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Abstract.
We explore the extremal problems of the hitting time of unicyclic graphs on n vertices with a given

diameter. Let HG(u, v) be the expected hitting time from vertex u to vertex v on a simple graph G. Let
φ(G) = maxu,v∈V(G) HG(u, v) be the hitting time of G. In this paper, we obtain the upper bound for the
hitting time of unicyclic graphs with a given diameter, and the extremal graph that attached the value is
determined.

1. Introduction

Let G = (V(G),E(G)) be a simple connected graph with vertex set V(G) and edge set E(G). The size of
V(G) and E(G) are called the order and the size of G respectively. The distance between vertices x and y,
denoted by dG(x, y), is the length of a shortest path joining x and y in G. The diameter of G, denoted by D(G),
is the maximum distance between any two distinct vertices in G. The girth of G is the length of the shortest
cycle. The degree of vertex x in G, denoted by dG(x), is the number of vertices adjacent to x. If there exists
only one path between vertices x and y, this path is called the unique path and denoted by P = xv1v2 . . . vky,
where each vi is a cut vertex on P. Let G1 = (V1,E1) and G2 = (V2,E2) be two simple connected graphs such
that V1

⋂
V2 = {x, y} and E1

⋂
E2 = ∅. The union of G1 and G2, denoted by G1

⋃
G2, is the graph G defined

by V(G) = V1
⋃

V2 and E(G) = E1
⋃

E2. In this case, we say that G is decomposed into G1 and G2 through x
and y.

Let Un,d be the set of all n-vertex unicyclic graphs with diameter d. Let Un,d,1 be the set of all n-vertex
unicyclic graphs with diameter d and girth 1. Without loss of generality, the unique cycle C of length 1 in a
unicyclic graph is denoted by C = u1u2 . . . u1 in clockwise order. Let G ∈ Un,d,1. If n = 1, then G is exactly
a cycle of order n and d = ⌊ n

2 ⌋. Moreover, any unicyclic graph G in Un,d,1 can be obtained by identifying
vertex ui of C with a vertex of a tree Ti for i = 1, . . . , 1, then G is denoted by G = C(T1, . . . ,T1). Let the order
of Ti be ni. Then ni ≥ 1 and n1 + · · · + n1 = n. If there are some trees Ti for all i = p, . . . , q and q > p such
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that ni > 1 and Tr for all 1 ≤ r ≤ 1, i , p, . . . , q such that nr = 1, then C(T1, . . . ,T1) is short for C1(Tp, . . . ,Tq).
For instance, if np,nq > 1 and nr = 1 for all 1 ≤ r ≤ 1, i , p, q, then C(T1, . . . ,T1) is short for C1(Tp,Tq). In
particular, if G = C3(T), where T is obtained by identifying an end vertex of a path on d vertices and the
center of the star K1,n−d−2, then this unicycle graph is denoted by U∗n,d,3, i.e., U∗n,d,3 is the graph obtained by
identifying the vertex of T with degree n − d − 1 and a vertex of a triangle.

Random walks on graphs are a type of stochastic process where a “walker” moves from one vertex to
its neighboring vertex in the graph based on a certain probability distribution. A simple random walk is
such a stochastic process with a uniform probability distribution, in which each neighboring vertex has an
equal probability of being chosen. The hitting time HG(x, y) is the expected number of steps it takes a simple
random walk on a graph G from a vertex x to a vertex y. For a given graph G, the hitting time of G is
denoted by

φ(G) = max
x,y∈V(G)

HG(x, y).

Random walks on graphs have been studied extensively in the fields of mathematics, physics, computer
science, statistical physics, and biology. It has applications in algorithms, network analysis, and statistical
mechanics. They can be used to model the behavior of particles diffusing through a medium, to analyze
the structure of networks, and to study algorithms for graph traversal and search. Hitting time, cover time,
and commute time, access time are essential metrics used to analyze the behavior of simple random walks
on graphs, see [1, 6–10, 12–14, 17, 20–22, 24, 25] for more details.

The study of extremal problems of random walks on graphs has garnered significant interest among
academic researchers. Research on the extremal problems of hitting time, cover time, access time and
cover cost has received widespread attention. Specifically, Brightwell and Winkler [5] proved that the
n-vertex lollipop graph G is the extremal graph with the maximum hitting time among all n-vertex graphs.
Georgakopoulos and Wagner [11] proved the n-vertex path is the extremal graph with maximum hitting
time among all n-vertex trees. Li and Zhang [29, 30] solved the extremal problems of hitting time of trees
with given parameters. Liao et al. [18] studied the upper and lower bounds of access time on a tree of a given
diameter and presented the corresponding extremal graphs. Feng et al. [19] studied the upper and lower
bounds of access time on trees that can be decomposed into independent sets, and gave the corresponding
extremal graphs. Zhu and Zhang [32, 33] determined the extremal graphs among n-vertex unicyclic graphs
and n-vertex bicyclic graphs and presented the sharp upper and lower bounds for the hitting time. Zhu and
Yang [34] determined the extremal graphs among n-vertex tricyclic graphs and presented the sharp upper
and lower bounds for the hitting time. Beveridge and Youngblood [2] characterized the extremal structures
for mixing walks on trees and showed that among all trees with n-vertex , the best mixing time is minimized
uniquely by the star. For even n, the best mixing time is maximized by the unique path. Surprising, for odd
n, the best mixing time is maximized uniquely by a path of length n − 1 with a single leaf adjacent to one
central vertex. Brightwell [4] investigated extremal problems of cover time on trees and proved the n-vertex
path is the extremal graph with maximum cover time. Georgakopoulos and Wagner [11] determined the
maximal and minimal cover cost of n-vertex trees. Li and Wang [26] characterized the unique tree with
the minimum cover cost and minimum reverse cover cost among all trees with a given segment sequence.
Furthermore, the unique tree with the maximal reverse cover cost among all trees with a given segment
sequence is also identified. Li and Wang [27, 28] studied the extremal problems on k-ary trees and trees with
a given segment sequence concerning the cover cost and reverse cover cost. Huang et al. [13] determined
the maximal and minimal (reverse) cover cost of n-vertex unicyclic graphs. Zhang et al. [31] characterized
the extremal graphs with the minimal (reverse) cover cost of trees with a given diameter. Lu et al. [16]
obtained sharp bounds of the cover cost for n-vertex bicyclic graphs.

Inspired by the above research, we find that the extremal problems of the hitting time of random walks
on graphs with given parameters are interesting and worth further investigation. In this paper, we have
investigated the extremal problem of hitting times of unicyclic graphs on n vertices with given diameter d.
The following theorem is the main result.

Theorem 1.1. Let G be any unicyclic graph of order n and D(G) = d. Then

φ(G) ≤ 2(d − 1)n − d2 + 2d + 1.
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Moreover, the right equality holds if and only if G = U∗n,d,3 and φ(U∗n,d,3) = HU∗n,d,3 (u, v), where u is the vertex on the
cycle with dU∗n,d,3 (u) = 2 and v is the pendant vertex with dU∗n,d,3 (u, v) = d.

The rest of this paper is organized as follows. In section 2, we present the preliminary results which
are used in the proof of our main results. In section 3, we demonstrate how the hitting time of unicyclic
graphs on n vertices with given diameter d alters by graph transformations, as well as the proof of the main
Theorem 1.1.

2. Preliminary

In this section, we present several known important results which are useful in our proof.

Theorem 2.1. [15] Let G be a connected graph with two vertices x and y. If there exists a cut vertex z such that x
and y are not in the same component of G − z, then

HG(x, y) = HG(x, z) +HG(z, y). (1)

Moreover, if there exists a unique path P = xv1 · · · vk−1y in G, then

HG(x, y) = HG(x, v1) +HG(v1, v2) + · · · +HG(vk−1, y). (2)

Theorem 2.2. [4] Let G be a simple connected graph on n vertices with two vertices x and y. If there exists a unique
path P = v0v1 . . . vk with v0 = x and vk = y, and mi is the number of edges of subgraph Gi which is the component
G − {vi−1vi, vivi+1} with containing vi for i = 0, . . . , k and v−1v0 = ∅, and vkvk+1 = ∅, then

HG(x, y) = k2 + 2
k−1∑
i=0

mi(k − i). (3)

Theorem 2.3. [23] Let G = C(T1, . . . ,T1) be a unicyclic graph with cycle C = u1 . . . u1 and G1 and G2 be a
decomposition of G through ui and u j for 1 ≤ i , j ≤ 1. Then

HG(ui,u j) =
1
1

(
dG2 (ui,u j)HG1 (ui,u j) + dG1 (ui,u j)HG2 (ui,u j)

)
, (4)

where dGi (ui,u j) is the distance in the graph Gi between ui and u j for i = 1, 2.

Lemma 2.4. [3] Let C be a cycle of length 1. Then for any ui,u j ∈ V(C), we have

HC(ui,u j) = d(ui,u j)(1 − d(ui,u j)),

where d(ui,u j) is the distance between ui and u j in C.

Lemma 2.5. Let G be a graph of order n. Let P = v0v1 . . . vk be a unique path in G with v0 = u and vk = v, and Gi
be the component G − {vi−1vi, vivi+1} containing vi for i = 0, . . . , k and v−1v0 = ∅, and vkvk+1 = ∅. Let G′, G′′, G′′′

(see Figure 1) be the graphs obtained from G by transformations. Then

(1) HG′ (u, v) > HG(u, v);

(2) HG′′ (u, v′) > HG(u, v);

(3) HG′′′ (u, v) > HG(u, v).
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Figure 1: Transformation I

Proof. (1). By Figure 1, we see that G′ is obtained by deleting a pendant edge in Gi and adding it to vertex u.
Denote the size of Gi by mi and we assume that mi ≥ 1 without loss of generality. By Theorem 2.2, we have

HG(u, v) = k2 + 2m0k + 2m1(k − 1) + · · · + 2mi(k − i) + · · · + 2mk−1,

HG′ (u, v) = k2 + 2(m0 + 1)k + 2m1(k − 1) + · · · + 2(mi − 1)(k − i) + · · · + 2mk−1.

Since HG′ (u, v) −HG(u, v) = 2i > 0, we have HG′ (u, v) > HG(u, v).

(2). By Figure 1, we see that G′′ is obtained from G by deleting a pendant edge in G0 and adding it to
vertex v. Denote the newly added edge by vv′. Without loss of generality, we assume that m0 ≥ 1. By
Theorem 2.2, we have

HG(u, v) = k2 + 2m0k + · · · + 2mi(k − i) + · · · + 2mk−1,

HG′′ (u, v′) = (k + 1)2 + 2(m0 − 1)(k + 1) + · · · + 2mi(k + 1 − i) + · · · + 2mk−1 · 2 + 2mk.

Since HG′′ (u, v′) −HG(u, v) = 2
∑k

i=0 mi − 1 > 0, we have HG′′ (u, v′) > HG(u, v).

(3). By Figure 1, we see that G′′′ is obtained from G by deleting a pendant edge in G0 and inserting a
vertex in P. Without loss of generality, we assume that m0 ≥ 1 and the inserted vertex is v′ and the new
path is P = v0v1 . . . v′vi . . . vk. By Theorem 2.2, we have

HG(u, v) = k2 + 2m0k + · · · + 2mi−1(k − i + 1) + 2mi(k − i) + · · · + 2mk−1,

HG′′′ (u, v) = (k + 1)2 + 2(m0 − 1)(k + 1) + · · · + 2mi−1(k − i + 2) + 2mi(k − i) + · · · + 2mk−1.

Since HG′′′ (u, v) −HG(u, v) = 2
∑i−1

t=0 mt − 1 > 0, we have HG′′′ (u, v) > HG(u, v).

3. The Proof of Theorem 1.1

To prove Theorem 1.1, we first present several lemmas about how the hitting time changes after graph
transformation.

As observed before, if G ∈ Un,d,1 with n = 1, then G is the unique cycle of order n, and there is no graph
transformation. Therefore, we suppose that n > 1 is the left. Let G = C(T1, . . . ,T1) ∈ Un,d,1. If G′ is obtained
from G by deleting edges in Ti and adding edges to T j, then G′ = C(T1, . . . ,T′i , . . . ,T

′

j, . . . ,T1) and we simply
denote G′ = C(Ti→ j) for convenience.



X.-M. Zhu et al. / Filomat 39:27 (2025), 9579–9600 9583

Lemma 3.1. Let G = C(T1, . . . ,T1) ∈ Un,d,1 with cycle C = u1 . . . u1. Let u, v be two pendant vertices in G with
dG(u, v) = d and u ∈ V(Ti), v ∈ V(T j) for |V(Ti)| ≥ 2. Let vertex w be the unique vertex adjacent to u. Let | V(Tp) |≥ 2
for p , i, j. Let G′ be the unicyclic graph obtained from G by deleting a pendant edge e in Tp and adding it to vertex
w in Ti (see Figure 2). Then

HG′ (u, v) > HG(u, v). (5)
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Figure 2: Transformation II

Proof. By the transformation, we can see that D(G′) = d and G′ = C(Tp→i). Ti and T j can divide the cycle
into two parts. There is no essential difference in the calculation in either part. Therefore, without loss of
generality, we assume that 2 < i < p < j < 1. Let G1 and G2 be two decomposed connected subgraphs of G
through two vertices ui and u j, where G1 contains Ti,Ti+1, . . . ,Tp, . . . ,T j. Let mr be the size of Tr for 1 ≤ r ≤ 1.
Moreover, let dG1 (ui,u j) = 11 and dG2 (ui,u j) = 12. By Equation (2) in Theorem 2.1, we have

HG(u, v) = HG(u,ui) +HG(ui,u j) +HG(u j, v),
HG′ (u, v) = HG′ (u,ui) +HG′ (ui,u j) +HG′ (u j, v).

After the transformation, |E(T′i )| = |E(Ti)| + 1. Since dG(u,ui) = dG′ (u,ui), by Equation (3) in Theorem 2.2, we
have HG(u,ui) < HG′ (u,ui).

By Equation (4) in Theorem 2.3, we have

HG(ui,u j) =
1
1

(
dG2 (ui,u j)HG1 (ui,u j) + dG1 (ui,u j)HG2 (ui,u j)

)
=

1
1

(
12HG1 (ui,u j) + 11HG2 (ui,u j)

)
. (6)

Furthermore, by Equation (3) in Theorem 2.2, we have

HG1 (ui,u j) = 12
1 + 2(mi · 11 +mi+1(11 − 1) + · · · +mp(11 − p + i) + · · · +m j−1),

HG2 (ui,u j) = 12
2 + 2(mi−1(12 − 1) +mi−2(12 − 2) + · · · +m j+1).

Let G′1 and G′2 be a decomposition of G′ through ui and u j such that G′2 = G2. By Equation (4) in Theorem 2.3,

HG′ (ui,u j) =
1
1

(
dG′2 (ui,u j)HG′1 (ui,u j) + dG′1 (ui,u j)HG′2 (ui,u j)

)
=

1
1

(
12HG′1 (ui,u j) + 11HG2 (ui,u j)

)
. (7)
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Moreover, by Equation (3) in Theorem 2.2, we have

HG′1 (ui,u j) = 12
1 + 2((mi + 1)11 +mi+1(11 − 1) +mi+2(11 − 2)
+ · · · + (mp − 1)(11 − p + i) + · · · +m j−1).

Hence, by Equations (6) and (7), we have

HG′ (ui,u j) −HG(ui,u j) =
12

1

(
HG′1 (ui,u j) −HG1 (ui,u j)

)
=

212(p − i)
1

> 0.

Since T j = T′j, by (3) in Theorem 2.2, we have HG(u j, v) = HG′ (u j, v). So the assertion holds.

Remark 3.2. In Lemma 3.1, if dG(u, v) < d and the graph transformation remains the diameter the same, then the
conclusion of the lemma also holds.

Lemma 3.3. [32] Let G = C(T1, . . . ,T1) ∈ Un,d,1. If there exist two vertices u, v ∈ V(G) such that φ(G) = HG(u, v),
then u and v are either pendant vertices in V(G) or vertices with degree 2 in V(C), respectively.

Next, we will present how the hitting time changes between two vertices by graph transformation.
Let G ∈ Un,d,1 and φ(G) = HG(u, v). In Subsection 3.1 (resp. Subsection 3.2), while dG(u, v) = d (resp.
dG(u, v) < d), we discuss that how the hitting time HG(u, v) changes by graph transformation.

3.1. While dG(u, v) = d and HG(u, v) = φ(G), how the hitting time changes by graph transformation

Lemma 3.4. Let G = C(T1, . . . ,T1) ∈ Un,d,1 with n > d + 1. There exist two vertices u ∈ V(Ti) and v ∈ V(T j) with
dG(u, v) = d such that HG(u, v) = φ(G). Let |V(Ti)| ≥ 2 and |V(T j)| ≥ 2 and w be the adjacent vertex of u. Let
G1 = C1(T1

i ,T
1
j ) and G2 = C1(T2

i ,T
2
j ) be two graphs obtained from G by graph transformation (see Figure 3). Then

HG2 (u, v) > HG1 (u, v) > HG(u, v). (8)

Moreover,

φ(G2) > φ(G). (9)
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Figure 3: Transformation III
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Proof. According to Figure 3, we can see that T1
i is the tree obtained from G by deleting all edges in Tr for all

1 ≤ r , i, j ≤ 1, and deleting all edges in Ti which do not belong to the unique path P1 = uw . . . ui ∈ Ti, then
adding n − 1 − |V(T j)| + 1 − dG(u,ui) pendant edges to vertex w, T2

j is the tree obtained from T1
j by deleting

all edges in T1
j which do not belong to the unique path P2 = u j . . . v ∈ T1

j and adding |V(T j)| − 1 − dG(u j, v)
pendant edges to vertex u j. In particular, T1

j = T j and T2
i = T1

i . Without loss of generality, we assume that
|V(Ti)| ≥ 2 and |V(T j)| ≥ 2. By Theorem 2.1, we have

HG(u, v) = HG(u,ui) +HG(ui,u j) +HG(u j, v),
HG1 (u, v) = HG1 (u,ui) +HG1 (ui,u j) +HG1 (u j, v),
HG2 (u, v) = HG2 (u,ui) +HG2 (ui,u j) +HG2 (u j, v).

By repeating usage of Lemma 3.1, we have HG1 (u, v) > HG(u, v). On the one hand, by repeating usage of
Lemma 2.5, we have HG2 (u j, v) > HG1 (u j, v). On the other hand, HG1 (u,ui) = HG2 (u,ui) and HG1 (ui,u j) =
HG2 (ui,u j), then HG2 (u, v) > HG1 (u, v). Therefore, φ(G2) ≥ HG2 (u, v) > HG1 (u, v) > HG(u, v) = φ(G).

Building upon Lemma 3.4, we proceed to further graph transformation on the graph G2, yielding the
following lemma.

Lemma 3.5. Let G2 = C1(T2
i ,T

2
j ) ∈ Un,d,1 be the same graph as in Lemma 3.4. Let u ∈ V(T2

i ) and v ∈ V(T2
j ) be two

pendant vertices of G2 with dG2 (u, v) = d. Let G3 = C1(T3
i ,T

3
j ) be the graph obtained from G2 by transformation (see

Figure 4). Then
HG3 (u, v) ≥ HG2 (u, v), φ(G3) ≥ φ(G).
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Figure 4: Transformation IV

Proof. According to Figure 4, we can see that G3 is obtained by deleting all the pendant edges incident with
u j which are not in the path Pu jv from T2

j and adding |V(T2
i )| −1−dG2 (u j, v) pendant edges to vertex w, where

w is the unique adjacent vertex of vertex u. By Theorem 2.1, we have

HG2 (u, v) = HG2 (u,ui) +HG2 (ui,u j) +HG2 (u j, v),
HG3 (u, v) = HG3 (u,ui) +HG3 (ui,u j) +HG3 (u j, v).

Let m′0 be the number of pendant edges incident with vertex w in T2
i . Let dG2 (u,ui) = dG3 (u,ui) = d1,

dG2 (u j, v) = dG3 (u j, v) = d2, and |V(T2
j )| − 1− d2 = N. Let G1 and G2 be two decomposed connected subgraphs
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of G2 through two vertices ui and u j such that G1 contains T2
i ,T

2
j . Moreover, let dG1 (ui,u j) = 11, dG2 (ui,u j) = 12.

By Theorems 2.2 and 2.3, we have

HG2 (u,ui) = d2
1 + 2(m′0 − 1)(d1 − 1),

HG2 (ui,u j) =
1
1

(
12

(
12

1 + 2(d1 +m′0 − 1)11

)
+ 111

2
2

)
,

HG2 (u j, v) = d2
2 + 2(n − d2)d2.

Similar to the computation of HG2 (u, v), we can get

HG3 (u,ui) = d2
1 + 2(m′0 − 1 +N)(d1 − 1),

HG3 (ui,u j) =
1
1

(
12

(
12

1 + 2(d1 +m′0 − 1 +N)11

)
+ 111

2
2

)
,

HG3 (u j, v) = d2
2 + 2(n − d2)d2.

Hence, HG3 (u, v) − HG2 (u, v) = 2N(d1 − 1) + 21112N
1
≥ 0. Thus, φ(G3) ≥ HG3 (u, v) ≥ HG2 (u, v). Therefore, by

Lemma 3.4, φ(G3) ≥ φ(G). So the assertion holds.

Building upon Lemma 3.5, we compare HG3 (u, v) with φ(U∗n,d,3), yielding the following lemma.

Lemma 3.6. Let G3 = C1(T3
i ,T

3
j ) ∈ Un,d,1 be the same graph as in Lemma 3.5. If u ∈ V(T3

i ) and v ∈ V(T3
j ) are two

pendant vertices of G3 with dG3 (u, v) = d, then

φ(U∗n,d,3) > HG3 (u, v).

U
*
n
,
 
d
,
3


x
 y


Figure 5: U∗n,d,3

Proof. Note that U∗n,d,3 is the graph obtained by identifying an end vertex of path Pd−1 and a vertex in K3

and the center of star K1,n−d−2(see Figure 5). By Theorems 2.1, 2.2 and 2.3; Lemmas 2.4 and 3.3; and direct
computation, we obtain that φ(U∗n,d,3) = HU∗n,d,3 (x, y) = 2(d − 1)n − (d − 1)2 + 2, x is a vertex in triangle with
degree 2 and y is a pendant vertex with dU∗n,d,3 (x, y) = d.

Let dG3 (u,ui) = d1, dG3 (u j, v) = d2, dG3 (ui,u j) = 11 and 1 − 11 = 12. Similar to the computation of HG3 (u, v)
in Lemma 3.5, by d1 + d2 + 11 = d, we have

HG3 (u, v) = d2
1 + 2(d1 − 1)(n − d1 − d2 − 1) + 1112 +

21112(n − d2 − 1)
1

+ d2
2 + 2(n − d2)d2 (10)

= 2
(
d1 + d2 − 1 +

1112

1

)
n − d2

1 − d2
2 − 2d1d2 + 2d1 + 2d2 − 21d1 + 21 −

21112d2

1
− 1112.

Since n ≥ d1 + d2 + 1 and d1 ≥ 1, we have

φ(U∗n,d,3) −HG3 (u, v) = 2
(
d − d1 − d2 −

1112

1

)
n − (d − 1)2 + 2 + d2

1 + d2
2
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+2d1d2 − 2d1 − 2d2 + 21d1 − 21 +
21112d2

1
+ 1112

= 2
(
d − d1 − d2 −

1112

1

)
n − (d + d1 + d2 − 2)(d − d1 − d2)

+1 + 21d1 − 21 +
21112d2

1
+ 1112 (11)

=
212

1

1
n − 12

1 − 2d211 − 212 + 212d1 +
21112d2

1
+ 1112 + 1

≥
212

1(d1 + d2 + 1)

1
− 12

1 − 2d211 − 212 + 212d1 +
21112d2

1
+ 1112 + 1

=
212

1d1

1
+ 212(d1 − 1) + 12

1 + 1112 + 1

> 0.

So the assertion holds.

In the above lemmas, with the condition φ(G) = HG(u, v), we have discussed how the hitting time
HG(u, v) changes by graph transformation while dG(u, v) = d and u ∈ V(Ti) for |V(Ti)| ≥ 2. In particular, if
dG(v) = 2, by deleting v, the graph is divided into two parts. The part without the cycle does not affect
HG(u, v), so the above calculation process still holds. However, when dG(u) = 2, the graph transformation
in the above lemmas is invalid. Therefore, when dG(u) = 2 and dG(u, v) = d, it needs to be discussed
separately. The following lemmas and corollary will discuss how the hitting time HG(u, v) changes by
graph transformation while dG(u, v) = d and u ∈ V(Ti) for |V(Ti)| = 1.

Lemma 3.7. Let G = C(T1, . . . ,T1) ∈ Un,d,1 where Ti = ui = u. If there exists vertex v with v ∈ V(T j) such that
dG(u, v) = d and φ(G) = HG(u, v), then we have the following results.

(1) If 1 is even and G′ = C(Tp→i+1) ∈ Un,d,1 is obtained from G by deleting the pendant edge e in Tp and adding it to
the vertex ui+1(see Figure 6), then

HG′ (u, v) > HG(u, v) and φ(G′) ≥ φ(G). (12)
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Figure 6: Transformation V
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(2) If 1 is odd and G′′ = C(Tp→i+2) ∈ Un,d,1 is obtained from G by deleting the pendant edge e in Tp and adding it to
the vertex ui+2(see Figure 7), then

HG′′ (u, v) > HG(u, v) and φ(G′′) ≥ φ(G). (13)
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Figure 7: Transformation VI

Proof. (1) Since 1 is even and dG(u, v) = d, we have dG(u,u j) =
1

2 , Ti+1 and Ti−1 are stars or single vertices.
Without loss of generality, we assume that 2 < i < p < j < 1. Let G1 and G2 be two decomposed connected
subgraphs of G through two vertices ui and u j where G1 contains Ti,Ti+1, . . . ,Tp, . . . ,T j. Let mr be the size of
Tr for all r and 1 ≤ r ≤ 1. Moreover, let dG1 (ui,u j) = 11, dG2 (ui,u j) = 12. Then 11 = 12 =

1

2 . By (2) in Theorem
2.1, we have

HG(u, v) = HG(u,u j) +HG(u j, v),
HG′ (u, v) = HG′ (u,u j) +HG′ (u j, v).

By Equation (4) in Theorem 2.3, we have

HG(u,u j) =
1
1

(
dG2 (u,u j)HG1 (u,u j) + dG1 (u,u j)HG2 (u,u j)

)
=

1
2

(
HG1 (u,u j) +HG2 (u,u j)

)
. (14)

Furthermore, by Equation (3) in Theorem 2.2, we have

HG1 (u,u j) = 12
1 + 2(mi+1(11 − 1) + · · · +mp(11 − p + i) + · · · +m j−1),

HG2 (u,u j) = 12
2 + 2(mi−1(12 − 1) +mi−2(12 − 2) + · · · +m j+1).

Let G′1 and G′2 be a decomposition of G′ through ui and u j such that G′2 = G2. By (3) in Theorem 2.2,

HG′ (u,u j) =
1
1

(
dG′2 (u,u j)HG′1 (u,u j) + dG′1 (u,u j)HG′2 (u,u j)

)
=

1
2

(
HG′1 (u,u j) +HG2 (u,u j)

)
. (15)

Moreover, by (4) in Theorem 2.3, we have

HG′1 (u,u j) = 12
1 + 2((mi+1 + 1)(11 − 1) +mi+2(11 − 2)
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+ · · · + (mp − 1)(11 − p + i) + · · · +m j−1).

Hence, by Equations (14) and (15), we have

HG′ (u,u j) −HG(u,u j) =
1
2

(
HG′1 (u,u j) −HG1 (u,u j)

)
= p − i − 1 > 0.

Since T j = T′j, by (3) in Theorem 2.2, we have HG(u j, v) = HG′ (u j, v). So the assertion holds.

(2) Since dG(u, v) = d, we have dG(u,u j) =
1−1

2 , Ti+1 is a single vertex, Ti−1 and Ti+2 are stars or single
vertices. Similar to the proof in (1), by computation, we can get the result.

Lemma 3.8. Let G = C(T1, . . . ,T1) ∈ Un,d,1 where Ti = ui = u. If there exists vertex v with v ∈ V(T j) such that
dG(u, v) = d and φ(G) = HG(u, v), then we have the following results.

(1) If 1 is even and G′′ = C(T′′i−1,T
′′

i+1,T
′′

j ) with T′′i+1 = K1,s, T′′i−1 = K1,t, T′′j = Pu jv (see Figure 8), then

φ(U∗n,d,3) > HG′′ (u, v) > φ(G). (16)
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Figure 8: Transformation VII

(2) If 1 is odd and G′′ = C(T′′i−1,T
′′

i+2,T
′′

j ) with T′′i−1 = K1,s, T′′i+2 = K1,t, T′′j = Pu jv (see Figure 9), then

φ(U∗n,d,3) > HG′′ (u, v) > φ(G). (17)
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Proof. (1) Without loss of generality, we assume that 2 < i < p < j < 1. The graph G′′ can be obtained from
G by graph transformation.

In the first step, we can delete all the edges of Ti+2,Ti+3, . . . ,T j−1 in G and add these edges to vertex ui+1,
then we get a new graph G1∗. We denote G1∗ = C(T1∗

1 , . . . ,T
1∗
1 ). By repeating usage of (1) in Lemma 3.7, we

have HG1∗ (u, v) > HG(u, v).
The second step, we can delete all the edges of T1∗

j+1,T
1∗
j+2, . . . ,T

1∗
i−2 in G1∗ and add these edges to vertex

ui−1, then we get a new graph G2∗. We denote G2∗ = C(T2∗
1 , . . . ,T

2∗
1 ). By repeating usage of (1) in Lemma 3.7,

we have HG2∗ (u, v) > HG1∗ (u, v).
In the third step, we can delete all the edges of T2∗

j in G2∗ which do not belong to the u jv-path and add
these edges to u j, then we get a new graph G3∗. We denote G3∗ = C(T3∗

1 , . . . ,T
3∗
1 ). By repeating usage of

Lemma 2.5, we have HG3∗ (u, v) > HG2∗ (u, v).
The fourth step, we delete the pendent edges of T3∗

j in G3∗ which do not belong to the u jv-path and add
these edges to ui−1 or ui+1. After the above four steps, we get the graph G′′. We denote G′′ = C(T′′i−1,T

′′

i+1,T
′′

j ),
where T′′i+1 = K1,s, T′′i−1 = K1,t, T′′j = Pu jv. By Theorem 2.1, we have

HG3∗ (u, v) = HG3∗ (u,u j) +HG3∗ (u j, v)

and

HG′′ (u, v) = HG′′ (u,u j) +HG′′ (u j, v).

By Theorems 2.2,2.3 and similar to the computation in Lemma 3.5, we have HG′′ (u,u j) > HG3∗ (u,u j) and
HG3∗ (u j, v) = HG′′ (u j, v). Hence, HG′′ (u, v) > HG3∗ (u, v). Therefore, HG′′ (u, v) > HG(u, v).

Let dG′′ (u j, v) = d2. By Theorems 2.1, 2.2 and 2.3 and d2 = d −
⌊
1

2

⌋
, we have

HG′′ (u, v) = HG′′ (u,u j) +HG′′ (u j, v).

If 1 is even, then

HG′′ (u, v) =
12

4
+ (n − 1 − d2)

(
1

2
− 1

)
+ 2d2n − d2

2

=
(
2d − 1 −

1

2

)
n +
1 + d1

2
−
12

4
+ d − d2.

Since φ(U∗n,d,3) = 2(d − 1)n − (d − 1)2 + 2 and n ≥ d +
⌊
1

2

⌋
, we have

φ(U∗n,d,3) −HG′′ (u, v) =
(
1

2
− 1

)
n + d + 1 +

12

4
−
1

2
−

d1
2

≥

(
1

2
− 1

) (
d +
1

2

)
+ d + 1 +

12

4
−
1

2
−

d1
2

=
12

2
− 1 + 1

> 0.

Therefore, we have φ(U∗n,d,3) ≥ HG′′ (u, v) > φ(G).

(2) Similar to the frontier proof in (1), we can prove that HG′′ (u, v) > φ(G). If 1 is odd, then

HG′′ (u, v) ≤
12
− 1
4
+

(
n − d −

1 + 1
2

)
12
− 21 − 3

21
+ 2

(
d −
1 − 1

2

)
n −

(
d −
1 − 1

2

)2

and

φ(U∗n,d,3) −HG′′ (u, v) ≥
(12
− 41 + 3)n

21
− (d − 1)2 + 2 −

12
− 1
4
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+
12
− 21 − 3

21

(
d +
1 + 1

2

)
+

(
d −
1 − 1

2

)2

≥
12
− 41 + 3

21

(
d +
1 − 1

2

)
− (d − 1)2 + 2 −

12
− 1
4

+
12
− 21 − 3

21

(
d +
1 + 1

2

)
+

(
d −
1 − 1

2

)2

≥ (1 − 3)
(
d +
1 − 1

2

)
− (d − 1)2 + 2 −

12
− 1
4
+

(
d −
1 − 1

2

)2

=
(1 − 2)(1 − 3)

2
≥ 0.

Therefore, we have φ(U∗n,d,3) ≥ HG′′ (u, v) > φ(G).

3.2. While dG(u, v) < d and HG(u, v) = φ(G), how the hitting time changes by graph transformation

Let G3 = C(T3
1, . . . ,T

3
1) ∈ Un,d,1, where T3

i is the tree obtained from identifying an end vertex of a path
and the center of a star and T3

j is a path. Let u ∈ V(T3
i ) and v ∈ V(T3

j ). Let u and v be two pendant vertices
or vertices on the cycle with degree 2. We have,

1. if dG3 (u, v) < d, dG3 (u j, v) +
⌊
1

2

⌋
< d and dG3 (ui,u) +

⌊
1

2

⌋
= d, then we denote G3 by G̃3 and Ts by T̃3

s for
s = 1, . . . , 1.

2. if dG3 (u, v) < d, dG3 (u j, v) +
⌊
1

2

⌋
= d and dG3 (ui,u) +

⌊
1

2

⌋
< d, then we denote G3 by G

3
and Ts by T

3
s for

s = 1, . . . , 1.

3. if dG3 (u, v) < d, dG3 (u j, v) +
⌊
1

2

⌋
= d and dG3 (ui,u) +

⌊
1

2

⌋
= d, then we denote G3 by Ĝ3 and Ts by T̂3

s for
s = 1, . . . , 1.

4. if dG3 (u, v) < d, dG3 (u,ui) +
⌊
1

2

⌋
= d or dG3 (u j, v) +

⌊
1

2

⌋
= d and T3

i and T3
j are paths, then we denote G3

by G3∗ and Ts by T3∗
s for s = 1, . . . , 1.

Lemma 3.9. Let G′3 = C(T′31 , . . . ,T
′3
1 ) ∈ Un,d,1 be the graph obtained from G̃3 by deleting one pendant edge from the

vertex w in T̃3
i and adding the edge to the pendant vertex v in T̃3

j . Let T′3j = Pu jv′ (See Figure 10). Then

HG′3 (u, v′) > HG̃3 (u, v).
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Figure 10: Transformation IX

Proof. By Theorem 2.1, we have

HG̃3 (u, v) = HG̃3 (u,ui) +HG̃3 (ui,u j) +HG̃3 (u j, v),

and
HG′3 (u, v′) = HG′3 (u,ui) +HG′3 (ui,u j) +HG′3 (u j, v′).

Let m′0 be the number of pendant edges incident with vertex w in T̃3
i . Let dG̃3 (u,ui) = dG′3 (u,ui) = d1,

dG̃3 (u j, v) = d2. Let G1 and G2 be two decomposed connected subgraphs of G̃3 through two vertices ui and
u j such that G1 contains T̃3

i , T̃
3
j . Moreover, let dG1 (ui,u j) = 11, dG2 (ui,u j) = 12. By Theorems 2.2 and 2.3, we

have

HG̃3 (u,ui) = d2
1 + 2(m′0 − 1)(d1 − 1),

HG̃3 (ui,u j) =
1
1

(
12(12

1 + 2(d1 +m′0 − 1)11) + 111
2
2

)
,

HG̃3 (u j, v) = d2
2 + 2(n − d2)d2.

Similar to the computation of HG̃3 (u, v), we can get

HG′3 (u,ui) = d2
1 + 2(m′0 − 2)(d1 − 1),

HG′3 (ui,u j) =
1
1

(
12(12

1 + 2(d1 +m′0 − 2)11) + 111
2
2

)
,

HG′3 (u j, v) = (d2 + 1)2 + 2(n − d2 − 1)(d2 + 1).

Since n ≥ 1+d1+d2, we have HG′3 (u, v′)−HG3 (u, v) = 2(1n−1d1−1d2−1112)
1

+1 > 0.Therefore, HG′3 (u, v′) ≥ HG̃3 (u, v).
So the assertion holds.

Lemma 3.10. Let Ĝ3
∈ Un,d,1 be as above. Then φ(U∗n,d,3) > HĜ3 (u, v).

Proof. Let dĜ3 (u,ui) = d1, dĜ3 (u j, v) = d2, dĜ3 (ui,u j) = 11 and 1 − 11 = 12. Since dĜ3 (u,ui) +
⌊
1

2

⌋
= d,

dĜ3 (u j, v) +
⌊
1

2

⌋
= d and n ≥ d1 + d2 + 1, similar to the computation of (10) and (11) in Lemma 3.6, we have

φ(U∗n,d,3) −HĜ3 (u, v) = 2
(
d − d1 − d2 −

1112

1

)
n − (d + d1 + d2 − 2)(d − d1 − d2)
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+1 + 21d1 − 21 +
21112d2

1
+ 1112

≥ 2
(
d − d1 − d2 −

1112

1

)
(d1 + d2 + 1)

−(d + d1 + d2 − 2)(d − d1 − d2)

+1 + 21d1 − 21 +
21112d2

1
+ 1112

= 2
(
2
⌊
1

2

⌋
− d −

1112

1

) (
1 + 2d − 2

⌊
1

2

⌋)
−

(
3d − 2

⌊
1

2

⌋
− 2

) (
2
⌊
1

2

⌋
− d

)
+ 1 + 21d

−21
⌊
1

2

⌋
− 21 + 1112 −

21112

1

(
d −

⌊
1

2

⌋)
= −d2 + 4d

⌊
1

2

⌋
−

6d1112

1
− 2d +

61112

⌊
1

2

⌋
1

− 4
⌊
1

2

⌋2

+21
⌊
1

2

⌋
+ 4

⌊
1

2

⌋
− 21 − 1112 + 1.

Since d >
⌊
1

2

⌋
, d1 + d2 + 11 < d, 1 ≤ 11 < 2

⌊
1

2

⌋
− d < 12 , 1112 < (2

⌊
1

2

⌋
− d)(1 − 2

⌊
1

2

⌋
+ d), and by discussing the

parity of 1 and computation, we have

φ(U∗n,d,3) −HĜ3 (u, v) > 0.

So the assertion holds.

Lemma 3.11. Let G3∗
∈ Un,1,d. If u ∈ V(T3∗

i ) and v ∈ V(T3∗
j ) be two pendant vertices of G3∗ with dG3∗ (u, v) < d and

dG3∗ (u,ui) +
⌊
1

2

⌋
= d or dG3∗ (u j, v) +

⌊
1

2

⌋
= d, then

φ(U∗n,d,3) > HG3∗ (u, v).

Proof. Let dG3∗ (u,ui) = d1, dG3∗ (u j, v) = d2, dG3∗ (ui,u j) = 11 and 1 − 11 = 12. Since d1 +
⌊
1

2

⌋
= d or d2 +

⌊
1

2

⌋
= d,

n = d1 + d2 + 1, d1 + 11 + d2 < d, 11 < d + 1 − n ≤ 12 , 1112 < (d + 1 − n)(n − d), similar to the computation of
(10) and (11) in Lemma 3.6, we have

φ(U∗n,d,3) −HG3∗ (u, v) = 2 (d − 1 − d2) n − (d − 1)2 + 2 + d2
2 − d2

1 − 1112 −
21112d1

1

> d2
2 − 2nd2 + 2(d − 1)n − (d − 1)2 + 2 − d2

1

−(d + 1 − n)(n − d)
1 + 2d1

1
.

Case 1. If d1 +
⌊
1

2

⌋
= d and d2 +

⌊
1

2

⌋
< d, then 0 ≤ d2 = n − 1 − d +

⌊
1

2

⌋
≤ n − d − 12 , n ≥ d + 12 , and

φ(U∗n,d,3) −HG3∗ (u, v) ≥

(
n − d −

1

2

)2
− 2n

(
n − d −

1

2

)
+ 2(d − 1)n − (d − 1)2 + 2 − d2

1

−(d + 1 − n)(n − d)
1 + 2d1

1

=
2d1

1
n2
−

(
1 + 2 +

4d1d
1
+ 2d1

)
n − d2

1
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+21d +
12

4
+ (d + 1)2 +

2d1

1
d2 + 2d1d.

Subcase 1.1. If 1 is even, d1 = d −
⌊
1

2

⌋
≥ 2 and n ≥ d + 12 , then 1

2 ≤ d − 2 and

φ(U∗n,d,3) −HG3∗ (u, v) ≥
2d − 1
1

(
d +
1

2

)2
−

(
2 +

4d2

1

) (
d +
1

2

)
+ 21d + (d + 1)2 +

2d3

1

=
3
2
1d −

12

4
− 1 + 1

> 0.

If 1 is even and d1 = d −
⌊
1

2

⌋
= 1, then

φ(U∗n,d,3) −HG3∗ (u, v) ≥

(
d −

3
2

)
1 + d +

2d2

1
+

2
1
+ 1

> 0.

Subcase 1.2. If 1 is odd, then
⌊
1

2

⌋
=
1−1

2 , n ≥ d + 1−1
2 . If d1 = d −

⌊
1

2

⌋
≥ 2, then 1−1

2 ≤ d − 2 and

φ(U∗n,d,3) −HG3∗ (u, v) ≥ −(2d + 3)n − d2
1 + 21d +

12

4
+ (d + 1)2 + 2d1d

> 0.

If 1 is odd and d1 = d −
⌊
1

2

⌋
= 1, then

φ(U∗n,d,3) −HG3∗ (u, v) ≥ −(2d + 3)n − 1 + 21d +
12

4
+ (d + 1)2 + 2d

> 0.

Case 2. If d1 +
⌊
1

2

⌋
< d and d2 +

⌊
1

2

⌋
= d, then 0 ≤ d1 = n − 1 − d +

⌊
1

2

⌋
≤ n − d − 12 , d + 12 ≤ n < d + 1, and

φ(U∗n,d,3) −HG3∗ (u, v) = 2
(⌊
1

2

⌋
− 1

)
n − (d − 1)2

+2 + (d2 − d1)(n − 1) − 1112 −
21112d1

1

= (1 − n −
21112

1
)d1 + 2

(⌊
1

2

⌋
− 1

)
n

−(d − 1)2 + 2 + d2(n − 1) − 1112

≥ (1 − n −
21112

1
)(n − d −

1

2
) + 2

(⌊
1

2

⌋
− 1

)
n

−(d − 1)2 + 2 + d2(n − 1) − 1112.

By discussing the parity of 1 and calculating as in Case 1, we have φ(U∗n,d,3) −HG3∗ (u, v) > 0.

Case 3. If d1+
⌊
1

2

⌋
= d and d2+

⌊
1

2

⌋
= d, then we can refer to Lemma 3.10, andφ(U∗n,d,3)−HG3∗ (u, v) > 0.

Lemma 3.12. Let G = C(T1, . . . ,T1) ∈ Un,d,1 with |V(Ti)| ≥ 2. Let S(G3) = {G̃3,G
3
, Ĝ3
}. If there exist two vertices

u ∈ V(Ti) and v ∈ V(T j) with dG(u, v) < d such that φ(G) = HG(u, v), then

φ(U∗n,d,3) > φ(G).
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Figure 11: Transformation X

Proof. Since G ∈ Un,d,1, there exist two vertices such that the distance between these two vertices is d. Let w
be the adjacent vertex of u in Ti. Then we need to consider the following cases.

Case 1. If there exist two vertices u′ and v′ in V(G) such that dG(u′, v′) = d, u′ ∈ V(Ts) and v′ ∈ V(Tp) with
s, p , i, j, then G4

∈ Un,d,1 is a graph obtained from G by deleting all edges of Tr for all r with r , i, j, s, p,
deleting all edges of Ts which do not belong to the usu′−path, deleting all edges of Tp which do not belong
to the upv′−path, deleting all edges of Ti which do not belong to the uiu−path, deleting all edges of T j which
do not belong to the u jv−path, and adding these edges to the vertex w(see Figure 11). By repeating usage
of Lemmas 3.1 and 3.5, we have HG4 (u, v) > HG(u, v). Let dG(u,ui) = d1 and dG(u j, v) = d2. We consider the
following cases.

Subcase 1.1. Let G4 = C(T4
1, . . . ,T

4
1) ∈ Un,d,1. If there exists a vertex ut on the cycle of G4 with dG4 (ut) = 2

such that dG4 (ut,u) = d and dG4 (u j, v) +
⌊
1

2

⌋
< d, then we can delete the all edges of T4

s and T4
p and add these

edges to the vertex w, we get the new graph G̃3(see Figure 11). By repeating usage of Lemma 3.1, we have
HG̃3 (u, v) > HG(u, v). Next, if we delete a pendant edge of T̃3

i and insert a vertex in path Pu jv in T̃3
j , then we

get the new graph G̃3′ . Let G̃3′ = C(T̃3′
1 , . . . , T̃

3′
1 ).

If dG̃3′ (u, v) < d, dG̃3′ (u j, v)+
⌊
1

2

⌋
+1 = d and dG̃3′ (u,ui)+

⌊
1

2

⌋
= d in graph G̃3′ , then by Lemmas 3.1 and 3.10,

we have
φ(U∗n,d,3) > HG̃3′ (u, v) ≥ HG̃3 (u, v) > HG(u, v).

If dG̃3′ (u, v) = d, then by Lemmas 3.1 and 3.6 , we have

φ(U∗n,d,3) > HG̃3′ (u, v) ≥ HG̃3 (u, v) > HG(u, v).

If dG̃3′ (u j, v) +
⌊
1

2

⌋
+ 1 < d and dG̃3′ (u, v) < d, then we can continue to delete a pendant edge from T̃3′

i in

G̃3′ and insert a vertex to the path Pu jv in T̃3′
j , repeating deleting edges and inserting vertices until that we

get the new graph G̃ = C(T̃1, . . . , T̃1) such that dG̃(u, v) = d or there exist two vertices ut and uq on cycle with
degree two such that dG̃(u, v) < d and dG̃(ut,u) = dG̃(uq, v) = d, or T̃i and T̃ j are paths and there exist two
vertices ut and uq on cycle with degree two such that dG̃(u, v) < d and dG̃(ut,u) = d or dG̃(uq, v) = d, then by
Lemmas 3.1, 3.6, 3.10 and 3.11, we have

φ(U∗n,d,3) > HG(u, v).

Subcase 1.2. If there exists a vertex ut on the cycle of G4 with d(ut) = 2 such that dG4 (ut, v) = d and
dG4 (u,ui) +

⌊
1

2

⌋
< d, then we can delete the all edges of T4

s and T4
p and add these edges to the vertex w, we
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get the new graph G
3
(see Figure 11). By repeating usage of Lemma 3.1, we have H

G
3 (u, v) > HG(u, v). Next,

if we delete a pendant edge of T
3
i and insert a vertex into the wui-path in T

3
i , then we get the new graph G

3′
.

Let G
3′
= C(T

3′

1 , . . . ,T
3′

1 ).

If d
G

3′ (u,ui) +
⌊
1

2

⌋
< d and d

G
3′ (u, v) < d, we can continue to repeat deleting pendant edges form T

3′

i and

inserting vertices to wui-path in T
3′

i until that we get the new graph G = C(T1, . . . ,T1) such that dG(u, v) = d
or there exist two vertices ut and uq on cycle with degree two such that dG(uq,u) = dG(ut, v) = d, or Ti and
T j are paths and there exist two vertices ut and uq on cycle with degree two such that dG(u, v) < d and
dG(ut,u) = d or dG(uq, v) = d, then by Lemmas 3.1, 3.6, 3.10 and 3.11, we have

φ(U∗n,d,3) > HG(u, v) > HG(u, v).

Subcase 1.3. If there exist two vertices ut and uq on the cycle of G4 with degree two such that dG4 (ut,u) =
dG4 (uq, v) = d and dG4 (u, v) < d, then we can delete the all edges of T4

s and T4
p and add these edges to the

vertex w, we get the new graph Ĝ3(see Figure 11). By repeating usage of Lemmas 3.1 and 3.10, we have

φ(U∗n,d,3) > HĜ3 (u, v) > HG(u, v).

Subcase 1.4. If dG4 (u′,u) = d, dG4 (v′,u) < d, dG4 (u′, v) < d, dG4 (v′, v) < d and there do not exist two vertices
ut and uq on the cycle with degree two such that dG4 (ut,u) = d and dG4 (uq, v) = d, then we can delete the all
edges of T4

p and add these edges to the vertex w, we get the new graph G5. Then we can delete a pendant
edge of T5

s in G5 and insert a vertex into the wui-path of T5
i in G5, we denote this new graph as G6. If

dG6 (u, v) < d and there does not exist a vertex ut on the cycle such that dG6 (ut,u) = d, then we can continue
to delete the pendant edge of T6

s and insert a vertex into the wui-path of T6
i in G6. By repeating deleting the

pendant edge and inserting the edge until we get the graph G♯ such that dG♯ (u, v) = d or there exists a vertex
ut on the cycle such that dG♯ (ut,u) = d. By the proof in Subcase 1.1 and Lemmas 3.4, 3.6, we have

φ(U∗n,d,3) > HG♯ (u, v) > HG(u, v).

Subcase 1.5. If dG4 (u′, v) = d, dG4 (u′,u) < d, dG4 (v′, v) < d, dG4 (v′,u) < d and there do not exist two vertices
ut and uq on the cycle with degree two such that dG4 (ut,u) = d and dG4 (uq, v) = d, then we can delete the all
edges of T4

p and add these edges to the vertex w, we get the new graph G̃5. Then we can delete a pendant

edge of T̃5
s in G̃5 and insert the edge to the u jv-path of T̃5

i in G̃5, we denote this new graph as G̃6. Let
G̃6 = C(T̃6

1, . . . , T̃
6
1). By Theorem 2.1, we have

HG̃5 (u, v) = HG̃5 (u,ui) +HG̃5 (ui,u j) +HG̃5 (u j, v),

and
HG̃6 (u, v) = HG̃6 (u,ui) +HG̃6 (ui,u j) +HG̃6 (u j, v′).

Let mi be the number T̃5
i and ms be the number T̃5

s . Let dG̃5 (u j, v) = d2. Let G1 and G2 be two decomposed
connected subgraphs of G̃5 through two vertices ui and u j such that G1 contains T̃5

i , T̃
5
s . Moreover, let

dG1 (ui,u j) = 11, dG1 (us,u j) = k1 and dG2 (ui,u j) = 12. By Theorems 2.2 and 2.3, we have

HG̃5 (ui,u j) =
1
1

(
12(12

1 + 2mi11 + 2msk1) + 111
2
2

)
,

HG̃5 (u j, v) = d2
2 + 2(n − d2)d2.

Similarly, we have

HG̃6 (ui,u j) =
1
1

(
12(12

1 + 2mi11 + 2(ms − 1)k1) + 111
2
2

)
,
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HG̃6 (u j, v′) = (d2 + 1)2 + 2(n − d2 − 1)(d2 + 1).

Since HG̃5 (u,ui) = HG̃6 (u,ui), mi +ms + 11 + 12 + d2 = n and 11 > k1, we have

HG̃6 (u, v) −HG̃5 (u, v) = 2n − 2d2 − 1 −
2k112

1
> 0.

If dG̃6 (u, v) < d and there are not exist a vertex ut on the cycle such that dG̃6 (ut, v) = d, then we can continue
to delete a pendant edge of T̃6

s and insert a vertex to the u jv-path of T̃6
j in G̃6. By repeating deleting pendant

edges and inserting vertices until we get the graph G♯ such that dG♯ (u, v) = d or there exists a vertex ut on
the cycle such that dG♯ (ut, v) = d. By the proof in Subcase 1.2 and Lemmas 3.4, 3.6, we have

φ(U∗n,d,3) > HG♯ (u, v) > HG8 (u, v) > HG(u, v).

Subcase 1.6. If dG4 (u′, v) < d, dG4 (u′,u) < d, dG4 (v′,u) < d, dG4 (v′, v) < d and there do not exist two vertices
ut and uq on the cycle with degree two such that dG4 (ut,u) = d, dG4 (uq, v) = d, then we can delete a pendant
edge of T4

i in G4 and insert a vertex into the wui-path of T4
i . We denote the new graph as Ĝ5. If dĜ5 (u, v) < d,

dĜ5 (u′, v) < d, dĜ5 (u′,u) < d, dĜ5 (v′,u) < d, dĜ5 (v′, v) < d and there do not exist two vertices ut and uq on the
cycle with degree two such that dĜ5 (ut,u) = d and dĜ5 (uq, v) = d, then we can continue to delete pendant
edge of T̂5

i and insert a vertex into the wui-path in T̂5
i , by repeating deleting pendant edges and inserting

vertices until that we get the graph G♯ such that dG♯ (u, v) = d or dG♯ (u,u′) = d or dG♯ (u, v′) = d or there exists
a vertex ut on the cycle such that dG♯ (ut,u) = d. By the discussions in above cases, we have

φ(U∗n,d,3) > HG♯ (u, v) > HG(u, v).

Case 2. If there exists a vertex u′ ∈ V(Tp) such that dG(u′,u) = d, then G̃4 is the graph obtained from G by
deleting all edges of Tr for all r with r , i, j, p, deleting all edges of Tp which do not belong to the upu′-path,
deleting all edges of Ti which do not belong to the uiu-path, deleting all edges of T j which do not belong to
the u jv-path, and adding these edges to the vertex w. By repeating usage of Lemmas 3.1 and 3.5, we have
HG̃4 (u, v) > HG(u, v). Next, similar to the graph transformation and the proof in Subcase 1.4, the assertion
holds.

Case 3. If there exist a vertex u′ ∈ V(Tp) such that dG(u′, v) = d, then this case can refer to Case 2 and
Subcase 1.5. Similar to the graph transformation and the proof in Subcase 1.5, the assertion holds.

In Lemma 3.12, φ(G) = HG(u, v) and u is a pendant vertex. In the following lemma, we will discuss
φ(G) = HG(u, v) and dG(u) = 2, how the hitting time changes by graph transformation.

Lemma 3.13. Let G = C(T1, . . . ,T1) ∈ Un,d,1 and n > 1. The number of pendant edges is larger than 3. If there
exist two vertices u, v with u ∈ V(Ti), v ∈ V(T j) such that φ(G) = HG(u, v) for u = ui and dG(u, v) < d, G′ is the
graph obtained from G by deleting a pendant edge from pendant tree and adding it to the vertex u, the new added edge
is u′u(see Figure 12), then HG′ (u′, v) > HG(u, v) and φ(G′) > φ(G).
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Figure 12: Transformation XI

Proof. Since G ∈ Un,d,1, there exist two vertices such that the distance between these two vertices is d. We
need to consider the following cases.

Case 1. If u∗ ∈ V(Tr) and v∗ ∈ V(Ts) with r, s , i, j such that dG(u∗, v∗) = d, there do not exist a vertex w1
such that dG(u,w1) = d, there do not exist a vertex w2 such that dG(v,w2) = d, and there exists a tree Tp in G
with |V(Tp)| ≥ 2 or the number of pendant vertices of Tr(or Ts,T j) is larger than 1, then we can get the new
graph G′ by deleting a pendant edge of Tp, or by deleting a pendant edge which does not incident with
u∗(or v∗, v) of Tr (or Ts,T j), and adding it to vertex u. The new added edge is u′u. By Lemma 3.1, we have
HG′ (u′, v) > HG(u, v) and φ(G′) > φ(G).

Case 2. If there exist vertices v1, v2, . . . , vk in V(G) such that dG(vi,u) = d for all i with 1 ≤ i ≤ k, then
we can get the new graph G′ by deleting all the pendant edges incident with v1, v2, . . . , vk and adding these
edges to vertex u. Let u′ ∈ V(T′i ) be a pendant vertex. By Lemma 3.1, we have HG′ (u′, v) > HG(u, v) and
φ(G′) > φ(G).

Case 3. If there exist vertices v1, v2, . . . , vt in V(G) such that dG(vi, v) = d for all i with 1 ≤ i ≤ k and there
do not exist vertex u∗ such that dG(u∗,u) = d, and the number of pendant edges is lager than 2, then we can
get the new graph G′ by deleting the pendant edge of G and adding it to vertex u. If t = 1 and v1 ∈ V(Tp),
then the deleted pendant edge is not the edge incident with v1 and v. If t ≥ 2, then the deleted pendant edge
is not the edge incident with v. The new added edge is u′u. By Lemma 3.1, we have HG′ (u′, v) > HG(u, v)
and φ(G′) > φ(G).

In Lemma 3.13, when the number of pendant edges is larger than 3, we have discussed how the hitting
time changes by graph transformation. The following corollary shows the result of the special cases that
the pendant edge is not enough to perform the graph transformation.

Corollary 3.14. Let G = C(T1, . . . ,T1) ∈ Un,d,1 and n > 1. If the number of pendant edges is less than 4 and there
exist two vertices u, v with u ∈ V(Ti), v ∈ V(T j) such that φ(G) = HG(u, v) for u = ui and dG(u, v) < d, then we have
the following results.

(1) If u∗ ∈ V(Tr) and v∗ ∈ V(Ts) with r, s , i, j such that dG(u∗, v∗) = d, there do not exist a vertex w1 such that
dG(u,w1) = d, there do not exist a vertex w2 such that dG(v,w2) = d, |V(Tt)| = 1 for all t with t , j, r, s, and
T j,Tr,Ts are paths, then φ(U∗n,d,3) ≥ HG(u, v).

(2) If there exists only one vertex v1 ∈ V(Tp) such that dG(v1, v) = d, there do not exist vertex u∗ such that
dG(u∗,u) = d, |V(Tt)| = 1 for all t with t , j, p, and Tp, T j are paths, then φ(U∗n,d,3) ≥ HG(u, v).

Proof. Similar to the computation in Lemma 3.8, it is easy to get the result.
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Remark: The above lemmas mainly discussed that φ(G) = HG(u, v) where vertices u and v belong to
different pendant trees. We now turn to the case where both vertices are contained within the same pendant
tree.

Lemma 3.15. Let G = C(T1, . . . ,T1) ∈ Un,d,1 with n > 1. If there exist two vertices u, v with u, v ∈ V(Ti) such that
φ(G) = HG(u, v), then φ(U∗n,d,3) > φ(G).

Proof. Since u and v lie in the same pendant tree Ti, the graph G decomposes into the path Puv between u
and v with its pendant branches. By Theorem 2.2, relocating any pendant edge to either u or its neighbor
yields a modified graph G′ satisfying HG′ (u, v) ≥ HG(u, v). We perform this operation iteratively, moving
edges to neighbor of u when d(u, v) = d, or to u otherwise. The operation will keep the diameter of the
graph unchanged. This process produces an intermediate graph where the only pendant vertices are v and
those adjacent to neighbor of u.

We proceed by cyclically reducing the graph: first decreasing the cycle length by 1 and applying the
same edge relocation to obtain G′′ with HG′′ (u, v) ≥ HG(u, v), repeating until achieving a 3-cycle. The cycle
is then moved to neighbor of u, which Theorem 2.2 guarantees will increase HG′′ (u, v). Final application of
the pendant edge relocation to any remaining branches yields the required extremal graph.

Now we are ready to present the proof of Theorem 1.1.

3.3. Proof of main Theorem
Proof of Theorem 1.1. While φ(G) = HG(u, v) and dG(u, v) = d, by Lemmas 3.4, 3.5, 3.6, 3.8, we

have φ(U∗n,d,3) > HG3 (u, v) > HG(u, v). While φ(G) = HG(u, v) and dG(u, v) < d, if u is a pendant vertex, by
Lemma 3.12, thenφ(U∗n,d,3) > φ(G); if dG(u) = 2, by Lemma 3.13 and Corollary 3.14, by graph transformation,
this case can be transformed into the graph in Lemma 3.12. If u and v reside in the same tree, Lemma 3.15
provides the necessary conclusion. ■
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