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Abstract. A graph G is almost 1-tough if ¢(G—S) < |S|+1 for any S € V(G) , where ¢(G — S) is the number of
components of G-S. Let F : V(G) — {{1}, {0, 2}} be a set-valued function and F71(1) := {v € V(G) : f(v) = {1}}.
A spanning subgraph H of G is called an F-factor if dy(v) € F(v) for all v € V(G). It is interesting to know
whether a graph is almost 1-tough or a graph has an F-factor. In this note, we establish a lower bound on
the size (resp. the spectral radius) to ensure a graph to be almost 1-tough. This also provide a sufficient
condition for the existence of an F-factor for which every F : V(G) — {{1}, {0, 2}} with |[F1(1)|evenina graph.

1. Introduction

All graphs considered in this paper are simple. Let G = (V,E) be a graph with vertex set V(G) and edge
set E(G). Its order is |V(G)|, denoted by n, and its size is |E(G)|, denoted by e(G). For v € V(G), let d;(v) and
N¢(v) (or simply d(v) and N(v)) be the degree and the set of neighbors of v, respectively. The minimum
degree of G is denoted by 6(G) (or simply 6). For a subset S C V(G), we use G[S] and G — S to denote the
subgraphs of G induced by S and V(G)\S, respectively. Let ¢(G) be the number of components of G. For two
vertex-disjoint graphs G1 and Gy, let G; U G, be the disjoint union of G; and G, and G; V G, be the graph
obtained from G; U G, by connecting all the vertices between V(G1) and V(G,). Let A(G) be the adjacency
matrix of G, and p(G) be the spectral radius of G (the largest eigenvalue of A(G)).

The toughness t(G) of a non-complete graph G was defined in [3] as

7(G) = min{& : SCV(G)and ¢(G-S) > 2},

(G-9)"

where the minimum is taken over all proper subsets S C V(G) and ¢(G — S) is the number of components
of G — S. For convention, #(K,) = +co0 and non-complete graph G is t-tough if ©(G) > t. A graph G is almost
1-tough [5] if (G = S) < |S| + 1 for any S € V(G). In [6], Lu and Kano gave a characterization for a (resp.
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almost) 1-tough graph in terms of graph factors. Later, Lu, Wang and Jiang [5] showed that it is NP-hard to
recognize almost 1-tough cubic graphs. For any S C V(G), note that c¢(G — S) < [S| + 1 is also a well-known
necessary condition for the traceability of a graph. Inspired by the work of Lu and Kano [6], it is interesting
to find some sufficient conditions for a graph to be almost 1-tough. For this purpose, we first present a size
condition to guarantee a graph G to be almost 1-tough and construct the corresponding extremal graph to
show that our condition is best possible.

Theorem 1.1. Let G be a connected graph of order n > max {66 +6, (62 +136 + 7)} with the minimum degree
022 1If

e(G) > ("‘2_1)+(5+1)5,
then G is almost 1-tough.

Remark 1.2. Note that e(Ks V (Ky—25-1 U (6 + 1)K1)) = ("3 + (6 + 1) and K V (Ky—2s-1 U (6 + 1)Kq) is not
almost 1-tough. This indicates that the bound on e(G) in Theorem 1.1 is best possible.

Furthermore, we also give the following spectral radius condition for a graph to be almost 1-tough.

Theorem 1.3. Let G be a connected graph of order n > max{56 + 3, 3’512 + O} with the minimum degree 6. If

p(G) = p(Ks V (Ky—25-1 U (0 + 1)K1)), then G is almost 1-tough unless G = K V (Ky—25-1 U (6 + 1)Kj).

For a graph G, let F : V(G) — {{1}, {0, 2}} be a set-valued function. So F(v) € {{1}, {0, 2}} for each v € V(G).
Let F1(1) := {v € V(G) : F(v) = {1}}. A spanning subgraph H of G is called an F-factor if d;(v) € F(v) for all
v € V(G). Such F-factor is also called a {{1}, {0, 2}}-factor of G. Itis clear that if G has an F-factor, then |[F~(1)|
must be even by the Handshaking Lemma. So if [F~}(1)| is odd, then G has no F-factor. In [6], Lu and Kano
gave a characterization of a graph having an F-factor.

Theorem 1.4 ([6]). Let G be a connected graph. G has an F-factor for every F : V(G) — {{1},{0,2}} with |[F~1(1)]
even if and only G is almost 1-tough.

By combining Theorem 1.3 with Theorem 1.4, we establish a relationship between the existence of an
F-factor in a connected graph G and its spectral radius.

Theorem 1.5. Let G be a connected graph of order n > max{56 + 3, % + 8}, where 6 is the minimum degree of G.
If e(G) = e(Ks V (Ky—25-1 U (6 + 1)Ky)) or p(G) > p(Ks V (Kn—2s-1 U (0 + 1)K1)), then G has an F-factor for every
F: V(G) = {{1},{0,2}} with [F~'(1)| even unless G = K5 V (K,_25-1 U (0 + 1)K1).

Moreover, by Theorem 1.5, we may have the following size (or spectral radius) version for a result in [6]
due to Lu and Kano.

Theorem 1.6. Let G be a connected graph of order n > max{56 + 3, 3%2 + 6}, where 6 is the minimum degree of G.
If e(G) > e(Ks V (Kp—25-1 U (0 + 1)K7)) or p(G) > p(Ks V (Ky-25-1 U (0 + 1)K3)), then for any red-blue coloring of

V(G) such that the number of red vertices is even, G has vertex-disjoint paths whose end-vertices are exactly the same
as the red vertices of G. In particular, all the internal vertices of the paths are blue.

2. Proof of Theorem 1.1
Before giving the proof of Theorem 1.1, we need the following lemma.
Lemma 2.1 ([2]). Letn = Zf»zln,-+s. Ifnizny>2---2n>1landny <n-s—t+1,then

e(Ks V (K, UKy, U+ UKy,)) < e(Ks V (Kyos—ts1 U (t — 1)K7)).
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Now, we give the proof of Theorem 1.1.

Proof of Theorem 1.1: Let G be a graph satisfying the conditions in Theorem 1.1. We assume that G is
not an almost 1-tough graph, and show that e(G) < ”"25’1) + (6 + 1)6. By the assumption, there exists a
subset S € V(G) such that ¢(G — S) > |S| + 2. Let |S| = s. We first assert that S is not an empty set. If
S =0,then1 = ¢(G - S) > 2, a contraction. Hence |S| = s > 1. Note that G is a spanning subgraph of
G1 =K V (Kyy UKy, U---UK,,,), where n1,ny,...,1n, are positive integers with 1y > 15 > --- > t1540 2 1
and n = Y77 n; + s. Therefore, we have
e(G) < e(Gy).
We now consider the following two cases.

Case 1. s < 0.

Let Gy = K, V (Ky—s—(s+1)(6+1-5) U (5 + 1)K541-5). Since G is a spanning subgraph of G1, we have 5(G1) > 6 and
Ngyp 2 0+1-s. Ifn; > 6+2—sforsomeintegersi € {2,3,...,5+2},let G3 = K;V (K, +1UK,, U- - UKy, 1 U- - -UK,,_,).
Obviously,

e(Gs) = e(G1) — (ni — 1) + my = e(G1) + (11 — 1) + 1 > e(Gy).

We proceed the above procedure until n, = n3 = --- = n,p = 6 + 1 — s in Gy, this is exactly the graph G,.
Then e(G1) < e(Gy). Thus, we have

e(G) < e(G1) < e(G) = e(Ks V (Ky—s—(s+1)(6+1-s) YU (8 + Kis11-5)),
Note that e(G;) = (”_(”1)2(‘5“_5)) +5(s +1)(0 + 1 —35) + (s + 1)(°*} ). By a directed computation, we have

)+ 55 +1) - e(Ga) = =),

2 2

(n -6-1
where ¢(s) = s> — (6 + 1)s> = 3s(6 + 1) + 2ns + 6 + 1. Note that s > 1 and 6 > 2. Then
@'(s) =3s* = 25(6 + 1) + 2n — 36 - 3.

The symmetry axis of ¢'(s) is 2 € [1,6). Thus,

6+1)_6n—(6+4)6—76—10

’ ’ 1 _
(p(s)Z(p( 3 3 23(26 3)>0

byn> 1 (62 +136 + 7) and 6 > 2. It follows that ¢(s) is increasing in 1 < s < 6. Thus,
P(s) = p(1) =2(n-1)-36 > %(52+5+1)+5>0
fors € [1,6] and 6 > 2, and we have
¢(G) < e(Gy) < (” B (23 B 1) +5(5+1),

as desired.
Case2.5s>6+1.
By Lemma 2.1, we have
e(G) < e(Gy) < e(Ks V (Kjy—2s-1 U (s + 1)Ky)).
Let G4 = K; V (Kj;_25_1 U (s + 1)K7). Note that e(G,) = ("_;_1) +5(s + 1). By a directed computation, we have

S —

(" B 2 B 1) +6(5+1) —e(Gy) = T‘5q>(n),
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where (1) = 2n — 3(s + 6) - 5.
If s > 36 + 1, then it follows from n > s + ¢(G — S) > 2s + 2 that

P(n) > Pp(2s+2)>24(s+1)-3(s+06)-5=5-30-120.

It follows that e(Gy) < (”_‘25_1) + (6 + 1)6.
If6+1<s5<36+1, then it follows from n > 66 + 6 that

¢(n)=2n-3(s+06)-5>12(0+1)-126-8 > 0.
It follows that e(Gs) < ("37) + (6 + 1)6. 7
In view of Cases 1 and 2, we have ¢(G) < ("_g_l) + (6 + 1)0, as desired. The proof is completed. O
3. Proof of Theorem 1.3

Recall that A(G) is a non-negative and real symmetric matrix. Then there is a non-negative unit
eigenvector x of A(G) corresponding to p(G) such that

p(G) =x"A(G)x = 2 Z x(u)x(0),

uveE(G)

where x(u) is the entry of x corresponding to the vertex u. We call such eigenvector x the Perron vector of
A(G). Clearly, the Perron vector of A(G) satisfies the eigenvalue equation A(G)x = p(G)x, that is

AG)x(u) = Z x(0).

veN(u)

Lemma 3.1 ([1]). If H is a spanning subgraph of a graph G, then p(H) < p(G), with equality if and only if G = H.
Moreover, if H is a proper subgraph of G, then p(H) < p(G).

Lemma 3.2 ([4]). Letn = Zleni+s. Ifnyznyg>---2mzpandng <n—s—p(t—1), then
p(Ks \ (Km U Km U---u Km)) < p(Ks \ (Kn—s—p(t—l) U (t - l)Kp))~

Consider an n X n real symmetric matrix

My Mo -+ My
My1 Mpp -+ My
Mm,l Mm,2 e Mm,m

whose rows and columns are partitioned according to a partitioning Xi, X»,..., X, of {1,2,...,n}. The
quotient matrix B of the matrix M is the m X m matrix whose entries are the average row sums of the blocks
M, j of M. The partition is equitable if each block M; ; of M has constant row (and column) sum.

Lemma 3.3 ([7]). Let M be a square matrix with an equitable partition 1 and let M be the corresponding quotient
matrix. Then every eigenvalue of My, is an eigenvalue of M. Furthermore, if M is nonnegative and irreducible, then
the largest eigenvalues of M and M, are equal.

Now, we are in a position to present the proof of Theorem 1.3.

Proof of Theorem 1.3: Let G be a graph satisfying the conditions in Theorem 1.3. It is easy to check that
Ks V (Ky—25-1 U (0 + 1)Kj) is not an almost 1-tough graph. From now on, we assume that G # Ks V (Kj—25-1 U
(0 + 1)Ky). We shall prove the contrapositive of the theorem. That means, we assume that G is a connected
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graph of order n which is not an almost 1-tough graph, and show that p(G) < p(Ks V (Ky—25-1 U (0 + 1)K7)).
Thus, there exists a subset S C V(G) such that ¢(G — S) > |S| + 2. Let |S| = s. We first assert that S is not an
empty set. If S = 0, then 1 = ¢(G - S) > 2, a contraction. Hence |S| = s > 1. Then G is a spanning subgraph
of G1 = K; V (K, UKy, U---UK,,,,) for some positive integers ny > np > -+ > #1545 > 1 and Zlez n=n-=.
Combining this with Lemma 3.1 implies that

p(G) < p(Gy), )

with equality if and only if G = G;.
We now consider the following three cases.

Case1l.s=0.

By Lemma 3.2, we have p(G1) < p(Ks V (Ky—z5-1 U (0 + 1)K7)) with equality holding if and only if
G =KsV (Kn,Q(g,l U (6 + 1)K1) Combining this with (1), we conclude that p(G) < p(K(s \Y% (Kn,25,1 U (6 + 1)K1)),
where the equality holds if and only if G = K V (Kj—25-1 U (6 + 1)K}). Since G # K; V (Ky—26-1 U (0 + 1)Ky),
we have p(G) < p(Ks V (Ky—25-1 U (0 + 1)Kj)), as desired.

Case2.5s>0+1.

Let Gy = K V (Ky-25-1 U (s + 1)Kj). By Lemma 3.2, we have p(G1) < p(G,), with equality if and only if
(ny,ny,...,ns2) =(m—2s—1,1,...,1). Therefore, it follows that

P(G) < p(G1) < p(Go). @)

The quotient matrix of A(G,) corresponding to the partition V(Gz) = V(K;) U V(Kj—25-1) U V((s + 1)K}) is
given as
s—1 n—-2s—-1 s+1
B = s n-2s-2 0
S 0 0

By a direct calculation, the characteristic polynomial of 8 is
Q(B5,x) = X3 —(n—s5=3)x* — (n+5% = 2)x + 5’1+ sn — 25> — 4s* — 2s.

Clearly, the vertex partition of G; is equitable. By Lemma 3.3, the largest root of ¢(8;,x) = 0 equals the
spectral radius of A(G,).

Let 01 = p(G2) = 0, > 03 be the three roots of ¢($55,x) = 0. We assert that 0, < n — 20 — 4. In fact, let
D =diag(s,n —2s — 1,5 + 1). Therefore,

DB
[ s 0 0 s—1 n-2s-1 s+1 %5 0 0
=l 0 Vn-2s-1 0 s n-2-2 0 0 —= 0
1
0 0 Vs+1 5 0 0 0 0 Vs+1
(s-1)s (n=2s—1)+/s (s+1)+s %5 0
=l sVn—-2s—1 (n—-2s-2)Vn—-2s—1 0 0 n—12s—1 0
1
s\/m 0 0 0 0 Vs+1
s—1 Vs(n—2s—1) +fs(s+1)
=| yfs(n—2s-1) n-2s-2 0
s(s+1) 0 0

It is easy to check that Z)%Biﬂ’% is symmetric, and also contains

n—-2s—-2 0
0 0
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as its principal submatrix. Obviously, the spectrum of D%Biﬂ’% is the same as that of 8]. By the Cauchy
Interlacing Theorem, we obtain

O <n—-25-2<n-200+1)-2=n-26-4.

Also, note that A(Ks V (Ky—25-1 U (0 + 1)K7)) has the equitable quotient matrix B‘ls, which is obtained by
replacing s with 6 in 8. Thus, we have

(p(B‘f,x) =x>—(n—=06-3)x*—(n+ 6% —2)x + 6°n + on — 26° — 46* - 26.

According to Lemma 3.3, the largest root, say 9, of P(B,x) =0 equals p(Ks V (Ky-25-1 U (6 + 1)K1)). Notice
that Kj,_s_1 is a proper subgraph of Ks V (Kj—25-1 U (6 + 1)K3), it follows from Lemma 3.1 that

d = p(K5 V (Ky—25-1 U (0 + 1)Kq)) > p(Kn_5_1) =n-0-2>n-20—-4>0,.

We are to verify (B, 9) = p(B:,9) — p(B°, 9) > 0. By a simple computation, we obtain

P(B3,9) = p(B3,9) — (B2, 9) = (s — ) f(9),
where f(9) = 92— (s+06)8 + (n—2(s + 1))(s + 1) — 265 + n6 — 26> — 46. Then the symmetry axis of f(9) is & = %2,

which implies that f(9) is increasing in the interval [%3, +00). Itis easy to check thatn > s+¢c(G—-5) > 25 +2

and% <n—-0-2 <39 Therefore, s < "T_zand
f®) > f(n-6-2)
=n?—(26+3)m -2 —(6+2)s+26+2

n-—2
2

1

E(;12—(55+4)n+66+4)

6+1
2

0.

an—(26+3)n—2( )2—(5+2)(”T_2)+25+2 (Asssnz;z)

2 (As n>56+3)

\Y

Hence we have
P(B;,9) = p(B,9) — (B, 9) = (s — 6)f(8) > 0.

Since 9 = p(Ks V (Ky—25-1 U (0 + 1)K1)) > n =20 —4 > 0,, we conclude that p(G;) = 61 <9 = p(Ks V (Ky—25-1U
(6 + 1)Ky)). From (2), we have

p(G) < p(G1) < p(G2) < p(Ks V (Ky—26-1 U (6 + 1)K7)),
as desired.

Case3.s<6-1.

Nsp2 > 0+ 1—5. Let G3 = K; V (Ky—s—(5+1-s)s+1) Y (5 + 1)K541-5). By Lemma 3.2, we have p(G1) < p(G3), with
equality if and only if (11,712, ...,150) = (n—=5—(0+1-5)(s+1),0+1~s5,...,0 +1—s). Therefore, it follows
that

Since G is a spanning subgraph of Gi, 6(G1) > 0. On the other hand, 6(G1) < 1, — 1 +s. Thus

p(G) < p(Gy) < p(Gs). 3)

If s = 1, then G3 = Kj V (Ky—25-1 U 2K5). Suppose p(G3) = n —25. Let p = p(G3) and let x be the Perron
vector of A(G3) with respect to p. By symmetry, x takes the same values x1, x; and x3 on the vertices of
Ky—25-1, Ks and Kj, respectively. Then, by A(G3)x = px, we have

px1 = (n—26-2)x1 +x3, (4)
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px2 = (60— D)xz + x3, )
px3 = (n — 26 — 1)x1 + 20x,. (6)
From (4) and (5), we obtain
— X3
T m-25-2) @)
__ %
e ®)

Sincen > 56 + 3 and 6 > s, we have
p=n—20256+3-26=30+1)>6+1.
Putting (7) and (8) into (6), we get

o n=26-1 N 26 <n—26—1 20 _n-1
P T i-26-2)  p-o+1 2 2”2
=n—n;13n—562+4<n—26Sp,

which is impossible. Thus p(G3) < 1 — 29, it follows that
p(G3) <n—-20=n-6-2-(0-2)<n-06-2.
Since K5 V (Ky—25-1 U (6 + 1)K;) contains K,_s_1 as a proper spanning subgraph, we have p(Ks V (Ky—25-1 U
(0 + 1)Ky)) > p(Ky—s-1) = n — 6 — 2. Therefore, it follows that
P(G) < p(G1) £ p(G3) <n—0-2 < p(Ks V (Ky—zs-1 U (6 + 1)K7)),

as desired. Thus, we consider s > 2 in the following.
On the other hand, the quotient matrix of A(Gs) corresponding to the partition V(Gs) = V(K;) U
V(KV,,S,(5+1,S)(S+1)) U V((s + 1)Ks41-5) is given as

s—1 n—s—(0+1-s)(s+1) (s+1)6+1-y5)
B = s n—-s—(0O+1-s5)(s+1)-1 0
s 0 6—s

By a direct calculation, the characteristic polynomial of 8] is
P(B;, x) = - =0+ D)s+n=3)2+((6-1)(?+n)—(n+6 —56—-2)s—5 —20+2)x
—(sm+(s=2)(s+1)+1))s* + (2s* + 5> + (n = 2)(s* + 5 + 1))5
—(*+s+1)(s + 1)5°

Clearly, the vertex partition of G3 is equitable. By Lemma 3.3, the largest root, say u, of ¢(85;,x) = 0 equals
the spectral radius of A(G3). Recall that (p(B‘;, x) is the characteristic polynomial of Ks V (Kj—25-1 U (6 + 1)K1)
and 8 = p(Ks V (Ky—26-1 U (8 + 1)K1)) is the largest root of ¢(8B,x) = 0. By plugging the value 9 into x of
(B, %) — p(BY, x), we obtain

@(B;/ ‘9) = (P(Bs/ ‘9) - (P(Bé/ 8) = (6 - 5)!7(‘9)/
where g(9) = s—1)92+(n—(6—-1)s—2)3 +s* = (6 +1)s> + (n =26 —2)s? + 5 — (n — 3)6 + 26. Then the symmetry

axis of f(9)is 9 = —"_Ss__ll)j_z, which implies that g(9) is increasing in the interval [—”_gzs__lij_z, +00). Since
2<s<d0-—landn>(s+2)(6+1—-s)+s, wehave
no0-s=2 s ooy

2(s—1)
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which implies that
g(8) > gn — 6 —2) = n?s + (s(s — 3) — 30s)1 + s* — (6 + 1)s® — (26 + 2)s* + (26 + 56 + 3)s + 6% + O.

Note that

Bozs+3)s 30 Lo 4 B+ B0 s

2 5

25 2 2

Therefore,

g9(®) >g(n—06-2)
=125 + (s(s — 3) — 30s)n + s* — (6 + 1)s® — (20 + 2)s> + (26> + 50 + 3)s + 6* + O

2
> (252 ; 6) 5+ (s(s — 3) — 355) (%52 ; 5) + 5t = (5+1)5 — (26 + 2)s2

+ (26 +50+3)s+ 6%+ 0

4 3 1
=0+ %55 - % + 562(35(5—3) +5)—05(s> +5—2) +5(s(s —2)(s + 1) + 3)

2P(0) +s(s(s —2)(s + 1) + 3),

where p(6) = 6 + 22 — 35 4 152(35(s — 3) + 5) — 8s(s® + s — 2). By a simple computation of the second
derivative, we have

1085%s _186s 6 234s(s+1) 6

24
o7 (0) =2+ 5 G +§s(s—3)22+ 5 +gs(s—3)=2+ gs(lls+6)>0,

which implies that

1)? 1)3
FO) 2 +1) =1+2s+1) - 93(5; - 365(;; P, g
= 21—5(3654 +685° — 675> + 5 + 75) > 0.

s(s +1)(s — 3) — s(s* +5—2)

It follows that ¢(0) is increasing in the interval [s + 1, +c0). Therefore, we have

g(d) > gn —06—2) 2¢(0) +5(s(s —2)(s + 1) + 3)
>P(s + 1) +s(s(s —2)(s + 1) + 3)
=2+ %5(954 +365° — 815 — 845 + 149)
>0.
Thus, we have
P(B5,9) = (B3, 9) — (B}, 9) = (5 - 5)9(8) > 0.
By a simple computation of the first derivative, we have

P(B5,x) =3 -2 - O+ Ds+n-3)x+ O -1E* +n) —(n+6*—5—-2)s— 6% - 25 +2.

§2—(6+1)s+n—3
3

Notice thatn > (s +2)(0+1—-s) +sand <n-206-2,and so ¢’($3, x) is increasing in the interval
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[n—0-2,+00). Whenx > n— 90— 2, we have

Q'(B5,x)> ¢ (B,n—0-2)
=n? — (25* — (26 + 1)s + 30 + 3)n + (35> — 55 + 4)6 + (3s — 2)(s — &%) + 2

z(géz +0)% — (25> — (26 + 1)s + 30 + 3)(252 +0) + (352 =55 +4)0 + (35 — 2)(s — 6%) + 2
=246+ 29—554 +0(s — 4)s + 253(25 -1)+5(3s—2) - %62(652 +25+9)
>2+06+ 29—564 +0(s — 4)s + %52(3(5 +1)(2s — 1) — 65> =25 — 9) +5(3s — 2)
=2+06+ 29—554 +0(s —4)s + %52(5 -12) +5(3s — 2)
8, 1
>2+0+ ﬁ(% —60) + 6(s(s —4) + gs(s + 1)) +5(3s — 2)
>2 40+ 2%[(5 +1)(9(s + 1)* = 60) + 30s* — 95s] + 5(3s — 2)

18
> J— —
>2 + 256 +5(3s — 2)

32 68
>352 — g4 —
>3s 255 + %

>0.
Therefore, we have p(G3) < 9 = p(Ks V (Ky—26-1 U (0 + 1)K7)). This together with (3), we then have

p(G) < p(G1) < p(Gs3) < p(Ks V (Ky—25-1 U (6 + 1)Ky)),

as desired.
In view of Cases 1, 2 and 3, the proof is completed. O
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