n € N, k, p € C"([a, b]) be two functions such that p is increasing with p’(s) # 0, for all
s € [a,b].
p-Riemann-Liouville fractional derivative of order p applied to a function f is defined as

DO = e B)( B ds) f PO - p() 7 (i,

where n = [B] + 1 and [B] denotes the integer part of B.

Definition 2.3. [13]
Letn € IN, f, p € C"([a, b]) be two functions such that p is increasing with p’(s) # 0, for all s € [a, D].
p-Caputo fractional derivative of order p applied to a function f is defined as

DI f(s) = f o/ (Do) — () ity

1
I'(n—-p)
wheren = [B] + 1, for B ¢ IN. Analf}g Is) = (p(s) ds) f(s) on [a,b].

Remark 2.4. 1) The equality in Definition 2.3 between the p-Caputo derivative and the p-Riemann—Liouville
derivative follows from the fact that the Caputo operator can be expressed as a fractional integral of the higher-order
derivative of the function. More precisely, for f € C"([a,b]) and n — 1 < B < n, we have

CDEPfs) = LiP(f6s),

where ¥ denotes the p-Riemann—Liouville integral of order y.
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2) This representation shows that the p-Caputo derivative is obtained by applying the p-Riemann—Liouville
integral to the n-th p-derivative of f. Consequently, the equality

n-1 [kl
@)
colse) = pif| -3 L

k=0

ps) — p(@)"

is valid, since subtracting the polynomial involving the initial values ensures that the Caputo derivative vanishes on
constants, which distinguishes it from the Riemann—Liouville derivative.

Theorem 2.5. Given f € C"([a,b]) and B > 0. Then

=

= £ @

I SO fE) = f6) - ) 7

(p(s) — p(a))".

k=0
In particular, if B € (0, 1) we have:
I3 COILf6s) = £5) ~ fla).

Here, we introduce a generalized integral transform recently proposed by Jarad and Abdeljawad [30].
This transform is particularly applicable in solving linear Fractional Differential Equations (FDEs) that
feature p-Riemann-Liouville and p-Caputo fractional derivatives. It provides a unified approach to handle
these types of fractional derivatives within the context of linear FDEs, offering a powerful tool for theoretical
analysis and numerical computations in fractional calculus.

Definition 2.6. Let v, p : [a,00) — IR be a real-valued function and p be a non-negative increasing function such
that p’(0) > 0. Then the Laplace transform of v with respect to p is defined by

Lyiv(s)) = B(A) = fo exp{=A(p(s) — p(0)}p’(s)v(s)ds,

for every A € C for which this integral converges.
In this context, L, denotes a generalized Laplace transform with respect to the function p.

Next, we present some information regarding the semigroups of linear operators. These findings are
documented in references [24, 33].
For a strongly continuous semigroup, often denoted as Cp—semigroup, represented by (T(s))sso and the
infinitesimal generator is:
Ay = lim

s—0*

T —
TN yex

The domain of A, denoted as D(A), is such that
T —
DA) = {y eX: lirg& % exists}.
Theorem 2.7. [24] Let be (T(s))s»0 be a Co—semigroup then there exist constants w € R and M > 1, such that
IT(s)ll < Mexp{wt} for 0 <t < +oo0.

Theorem 2.8. [24] A linear operator A serves as the infinitesimal generator of a contraction Co—semigroup if and
only if the following conditions hold:

1. Ais closed, and its closure of the domain D(A) = X.

2. The resolvent set of A, denoted p(A), contains R™* and Vp > 0

with RB, A) = (B1 - A)" = [ exp{—p*HT(t)ydt.
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Definition 2.9. [31] The Wright type function is defined by

S 9 () TRk + D) sin(r(k + 1))
Pp(6) = ;J‘ KT(—pk+1-p) kZ:;- K /

forO0<p<landseC.

Theorem 2.10. [20] Let S be a closed, bounded and convex subset of the Banach algebra X. We consider the two
operators I : X — Xand J : S — X such that

(i) 7 is Lipschitzian with a Lipschitz constant a;
(2i) J is completely continuous;

B) u=TuJv=>ueS, forallves;

4i) a'K <1, where K = || (S)II.

Then the operator function u = TuJ u has a solution on S.

3. The mild solution

Based on Definition (2.3) and Theorem (2.5), it is appropriate to reformulate the problem into

_ L g
u(s) = g(s, u(s) {Tﬁ) [ pxpe -y 154( = u(t»)‘” G

1 PR }
“ 5 | 7000 - o0, ).

Proof.
pocape( M) ) _ 78 u(s)
o R Ul vor MR X
then o ( .
u(s 3 u(0) B uls 5o
76, u@)  g0u) Om(g(s, u(s))) + Loyhls, u(s):
O

Lemma 3.1. If (3.1) holds, then we have

u(s) = g(s, u(s)) {ﬁ[) L 0D(0)(p(s) — p(t)Y ' T(p(s) — p()O)h(t, u(t))p'(t)d@dt}.
Proof. Consider A > 0. By applying the generalized Laplace transform to equation (3.1), we obtain

() = 25 (AU + H0),

where

() = fo exp [~A(p(s) - p(O))} %p'(s)ds,

(M) = fo exp (= A(p(s) — p(O))} (s, u(s))p ()ds.
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It follows that

UN) = f ) exp{—APs)T(s)H(A)ds = fo ) BwP exp{—(Aw)f} T(wh)H(A)dw

0

Taking w = p(t) — p(0), we get
UQ) = fo Blp(t) = p(0))~ exp{=A(p(t) = pO)IT((p(t) = p(0)))H(A)p’ (et

= [ [ 8600~ 00 expl-ot) - pO 1T - pOIF)
x exp{—A(p(s) — p(0)}h(s, u(s))p’(s)p’ (t)dsdt.
We examine the following probability density function in [32]
pp(6) = % Y 17 e—ﬁf*@ sin(inB), O € (0, ),
i=1 '
whose integration, is given by

foo exp{—10}ps(0)d0 = exp{—A*}, where B € (0,1). (3.2)
0

Using (3.2), we get

— Y _ p-1 _ _
() fo fo fo Bos(O)(p(t) — PO expl-A(p(t) — p(0))0)
X T((p(t) - p(O))) expl—A(p(s) — p(O)Ih(s, u(s)p' (&)o' (dOdsdt

0!
f f f o0 L= e a(0) + pts) - 2000

- B
xT(W)h(s,u(s)) '(s)p' (HdOdsdt

t ,Bl
f f f Bop(6) LD PO - O expi=a(o(x) - p(O))}

o T((p t) - p(O))ﬁ)
op

h(p~ (p(T) = p(t) + p(0)), u(p™ (p(7) — p(t) + p(O)p’ (t)p’ (T)dOddt,

by Fubini’s theorem, we have

" - p(0))F-1 - p(0))
u = [ explatpte) - pon { [ [ pontor COED—r(LOZLOL)

X h(p™ (p(7) = p(t) + p(0)), u(p™ (p(7) - p(t) + P(O))))p (HAOdt} p' ()d

S (p(x) - p(s)~!
_ fo expl-A(p(7) p(om{ fo fo Bou(O)

(M)ms,u(s»p'(s)deds}p’mdf-

08

Now, we proceed to perform the inversion of the Laplace transform in order to obtain

s f f 094(0)(p(©) ~ P X T((p(®) — P OW(L, u®))p (DO,
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where ¢3(0) = %6_1_% pﬁ(Q_%) is the probability density in (0, o0).

Thus
u(s) = g(s,u@) (B 5 5~ 0bp(O)(p(s) — p(t))F1 x T((p(s) = p()F Ot u(t))p’ (DO} . O

For any u € X, define the operator a)f,(s, t) by

wﬁ(s, Hu=p f:o Opp(0)T((p(s) — p(t))ﬁG) udf for 0<t<s<T.

Definition 3.1. We say that u € C([0, T, X) is a mild solution of equation (1.1) If we have

u(s) = g(s,u(s)) { j; (p(s) = PO (s, )t u(f))P'(t)df}.

Prior to commencing the proof of the main result, we introduce the following hypothesis

(C1) T(s) is compact operator Vs > 0.
(Cy) Letr>0,3dh, € L=([0, T], X) such that

sup”h(s/ 1/[)” S h?‘(s)/ ERS [O/ T]r

|Jull<r

and there is a constant C >0 such that

limsu

r—00

1 ()l
p— —=¢C

(C3) The function g € C.([0, T] x X, X \ {0}) is bounded and there exist constants 1 > 0 and L > 0 such that
forall u,v € Xand s € [0, T], we have

lg(s, u) — g(s,0)| < plu — vl and |g(s, u)| < L.

Theorem 3.2. Assume that condition (C1) — (C3) hold. Then the problem (1.1) has at least mild solution provided

that
pM| Ry ||

W(P(T) - p(0))f < 1.

Proof. LetV = {u € X, |ju|l < b}, where b = %(p(w — p(0))P.
We have

u(s) = g(s, u(s)) {fo(p(s) - p(t))ﬁ‘la)pﬁ(s, t)h(t,u(t))p’(t)dt}.
Then we can transform into u(s) = Zu(t)Ju(s), s € [0, T].

Now we prove that all conditions of Theorem (2.10) are satisfied.
Step 1. Let u, v € X then

| Zu(s) — Zo(s) | = g(s, u(s)) — g(s, v(s)) |
<ulu(s)—uv(s)l, s €[0Tl

Step 2. Firstly, we prove that J is completely continuous.
Let u,, u € V with lirP llu,, — ull = 0. Then
n—+o0o

h(s, uy(s)) — h(s,u(s)), as n — oo.
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Therefore

1T tn(s) = TJu@)l < | (p(s) = pH)’~ 1—Ilh(t un(t)) — h(t, u(®))llp’ (t)dt.
0 I'(g)

Via Lebesgue dominated convergence theorem, we get

T tn(s) = Ju@)ll — Oas n — co.

¢ J (V) is uniformly bounded
Letue,

T u(s)l < f(P(S) L0
_ Mkl
IRXCESY
< Millle

= rg+1)

£l 0

T (p(s) — p(0), 0<s<T

(p(T) = p(0))".

¢ J (V) is equicontinuous.
Let sy, s, € [0, T] withs; <sp and u € V.

Tu(s2) - Tl < f (pls1) ~ p(OF ! sl

I'(B)
+ f01 llwh(s2, OIH(p(s2) = p(B)YF " = (p(s1) = p()FHI(t, u(t)llp (t)dt

+ fo (p(s1) = @52, ) — o1, D) X Wit w(O) ! ()t

Milh |l Myl
< s 7 P00 =P+ gL (060 = O = ot~ e

1Pl
p

— (pls1) = PO} + == (p(s1) = pO)F llar (52, £) = wh(s1, E)l

Thus
[T u(s2) — Ju(s1)|| = 0 as s, — s1.

Step 3. Let u € X and v € V such that JuJv = u, prove that u € V.

Mkl

lu@ll = I uJoll = llg(t, u@)I < T 0@l T +1)

(p(T) = p(0))F.
Step 4. Suppose that S = sup{||Jull,u € V} <b. Then

pxS<uxb<l

O

4. Mittag-Leffler-Ulam-Hyers Stability

For g € C([0, T1 x X, X\ {0}), h € C([0, T]1 x X, X), i € C([0, T], R*) and € > 0. We consider the equation

cpbe [ Hs) | _ u(s)
Dy ( g(s,u(s))) = ﬂ(g o (S))) +h(s, u(s)), s € [0,T],0 < § < 1. 1)
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And the inequalities

g uls) |\ u@s) |\ ,
CDOf (g(s,u(s))) &7{(9(5’ u(s))) h(s,u(s))|| <e s€[0,T]; (4.2)
crpe( 16 Y ue) |\ _
Dy’ (g G (S))) ﬂ(g G (S))) h(s, u(s))|| < ¢, s €[0,TJ; (4.3)
b u(s) us) |\
CDOf (g(s, u(s))) -A (g(s,u(s))) h(s,u(s))|| < ey, s €[0,T]. (4.4)

Definition 4.1. We define equation (4.1) as Mittag-Leffler-Ulam-Hyers stable with respect to Eg if there exists a real
number 6 > 0 such that for every € > 0 and for each solution v € CX([0, T], X) of inequality (4.2), there exists a mild
solution u € C([0, T1, X) of equation (4.1) satisfying |[v(s) — u(s)|| < 6eEg(s), s € [0, T].

We can repeat the same definition in other cases.

Remark 4.2. A function u € CY([0,T], X) is a solution of inequality (4.2) if and only if there exists a function
@ € CY([0, T, X) (which depend on u) such that
1. llpG)ll < € fors € [0, T].

2. CDﬁp (g(:ff)s) ) = ﬂ(g(ZSgs))) + h(s, u(s)) + ¢(s), s € [0,T].

Lemma 4.1. Ifv € CY([0, T, X) is a solution of (4.2), v is a solution of the following integral inequality

LMe
< 1@ P~ POY.

v(s) = g(s, V(S)){ f (p(s) = PO @l (s, Ot v(E)p’ (f)dt}

Proof. By the previous remark, we have

Crb, u(s) |\ _ u(s)
D,? (g(s,u(s))) = ﬂ(g(s,u(s))) + h(s, u(s)) + ¢(s), s € [0, T].

And from Theorem (3.2), we get

<LXxe

v(s) = g(s, v(s)) { fo (p(s) = p(B)Y " Wh(s, byh(t, V(f))P'(f)dt}

B
£ P - PO

O
Theorem 4.3. Assume that h € C([0, T] X X, X and there exists Ly, > 0 such that |h(s, u1) — h(s, up)| < Lylu1 — uy),

foralls € [0, T] and u1,up € X.
Then equation (4.1) is Mittag-Leffler-Ulam-Hyers stable.

Proof. Let v € C'([0, T], X) be a solution of inequality (4.2) and let us denote by u € C([0, T], X) the unique
mild solution of the Cauchy problem

{ Db (7 st») ﬂ(g(su o) + s u(s), s € [0,T), (4.5)
u(0) =v(0) =
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We have

[[v(s) — u(s)ll <

v(s)—g(s,v(s)){ fo (p(s) = p())FLah (s, Dt v(B))p’ (t)dt}

+ ‘g(s,v(s)) f(p(s) - p(t))ﬁ_lwg(s, Hh(t, v(t)p’ (t)dt

g6 v) fo (p(s) - Pl G, t)h(t,u(t))p’(t)dtH

+11g(s, v(s)) fo (p(s) = p(&)P " wh(s, Ot u(E))p' ()t

= g(s,u(s)) fo (p(s) = P (s, Dt u(B)p’ (Bt

LM LLM (° - ,
< T P PO + T | (06 = @) o) - u(hllp ()
M|l
* a1y D = POV )
LMe 1
< TP PO X 5
, LLiM P
22 [ 00 = o) b0 - ol O,
with Mullh
d=1- rtlﬁ”_’_r“f)m (p(T) = p(0))’ > 0 (under the hypothesis of Theorem (3.2)).
By Gronwall’s inequality, we get
Iv6) = ) = Fg s X D) = POVES (S50 = pOF) @ >0
0

Theorem 4.4. Suppose the following conditions are satisfied:
i. h e C([0,00) x X, X);
ii. The function ¢ € C([0, o], R*) is increasing and there exists A > 0 such that

LM,
Wfl)(p(T) — p(0)F < AY(t), te[0,00);

iii. u(s) is nonnegative, nondecreasing continuous function defined on s € [0, c0)
and |h(s, u1) — h(s, u2)| < u(s)lug —up|, foralls >0and uy,ux € X.

Then, equation (4.1) is generalized Mittag-Leffler-Ulam-Hyers-Rassias stable with respect to {Eg.
Proof. Letv € C'([0, T], o) be a solution of equation (4.3). Then, we get

v(s) = g(s,v(s)) { fo (p(s) = POl (s, t)h(t,V(t))P'(t)df}

B F(ﬁ+ 1)

== (p(T) = p(0))" < AY(s),

9543

s € [0, o).
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9544
Let us denote by u € C([0, T], c0) the unique mild solution of the cauchy problem

{ CDg’p( (S”S(S))) ﬂ( (:u(s))) + h(s u(s)), s€ [O oo)
u(0) = v(0) =

We have

u(s) = g(s, u(s)) { fo (p(s) = p(t))° —10)[;(5, t)h(f,u(f))P'(f)df}, s € [0, c0).
It follows that

[[v(s) = u(s)Il <

¥(s) - gls, v(5) { fo (0(5) - p(O) s, t)h(t,v(t»p'(t)dt}
+ s, fo (p(5) — p(OY s, D, V() (Bt

~ (s, u(s)) fo (p(6) — PO (s, DCE u(t))p'(t)dt”

< A(s) + llg(s, v(s))ll fo (p(s) — p()F (s, B)lln(t, v(t)) — (t, u()llp’ ()t

+lg(s, v(s)) = g(s, u(s)l el %(pm - p&)!

< W(S)+L><#(S)% fo (0(5) — PP X [Iv(E) — u(®)lp’ ()t

) = O 5 () = O

A LM/J(S) 1 ,
<3O+ 1 df( = MY xIv() = u(®)llp’ (t)dt, d > 0.

By Gronwall’s inequality, we get

LM
() = u(s)l < %xp(s)Eﬁ( O (o) - p(O»ﬂ),

withd = 1 - pll |l w55 (p(T) = p(O)F. O
5. Example
Let X = L*([0, t]) with the norm and inner product defined as follows for any u,v € L2([0, rt]):

[Jull = (j; Iu(y)lzdy)2 and <u,v >=f0 u(y) Ty)dy.

Let’s examine the initial-boundary value problem of a fractional parabolic partial differential equation with
a nonlinear source term concerning tire dynamics

{ CDﬁP(e,sg(;)S)) == (Q,Z;y(';fs)) + Te=u(y,s), (5,y) € [0,1]x [0, 7]

u(0,s) = u(m,s) =0, sel0,1] (5.1)
u(y,0) =0, yel0,n].
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Wherep=3, T=1, p=s.
We define an operator A : D(A) € X — X by

D(A) = {ve&vvare absolutely continuous and v', v(0) = v(r) = 0},
and
92
ot

It is well known that A has a discrete spectrum, the eigenvalue are —j2, j € IN, with corresponding

Au

normalized eigenvectors ¢;(z) = \/g sin(jz). Then

ﬂy:}l—f<ymﬁ>q,y€@0ﬂ
j=1

Thus, A generates a uniformly bounded analytic semigroup {T(s)}s>0 in X and it is given by

T(s)y = Ze‘jzs <ye>ej, ye€X
j=1

with
T <e®, ¥s=>0.
Hence, we take M = 1 which implies that sup ||T(s)|| = 1 and (C;) is satisfied.
te[0,00)

Then for all s € [0,1], we have

(s, w)ll = 5 e~*|lull,

supllh(s, u)l| < %e‘s r = h,(s),

[lael| <7

limsupw =1:=L

r—o00

And
llg(s, u1) = g(s, u2)ll < lur = ua|, w1, up € X.
Therefore (C;) and (C3) are satisfied, which is given us
Myl |l
rg+1)

or (3)

According to Theorem (3.2). The problem (5.1) has a unique mild solution on [0,1].

~ (045137 < 1.

(p(T) - p(0)) =

6. Conclusion

In this paper, we have developed the theory of existence for mild solutions to initial value problems
concerning hybrid fractional semi-linear evolution equations based on the {)—Caputo fractional derivative.
Our approach is rooted in the Dhage fixed point theorem. Furthermore, we have examined four distinct
types of Mittag-Leffler-Ulam-Hyers stability regarding solutions to a specified problem. Additionally, an
illustrative example has been provided to elucidate our principal findings.
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