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Some properties of Pareto H-eigenvalues on tensors and hypergraphs
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Abstract. A Pareto H-eigenvalue of a tensorA is a real number λ satisfying the complementarity system:
0 ≤ x ⊥ (Ax − λIx) ≥ 0. The Pareto H-spectrum is the set of all Pareto H-eigenvalues. In this note, we first
obtain some invariance on Pareto H-spectrum of tensors under tensor permutational similar (resp. diagonal
similar) translation. As their application, we know that Pareto H-spectrum of hypergraphs is independent
of the ordering of their vertices. Furthermore, we attain some nice properties on Pareto H-spectrum of
hypergraphs. At the same time, we improve some results in [4] and [5].

1. Introduction

Let R (resp. R+, C) be the set of real (resp. nonnegative real, complex) numbers. Let Rn
+ = {(x1, . . . , xn)T :

xi ≥ 0, i ∈ [n] = {1, 2, . . . ,n}} and Rn
++ = {(x1, . . . , xn)T : xi > 0, i ∈ [n]}. Let A = (ai1...im ) be a real tensor with

order m dimension n, where ai1...im ∈ R, i j ∈ [n] and j ∈ [m]. Obviously, if m = 2 (resp. m = 1), A is exactly
the matrix (resp. vector) of order n. For simplicity, we will write ai1...im as ai1α, where α = i2 · · · im ∈ [n]m−1.
For an order m(≥ 2) dimension n tensorA and an order k(≥ 1) dimension n tensor B, their general product
AB, which is introduced by Shao in [3], is the tensor C = (ciα1...αm−1 ) of order (m− 1)(k− 1)+ 1 and dimension
n, for i ∈ [n],

(AB)iα1...αm−1 = ciα1...αm−1 =

n∑
i2,...,im=1

aii2...im bi2α1 · · · bimαm−1 (1)

where α1, . . . , αm−1 ∈ [n]k−1. Especially, when k = 1 and B = x ∈ Rn = {(x1, . . . , xn)T : xi ∈ R, i ∈ [n]},

(Ax)i = ci =

n∑
i2,...,im=1

aii2...im xi2 · · · xim ,

which is equivalent to the definition ofAxm−1 introduced by Qi in [2].
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A Pareto H-eigenvalue of a tensorA, which is first introduced by Song and Qi in [4], is a real number λ
satisfying the complementarity system:

0 ≤ x ⊥ (Ax − λIx) ≥ 0 (2)

where ⊥ stands for orthogonality, x ≥ 0 means that every entry of vector x is nonnegative, In = (δi1i2···im )
is an identity tensor with demension n (for simiplicity, we write it as I unless otherwise specified), where
δi1i2···im is equal to 1 for i1 = i2 = · · · = im, and 0 otherwise. The Pareto H-spectrum (that is, the set of Pareto
H-eigenvalues) of a tensorA is denoted byΠ(A). The vector x satisfying (2) is called Pareto H-eigenvector
corresponding to λ. Especially, if Ax = λIx and x is not required to be nonnegative in (2), then λ is the
well-known eigenvalue of tensor A and x is its corresponding eigenvector, which is introduced by Qi in
[2]. Therefore, Pareto H-eigenvalue of a tensor is an extension of eigenvalue of a tensor that contains a
complementary condition on nonnegative variables.

Let H = (V(H),E(H)) be an m-uniform hypergraph with vertex set V(H) and edge set E(H), where E(H)
is a family of m-subsets (that is, each of elements in E(H) has cardinality m) of V(H), |V(H)| is the order of
H. The adjacency tensorA(H) = (ai1i2···im ) of H is defined as

(m − 1)!ai1···im =

1, i f {i1, . . . , im} is an ed1e o f H,
0, otherwise.

The recent work of Zheng and Zhou [5] replaced A in (2) as the adjacency tensor A(H), treated Pareto
H-spectrum of the adjacency tensor A(H) as Pareto H-spectrum of the hypergraph H and denoted it by
Π(H). This is the first one that deals specifically with Pareto H-spectrum of hypergraphs. There have been
few further results by now and we urgently hope for more research on this topic. In this note, we first
obtain some invariance on Pareto H-spectrum of tensors under some tensor translations and then attain
some nice properties on Pareto H-spectrum of hypergraphs.

2. Preliminaries

In this section, we first list some results that will be used in the sequel.

Lemma 2.1. [4] IfA is a symmetric tensor of order m and dimension n, thenA has at least one Pareto H-eigenvalue
and the smallest eigenvale ofA is a Pareto H-eigenvalue.

Lemma 2.2. [3] The tensor product defined as (1) has the following properties.

(i) (A1 +A2)B = A1B +A2B;
(ii) A(B1 + B2) = AB1 + AB2, when A is a matrix;

(iii) (λA)B = λ(AB), where λ ∈ C;
(iv) (AB)C = A(BC).

Definition 2.3. LetA and B be two order k tensors with dimension n and m, respectively. Define the direct product
A ⊗ B be the following tensor of order k and dimension nm:

A ⊗ B(i1, ji),...,(ik , jk) = Ai1i2...ik B j1 j2... jk .

Lemma 2.4. [3] The direct product of tensors defined in definition 2.3 has the following properties.

(i) (A1 +A2) ⊗ B = A1 ⊗ B +A2 ⊗ B;
(ii) A ⊗ (B1 + B2) = A ⊗ B1 +A ⊗ B2;

(iii) (λA) ⊗ B = A ⊗ (λB) = λ(A ⊗ B), where λ ∈ C;
(iv) (A ⊗ B)(C ⊗D) = (AC) ⊗ (BD).

Definition 2.5. Let G and H be two m-uniform hypergraphs. Define the Cartesian product G□H of G and H as:
V(G□H) = V(G) × V(H), and {(i1, j1), . . . , (im, jm)} ∈ E(G□H) if
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(i) i1 = · · · = im and { j1, . . . , jm} ∈ E(H);
(ii) j1 = · · · = jm and {i1, . . . , im} ∈ E(G).

Definition 2.6. Let G and H be two m-uniform hypergraphs. Define the direct product G × H of G and H
as: V(G × H) = V(G) × V(H), and {(i1, j1), . . . , (im, jm)} ∈ E(G × H) if and only if {i1, . . . , im} ∈ E(G) and
{ j1, . . . , jm} ∈ E(H).

Lemma 2.7. [3] Let G (resp. H) be an m-uniform hypergraph of order n (resp. order k) and A(G) (resp. A(H)) be
its adjacency tensor. Then

(i) A(G□H) = A(G) ⊗ Ik + In ⊗A(H);
(ii) A(G ×H) = (m − 1)!A(G) ⊗A(H).

3. Main results

3.1. Some properties on Pareto H-eigenvalues of tensors
In this subsection, we will give some invariances of Pareto H-spectrum of tensors under tensor

permutational similar (resp. diagonal similar) translation, which are important on studying Pareto H-
spectrum. At the same time, some other properties on Pareto H-spectrum of tensors are obtained.

Definition 3.1. Let σ ∈ Sn be a permutation on the set [n], P = Pσ = (Pi j) be the corresponding permutation matrix
of σ (where Pi j = 1 ⇔ j = σ(i)). Two order m dimension n tensors A and B are called permutational similar if
B = PAPT.

Lemma 3.2. LetA and B be two tensors with order m dimension n.

(i) If tensorsA and B are permutational similar, then Π(A) = Π(B).
(ii) Π(A − rI) = Π(A) − r for all r ∈ R, where Π(A) − r = {a − r : a ∈ Π(A)}.

(iii) Π(βA) = βΠ(A) for all β > 0, where βΠ(A) = {βa : a ∈ Π(A)}.

Proof. (i) For any λ ∈ Π(A), by the definition of Pareto H-eigenvalue and Pareto H-eigenvector, there exists
a nonzero vector x ∈ Rn satisfying the complementarity system:

0 ≤ x⊥(Ax − λIx) ≥ 0.

SinceA andB are permutational similar, it must have a permutation matrix P = Pσ satisfyingB = PAPT.
Let y = Px, it has

yi = (Px)i =

n∑
j=1

Pi jx j = Piσ(i)xσ(i) = xσ(i),

this is to say that y ≥ 0 and y , 0. By (1) and Lemma 2.2, we know that

(PAPT)ii2...im =
∑

j1, j2,..., jm∈[n]

a j1 j2... jm Pi j1 Pi2 j2 · · ·Pim jm = aσ(i)σ(i2)...σ(im).

Furthermore

(By − λIy)i = [(PAPT)(Px)]i − λ(Px)m−1
i

=

n∑
i2=1,...,im=1

(PAPT)ii2...im (Px)i2 · · · (Px)im − λxm−1
σ(i)

=

n∑
i2=1,...,im=1

aσ(i)σ(i2)...σ(im)xσ(i2) · · · xσ(i1) − λxm−1
σ(i)

= (Ax − λIx)σ(i) ≥ 0;

yT(By − λIy) =

n∑
i=1

xσ(i)(Ax − λIx)σ(i) = xT(Ax − λIx) = 0.
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Then λ ∈ Π(B). Further we have Π(A) ⊆ Π(B). Similarly, we can prove that Π(A) ⊇ Π(B). Hence
Π(A) = Π(B).

(ii) For any λ ∈ Π(A − rI), by the definitions of Pareto H-eigenvalue and Pareto H-eigenvector, there
exists u ∈ Rn satisfying

0 ≤ u⊥((A − rI)u − λIu) ≥ 0.

By Lemma 2.2, it has,

0 ≤ u⊥((Au − (λ + r)Iu) ≥ 0,

then λ + r ∈ Π(A), that is, λ ∈ Π(A) − r.
For any λ ∈ Π(A) − r, it has t ∈ Π(A) and u ∈ Rn satisfying

λ = t − r.
0 ≤ u⊥((Au − tIu) ≥ 0 ⇒ 0 ≤ u⊥((A − rI)u − (t − r)Iu) ≥ 0.

Then λ = t − r ∈ Π(A − rI). Hence Π(A − rI) = Π(A) − r.
(iii) For any λ ∈ Π(βA), there exists u ∈ Rn satisfying

0 ≤ u⊥((βA)u − λIu) ≥ 0.

Further by β > 0 and Lemma 2.2, we have

0 ≤ u⊥(Au −
λ
β
Iu) ≥ 0,

that is, λβ ∈ Π(A) and λ ∈ βΠ(A). Then Π(βA) ⊆ βΠ(A). Similarly, we can prove Π(βA) ⊇ βΠ(A). Hence
Π(βA) = βΠ(A).

As we know that the adjacency tensor of a hypergraph depends on the ordering of its vertices. Thus
a natural question arises: Is the Pareto H-spectrum of a hypergraph independent of the ordering of its
vertices? From Lemma 3.2 (1), we can give an affirmative answer to this question. Furthermore, we have
the following corollaries.

Corollary 3.3. The Pareto H-spectrum of a hypergraph is independent of the ordering of its vertices and isomorphic
hypergraphs have the same Pareto H-spectrum.

Corollary 3.4. If the two order m dimension n tensors A and B are permutational similar, that is, B = PAPT for
some permutational matrix P, then x is a Pareto H-eigenvector of A corresponding to the Pareto H-eigenvalue λ if
and only if y = Px is a Pareto H-eigenvector of B corresponding to the same Pareto H-eigenvalue λ.

Definition 3.5. Two order m dimension n tensorsA andB are diagonal similar if there exists some positive diagonal
matrix D satisfying B = D−(m−1)AD.

Lemma 3.6. If the two order m dimension n tensorsA and B are diagonal similar, then Π(A) = Π(B).

Proof. For any λ ∈ Π(A), by the definition of Patreto H-eigenvalue and Patreto H-eigenvector, there exists
a nonzero vector x ∈ Rn satisfying the complementarity system:

0 ≤ x⊥(Ax − λIx) ≥ 0. (3)

SinceA andB are diagonal similar, it must have a positive diagonal matrix D satisfyingB = D−(m−1)AD.
Let y = D−1x, it has

yi = (D−1x)i =

n∑
j=1

D−1
i j x j = D−1

ii xi.
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That is, y ≥ 0 and y , 0. Furthermore

(By − λIy)i

= [(D−(m−1)AD)(D−1x)]i − λ(D−1x)m−1
i

=

n∑
i2=1,...,im=1

(D−(m−1)AD)ii2...im (D−1x)i2 · · · (D
−1x)im − λD−(m−1)

ii xm−1
i

=

n∑
i2=1,...,im=1

[aii2...im D−(m−1)
ii Di2i2 · · ·Dimim ](D−1

i2i2 xi2 ) · · · (D−1
imi2 xim ) − λD−(m−1)

ii xm−1
i

= D−(m−1)
ii (Ax − λIx)i ≥ 0.

From (3), it has

xT(Ax − λIx) =

n∑
i=1

xi(Ax − λIx)i = 0⇒ xi(Ax − λIx)i = 0, i ∈ [n].

Then

yT(By − λIy) =

n∑
i=1

D−m
ii xi(Ax − λIx)i = 0.

Then λ ∈ Π(B) and Π(A) ⊆ Π(B). Similarly, we can prove that Π(A) ⊇ Π(B). Hence Π(A) = Π(B).

From the proof of the above lemma, we have the following corollary.

Corollary 3.7. If the two order m dimension n tensors A and B are diagonal similar, that is, B = D−(m−1)AD for
some positive diagonal matrix D, then x is a Pareto H-eigenvector of A corresponding to the Pareto H-eigenvalue λ
if and only if y = D−1x is a Pareto H-eigenvector of B corresponding to the same Pareto H-eigenvalue λ.

3.2. Some results of Pareto H-eigenvalues on hypergraphs

In this subsection, we will give some properties of Pareto H-eigenvalues with respect to hypergraphs.
Let A be a tensor of order m and dimension n. For ∅ , J ⊆ [n], the principal subtensor AJ of A is a

tensor of order m and dimension |J| with entries ai1i2···im and i1, i2, · · · , im ∈ J. We can reformulate Theorem
3.1 [4] as follows. Perhaps it is more convenient to use for studying on hypergraphs.

Theorem 3.8. LetA = (ai1i2···im ) be a tensor of order m and dimension n. A real number λ is Pareto H-eigenvalue of
A if and only if there exists a nonempty subset J ⊆ [n] and a vector w ∈ R|J|+ satisfying

(i) AJw = λI|J|w;
(ii)
∑

j2, j3,..., jm∈J a j j2··· jm w j2 w j3 · · ·w jm > 0 for j ∈ J̄.

In such a case, the vector x = (x1, . . . , xn)T
∈ Rn

+ is a Pareto H-eigenvector ofA corresponding to the real number λ,
where xi = wi for i ∈ J and xi = 0 otherwise.

Proof. (⇐) It is trivial.
(⇒) Let λ be a Pareto H-eigenvalue ofA and x be its corresponding Pareto H-eigenvector, then

0 ≤ x ⊥ (Ax − λIx) ≥ 0.

It is easy to see that x j(Ax − λIx) j = 0 for all j ∈ [n]. Let

J = { j : x j > 0} ∪ { j : x j = (Ax − λIx) j = 0},
J̄ = { j : x j = 0, (Ax − λIx) j > 0}.
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Let w ∈ R|J|+ be defined by w j = x j for all j ∈ J. Obviously, for all j ∈ J, it has (Ax − λIx) j = 0, that is,
AJw = λI|J|w; and for all j ∈ J̄, it has

(Ax − λIx) j =
∑

j2,··· , jm∈[n]

a j j2··· jm x j2 · · · x jm − λxm−1
j

=
∑

j2,··· , jm∈J

a j j2··· jm x j2 · · · x jm =
∑

j2,··· , jm∈J

a j j2··· jm w j2 · · ·w jm > 0.

From Theorem 3.8, we can give a new form of Theorem 4.1 in [5] as follows.

Theorem 3.9. Let H be an m-uniform hypergraph with n vertices, then Π(A(H)) = {ρ(G) : G is a induced
subhypergraph of H}, where ρ(G) is the largest modulus of eigenvalues of G.

Note that the induced subhypergraph G of H in Theorem 3.9 may be not connected, which is different
from Theorem 4.1 in [5].

Theorem 3.10. Let H be a connected m-uniform hypergraph with n vertices and

S(H) =
{
A = (ai1i2···im ) : A is symmetric and ai1i2···im , 0 i f f {i1, i2, · · · , im} ∈ E(H)

}
be the set of tensors with respect to H. If the nondiagonal entries ofA ∈ S(H) are non positive, thenA has a unique
Pareto H-eigenvalue, which is the smallest eigenvale ofA.

Proof. By Lemma 2.1, let λ be a Pareto H-eigenvalue ofA and x be its corresponding Pareto H-eigenvector.
Let J1 = { j : x j > 0}, J2 = { j : x j = (Ax − λIx) j = 0} and J = J1 ∪ J2, by Theorem 3.8, it has

∑
j2, j3,..., jm∈J

a j j2··· jm x j2 x j3 · · · x jm > 0, f or j ∈ J̄ = [n]\J. (4)

Claim 1 J = [n].
Otherwise, J̄ , ∅. Then there exists at least one edge e = { j1, j2, · · · , jm} between J and J̄, without loss of

generality, let j1 ∈ J̄ and j2 ∈ J. Then a j1 j2··· jm < 0 and∑
j2,··· , jm∈J

a j1 j2··· jm x j2 · · · x jm ≤ 0,

which is contradict to (4). So we have

Ax = λIx, x ∈ Rn
+.

Claim 2 J2 = ∅.
For any j ∈ J2, it has

(Ax − λIx) j =
∑

j2,··· , jm∈J1

a j j2··· jm x j2 · · · x jm = 0⇒ a j j2··· jm = 0,

that is, there is no edge between J1 and J2, and this is contradict to the connectivity of H.
Claim 3 λ is the unique Pareto H-eigenvalue ofA, which is the smallest eigenvale ofA.
By Claim 1 and Claim 2, we haveAx = λIx, x ∈ Rn

++. Note thatA is a Z-tensor, by Lemma 4.2 in [1] and
Lemma 2.1, we can obtain the desired results.

The following we will give some properties on Pareto H-eigenvalue with respect to some hypergraph
operators.
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Theorem 3.11. Let G1 be a m-uniform hypergraph of order n1 and G2 be an m-uniform hypergraph of order n2. Let
λ be a Pareto H-eigenvalue of G1 with corresponding Pareto H-eigenvector u, and µ be a Pareto H-eigenvalue of G2
with corresponding Pareto H-eigenvector v, respectively. Then

(i) λ + µ is a Pareto H-eigenvalue of G1□G2 with corresponding Pareto H-eigenvector u ⊗ v;
(ii) (m − 1)!λµ is a Pareto H-eigenvalue of G1 × G2 with corresponding Pareto H-eigenvector u ⊗ v.

Proof. By the definitions of Pareto H-eigenvalue and Pareto H-eigenvector, it has

0 ≤ u⊥(A(G1)u − λIn1 u) ≥ 0; (5)
0 ≤ v⊥(A(G2)v − µIn2 v) ≥ 0. (6)

Let w = u ⊗ v, since (u ⊗ v)(i, j) = uiv j ≥ 0, then w ≥ 0 and w , 0.
(i) By Lemma 2.7, we know that the adjacency tensor A(G1□G2) of G1□G2 is A(G1) ⊗ In2 + In1 ⊗A(G2).

By Lemmas 2.2 and 2.4, we have

A(G1□G2)(u ⊗ v) = (A(G1) ⊗ In2 + In1 ⊗A(G2))(u ⊗ v)
= (A(G1) ⊗ In2 )(u ⊗ v) + (In1 ⊗A(G2))(u ⊗ v)
= (A(G1)u ⊗ In2 v) + (In1 u ⊗A(G2)v).

Further we have

A(G1□G2)(u ⊗ v) − (λ + µ)In1n2 (u ⊗ v)
= (A(G1)u) ⊗ In2 v + In1 u ⊗ (A(G2)v) − (λ + µ)(In1 u ⊗ In2 v)
= [(A(G1)u ⊗ In2 v) − λ(In1 u ⊗ In2 v)] + [(In1 u ⊗A(G2)v) − µ(In1 u ⊗ In2 v)]
= [(A(G1)u − λIn1 u] ⊗ In2 v + In1 u ⊗ [A(G2)v − µIn2 v] ≥ 0.

From (5) and (6), we have ui

(
A(G1)u − λIn1 u

)
i
= 0 and v j

(
A(G2)v − µIn2 v

)
j
= 0 for i ∈ [n1], j ∈ [n2], then

((u ⊗ v))T
[
A(G1□G2)(u ⊗ v) − (λ + µ)In1n2 (u ⊗ v)

]
=

∑
(i, j)∈[n1]×[n2]

(u ⊗ v)(i, j)

{
[(A(G1)u − λIn1 u] ⊗ In2 v + In1 u ⊗ [A(G2)v − µIn2 v](i, j)

}
=

∑
(i, j)∈[n1]×[n2]

(uiv j)
{
[(A(G1)u − λIn1 u]ivm−1

j + um−1
i [A(G2)v − µIn2 v] j

}
=

∑
(i, j)∈[n1]×[n2]

{[
ui

(
A(G1)u − λIn1 u

)
i

]
vm

j + um
i

[
v j

(
A(G2)v − µIn2 v

)
j

]}
= 0.

(ii) By Lemma 2.7, we know that the adjacency tensorA(G1 ×G2) of G1 ×G2 is (m − 1)!(A(G1) ⊗A(G2)).
Note that λ ≥ 0, µ ≥ 0. By Lemmas 2.2 and 2.4, we have

A(G1 × G2)(u ⊗ v) =
[
(m − 1)!(A(G1) ⊗A(G2))

]
(u ⊗ v)

= (m − 1)!
[
(A(G1) ⊗A(G2))

]
(u ⊗ v)

= (m − 1)![A(G1)u] ⊗ [A(G2)v].
1

(m − 1)!
A(G1 × G2)(u ⊗ v) − (λµ)In1n2 (u ⊗ v) = [A(G1)u] ⊗ [A(G2)v] − [(λIn1 u) ⊗ (µIn2 v)]

= [A(G1)u − λIn1 u] ⊗ [A(G2)v − µIn2 v] +
µ[A(G1)u − λIn1 u] ⊗ In2 v +
λIn1 u ⊗ [A(G2)v − µIn2 v] ≥ 0.
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Further we have

(u ⊗ v)T
{
A(G1 × G2)(u ⊗ v) − ((m − 1)!λµ)In1n2 (u ⊗ v)

}
= (m − 1)!(u ⊗ v)T

{ 1
(m − 1)!

A(G1 × G2)(u ⊗ v) − (λµ)In1n2 (u ⊗ v)
}

= (m − 1)!(u ⊗ v)T
[
A(G1)u] ⊗ [A(G2)v] − [(λIn1 u) ⊗ (µIn2 v)

]
= (m − 1)!

∑
(i, j)∈[n1]×[n2]

(u ⊗ v)(i, j)

[
A(G1)u] ⊗ [A(G2)v] − [(λIn1 u) ⊗ (µIn2 v)

]
(i, j)

= (m − 1)!
∑

(i, j)∈[n1]×[n2]

{
ui[A(G1)u − λIn1 u]iv j[A(G2)v − µIn2 v] j +

µui[A(G1)u − λIn1 u]ivm
j + λum

i v j[A(G2)v − µIn2 v] j

}
= 0.

This completes the proof of (i) and (ii).

Corollary 3.12. Let G1 be an m-uniform hypergraph of order n1 and G2 be a m-uniform hypergraph of order n2.

(i) Π(G1□G2) ⊇ {λ + µ : λ ∈ Π(G1), µ ∈ Π(G2)}.
(ii) Π(G1 × G2) ⊇ {(m − 1)!λµ : λ ∈ Π(G1), µ ∈ Π(G2)}.
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