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Some properties of Pareto H-eigenvalues on tensors and hypergraphs
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Abstract. A Pareto H-eigenvalue of a tensor A is a real number A satisfying the complementarity system:
0 <x L (Ax — Allx) > 0. The Pareto H-spectrum is the set of all Pareto H-eigenvalues. In this note, we first
obtain some invariance on Pareto H-spectrum of tensors under tensor permutational similar (resp. diagonal
similar) translation. As their application, we know that Pareto H-spectrum of hypergraphs is independent
of the ordering of their vertices. Furthermore, we attain some nice properties on Pareto H-spectrum of
hypergraphs. At the same time, we improve some results in [4] and [5].

1. Introduction

Let R (resp. R,, C) be the set of real (resp. nonnegative real, complex) numbers. Let R} = {(x1, ..., xn) T
xi>0,i€[n]=1{1,2,...,n}}and R?, = {(x1,...,x,)T : x; > 0,i € [n]}. Let A = (a;_,,) be a real tensor with
order m dimension n, where a;, _;, € R, i; € [n] and j € [m]. Obviously, if m = 2 (resp. m = 1), A is exactly
the matrix (resp. vector) of order n. For simplicity, we will write a;, _;, as aj,o, Where & =iy -+ -1, € [n]" 1.
For an order m(> 2) dimension n tensor A and an order k(> 1) dimension n tensor B, their general product
AB, which is introduced by Shao in [3], is the tensor C = (cjq,...a,,_,) Of order (m —1)(k — 1) + 1 and dimension
n, fori € [n],

n

(A]B)im---am—l = Ciajayq = 2 aii2~--irnbi2al T bimam—l (1)

i20eesim=1

where ay, ..., -1 € [n]*!. Especially, whenk = 1and B = x € R" = {(x1,...,x,)T : x; € R,i € [n]},

n

(Ax); = ¢ = E ity iy Xiy *** Xy

1200/ =1

which is equivalent to the definition of Ax™! introduced by Qi in [2].
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A Pareto H-eigenvalue of a tensor A, which is first introduced by Song and Qi in [4], is a real number A
satisfying the complementarity system:

0<xLlL(Ax—-Alx) >0 2

where L stands for orthogonality, x > 0 means that every entry of vector x is nonnegative, I, = (8,,.-4,)
is an identity tensor with demension # (for simiplicity, we write it as I unless otherwise specified), where
Oiipin, 15 equal to 1 for iy = ip = --- = i,,, and 0 otherwise. The Pareto H-spectrum (that is, the set of Pareto
H-eigenvalues) of a tensor A is denoted by Il(A). The vector x satisfying (2) is called Pareto H-eigenvector
corresponding to A. Especially, if Ax = Allx and x is not required to be nonnegative in (2), then A is the
well-known eigenvalue of tensor A and x is its corresponding eigenvector, which is introduced by Qi in
[2]. Therefore, Pareto H-eigenvalue of a tensor is an extension of eigenvalue of a tensor that contains a
complementary condition on nonnegative variables.

Let H = (V(H), E(H)) be an m-uniform hypergraph with vertex set V(H) and edge set E(H), where E(H)
is a family of m-subsets (that is, each of elements in E(H) has cardinality m) of V(H), |V(H)| is the order of
H. The adjacency tensor A(H) = (aij,.-i,) of H is defined as

1, if{i1,... i} is anedge of H,
0, otherwise.

(m—-Dlaj,..;, = {

The recent work of Zheng and Zhou [5] replaced A in (2) as the adjacency tensor A(H), treated Pareto
H-spectrum of the adjacency tensor A(H) as Pareto H-spectrum of the hypergraph H and denoted it by
I1(H). This is the first one that deals specifically with Pareto H-spectrum of hypergraphs. There have been
few further results by now and we urgently hope for more research on this topic. In this note, we first
obtain some invariance on Pareto H-spectrum of tensors under some tensor translations and then attain
some nice properties on Pareto H-spectrum of hypergraphs.

2. Preliminaries
In this section, we first list some results that will be used in the sequel.

Lemma 2.1. [4] If A is a symmetric tensor of order m and dimension n, then A has at least one Pareto H-eigenvalue
and the smallest eigenvale of A is a Pareto H-eigenvalue.

Lemma 2.2. [3] The tensor product defined as (1) has the following properties.

(1) (Al + AZ)]B = A1B + A,B;

(i) A(By + By) = ABy + AB,, when A is a matrix;
(iii) (AA)B = A(AB), where A € C;
(iv) (AB)C = A(BQ).

Definition 2.3. Let A and B be two order k tensors with dimension n and m, respectively. Define the direct product
A ® B be the following tensor of order k and dimension nm:

A® B j,..irj) = AunireicBjijoic
Lemma 2.4. [3] The direct product of tensors defined in definition 2.3 has the following properties.

(1) (A1+A))eB=A B+ A, ®B;

(11) A@(]Bl +IB2) =A®B; +A®B,;
(i) LA)®B = A® (AB) = A(A ®B), where A € C;
(iv) (A ®B)C®D) = (AC) ® (BD).

Definition 2.5. Let G and H be two m-uniform hypergraphs. Define the Cartesian product GOH of G and H as:
V(GOH) = V(G) x V(H), and {(i, j1), - - -, (im, jm)} € E(GOH) if
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(i) i1 = =ingand{j1,..., ju} € E(H);

() j1=-=jmand{ir, ..., in} € E(G).
Definition 2.6. Let G and H be two m-uniform hypergraphs. Define the direct product G X H of G and H
as: V(G x H) = V(G) x V(H), and {(i1, j1),...,(im, jm)} € E(G x H) if and only if {i1,...,in} € E(G) and
{jlr o /j?ﬂ} € E(H)
Lemma 2.7. [3] Let G (resp. H) be an m-uniform hypergraph of order n (resp. order k) and A(G) (resp. A(H)) be
its adjacency tensor. Then

(i) A(GOoH) = A(G)® I + 1, ® A(H);

(i) A(GxH)=(m-1)AG)® A(H).

3. Main results

3.1. Some properties on Pareto H-eigenvalues of tensors

In this subsection, we will give some invariances of Pareto H-spectrum of tensors under tensor
permutational similar (resp. diagonal similar) translation, which are important on studying Pareto H-
spectrum. At the same time, some other properties on Pareto H-spectrum of tensors are obtained.

Definition 3.1. Let o € S,, be a permutation on the set [n], P = P, = (P;;) be the corresponding permutation matrix
of o (where P;j = 1 & j = o(i)). Two order m dimension n tensors A and B are called permutational similar if
B = PAPT.

Lemma 3.2. Let A and B be two tensors with order m dimension n.

(i) If tensors A and B are permutational similar, then T1(A) = I1(IB).
(ii) II(A —rll) = TI(A) — r for all r € R, where II(A) —r = {a — v : a € TI(A)}.
(iii) IT(BA) = BII(A) for all f > 0, where II(A) = {pa : a € II(A)}.

Proof. (i) For any A € I'I(A), by the definition of Pareto H-eigenvalue and Pareto H-eigenvector, there exists
a nonzero vector x € R" satisfying the complementarity system:

0 < xL(Ax— Allx) > 0.

Since A and B are permutational similar, it must have a permutation matrix P = P, satisfying B = PAPT.
Let y = Px, it has

n
yi=(Px); = Z Pijxj = Pis()Xa(i) = Xo(i)s
=

this is to say that y > 0 and y # 0. By (1) and Lemma 2.2, we know that

(PAP)i,.., = Z s joweju Piji Piajp *+ Piyjin = Ao(io(iz)..otim)-
J1j2serjm€ln]
Furthermore
(By - Ally)i = [(PAP")(Px)]; — A(Px);"!

n

Y. (PAP"), i, (Px), -+ (Px);, — AxG]

-1
Z A5(i)o(in)...o(im) Xo(iz) * * " Xo(iy) — /\x;”(,v)

(Ax — Allx)oy = 0;

n
Z X (Ax — M)y = xT (Ax — Allx) = 0.
i=1

y'(By — Ally)
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Then A € II(B). Further we have I1(A) C II(IB). Similarly, we can prove that II1(A) 2 II(B). Hence
I1(A) = TI(B).

(ii) For any A € II(A - rl), by the definitions of Pareto H-eigenvalue and Pareto H-eigenvector, there
exists u € R" satisfying

0<ul((A-rDu— Allu) > 0.
By Lemma 2.2, it has,
0<ul((Au-(A+nlu) >0,

then A + r e [I(A), thatis, A € TT(A) — 7.
For any A € II(A) —r, it has t € II(A) and u € R" satisfying

A = t-r
O<ul(Au-tlu) 20 = 0<ul((A—-rDu—(t—r)lu)=>0.

Then A =t —r € TI(A — rI). Hence ITT(A —rI) = T1(A) —r.
(iii) For any A € TI(A), there exists u € R" satisfying

0 <ul((BA)u — Allu) > 0.
Further by § > 0 and Lemma 2.2, we have

0<ul(Au- %]Iu) >0,
that is, % € II(A) and A € BII(A). Then II(BA) € FII(A). Similarly, we can prove I1(BA) 2 SII(A). Hence
IT(BA) = pII(A). DO

As we know that the adjacency tensor of a hypergraph depends on the ordering of its vertices. Thus
a natural question arises: Is the Pareto H-spectrum of a hypergraph independent of the ordering of its
vertices? From Lemma 3.2 (1), we can give an affirmative answer to this question. Furthermore, we have
the following corollaries.

Corollary 3.3. The Pareto H-spectrum of a hypergraph is independent of the ordering of its vertices and isomorphic
hypergraphs have the same Pareto H-spectrum.

Corollary 3.4. If the two order m dimension n tensors A and B are permutational similar, that is, B = PAPT for
some permutational matrix P, then x is a Pareto H-eigenvector of A corresponding to the Pareto H-eigenvalue A if
and only if y = Px is a Pareto H-eigenvector of B corresponding to the same Pareto H-eigenvalue A.

Definition 3.5. Two order m dimension n tensors A and B are diagonal similar if there exists some positive diagonal
matrix D satisfying B = D=V AD.

Lemma 3.6. If the two order m dimension n tensors A and B are diagonal similar, then I1(A) = T1(IB).

Proof. For any A € I1(A), by the definition of Patreto H-eigenvalue and Patreto H-eigenvector, there exists
a nonzero vector x € R" satisfying the complementarity system:

0 <xLl(Ax— Allx) > 0. (3)
Since A and B are diagonal similar, it must have a positive diagonal matrix D satisfying B = D~"~D AD.

Let y = D7x, it has

n
=D = Y Djlx;=Djlx.
j=1
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Thatis, y > 0 and y # 0. Furthermore

(By — Ally);
= [(D""™YAD)D 'x)]; - A(D'x)"!

= ), (D" VAD), ;, (DN, - (D), - AD; "V

—(m—-1 _ _ —(m=1) m—
= Z [ai..5, D" )Diziz"'Dimim](Diz}zxiz)'"(D,-mlizxin,)—/\Dii(m !

= D;"V(Ax - Alx); > 0.

From (3), it has

n
Z xi(Ax — Allx); = 0 = x;(Ax — Allv); = 0,1 € [n].
i=1

xT(Ax — All)

Then

=

y'(By - Aly) = D "x;(Ax — Allx); = 0.
i=1

Then A € T1(IB) and I'1(A) C II(IB). Similarly, we can prove that I[1(A) 2 I'1(IB). Hence I1(A) = II(B). O
From the proof of the above lemma, we have the following corollary.

Corollary 3.7. If the two order m dimension n tensors A and B are diagonal similar, that is, B = D-""DAD for
some positive diagonal matrix D, then x is a Pareto H-eigenvector of A corresponding to the Pareto H-eigenvalue A
if and only if y = D™ 'x is a Pareto H-eigenvector of B corresponding to the same Pareto H-eigenvalue .

3.2. Some results of Pareto H-eigenvalues on hypergraphs

In this subsection, we will give some properties of Pareto H-eigenvalues with respect to hypergraphs.

Let A be a tensor of order m and dimension n. For @ # | C [n], the principal subtensor A/ of A is a
tensor of order m and dimension |J| with entries aj,;,..;, and i1,1,- -+ , i, € J]. We can reformulate Theorem
3.1 [4] as follows. Perhaps it is more convenient to use for studying on hypergraphs.

Theorem 3.8. Let A = (a;;,..4,) be a tensor of order m and dimension n. A real number A is Pareto H-eigenvalue of
A if and only if there exists a nonempty subset | C [n] and a vector w € R satisfying

(i) A]w = A]Imw,'
(1) L, o jme] ijojin@WipWis * - Wj, > 0 for j € J.

In such a case, the vector x = (x1,...,%,)" € R is a Pareto H-eigenvector of A corresponding to the real number A,
where x; = w; for i € | and x; = 0 otherwise.

Proof. (<) Itis trivial.
(=) Let A be a Pareto H-eigenvalue of A and x be its corresponding Pareto H-eigenvector, then

0<xl(Ax—Allx) >0.
It is easy to see that x;(Ax — Allx); = 0 for all j € [n]. Let

J = {j:x>00U{j:x; = (Ax - Alx); = 0},
J = {j:x;=0,(Ax - Alx); > 0}.
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Let w € R” be defined by w; = x; for all j € J. Obviously, for all j € J, it has (Ax — Allx); = 0, that is,
Alw = Mjw; and for all j € ], it has

— m=1
(Ax - Alx); = Z jjyejuXfy X, = AX;
er"'/jﬂIE[n]
- Z BjjpojuXa ™" Xj = Z By Wi+ Wi, > 0-
jZ/"'/jWE] jZ/"'/jnlel

|
From Theorem 3.8, we can give a new form of Theorem 4.1 in [5] as follows.

Theorem 3.9. Let H be an m-uniform hypergraph with n vertices, then II(A(H)) = {p(G) : G is a induced
subhypergraph of H}, where p(G) is the largest modulus of eigenvalues of G.

Note that the induced subhypergraph G of H in Theorem 3.9 may be not connected, which is different
from Theorem 4.1 in [5].

Theorem 3.10. Let H be a connected m-uniform hypergraph with n vertices and
S(H) = {A = (ai,i,.i,,) : A is symmetric and aj;,..;, # 0 if f {i1,i2,--- ,im} € E(H)}

be the set of tensors with respect to H. If the nondiagonal entries of A € S(H) are non positive, then A has a unique
Pareto H-eigenvalue, which is the smallest eigenvale of A.

Proof. By Lemma 2.1, let A be a Pareto H-eigenvalue of A and x be its corresponding Pareto H-eigenvector.
LetJi ={j:x; >0}, Ja={j:xj = (Ax - Allx); = 0} and | = J; U ]2, by Theorem 3.8, it has

Z aij"‘jnlszxj3 o 'x].m > 0/ fOI’ ] € T = [n]\] (4)
j2/j3/~~~/jﬂ1€]
Claim 1] = [n].
Otherwise, ] # 0. Then there exists at least one edge e = {j1,j2,-** , jm} between | and T, without loss of
generality, let j; € Jand j, € J. Then aj j,..;, < 0and

Z ajljZ"'jrrlij T xjrn S 0’
j2r"‘rilz1E]
which is contradict to (4). So we have
Ax = AMx,x € R}.
Claim 2 |, = 0.
For any j € ], it has
(Ax - A]IX)]- = Z AjjyrjuXjp " Xjpy = 0= Ajjyejm = 0,
jZ/"'fijh

that is, there is no edge between [; and J,, and this is contradict to the connectivity of H.

Claim 3 A is the unique Pareto H-eigenvalue of A, which is the smallest eigenvale of A.

By Claim 1 and Claim 2, we have Ax = Allx, x € R}, . Note that A is a Z-tensor, by Lemma 4.2 in [1] and
Lemma 2.1, we can obtain the desired results. O

The following we will give some properties on Pareto H-eigenvalue with respect to some hypergraph
operators.
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Theorem 3.11. Let Gy be a m-uniform hypergraph of order ny and G, be an m-uniform hypergraph of order ny. Let
A be a Pareto H-eigenvalue of Gy with corresponding Pareto H-eigenvector u, and u be a Pareto H-eigenvalue of G,
with corresponding Pareto H-eigenvector v, respectively. Then

(i) A+ pis a Pareto H-eigenvalue of GiOG, with corresponding Pareto H-eigenvector u ® v;
(i) (m —1)!Ap is a Pareto H-eigenvalue of G1 X G with corresponding Pareto H-eigenvector u ® v.

Proof. By the definitions of Pareto H-eigenvalue and Pareto H-eigenvector, it has

0 < ul(A(Gr)u — All,u) > 0; (5)
0 < vL(A(Gy)v — ull,,v) > 0. (6)
Letw = u®wv, since (u®v)(;; = u;v; 20, thenw > 0and w # 0.

(i) By Lemma 2.7, we know that the adjacency tensor A(G10G,) of G10G; is A(G1) ® I,, + I,; ® A(Gy).
By Lemmas 2.2 and 2.4, we have

A(G10G;)(u®v)

(AG1) ® I, + T,y @ A(G2))(u® )
(A(G1) ®11,)(u ®0) + (I, ® A(G2))(u ® 0)
= (A(G)u®1,0) + (I,,u ® A(Gy)0).

Further we have

A(G10G) (1 ®v) — (A + )Ly, (1 ® V)

(A(Guw) @ 1L,v + L,u ® (A(G2)v) — (A + ), u ®1,,0)

[(AG)u ®T,0) = ALyt ® 1,0)] + [(L, 1t ® A(G2)0) — Iyt @ T,,,0)]
[(A(G)u = AL, u]l ® L, + L, u ® [A(G2)v — ull,,v] > 0.

From (5) and (6), we have u,-(A(Gl)u - /\1[111”)1- =0and Dj(A(Gz)U - y]Inzv)], =0forie [m],] € [ny], then

(@) [AGIOG) (1 ®0) = (A + )l (4 © 0)]

= Z (u ® U)(,',]‘){[(A(Gl)u — /\]Inl M] ® I[,,zv + ]Inlu ® [A(Gz)v - [.l]InZU](j,]‘)}
(i,j)elm]X[n2]

= Y o){[AG)u = Al ulo! !+ AG)o -l o))
(i,))elmx[n2]

- Z ([ (AGHH = AT, u) Jor + w0 AGa)o - y]Inzv)],]} =0.
(i,j)elm]x[n2]

(ii) By Lemma 2.7, we know that the adjacency tensor A(G; X G;) of Gy X G; is (m — 1)!/(A(G1) ® A(Gy)).
Note that A > 0, u > 0. By Lemmas 2.2 and 2.4, we have

A(G1 X G2)(u®0)

[(m = DAGY ® AG) | & v)
(m—1)![(AG1) & AG))|(u ® )
= (m-1)[AG)u] @ [AG)o].
L AGI X C)(®Y) ~ M@ ®D) = [AG)U] @ [AG2)0] ~ [(M,y1) ® (u,0)]

(m—-1)!
= [A(Gr)u — AL, u] ® [A(Gy)v — ull,,v] +
UlAGu — AL, u] L0 +
ALy, u ® [A(Gy)v — ull,,v] > 0.
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Further we have
(1 ®0)[AG) X Go)(® ) = ((m = 1)! Ay, (u @ 7))
1
(m—1)!
= (m- Do) [AG)U] @ [AG)e] - [(AlLy 1) @ (ull,0)|

= -1 Y @0)p[AGHT @ IAG - (W) ® (i),
(i,j)elm]x[n2]

= (m-1uso)|

AGr X G2)(1 ®0) = (AL, (4 ® 0)

= -1 Y. [wlAG) AL, ulo[AG)o - 0] +

(i,j)elm]x[n2]
pui[ A(Gr)u — )\]I,,lu]iv;" + Au'vi[A(G2)v - yl[nzv]j} =0.
This completes the proof of (i) and (ii). O

Corollary 3.12. Let Gy be an m-uniform hypergraph of order ny and Gy be a m-uniform hypergraph of order n.

(i) TI(G10G2) 2 {A + p : A € TI(Gy), p € TI(Gy)).
(ii) TI(G1 X G) 2 {(m — )!Au : A € TI(Gy), p € TI(Gy)}.
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