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Abstract.

We explore the extremal problems of the hitting time of unicyclic graphs on n vertices with a given
diameter. Let Hg(u,v) be the expected hitting time from vertex u to vertex v on a simple graph G. Let
@(G) = maxywev(c) Ho(u,v) be the hitting time of G. In this paper, we obtain the upper bound for the

hitting time of unicyclic graphs with a given diameter, and the extremal graph that attached the value is
determined.

1. Introduction

Let G = (V(G), E(G)) be a simple connected graph with vertex set V(G) and edge set E(G). The size of
V(G) and E(G) are called the order and the size of G respectively. The distance between vertices x and y,
denoted by d¢(x, ), is the length of a shortest path joining x and y in G. The diameter of G, denoted by D(G),
is the maximum distance between any two distinct vertices in G. The girth of G is the length of the shortest
cycle. The degree of vertex x in G, denoted by d(x), is the number of vertices adjacent to x. If there exists
only one path between vertices x and y, this path is called the unique path and denoted by P = xv1v; ... %y,
where each v; is a cut vertex on P. Let G; = (V1, E1) and G, = (V3, E>) be two simple connected graphs such
that V1 M V2 = {x,y} and E1 () E; = 0. The union of G; and G;, denoted by G; | Gy, is the graph G defined
by V(G) = V1 U V2 and E(G) = E; |J E;. In this case, we say that G is decomposed into G; and G, through x
and y.

Let U1 be the set of all n-vertex unicyclic graphs with diameter d. Let U, 4, be the set of all n-vertex
unicyclic graphs with diameter d and girth g. Without loss of generality, the unique cycle C of length gin a
unicyclic graph is denoted by C = uju, ... 1, in clockwise order. Let G € U, 4,4 If n = g, then G is exactly
a cycle of order n and d = | 5|. Moreover, any unicyclic graph G in U,, 4, can be obtained by identifying
vertex u; of C with a vertex of a tree T fori = 1,..., g, then G is denoted by G = C(T1, ..., T,). Let the order
of T; be n;. Thenn; > 1and ny + --- + n; = n. If there are some trees T; for alli = p,...,q and q > p such
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thatn; >1and T, forall1 <r <g,i#p,...,qsuch thatn, = 1, then C(Ty, ..., T,) is short for Cy(T}, ..., Ty).
For instance, if n,,1; > 1and n, = 1 forall1 < r < g, i # p,q, then C(Ty, ..., T,) is short for Cy(T,, T;). In
particular, if G = C3(T), where T is obtained by identifying an end vertex of a path on d vertices and the
center of the star Ky 42, then this unicycle graph is denoted by U , ;, i.e., U] , is the graph obtained by
identifying the vertex of T with degree n — d — 1 and a vertex of a triangle.

Random walks on graphs are a type of stochastic process where a “walker” moves from one vertex to
its neighboring vertex in the graph based on a certain probability distribution. A simple random walk is
such a stochastic process with a uniform probability distribution, in which each neighboring vertex has an
equal probability of being chosen. The hitting time Hg(x, y) is the expected number of steps it takes a simple
random walk on a graph G from a vertex x to a vertex y. For a given graph G, the hitting time of G is
denoted by

9(G) = max Ho(x,y)-

Random walks on graphs have been studied extensively in the fields of mathematics, physics, computer
science, statistical physics, and biology. It has applications in algorithms, network analysis, and statistical
mechanics. They can be used to model the behavior of particles diffusing through a medium, to analyze
the structure of networks, and to study algorithms for graph traversal and search. Hitting time, cover time,
and commute time, access time are essential metrics used to analyze the behavior of simple random walks
on graphs, see [1, 6-10, 12-14, 17, 20-22, 24, 25] for more details.

The study of extremal problems of random walks on graphs has garnered significant interest among
academic researchers. Research on the extremal problems of hitting time, cover time, access time and
cover cost has received widespread attention. Specifically, Brightwell and Winkler [5] proved that the
n-vertex lollipop graph G is the extremal graph with the maximum hitting time among all n-vertex graphs.
Georgakopoulos and Wagner [11] proved the n-vertex path is the extremal graph with maximum hitting
time among all n-vertex trees. Li and Zhang [29, 30] solved the extremal problems of hitting time of trees
with given parameters. Liao etal. [18] studied the upper and lower bounds of access time on a tree of a given
diameter and presented the corresponding extremal graphs. Feng et al. [19] studied the upper and lower
bounds of access time on trees that can be decomposed into independent sets, and gave the corresponding
extremal graphs. Zhu and Zhang [32, 33] determined the extremal graphs among n-vertex unicyclic graphs
and n-vertex bicyclic graphs and presented the sharp upper and lower bounds for the hitting time. Zhu and
Yang [34] determined the extremal graphs among n-vertex tricyclic graphs and presented the sharp upper
and lower bounds for the hitting time. Beveridge and Youngblood [2] characterized the extremal structures
for mixing walks on trees and showed that among all trees with n-vertex , the best mixing time is minimized
uniquely by the star. For even n, the best mixing time is maximized by the unique path. Surprising, for odd
n, the best mixing time is maximized uniquely by a path of length n — 1 with a single leaf adjacent to one
central vertex. Brightwell [4] investigated extremal problems of cover time on trees and proved the n-vertex
path is the extremal graph with maximum cover time. Georgakopoulos and Wagner [11] determined the
maximal and minimal cover cost of n-vertex trees. Li and Wang [26] characterized the unique tree with
the minimum cover cost and minimum reverse cover cost among all trees with a given segment sequence.
Furthermore, the unique tree with the maximal reverse cover cost among all trees with a given segment
sequence is also identified. Li and Wang [27, 28] studied the extremal problems on k-ary trees and trees with
a given segment sequence concerning the cover cost and reverse cover cost. Huang et al. [13] determined
the maximal and minimal (reverse) cover cost of n-vertex unicyclic graphs. Zhang et al. [31] characterized
the extremal graphs with the minimal (reverse) cover cost of trees with a given diameter. Lu et al. [16]
obtained sharp bounds of the cover cost for n-vertex bicyclic graphs.

Inspired by the above research, we find that the extremal problems of the hitting time of random walks
on graphs with given parameters are interesting and worth further investigation. In this paper, we have
investigated the extremal problem of hitting times of unicyclic graphs on n vertices with given diameter d.
The following theorem is the main result.

Theorem 1.1. Let G be any unicyclic graph of order n and D(G) = d. Then
©(G) <2(d-N)n—d*+2d + 1.
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Moreover, the right equality holds if and only if G = U;, , . and ¢(U, ,,) = Hu:  (u,v), where u is the vertex on the
cycle with dyr: “(u) = 2 and v is the pendant vertex with du;x“(u, v) =d.

The rest of this paper is organized as follows. In section 2, we present the preliminary results which
are used in the proof of our main results. In section 3, we demonstrate how the hitting time of unicyclic
graphs on n vertices with given diameter d alters by graph transformations, as well as the proof of the main
Theorem 1.1.

2. Preliminary
In this section, we present several known important results which are useful in our proof.

Theorem 2.1. [15] Let G be a connected graph with two vertices x and y. If there exists a cut vertex z such that x
and y are not in the same component of G — z, then

He(x, y) = Ho(x, 2) + Ho(z, y). 1)
Moreover, if there exists a unique path P = xvy - - - vp_1y in G, then
Hg(x,y) = Ho(x,v1) + Ho(01,02) + -+ - + Hg(vk-1, y)- (2)

Theorem 2.2. [4] Let G be a simple connected graph on n vertices with two vertices x and y. If there exists a unique
path P = vgvy ... v with vy = x and v = y, and m; is the number of edges of subgraph G; which is the component
G — {vi-1v;, Vi1 } with containing v; for i = 0,...,k and v_1vy = 0, and VUK = 0, then

k-1
He(x,y) = k2 +2) " milk = i) 3)
i=0

Theorem 2.3. [23] Let G = C(Ty,...,Ty) be a unicyclic graph with cycle C = uy...u, and Gy and G, be a
decomposition of G through u; and ujfor 1 <i# j < g. Then

1
Ho(u ) = - (de, (s, ) Ho, (i, 1)) + do, (1, 1) Ha, (i, 7)), @)

where dg,(u;, u;) is the distance in the graph G; between u; and u; fori =1,2.
Lemma 2.4. [3] Let C be a cycle of length g. Then for any u;, u; € V(C), we have

He(ui, uj) = d(ui, uj)(g — d(u;, u;)),
where d(u;, u;) is the distance between u; and u; in C.

Lemma 2.5. Let G be a graph of order n. Let P = vyv; ... vk be a unique path in G with vy = u and v, = v, and G;
be the component G — {v;_1v;, V;vis1} containing v; for i = 0, ...,k and v_1v9 = 0, and vvk = 0. Let G, G”, G’
(see Figure 1) be the graphs obtained from G by transformations. Then

(1) Hg(u,v) > Hg(u,v);

(2) Hgr(u,v") > Hg(u,v);

(3) Hg(u,v) > Hg(u, v).
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Figure 1: Transformation I

Proof. (1). By Figure 1, we see that G’ is obtained by deleting a pendant edge in G; and adding it to vertex u.
Denote the size of G; by m; and we assume that m; > 1 without loss of generality. By Theorem 2.2, we have

Ho(u,v) = K +2mok +2my(k —1) + -+ 2mi(k — i) + - - - + 2my_q,
Ho(u,v) = K +20mo+ Dk+2my(k—=1) +---+2(m; — 1)(k — i) + - - - + 2m_1.
Since Hg (1, v) — Hg(u, v) = 2i > 0, we have Hg (1, v) > Hg(u, ).

(2). By Figure 1, we see that G” is obtained from G by deleting a pendant edge in Gy and adding it to
vertex v. Denote the newly added edge by vv’. Without loss of generality, we assume that my > 1. By
Theorem 2.2, we have

Ho(u,v) = K> +2mok + -+ 2mi(k — i) + - - - + 2my_q,
Hor(u,v') = (k+1)2>+20mg—1)(k+1)+ - +2mi(k + 1 — i) + - + 2mp_1 - 2 + 2my.
Since Hg(u,v") — Hg(u,v) =2 Zfzo m; —1 >0, we have Hg~(u,v") > Hg(u, v).

(3). By Figure 1, we see that G"’ is obtained from G by deleting a pendant edge in Gy and inserting a
vertex in P. Without loss of generality, we assume that my > 1 and the inserted vertex is v’ and the new
pathis P = vyv;...0'v; ... 0. By Theorem 2.2, we have

Ho(u,v) = K> +2mok+---+2mi_q(k —i+ 1)+ 2mi(k — i) + - - - + 21y,
Hg(u,v) (k+ 172 +2mg = 1)k + 1) + -+ 2m_1(k — i +2) + 2m;(k — i) + - - - + 2m_1.

Since Hgw(u,v) — Hg(u,v) = 2 Z;:}) my — 1 >0, we have Hg» (1, v) > Hg(u,v). O

3. The Proof of Theorem 1.1

To prove Theorem 1.1, we first present several lemmas about how the hitting time changes after graph
transformation.

As observed before, if G € U, 4, with n = g, then G is the unique cycle of order 1, and there is no graph
transformation. Therefore, we suppose that n > g is the left. Let G = C(T1, ..., Tg) € (Ll,,,d,g. If G’ is obtained
from G by deleting edges in T; and adding edges to T}, then G’ = C(Ty, ..., Ti,..., T}, ..., Ty) and we simply
denote G’ = C(T-,) for convenience.
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Lemma 3.1. Let G = C(Ty,...,T;) € Uyay with cycle C = uy ... u, Let u,v be two pendant vertices in G with
dc(u,v) =dandu € V(T;),v € V(T)) for |V(T;)| = 2. Let vertex w be the unique vertex adjacent tou. Let | V(T) |> 2
forp #1i,j. Let G’ be the unicyclic graph obtained from G by deleting a pendant edge e in T, and adding it to vertex
w in T; (see Figure 2). Then

Hg (u,v) > Hg(u, v). (5)

Figure 2: Transformation II

Proof. By the transformation, we can see that D(G’) = d and G’ = C(T,;). T; and T; can divide the cycle
into two parts. There is no essential difference in the calculation in either part. Therefore, without loss of
generality, we assume that2 < i <p < j < g. Let G; and G, be two decomposed connected subgraphs of G
through two vertices u; and u;, where G; contains T;, Tiy1, ..., Tp, ..., T;. Letm, be thesizeof T, for1 <r < g.
Moreover, let dg, (u;, uj) = g1 and dg,(u;, uj) = go. By Equation (2) in Theorem 2.1, we have

Hg(u,v) = Hg(u,u;) + Ho(ui, uj) + Ho(uj, 0),
Hg(u,0) = He(u,u;) + Hg (u;, uj) + Ho (4, 0).
After the transformation, |E(T?)| = |E(T;)| + 1. Since d(u, u;) = do(u, u;), by Equation (3) in Theorem 2.2, we

have Hg(u, u;) < Hg (1, u;).
By Equation (4) in Theorem 2.3, we have

1
Heo(ui,uj) = 7 (dGz(ui/ uj)Hg, (ui, u;j) + dg, (i, uj)Hg, (u;, uj))
1
= ; (ngcl (u,-, u]-) + ngGZ(ui, uj)) . (6)

Furthermore, by Equation (3) in Theorem 2.2, we have

He, (ui,uj) = g3 +20mi - g1 +miga(gn = 1)+ +mp(gn —p +1) + -+ mj),
He,(ui,uj) = g5 +2(mi-1(g2 = 1) + mia(ga = 2) + -+ + mjsa).

Let G| and G/, be a decomposition of G’ through u; and u; such that G} = G. By Equation (4) in Theorem 2.3,
1
Ho(w,u) = - (day (s, u)Ha, (i, 47) + do (i, 1) Ho (s, 1))

1
= 7 (ngG; (ui, uj) + g1He, (ui, uj)) . 7)
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Moreover, by Equation (3) in Theorem 2.2, we have
HGi (Ll,', M]') = g% + 2((7711 + 1)91 + m1+1(g1 - 1) + mi+2(g1 - 2)
+eok(my—1)(gr —p+i)+---+mjg).
Hence, by Equations (6) and (7), we have

H H - 2 H

o (wi,uj) — Ho(ui, uj) = 7 ( G, (ui, uj) — He, (i, Mj))
292( - 1)

9
Since T; = T, by (3) in Theorem 2.2, we have Hg(u;,v) = Hg (147, v). So the assertion holds. [
j= by j j

Remark 3.2. In Lemma 3.1, if dg(u,v) < d and the graph transformation remains the diameter the same, then the
conclusion of the lemma also holds.

Lemma 3.3. [32] Let G = C(Ty,...,T,;) € Uy, If there exist two vertices u,v € V(G) such that ¢(G) = Hg(u, v),
then u and v are either pendant vertices in V(G) or vertices with degree 2 in V(C), respectively.

Next, we will present how the hitting time changes between two vertices by graph transformation.
Let G € U4y and @(G) = Hg(u,v). In Subsection 3.1 (resp. Subsection 3.2), while dg(u,v) = d (resp.
dg(u,v) < d), we discuss that how the hitting time H(u, v) changes by graph transformation.

3.1. While dg(u,v) = d and Hg(u,v) = @(G), how the hitting time changes by graph transformation

Lemma 3.4. Let G = C(Ty,...,T;) € Uy, withn > d + g. There exist two vertices u € V(T;) and v € V(T;) with
dc(u,v) = d such that Hg(u,v) = @(G). Let [V(T})| 2 2 and |V(T;)| = 2 and w be the adjacent vertex of u. Let
= C,(T}, Tll.) and G* = C,(T?, TJZ.) be two graphs obtained from G by graph transformation (see Figure 3). Then

He(u,v) > Hai(u, v) > Hg(u, 0). 8)
Moreover,
P(G?) > ¢(G). )
p — ? é ’
G G! G*

Figure 3: Transformation III
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Proof. According to Figure 3, we can see that T/ is the tree obtained from G by deleting all edges in T, for all
1 <r+#1i,j<g, and deleting all edges in T; which do not belong to the unique path P; = uw...u; € T}, then
adding n — g — |V(T))| + 1 — dc(u, u;) pendant edges to vertex w, T]z. is the tree obtained from T]l. by deleting

all edges in T1 which do not belong to the unique path P, = u;...v € T1 and adding |V(Tj)| = 1 - dg(uj, v)
pendant edges to vertex u;. In particular, T1 Tjand T? = T7. Wlthout loss of generality, we assume that
[V(T;)| 2 2 and |V(T})| =2 2. By Theorem 2.1, we have

Hg(u,v) = Hg(u,u;) + Ho(ui, uj) + Ho(uj, 0),
Hai (Ll, ?)) = Hga (u, Mj) + Ha (ul-, uj) + Hgai (Ll]‘, Z)),
He(u, Z)) = Hg(u, ui) + He2 (u;, 1/[]‘) + ch(uj, Z)).
By repeating usage of Lemma 3.1, we have Hxi1 (1, v) > Hg(u,v). On the one hand, by repeating usage of

Lemma 2.5, we have Hg2(uj,v) > Hgi(uj,v). On the other hand, Hegi(u, u;) = Hea(u, u;) and Hei(u;, uj) =
Hga(ui, uj), then Hee(u, v) > Hei (1, ). Therefore, ©(G?) > Hg2(1,0) > Hgi (1, v) > Hg(u,0) = 9(G). O

Building upon Lemma 3.4, we proceed to further graph transformation on the graph G?, yielding the
following lemma.

Lemma 3.5. Let G* = C,(T7, TJZ.) € Uy,a,y be the same graph as in Lemma 3.4. Let u € V(T?) and v € V(T]?) be two
pendant vertices of G* with dg2(u,v) = d. Let G* = C,(T?, T]3.) be the graph obtained from G? by transformation (see
Figure 4). Then

Hes(u,v) 2 He:(1,0), @(G®) = ¢(G).

ii

Figure 4: Transformation IV

Proof. According to Figure 4, we can see that G® is obtained by deleting all the pendant edges incident with
uj which are not in the path P, from T]2. and adding |V(Ti2)| —1-dgs(uj,v) pendant edges to vertex w, where

w is the unique adjacent vertex of vertex u. By Theorem 2.1, we have

He(w,0) = Heg(u,ui) + He2(ui, uj) + Hea (1, 0),
Hes (u, ‘U) = HGs(u, ui) + Hca(uj, Mj) + Hegs (u]', ‘U).

Let m; be the number of pendant edges incident with vertex w in T7.2. Let deo(u,u;) = dos(u,u;) = dy,
dc(uj,v) = dgs(uj, v) = d, and IV(T]2.)| —1—-d; = N. Let G; and G; be two decomposed connected subgraphs
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of G through two vertices u; and uj such that G, contains T?, TJZ.. Moreover, letdg, (ui, u;) = g1, dc, (i, 1j) = go.
By Theorems 2.2 and 2.3, we have

He(u) = & +20m)—1)d - 1),

Hea (ui, 1)) }] (92 (9 + 261 + = Dn) + 713),
He(uj,0) = d% + 2(n — dp)d,.

Similar to the computation of Hg:(u, v), we can get
Hes(w,u) = df+2(m)—1+N)(dy - 1),

Hes (ui, uj)

1
7 (gz (g% +2(dy +my -1+ N)gl) + glgé),
He(uj,0) = dj+2(n—do)ds.
Hence, Hgs(u,v) — Hg2(1,v) = 2N(d1 — 1) + @ > 0. Thus, ¢(G®) > Hgs(u,v) > He2(u,v). Therefore, by
Lemma 3.4, p(G®) > ¢(G). So the assertion holds. [

Building upon Lemma 3.5, we compare Hs (1, v) with (p(l,I;, d,3), yielding the following lemma.

Lemma 3.6. Let G® = Cy(T?, T?) € Uy,a,y be the same graph as in Lemma 3.5. If u € V(T?) and v € V(T]3.) are two
pendant vertices of G® with ds(u,v) = d, then

o, ;3) > Hes (u,0).

&
U n,d,3
Figure 5: U ,,

Proof. Note that U] ,  is the graph obtained by identifying an end vertex of path P;_; and a vertex in K3
and the center of star Kj ,_4_»(see Figure 5). By Theorems 2.1, 2.2 and 2.3; Lemmas 2.4 and 3.3; and direct
computation, we obtain that qo(ll;, d,3) = Hu:ml3 (x,y) =2(d —1)n— (d — 1)> + 2, x is a vertex in triangle with
degree 2 and y is a pendant vertex with dy:  (x, y) = d.

Let des(u, u;) = dy, dgs(uj,v) = da, dgs(ui, uj) = g1 and g — g1 = g». Similar to the computation of Hgs(u, v)
in Lemma 3.5, by di + d» + g1 = d, we have

2g192(n —dz — g)

HG3 (M, ZJ) d% + 2((11 - 1)(71 - dl - dz - g) + 9192 + + d% + 2(7’1 - dz)dg (10)

2g19:d»

2(d1 +d2—1+%)n—di—d§—2d1dz+2d1 +2dy — 2gd; +2g — — 192
Sincen > dy +d, + gand d; > 1, we have

(UL, ;) - Ho(u,0) = 2(d—d1 —dy - %)n @ -1)2 2+ B+ B
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2g19,d
+2d1dy — 2dy — 2dy + 2gdy — 29 + g19202

+ 9192

- 2d—d1—d2—% 1= (d+dy+dy —2)(d —dy — )
2019d
+1+2gd; —2g + g192 2 v i (11)
202 201904
= %Tl - g% - 2d2!]1 - Zgz + 2gzd1 + 19242 + 0192 + 1

2%(d1 + dy + 201924

> w — g% = 2drg1 — 292 + 2g0d + NPT g192+1
Zg2d1

- ; +205(dh = 1) + g5 + 192 + 1

> 0.

So the assertion holds. [J

In the above lemmas, with the condition ¢(G) = H¢(u,v), we have discussed how the hitting time
Hc¢(u, v) changes by graph transformation while dg(1,v) = d and u € V(T;) for |V(T;)| > 2. In particular, if
dg(v) = 2, by deleting v, the graph is divided into two parts. The part without the cycle does not affect
H¢(u,v), so the above calculation process still holds. However, when d¢(u) = 2, the graph transformation
in the above lemmas is invalid. Therefore, when dg(u) = 2 and dg(u,v) = d, it needs to be discussed
separately. The following lemmas and corollary will discuss how the hitting time Hg(u, v) changes by
graph transformation while dg(u,v) = d and u € V(T;) for [V(T})| = 1.

Lemma 3.7. Let G = C(Ty,...,T,;) € Uy 4,y where T; = u; = u. If there exists vertex v with v € V(T;) such that
dg(u,v) = d and p(G) = Hc(u, v), then we have the following results.

(1) If gis even and G" = C(Tp—i+1) € U4 is obtained from G by deleting the pendant edge e in T, and adding it to
the vertex u.1(see Figure 6), then

He (u,v) > He(u,v) and ¢(G’) = ¢(G). (12)

Figure 6: Transformation V
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(2) If gisodd and G” = C(Tp—i1+2) € Uy, is obtained from G by deleting the pendant edge e in T, and adding it to
the vertex uj,p(see Figure 7), then

Hgr(u,v) > Hg(u,v) and @(G") > ¢(G). (13)
T, u Ty u
e
Ti+2 —_— T’t+2
e
T, T’
Tj+1 4 ’j+1 4
T; T';
G G r

Figure 7: Transformation VI

Proof. (1) Since g is even and dg(u,v) = d, we have dg(u, u;) = %, Ti+1 and T,y are stars or single vertices.

Without loss of generality, we assume that 2 <i < p < j < g. Let G and G, be two decomposed connected
subgraphs of G through two vertices u; and u; where G, contains T;, Ti11, ..., Ty, ..., T;. Let m, be the size of
T, forallrand 1 < r < g. Moreover, let dg, (1, uj) = g1, dg,(ui, uj) = go. Then g1 = g2 = g. By (2) in Theorem
2.1, we have

Hg(u,v) Hg(u, uj) + Ho(uj,v),
He(u,v) = He(u,uj)+ He(uj,0).

By Equation (4) in Theorem 2.3, we have

Ho(u,u) = % (de, (u, 1)) H, (u, 1)) + de, (u, u)He, (u, 7))
1
= 3 (HGl (u,uj) + Hg,(u, uj)). (14)
Furthermore, by Equation (3) in Theorem 2.2, we have
Hg, (u,uj) = g% +2(mip1(gr =)+ +my(gr —p+i) +--- +mjq),
He,(u, uj) = g% +2(mi—1(ga — 1) + mio(gp —2) + -+ + mj+1).

Let G} and G}, be a decomposition of G” through u; and u; such that G} = G». By (3) in Theorem 2.2,

He (u,uj)

1
7 (dey (u, 1) Ho; (u,u5) + de; (u, 1)) Ho, (u, 1))

= % (HGQ (u,uj) + Hg, (u, u]»)) . 5

Moreover, by (4) in Theorem 2.3, we have

HGQ (Ll, u]') = g% + 2((m,~+1 + 1)(g1 - 1) + mi+2(gl - 2)
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toot(my =g —p+i)+---+mjq).

Hence, by Equations (14) and (15), we have

1
HG/(M, u]-) - HG(M, u]-) = E (HGi (u, u]-) - I‘IG1 (M, u]-))
= p-i-1>0.

Since T; = T;., by (3) in Theorem 2.2, we have Hg(uj,v) = Hg (1}, v). So the assertion holds.

(2) Since dg(u,v) = d, we have dg(u,u;) = gT, Ti+1 is a single vertex, Ti—; and Tj;, are stars or single
vertices. Similar to the proof in (1), by computation, we can get the result. [

Lemma 3.8. Let G = C(Ty,...,T,;) € Uy 4, where T; = u; = u. If there exists vertex v with v € V(T;) such that
dg(u,v) = d and p(G) = Hcg(u, v), then we have the following results.

(1) Ifgis even and G” = C(T" |, T/, T}’) with T, = Ky5, T = Ky 4, T;’ = Py (see Figure 8), then

1

U, ;3) > He(1,0) > ¢(G). 6
T”i'l u T”i+l
_—
v
T";
G G n

Figure 8: Transformation VII

(2) Ifgisoddand G” = C(T,, T}, T}') with T | = Ky, Tl , = Ky t, T}’ = Py, (see Figure 9), then

1

(U, 13) > Her (1, 0) > 9(G). -
Ty u T, "
T”i+2
Tiv2 e
e
T
Tj+1 v T P .
J THJ
G G 4]

Figure 9: Transformation VIII
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Proof. (1) Without loss of generality, we assume that 2 <i < p < j < g. The graph G” can be obtained from
G by graph transformation.

In the first step, we can delete all the edges of Tj2, Tiy3, ..., Tj-1 in G and add these edges to vertex u;,1,
then we get a new graph G'*. We denote G'* = C(T}", ..., T,"). By repeating usage of (1) in Lemma 3.7, we
have Hgi-(u,v) > Hg(u, v).

The second step, we can delete all the edges of T}il, T}J’:Z, s, Tl.ljz in G'* and add these edges to vertex
u;i-1, then we get a new graph G**. We denote G** = C(T7, ..., T;"). By repeating usage of (1) in Lemma 3.7,
we have He (1, v) > Hei- (1, 0).

In the third step, we can delete all the edges of T}z,* in G* which do not belong to the ujv-path and add
these edges to u;, then we get a new graph G*. We denote G* = C(T}",..., T}"). By repeating usage of
Lemma 2.5, we have Hgs (1, v) > Hge- (1, 0).

The fourth step, we delete the pendent edges of T;.’* in G* which do not belong to the u;v-path and add
these edges to u;_q or u;.1. After the above four steps, we get the graph G””. We denote G” = C(T?",, T"" T}’),

where T/, =Ky, T, = Ky, T;.' = Py By Theorem 2.1, we have e
Hex(u,v) = Heg(u,uj) + Hes(uj,v)

and
Hgr(u,v) = Hgr(u,uj) + Hor(uj,0).

By Theorems 2.2,2.3 and similar to the computation in Lemma 3.5, we have Hg (1, u;) > Hg(u, u;) and
Hgs(uj,v) = Hg»(uj, v). Hence, Hg~ (1, v) > Hgs(u,v). Therefore, Hg»(u,v) > Hg(u, v).
Let dg~(uj,v) = do. By Theorems 2.1,2.2and 2.3 and d, = d - [gJ, we have

Hgr(u,v) = Hgr(u, uj) + Hgr (uj,0).

If g is even, then
2

Hegr(u,v) !]Z +(n—g—d2)(g —1)+2d2n—d§

2

_q_9 grdg g o
(Zd 1 2)n+ Y Lvd-a

Since (U, ,,) =2(d - 1)n — (d = 1)> + 2and n > d + | §|, we have

i) - (Z- r_9_ %
o, ;3) —Her(w,0) = (2 1)n+al+1+4 5%
g_ g 7 _g_d
= (2 1)(d+2)+d+1+4 573
2
= %—g+1
> 0.

Therefore, we have ¢(U;, , ;) = Hg(1,v) > ¢(G).
(2) Similar to the frontier proof in (1), we can prove that Hg~ (11, v) > ¢(G). If g is odd, then

2 2 2
g -1 g+1\g°—-29-3 g-1 g-1
Hgr(u,v) < 1 +(n d > ) 29 +2|d > n—\d >

and
(4> — 49 +3)n
29

2
-1
(U, 43) —Her(u,0) 2 —d-12+2- gT
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2_2g-3 1 -1\
7 ) (d+g+ )+(d—g—)

29 2 2

7 -4g+3(, g-1\ ., _ g-1
> 2y |d+ )@=z

g7 —29-3 g+1 _g—12

+ 29 (d+ 5 +|d >

-1 ) -1 g-1Y\

> (9_3)(d+T)—(d—1) +2 - 1 +(d—T
_ g=2@-3
B 2
> 0.

Therefore, we have (p(U; 13) = Hor(w,0) > o(G). O

3.2. While dg(u,v) < dand Hg(u,v) = @(G), how the hitting time changes by graph transformation

Let G* = C(T},...,T;) € U,,q,, where T? is the tree obtained from identifying an end vertex of a path
and the center of a star and Tf.’ is a path. Let u € V(T?) and v € V(Tf.’). Let u and v be two pendant vertices
or vertices on the cycle with degree 2. We have,

1. if dea(u,v) < d, dgs(uj,0) + | §] < d and dgs (i, u) + | §| = d, then we denote G? by G* and T by T for
s=1,...,9

2. ifdgs(u,v) < d, des(uj,v) + [%’J =dand dz(u;, u) + [gJ < d, then we denote G3 by 53 and T by Ti for
s=1,...,9

3. if dgs(u,v) < d, dgs(uj,v) + [%’J =d and dgs(u;, u) + [gJ = d, then we denote G° by G? and T, by ’7:;” for
s=1,...,9

4. ifdes(u,v) < d, des(u, u;) + l%J =d or dg(uj,v) + l%J =dand TS and Tf.’ are paths, then we denote G*
by G* and T; by T? fors=1,...,4.

Lemma 3.9. Let G® = C(T?, ..., T}) € Uy, be the graph obtained from G® by deleting one pendant edge from the
vertex w in T? and adding the edge to the pendant vertex v in f; Let T;.3 = Py, (See Figure 10). Then

Hes(u,v') > Hg (1, 0).
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U/ U
>IW Iw
V' w
~3
Tj V'
3
T’
63 Gr3

Figure 10: Transformation IX

Proof. By Theorem 2.1, we have
Hz(u,v) = Hg (u, i) + Hg, (ui, uj) + Hzs (1), 0),

and
Hgs(u, U’) = chs(u, ui) + HGrs(M,', Ll]') + HGrs(Mj, U’).

Let m{ be the number of pendant edges incident with vertex w in Tf Let d53 (u,u;) = dgs(u,u;) = dy,
d53 (uj,v) = dy. Let G and G be two decomposed connected subgraphs of G? through two vertices u; and
u;j such that G; contains T?,?? Moreover, let dg, (ui, u;) = g1, dg,(ui, uj) = g». By Theorems 2.2 and 2.3, we
have

Hg (u,u;) = df + 2(mfy — 1)(d1 - 1),
He, (15 17) = ; (92002 + 26 + 11 = V)gy) + 712),
Hgz(uj,v) = d% + 2(n — dy)d,.

Similar to the computation of Hga(u, v), we can get
Hgs(u,u) = d> + 2(mfy — 2)(dq — 1),
Hoo (s 17) = ; (9202 + 2 + 1)~ 2)g1) + 912),
Hgo(uj,0) = (dr + 1)* + 2(n — dp — 1)(dp + 1).

Sincen > g+di+d,, wehave Hgis(u, v")—Hgs (u,v) = w +1 > 0. Therefore, Hgs (4, v") > Hgz (1, 0).
So the assertion holds. O

Lemma 3.10. Let G® € U,,4,4 be as above. Then (U, ,,) > Hz(u,v).

PT’OOf. Let daa(u,ui) = dl/ dag(lxlj,l)) = dz, d63(1/l1‘,u]‘) =N and g—g1 = go. Since daS(M,M,‘) + ng = d/

dz(uj,0) + l%J =dand n > dy + d; + g, similar to the computation of (10) and (11) in Lemma 3.6, we have

o) — Hz(w,0) = 2 d—dl—dz—% He(d+di+dy—2)(d—dy - dy)



v
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2 d
+1+2gdy — 29 + % + 9192

Z(d—dl—dz—%)(d1+dz+g)

—(d +di+dy— 2)(d —d; - dz)
291924,

+1 +2gd; — 29 +

2(2]3]- - 22 g 2123
—(3171—2{%—2)(2{§J—d)+1+29d
2[§|-2+ 0= 2 -5
+2ggJ+4EJ -29-q1g2 + 1.

+ 9192

—d2+4d{

9593

Since d > l%J, di+dy+g1<d,1<g91<2 L%J —-d< %, J192 < (2 l%J —-d)(g-2 [%J + d), and by discussing the
parity of g and computation, we have

So the assertion holds. [

o(U;, ;5) — Hg (4, 0) > 0.

Lemma 3.11. Let G* € Uy . Ifu € V(T )and v € V(T?*) be two pendant vertices of G* with dgx (u,v) < d and
der (u, u;) + [%J =dordgs(uj,v) + [gJ =d, then

(U, ;3) > Her (u,0).

Proof. Let dgs (u,u;) = dy, dg=(uj,v) = da, dg= (u;, uj) = g1 and g — g1 = go. Since dy + {%J =dord, + [%J =d,
n=di+dy+g di+g+dr<d, g1 <d+g-n< %, 7192 < (d + g — n)(n — d), similar to the computation of
(10) and (11) in Lemma 3.6, we have

(U, 45) = Hes (1, )

Casel. Ifd+|]|=dandd+|}|<d thenO<dy=n-g-d+|§|<n-d

<p(u;,d,3) —Hegr(u,0) >

2@-1-d)n-@d-17+2+d5-d> - qug> —

dy—2ndy +2(d - 1n—(d—-1)* +2 - d}

2d
—(d+g—n)(n—d)g+g L

g

27

2g192d1

n2d+%,and

g\ 9 2 2
n—d—z -2n n—d—i +2(d-1n—-(d-1)"+2-d]

@+ g—mmn -2

27‘31712—(g+2+%+2¢11)n—d§



X.-M. Zhu et al. / Filomat 39:27 (2025), 9579-9600 9594

2
+2gd + % Ld+172+ %ile +2dyd.

Subcase 1.1. If g is even, d; = L%J>2andn>d+g then § <d-2and
. 2d-g(, g\ 4d? g 24°
(U ,) — Hor (0,0) > (d ) (2+—(d+—)+2d+(d+1)
Pina) =56 g g 2)" g
_ 347
= Egd—z—g'l‘l
> 0.

Ifgisevenand d; =d - [%J =1, then

% 3 2d2 2
(P(un,d,S) _HG3*(MIU) > (d - §)9+d+ 7 + ? +1

> 0.
Subcase 1.2. If g is odd, then LgJ T,n2d+92;1. If dq =d—ng>2 then £ <d-2and

2
O(L, ;) — Hor(w,0) > —(2d +3)n— & +29d + % +(@d+172+2dyd

> 0.

Ifgisoddand d; =d - [gJ =1, then
gZ
(U, ;3) —Her (u,0) > —(2d +3)n—1+2gd + T (d+1)%+2d
> 0.

Case2. Ifdy+|§|<danddy+|§|=d then0O<d =n—g-d+|§|<n-d-§,d+{<n<d+ygand
Z(gJ—l)n—(d—l)z

+2+ (dp —dv)(n — 9) — 9192 -

(U, ;) — Hes (1, 0)

2919244
g

- (g—n—zg;gz)dﬁz(%—l)n
—@d=1?+2+da(n—9) - g192
G—n— Mz)( —d——)+2(& 1)n

—d-1)>*+ 2 +da(n—g) — 9192.

v

By discussing the parity of g and calculating as in Case 1, we have ¢(U;, , ;) — Hes (1, v) > 0.

Case 3. Ifd1+l J dand d2+l J d, then we can refer to Lemma 3.10, and (p(U*d3) Her(uw,0)>0. O

Lemma 3.12. Let G = C(Ty, ..., Ty) € Uy g, with |V(T))| = 2. Let S(G°) = {63,53, G If there exist two vertices
u € V(T;) and v € V(T;) with dg(u,v) < d such that ¢(G) = Hg(u, v), then

(U, 43) > 9(G).
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ueT.
T, I T T
w .

G G* $(GY)
Figure 11: Transformation X

Proof. Since G € U, 4,4, there exist two vertices such that the distance between these two vertices is d. Let w
be the adjacent vertex of u in T;. Then we need to consider the following cases.

Case 1. If there exist two vertices u” and v in V(G) such that dg(u’,v") = d, u’ € V(Ts) and v’ € V(T,) with
s,p # 1, ], then G*e U4, is a graph obtained from G by deleting all edges of T, for all r with r # i, j,s,p,
deleting all edges of Ts which do not belong to the uu’—path, deleting all edges of T, which do not belong
to the u,v"—path, deleting all edges of T; which do not belong to the u;u—path, deleting all edges of T; which
do not belong to the u;jv—path, and adding these edges to the vertex w(see Figure 11). By repeating usage
of Lemmas 3.1 and 3.5, we have Hgs(u,v) > Hg(u,v). Let dg(u, u;) = di and dg(uj,v) = d,. We consider the
following cases.

Subcase 1.1. Let G* = C(T},..., T;) € Uy,a,. If there exists a vertex u; on the cycle of G* with dg () = 2

such that dg: (uy, u) = d and dgs(uj, v) + L%J < d, then we can delete the all edges of T# and Tg and add these
edges to the vertex w, we get the new graph G>(see Figure 11). By repeating usage of Lemma 3.1, we have
H~G-3(u, v) > Hg(u, v). Next, if we delete a pendant edge of T? and insert a vertex in path P, o in T]3., then we
get the new graph G¥. Let G¥ = C(T},..., T}).

If dzy (u,v) < d, dgy (u,0)+| §| +1 = dand dg, (u,u) + | § | = d in graph G*, then by Lemmas 3.1 and 3.10,
we have

(p(ll;,dﬁ) > H=, (u,v) > H53(u, v) > Hg(u,v).

G¥

If d=, (u,v) = d, then by Lemmas 3.1 and 3.6 , we have

G¥

p(U, ;3) > Hgzy (u,v) 2 Hg,(u,0) > Hg(u, v).

G¥
If dzy (uj,0) + [gJ +1 <dand dg (4,0) <d, then we can continue to delete a pendant edge from f? in
G? and insert a vertex to the path P, o in T?', repeating deleting edges and inserting vertices until that we

get the new graph G= C(Tl, ey fg) such that d=(u, v) = d or there exist two vertices u; and 1, on cycle with

degree two such that dz(u,v) < d and dz(u;, u) = dz(ug,v) = d, or i and T,- are paths and there exist two
vertices u; and u, on cycle with degree two such that da(u, v) < d and da(ut, u) =d or dg(uq, v) = d, then by
Lemmas 3.1, 3.6, 3.10 and 3.11, we have

(U, ;3) > Hg(u,v).

Subcase 1.2. If there exists a vertex u; on the cycle of G* with d(u;) = 2 such that dg:(u;,v) = d and
dcs(u, u;) + [%J < d, then we can delete the all edges of T§ and T;f and add these edges to the vertex w, we
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get the new graph 63(see Figure 11). By repeating usage of Lemma 3.1, we have H(u, v) > Hg (1, v). Next,

if we delete a pendant edge of T? and insert a vertex into the wu;-path in 7_"?, then we get the new graph G.
LetG =C(T,,..., ).

If d,y (u,u;) + [ J <dand dfs/ (u v) < d, we can continue to repeat deleting pendant edges form T and
inserting vertices to wu;-path in T until that we get the new graph G= C(Ty, ... g) such that dz(u,v) =

or there exist two vertices u; and u,; on cycle with degree two such that dG(uq, u) (ut, v) =d, or T; and

T are paths and there exist two vertices u; and u; on cycle with degree two such that dz(u,v) < d and
dg(ut, u) = d or d=(u,,v) = d, then by Lemmas 3.1, 3.6, 3.10 and 3.11, we have

(P(u;,dlg,) > Ha(ur U) > HG(M, Z)).

Subcase 1.3. If there exist two vertices u; and u, on the cycle of G* with degree two such that dg: (1, u) =
dci(ug,0) = d and dg:(u,v) < d, then we can delete the all edges of T and T;l and add these edges to the

vertex w, we get the new graph G3(see Figure 11). By repeating usage of Lemmas 3.1 and 3.10, we have
o( 710[3) > H~ 3(u v) > Hg(u, v).

Subcase 1.4. If dq:s(u',u) =d, dcs (v, u) < d,dg: (1, v) < d, dcs (v, v) < d and there do not exist two vertices
u; and u; on the cycle with degree two such that dgs(u;, u) = d and dgs(uy, v) = d, then we can delete the all
edges of Tf; and add these edges to the vertex w, we get the new graph G°. Then we can delete a pendant

edge of T? in G° and insert a vertex into the wu;-path of T? in G°, we denote this new graph as G°. If
dgs(u,v) < d and there does not exist a vertex u; on the cycle such that dgs (1, 1) = d, then we can continue
to delete the pendant edge of T¢ and insert a vertex into the wu;-path of T? in G®. By repeating deleting the

pendant edge and inserting the edge until we get the graph G* such that d:(1, v) = d or there exists a vertex
u; on the cycle such that dg;(us, u) = d. By the proof in Subcase 1.1 and Lemmas 3.4, 3.6, we have

(P(u;/dg) > Hgi(u,v) > Hg(u, v).

Subcase 1.5. If d:(v/,v) = d, dgs (W', u) < d,dg(v',v) < d, dg:(v', u) < d and there do not exist two vertices
uy and u, on the cycle with degree two such that dg«(u;, u) = d and dg: (g, v) = d, then we can delete the all
edges of Tg and add these edges to the vertex w, we get the new graph G°. Then we can delete a pendant
edge of T? in G° and insert the edge to the ujo-path of T? in G°, we denote this new graph as G°. Let
Go = C(T, ... ,TS). By Theorem 2.1, we have

Hz(u,v) = Hgs (u, wi) + Hgs (i, uj) + Hzs (1), 0),

and

Hzq(u,v) = Hgo(u, ui) + Hzo (ui, uj) + Hzo (1, 0').

Let m; be the number TZS and ms be the number :ff Let dz(uj,v) = dy. Let G; and G, be two decomposed

connected subgraphs of G through two vertices u; and u; such that G; contains ‘7:1.5;1:5. Moreover, let
dg, (ui, uj) = g1, dg, (us, u;) = k1 and dg,(u;, uj) = go. By Theorems 2.2 and 2.3, we have

1
Ha (i) = - (9208 + 2migy + 2meky) + 13)
HES(L{]', 'U) = d% + 2(11 - dg)dz.

Similarly, we have

1
Ha () = (92093 + 2mign +20m; = k1) + 13),
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Hz(uj,v') = (d2 + 1)* +2(n — dp = 1)(d2 + 1).

Since Hzs(u, u;) = Hzo(u, ui), m; + ms + g1 + g2 + do = n and g1 > k1, we have

kgz

2
Hz,(,0) = Hzy(1t,0) = 21— 2dy — 1 — % > 0.

If dz,(u,v) < d and there are not exist a vertex u; on the cycle such that dz (1, v) = d, then we can continue
to delete a pendant edge of T? and insert a vertex to the ujo-path of T]6, in G®. By repeating deleting pendant

edges and inserting vertices until we get the graph G* such that d:(u, v) = d or there exists a vertex u; on
the cycle such that d:(u;, v) = d. By the proof in Subcase 1.2 and Lemmas 3.4, 3.6, we have

(p(U;,dﬁ) > Hei(u,v) > Hgs(u,v) > Hg(u, v).

Subcase 1.6. If d:(u/,v) < d, dgs(W',u) <d,dg(v',u) < d,dc:(v',v) < dand there do not exist two vertices
uy and u, on the cycle with degree two such that dgs(us, u) = d, dg:(ug,v) = d, then we can delete a pendant
edge of T} in G* and insert a vertex into the wu;-path of T}. We denote the new graph as G°. If d (1, v) < d,
dz W', 0) < d, dz ', u) < d, dz(v',u) < d, dz(v',v) < d and there do not exist two vertices u; and u, on the
cycle with degree two such that dz(us, u) = d and dz(ug, v) = d, then we can continue to delete pendant

edge of ?15 and insert a vertex into the wu;-path in Tf, by repeating deleting pendant edges and inserting

vertices until that we get the graph G* such that d (1, v) = d or dg: (1, u’) = d or dg:(u,v") = d or there exists
a vertex u; on the cycle such that d: (1, u) = d. By the discussions in above cases, we have

(p(u;ds) > Hei(u,v) > Hg(u, v).

Case 2. If there exists a vertex u’ € V(T}) such that dg(u’, u) = d, then G* is the graph obtained from G by
deleting all edges of T, for all r with 7 # i, j, p, deleting all edges of T, which do not belong to the u,u’-path,
deleting all edges of T; which do not belong to the u;u-path, deleting all edges of T; which do not belong to
the u;v-path, and adding these edges to the vertex w. By repeating usage of Lemmas 3.1 and 3.5, we have
Hzi(u,v) > Hg(u,v). Next, similar to the graph transformation and the proof in Subcase 1.4, the assertion
holds.

Case 3. If there exist a vertex u” € V(T,) such that dg(u’,v) = d, then this case can refer to Case 2 and
Subcase 1.5. Similar to the graph transformation and the proof in Subcase 1.5, the assertion holds. [

In Lemma 3.12, ¢(G) = Hg(u,v) and u is a pendant vertex. In the following lemma, we will discuss
@(G) = Hg(u,v) and dg (1) = 2, how the hitting time changes by graph transformation.

Lemma 3.13. Let G = C(Ty,...,T,) € Uyay and n > g. The number of pendant edges is larger than 3. If there
exist two vertices u,v with u € V(T;), v € V(T)) such that ¢(G) = Hg(u, ) for u = u; and dg(u,v) < d, G’ is the
graph obtained from G by deleting a pendant edge from pendant tree and adding it to the vertex u, the new added edge
is u'u(see Figure 12), then Hg (u’, v) > Hg(u, v) and (G”) > ¢(G).
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Figure 12: Transformation XI

Proof. Since G € U, 4,4, there exist two vertices such that the distance between these two vertices is d. We
need to consider the following cases.

Case 1. If u* € V(T,) and v* € V(T;) with r,s # i, j such that dg(u*, v*) = d, there do not exist a vertex w;
such that dg(u, w1) = d, there do not exist a vertex w; such that dg(v, w;) = d, and there exists a tree T, in G
with [V(T},)| = 2 or the number of pendant vertices of T,(or T, T)) is larger than 1, then we can get the new
graph G’ by deleting a pendant edge of T, or by deleting a pendant edge which does not incident with
u*(or v*,v) of T; (or T, T}), and adding it to vertex u. The new added edge is u’u. By Lemma 3.1, we have
Hg (u',v) > Hg(u,v) and (G’) > ¢(G).

Case 2. If there exist vertices vy, v, ..., v in V(G) such that dg(v;, u) = d for all i with 1 < i < k, then
we can get the new graph G’ by deleting all the pendant edges incident with vy, vy, ..., v and adding these
edges to vertex u. Let u’ € V(T) be a pendant vertex. By Lemma 3.1, we have Hg/(1/,v) > Hg(u,v) and
9(G) > 9(G).

Case 3. If there exist vertices v1,vy, ..., v; in V(G) such that dg(v;, v) = d for all i with 1 < i < k and there
do not exist vertex u* such that dg(u”, u) = d, and the number of pendant edges is lager than 2, then we can
get the new graph G’ by deleting the pendant edge of G and adding it to vertex u. If t = 1 and v; € V(T}),
then the deleted pendant edge is not the edge incident with v; and v. If t > 2, then the deleted pendant edge
is not the edge incident with v. The new added edge is u’u. By Lemma 3.1, we have Hg (4, v) > Hg(u,v)
and ¢(G’) > ¢(G). O

In Lemma 3.13, when the number of pendant edges is larger than 3, we have discussed how the hitting
time changes by graph transformation. The following corollary shows the result of the special cases that
the pendant edge is not enough to perform the graph transformation.

Corollary 3.14. Let G = C(T1,...,T;) € Uyay and n > g. If the number of pendant edges is less than 4 and there
exist two vertices u,v with u € V(T;), v € V(T;) such that ¢(G) = Hg(u, v) for u = u;and dg(u, v) < d, then we have
the following results.

(1) If u* € V(T,) and v* € V(T,) with r,s # i, j such that dc(u*,v*) = d, there do not exist a vertex wy such that
dc(u,w1) = d, there do not exist a vertex wy such that dg(v,w;) = d, |V(Ty)| = 1 for all t with t # j,v,s, and
T;, T,, T; are paths, then (p(U;dB) > Hg(u,v).

(2) If there exists only one vertex vy € V(T,) such that dg(vy,v) = d, there do not exist vertex u* such that
do(u,u) =d, |V(Ty)| = 1 for all t with t # j,p, and Ty, T} are paths, then (U, ,,) = Hg(u, v).

Proof. Similar to the computation in Lemma 3.8, it is easy to get the result. [
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Remark: The above lemmas mainly discussed that ¢(G) = Hg(u, v) where vertices u and v belong to
different pendant trees. We now turn to the case where both vertices are contained within the same pendant
tree.

Lemma 3.15. Let G = C(Ty, ..., T,) € Uya, with n > g. If there exist two vertices u, v with u,v € V(T;) such that
(G) = Ho(u,0), then p(UL, ;) > ¢(G).

Proof. Since u and v lie in the same pendant tree T;, the graph G decomposes into the path P, between u
and v with its pendant branches. By Theorem 2.2, relocating any pendant edge to either u or its neighbor
yields a modified graph G’ satisfying He (1, v) > Hg(u,v). We perform this operation iteratively, moving
edges to neighbor of u when d(u,v) = d, or to u otherwise. The operation will keep the diameter of the
graph unchanged. This process produces an intermediate graph where the only pendant vertices are v and
those adjacent to neighbor of u.

We proceed by cyclically reducing the graph: first decreasing the cycle length by 1 and applying the
same edge relocation to obtain G” with Hg~(u,v) > Hg(u, v), repeating until achieving a 3-cycle. The cycle
is then moved to neighbor of u, which Theorem 2.2 guarantees will increase Hg~ (1, v). Final application of
the pendant edge relocation to any remaining branches yields the required extremal graph. O

Now we are ready to present the proof of Theorem 1.1.

3.3. Proof of main Theorem

Proof of Theorem 1.1. While ¢(G) = Hg(u,v) and dg(u,v) = d, by Lemmas 3.4, 3.5, 3.6, 3.8, we
have (p(ll;, d,3) > Hes(u,v) > Hg(u,v). While ¢(G) = Hg(u,v) and dg(u,v) < d, if u is a pendant vertex, by
Lemma 3.12, then (U], ;) > ¢(G); if dc(u) = 2, by Lemma 3.13 and Corollary 3.14, by graph transformation,
this case can be transformed into the graph in Lemma 3.12. If # and v reside in the same tree, Lemma 3.15
provides the necessary conclusion. m
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