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Abstract. This study introduces and investigates the concepts of deferred Nörlund statistical Riemann
integrability and statistical deferred Nörlund Riemann summability for sequences of fuzzy number-valued
functions. It begins by establishing an inclusion result that clarifies the relationship between these newly
proposed notions. Subsequently, new fuzzy Korovkin-type theorems are developed using the three fun-
damental algebraic test functions 1, x, and x2, based on our proposed means. To demonstrate the practical
significance of these results, an example is presented involving a fuzzy positive linear operator associ-
ated with Bernstein polynomials. Additionally, the convergence behavior of these operators is illustrated
graphically using MATLAB.

1. Introduction and Motivation

Let E = {γ : R→ [0, 1]} denote the set of functions that satisfy the following conditions:

(i) Normality: There exists t0 ∈ R such that γ(t0) = 1,

(ii) Fuzzy Convexity: γ is a fuzzy convex function,

(iii) Upper Semi-Continuity: γ is upper semi-continuous,

(iv) Compact Support: The set [γ]0 = {t ∈ R and γ(t) > 0} is compact.
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A function γ ∈ E satisfying these properties is called a fuzzy number, and E represents the fuzzy number
space.

Let γ ∈ E, and define [γ]Λ = {t ∈ R : X(t) ≧ Λ}, which represents a closed and bounded interval for
Λ ∈ [0, 1].

Let us now review some fundamental properties of fuzzy numbers.

Let γ, β ∈ E, Λ ∈ [0, 1] and λ ∈ R. Then

(i) (γ + β)(x) = supx=t+s min{γ(t), β(s)}

(ii) kγ(x) = γ(x/k) (k , 0)

(iii) 0γ(x) = 0̄, where

ā(x) =

 1 (x = a)
0 (otherwise)

(iv) [γ + β]Λ = [γ]Λ + [β]Λ = [γ−
Λ
+ β−

Λ
, γ+
Λ
+ β+

Λ
]

(v) [kγ]Λ = k[u]Λ = [kγ−
Λ
, kγ+

Λ
] for (k ≧ 0)

(vi) γ ≦ β⇐⇒ [γ]Λ ≦ [β]Λ

The metricD is defined asD : E × E → R+, given by

D(γ, β) = sup
0≦Λ≦1

max{|γΛ− − β
Λ
− |, |γ

Λ
+ − β

Λ
+ |},

where the metric space d(E,D) is complete (see [40]).

LetD∗( f̃ , 1̃) denote the distance between the functions f̃ and 1̃ defined as follows:

D
∗( f̃ , 1̃) = sup

a≦t≦b
sup

0≦Λ≦1
max{| f̃Λ− − 1̃

Λ
− |, | f̃

Λ
+ − 1̃

Λ
+ |}.

The study of convergence in sequence spaces is a fundamental and significant area in real and functional
analysis. Over time, advancements in this field have led to the development of statistical convergence, a
concept more general than traditional convergence. This elegant idea was independently introduced by
Fast [10] and Steinhaus [38]. Today, statistical convergence remains an active and dynamic area of research,
attracting the attention of numerous scholars. It finds applications in diverse fields of pure and applied
mathematics, including machine learning, soft computing, number theory, measure theory, and probability
theory. For recent works in this direction, see [2], [3], [5], [6], [7], [11], [14], [15], [16], [17], [18], [19], [21],
[31], [32], [34], and [41].

Let J∗ ⊆N, and define J∗k = {ξ : ξ ≦ k and ξ ∈ J∗}. The natural density d(J∗) of J∗ is given by

d(J∗) = lim
k→∞

|J∗k|

k
= ρ,

where ρ is a real and finite number, and |J∗k| represents the cardinality of J∗k.

A sequence (ηk) is said to be statistically convergent to a fuzzy number ℓ if, for every ϵ > 0, the set

J∗ϵ = {ξ : ξ ∈N and D(ηξ, ℓ) ≧ ϵ}
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has a natural density of zero (see [29]). This implies that, for each ϵ > 0,

d(J∗ϵ) = lim
k→∞

|J∗ϵ|

k
= 0.

We express this as

stat lim
k→∞
D(ηξ, ℓ) = 0.

Let [a, b] ⊂ E. For each k ∈ N, there exists a fuzzy number-valued function 1̃k : [a, b] → E. As a result,
(1̃k) constitutes a sequence of fuzzy number-valued functions defined on [a, b].

The Riemann sum for a sequence (1̃i) of fuzzy number-valued functions associated to a tagged partition
Ṗ is defined as

δ(1̃i; Ṗ) :=
k∑

i=1

1̃(ti)D(yi, yi−1),

where ti represents the tags, andD(yi, yi−1) denotes the difference between consecutive partition points.

Next, we revisit the concept of Riemann integrability for a sequence of fuzzy number-valued functions
defined on the interval [a, b].

A sequence (1̃k)k∈N of fuzzy number-valued functions is said to be Riemann integrable to a fuzzy
number-valued function 1̃ on [a, b] if, for every ϵ > 0, there exists σϵ > 0 such that for any tagged partition
Ṗ of [a, b] with |Ṗ| < σϵ, the following inequality holds:

D(δ(1̃k; Ṗ), 1̃) < ϵ.

We now present the definition of statistical convergence for Riemann integrable fuzzy number-valued
functions.

A sequence (1̃k)k∈N of fuzzy number-valued functions is said to be statistically Riemann integrable to a
fuzzy number-valued function 1̃ on the interval [a, b] if, for every ϵ > 0 and for each t ∈ [a, b], there exists a
threshold σϵ > 0 such that for any tagged partition Ṗ of [a, b] satisfying |Ṗ| < σϵ, the set

J∗ϵ = {ξ : ξ ∈N and D(δ(1̃ξ; Ṗ), 1̃) ≧ ϵ}

has zero natural density. In other words, for every ϵ > 0,

d(J∗ϵ) = lim
k→∞

|J∗ϵ|

k
= 0.

This condition is expressed as

statRie lim
k→∞
D(δ(1̃k; Ṗ), 1̃) = 0.

The following example illustrates that every Riemann integrable fuzzy number-valued function is also
statistically Riemann integrable. However, the reverse implication does not necessarily hold.

Example 1.1. Let (1̃k)k∈N : [0, 1]→ R be a sequence of fuzzy number-valued functions defined as follows:

(1̃k)k∈N =


1
2 (x ∈ Q ∩ [0, 1]; k = j2, j ∈N)

k
k+1 (otherwise).

(1)
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It is easy to see that the sequence (1̃k) is statistically Riemann integrable to 1 on the interval [0, 1]. However,
in the traditional sense, it is not Riemann integrable over [0, 1].

Inspired by the previous studies, we introduce the concepts of deferred Nörlund statistical Riemann
integrability and statistical deferred Nörlund Riemann summability for sequences of fuzzy number-valued
functions. First, we establish an inclusion theorem to highlight the relationship between these novel and
valuable concepts. Building upon these foundational ideas, we develop new versions of fuzzy Korovkin-
type theorems utilizing three algebraic test functions 1, x and x2, based on our proposed means. Finally,
we present an example involving a fuzzy positive linear operator associated with Bernstein polynomials
to demonstrate the practical significance of our findings. Additionally, we use MATLAB to illustrate the
convergence behavior of these operators graphically.

2. Deferred Nörlund Statistical Riemann Integrability

Let (ϕk) and (φk) be sequences in Z0+ such that ϕk < φk and limk→∞ φk = +∞. Additionally, let (pk) be a
sequence of non-negative real numbers, where

Pk =

φk∑
µ=ϕk+1

pφk−µ.

The deferred Nörlund summability mean for the Riemann sum of a sequence of fuzzy number-valued
functions, δ(1̃k; Ṗ), with respect to a tagged partition Ṗ, is defined as

N(δ(1̃k; Ṗ)) =
1
Pk

φk∑
λ=ϕk+1

pφk−λ δ(1̃λ; Ṗ). (2)

We introduce the notions of statistical Riemann integrability and statistical Riemann summability for a
sequence of fuzzy number-valued functions based on the deferred Nörlund mean.

Definition 2.1. Let (ϕk) and (φk) be sequences in Z0+, and let (pk) be a sequence of non-negative real numbers. A
sequence (1̃k)k∈N of fuzzy number-valued functions is said to be deferred Nörlund statistically Riemann integrable
(DNFRstat) to a fuzzy number-valued function 1̃ on [a, b] if, for every ϵ > 0, there exists σϵ > 0 such that for any
tagged partition Ṗ of [a, b] satisfying |Ṗ| < σϵ, the set

{ξ : ξ ≦ Pk and pξD(δ(1̃ξ; Ṗ), 1̃) ≧ ϵ}

has zero natural density. That is, for each ϵ > 0,

lim
k→∞

|{ξ : ξ ≦ Pk and pξD(δ(1̃ξ; Ṗ), 1̃) ≧ ϵ}|
Pk

= 0.

This condition is expressed as

DNFRstat lim
k→∞
D(δ(1̃k; Ṗ), 1̃) = 0.

Example 2.2. We consider the interval [0, 1] and define a sequence of fuzzy number-valued functions 1̃(x). For
simplicity. Let’s define

1̃(x) =
sin(kx)

k
, x ∈ [0, 1].

We take a tagged partition Ṗ consisting of equidistant points

yi =
i
n
, (i = 0, 1, ...,n)
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with midpoints as tags

ti =
yi + yi−1

2
.

The Riemann sum is given by

δ(1̃k; Ṗ) :=
n∑

i=1

1̃k(ti)D(yi, yi−1),

For our case, since the partition is uniform,D(yi, yi−1) = 1
n , leading to

δ(1̃k; Ṗ) :=
n∑

i=1

sin(kti)
k

·
1
n
.

Consequently, it is not Riemann integrable in the usual sense.
Next, in view of the Deferred Nörlund Summability,

Pk =

φk∑
µ=ϕk+1

pφk−µ, with pk =
1

k + 1
,

the mean is given by:

N(δ(1̃k; Ṗ)) =
1
Pk

φk∑
λ=ϕk+1

pφk−λ δ(1̃λ; Ṗ).

Hence,

DNFRstat lim
k→∞
D(δ(1̃k; Ṗ), 1̃) = 0.

That is, it has deferred Riemann sum 0. Figure 1 illustrates the convergence behavior of the function under usual
Riemann sum as well as deferred Nörlund Riemann sum.
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Figure 1: Deferred Nörlund Riemann sum
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Figure 1 (under usual Riemann sum), confirms the expected behavior of the sequence of functions 1̃(x) = sin(kx)
k

in terms of Riemann integrability. As k increases, the function values decrease, reducing their contribution to the
integral. However, due to the inherent oscillatory nature, the sequence does not necessarily converge in the usual
Riemann sense. In contrast, Figure 1 (under Deferred Nörlund mean) highlights the smoothing effect of sequence
of functions via Deferred Nörlund summability. Unlike standard Riemann sums, this summability method ensures
stabilization of the sequence, making it more effective for analyzing integral convergence. This suggests that while
1̃(x) may not be traditionally Riemann integrable, it is statistically Riemann integrable under Deferred Nörlund
summability mean.

Overall, the first plot of Figure 1 illustrates the oscillatory and decaying nature of Riemann sums, while the
second plot of Figure 1 demonstrates how Deferred Nörlund summability regularizes the sum, leading to smoother
convergence. This validates the use of summability techniques like Deferred Nörlund means to handle sequences that
are not conventionally integrable but still exhibit meaningful statistical convergence.

Definition 2.3. Let (ϕk) and (φk) be sequences in Z0+, and let (pk) be a sequence of non-negative real numbers. A
sequence (1̃k)k∈N of fuzzy number-valued functions is said to be statistically deferred Nörlund Riemann summable
(statDNFR) to a fuzzy number-valued function 1̃ on [a, b] if, for every ϵ > 0, there exists σϵ > 0 such that for any
tagged partition Ṗ of [a, b] with |Ṗ| < σϵ, the set

{ξ : ξ ≦ k and D(N(δ(1̃ξ; Ṗ)), 1̃) ≧ ϵ}

has natural density zero. This condition implies that for all ϵ > 0,

lim
k→∞

|{ξ : ξ ≦ k and D(N(δ(1̃ξ; Ṗ)), 1̃) ≧ ϵ}|
k

= 0.

We denote this as

statDNFR lim
k→∞
D(δ(1̃k; Ṗ), 1̃) = 0.

We now present an inclusion theorem that connects these two important concepts: every sequence of
fuzzy number-valued functions that is deferred Nörlund statistically Riemann integrable is also statistically
deferred Nörlund Riemann summable. However, the reverse implication does not necessarily hold.

Theorem 2.4. Let (ϕk) and (φk) be sequences in Z0+, and let (pk) be a sequence of non-negative real numbers. If a
sequence (1̃k)k∈N of fuzzy number-valued functions is deferred Nörlund statistically Riemann integrable to a fuzzy
number-valued function 1̃ on [a, b], then it is statistically deferred Nörlund Riemann summable to the same fuzzy
number-valued function 1̃ on [a, b]. However, the reverse implication does not necessarily hold.

Proof. Suppose the sequence (1̃k)k∈N is deferred Nörlund statistically Riemann integrable to a fuzzy number
valued function 1̃ on [a, b]. Then, according to Definition 2.1, we obtain the following result:

lim
k→∞

|{ξ : ξ ≦ Pk and pξD(δ(1̃ξ; Ṗ), 1̃) ≧ ϵ}|
Pk

= 0.

Now assuming two sets as follows:

Lϵ = {ξ : ξ ≦ Pk and pξD(δ(1̃ξ; Ṗ), 1̃) ≧ ϵ}

and

L
c
ϵ = {ξ : ξ ≦ Pk and pξD(δ(1̃ξ; Ṗ), 1̃) < ϵ},
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we have

D

(
N(δ(1̃k; Ṗ)), 1̃

)
=

1
Pk

φk∑
λ=ϕk+1

pφk−λD(δ(1̃λ; Ṗ), 1̃)

≦
1
Pk

φk∑
λ=ϕk+1

pφk−λD

(
δ(1̃λ; Ṗ), 1̃

)
+

1
Pk

φk∑
λ=ϕk+1

D(pφk−λ1̃, 1̃)

≦
1
Pk

φk∑
λ=ϕk+1
(ξ∈Lϵ)

pφk−λD

(
δ(1̃λ; Ṗ), 1̃

)
+

1
Pk

φk∑
λ=ϕk+1
(ξ∈Lc

ϵ)

pφk−λD

(
δ(1̃λ; Ṗ), 1̃

)

+ |1̃|

 1
Pk

φk∑
λ=ϕk+1

pφk−λ − 1


≦

1
Pk
|Lϵ| +

1
Pk
|L

c
ϵ| = 0.

This implies that

D(N(δ(1̃k; Ṗ)), 1̃) < ϵ.

Therefore, the sequence of fuzzy number-valued functions (1̃k) is statistically deferred Nörlund Riemann
summable to a fuzzy number-valued function 1̃ on the interval [a, b].

Since the converse statement does not always hold, the following example demonstrates that a sequence
of fuzzy number-valued functions that is statistically deferred Nörlund Riemann summable is not neces-
sarily deferred Nörlund statistically Riemann integrable.

Example 2.5. Let ϕk = 2k − 1, φk = 4k − 1 and pk = 1 and let 1̃k : [0, 1]→ R be a sequence of functions of the form
given by

1̃k(t) =


1
k (t ∈ [0, 1/2])

1 (t ∈ (1/2, 1]).
(3)

The given sequence (1̃k) of functions clearly demonstrates that it is neither Riemann integrable nor deferred Nörlund
statistically Riemann integrable. However, using the proposed mean (2), it is easy to see that

N(δ(1̃k; Ṗ)) =
1

φk − ϕk

φk∑
ϱ=ϕk+1

δ(1̃ϱ; Ṗ)

=
1
2k

4k∑
ϱ=2k+1

δ(1̃ϱ; Ṗ) =
1
2
.

This example illustrates that while the sequence (1̃k) is statistically deferred Nörlund Riemann summable, it is
not necessarily deferred Nörlund statistically Riemann integrable. This confirms that summability does not imply
integrability in the deferred Nörlund statistical sense.
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3. Fuzzy Korovkin-type Approximation Theorems

The fuzzy Korovkin-type theorem is an extension of the classical Korovkin approximation theorem
to function spaces involving fuzzy numbers. In traditional Korovkin theory, a sequence of positive linear
operatorsL acting on a function space is said to approximate a function f if it converges to f for a specific set
of test functions (typically 1, x and x2 in classical cases). The fuzzy Korovkin-type theorem generalizes this
idea by considering sequences of fuzzy-number-valued operators acting on fuzzy function spaces ensuring
uniform convergence in the fuzzy setting. This theorem is particularly useful in fuzzy approximation theory,
as it provides a criterion for approximating fuzzy continuous functions using linear operators. Such results
have applications in numerical analysis, machine learning, and fuzzy control systems, where uncertainties
and imprecisions in data representation play a crucial role. The theorem bridges classical approximation
techniques with fuzzy set theory, enhancing computational methods in uncertain environments. In this
context, we would like to refer interested readers to some recent works, including [8], [9], [12], [13], [22],
[23], [24], [25], [26], [27], [28], [30], [33], [35], [36], [37], and [40].

Let 1̃ : [a, b]→ E be a fuzzy number-valued function. We define 1̃ as continuous at a point t0 ∈ [a, b] if, for
every ϵ > 0, there exists δ > 0 such that whenever ti → t0 andD(ti, t0) < δ, it follows thatD(1̃(ti), 1̃(t0)) < ϵ.
Furthermore, if 1̃ satisfies this condition at every t ∈ [a, b] then it is said to be fuzzy continuous over the
entire interval [a, b].

Let CL[a, b] represent the set of all continuous fuzzy number-valued functions over the interval [a, b].

Now, supposeL : CL[a, b]→ CL[a, b] is a fuzzy linear operator. This means that for any scalarsλ1, λ2 ∈ R
and functions 1̃1, 1̃2 ∈ CF [a, b], the operator satisfies the following linearity condition:

L(λ1 ⊙ 1̃1 ⊕ λ2 ⊙ 1̃2; t) = λ1 ⊙ L(1̃1) ⊕ λ2 ⊙ L(1̃2).

Furthermore, we say that L is a positive fuzzy linear operator if it satisfies the condition

1̃1(t) ⪯ 1̃2(t)) =⇒ L(1̃1; t) ⪯ L(1̃2; t),

for all 1̃1, 1̃2 ∈ CL[a, b] and t ∈ [a, b], where ⪯ denotes the fuzzy ordering.

Theorem 3.1. Let (ϕi) and (φi) ∈ Z0+, and let Li : CL[a, b] → CL[a, b] (i ∈ N) be a sequence of fuzzy number-
valued positive linear operators. Additionally, let {L∗i }∈N represent the corresponding sequence of positive linear
operators mapping from C[a, b] into itself, with the relationship

{Li(1̃; t)}Λ± = L
∗

i (1̃
Λ
± ; t) (4)

holding for all t ∈ [a, b], Λ ∈ [0, 1], i ∈N. Then, for 1̃ ∈ CL[a, b], the following equivalence holds:

DNFRstat lim
i→∞
D
∗
(
Li(1̃; t), 1̃(t)

)
= 0 (5)

if and only if

DNFRstat lim
i→∞
D

(
L∗i (1; t), 1

)
= 0, (6)

DNFRstat lim
i→∞
D

(
L∗i (t; t), t

)
= 0 (7)

and

DNFRstat lim
i→∞
D

(
L∗i (t

2; t), t2
)
= 0. (8)
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Proof. Let 1̃ ∈ CL[a, b], t ∈ [a, b] and Λ ∈ [0, 1]. Since 1Λ
±

(t) ∈ C[a, b], so for each ε > 0, there exists δ > 0, such
that

|1̃Λ± (r) − 1̃Λ± (t)| < ε whenever |r − t| < δ (∀ t, r ∈ [a, b]). (9)

Next, for 1̃ is fuzzy bounded, |1̃Λ
±

(t)| ≤ MΛ
±

(a < t < b). Clearly, we have

|1̃Λ± (r) − ˜̃1Λ± (t)| ≦ 2MΛ
± (a < t, r < b).

Let us choose θ(r, t) = (r − t)2. Then,

|1̃Λ± (r) − 1̃Λ± (t)| < ε +
2MΛ

±

δ2 θ(r, t)

which yields

−ε −
2MΛ

±

δ2 θ(r, t) <
(
1̃Λ± (r) − 1̃Λ± (t)

)
< ε +

2MΛ
±

δ2 θ(r, t). (10)

Now the operator L∗i is linear and monotone Thus, by applying the operator L∗i (1, t) in (10), we get

L∗i (1, t)
(
−ε −

2MΛ
±

δ2 θ(r, t)
)
< L∗i (1, t)

(
1̃Λ± (r) − 1̃Λ± (t)

)
< L∗i (1, t)

(
ε +

2MΛ
±

δ2 θ(r, t)
)
. (11)

We note that t is fixed and 1̃Λ
±

(t) is a constant number, we thus obtain

−εL∗i (1, t) −
2MΛ

±

δ2 L
∗

i (θ, t) < L
∗

i (1̃
Λ
± , t) − 1̃

Λ
± (t)L∗i (1, t)

< εL∗i (1, t) +
2MΛ

±

δ2 L
∗

i (θ, t). (12)

Also, we know that

L∗i (1̃
Λ
± , t) − 1̃

Λ
± (t) = [L∗i (1̃

Λ
± , t) − 1̃

Λ
± (t)L∗i (1, t)] + 1̃

Λ
± (t)[L∗i (1, t) − 1]. (13)

Using (12) and (13), we get

L∗i (1̃
Λ
± , t) − 1̃

Λ
± (t) < εL∗i (1, t) +

2MΛ
±

δ2 L
∗

i (θ, t) + 1̃
Λ
± (t)[LΛi (1, t) − 1]. (14)

Now, we compute L∗i (θ, t) as follows:

L∗i (θ, t) = L
∗

i (r
2
− 2tr + t2, t)

= L∗i (r
2, t) − 2tL∗i (r, t) + t2L∗i (1, t)

= [L∗i (r
2, t) − t2] − 2t[L∗i (r, t) − t] + t2[L∗i (1, t) − 1].

Using (14), we get

L∗i (1̃
Λ
± , t) − 1̃

Λ
± (t) < εL∗i (1, t) +

2MΛ
±

δ2 {[L
∗

i (r
2, t) − t2] − 2t[L∗i (r, t) − t]

+ t2[L∗i (1, t) − 1]} + 1̃Λ± (t)[L∗i (1, t) − 1]

= ε[L∗i (1, t) − 1] + ε +
2MΛ

±

δ2 {[L
∗

i (r
2, t) − t2]

− 2t[LΛi (r, t) − t] + t2[L∗i (1, t) − 1]} + 1̃Λ± (t)[L∗i (1, t) − 1].
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Since ε > 0 is arbitrary, we can write

|L∗i (1̃
Λ
± , t) − 1̃

Λ
± (t)| ≦ ε +

(
ε +

2MΛ
±

h2

δ2 +MΛ
±

)
|L∗i (1, t) − 1| +

4MΛ
±

h
δ2 |LΛi (r, t) − t| +

2MΛ
±

δ2 |L
Λ
i (r2, t) − t2

|,

where h = max{|a|, |b|}.

Consequently, we get

|L∗i (1̃
Λ
± , t) − 1̃

Λ
± (t)| ≦ ϵ +HΛ± (ϵ)

(
|L∗i (1, t) − 1| + |L∗i (r, t) − t| + |L∗i (r

2, t) − t2
|

)
, (15)

where

H
r
±(ϵ) = max

(
ϵ +

2MΛ
±

h2

δ2 +MΛ
± ,

4MΛ
±

h
δ2 ,

2MΛ
±

δ2

)
.

Now it clearly follows from (4) that,

D
∗(Li(1̃), 1̃) = sup

t∈[a,b]
D

(
L∗i (1̃; t), 1̃

)
= sup

t∈[a,b]
sup
Λ∈[0,1]

max
{∣∣∣L∗i (1̃Λ− ; t) − 1̃Λ−

∣∣∣ , ∣∣∣L∗i (1̃Λ+ ; t) − 1̃Λ+ (t)
∣∣∣} .

Considering (15) with the last equality, one can easily write

D
∗(Li(1̃), 1̃) ≦ sup

t∈[a,b]
ε +M(ε)

(
sup

x∈[a,b]

∣∣∣L∗i (1, t) − 1
∣∣∣ + sup

x∈[a,b]

∣∣∣L∗i (r, t) − t
∣∣∣ + sup

x∈[a,b]

∣∣∣L∗i (r2, t) − t2
∣∣∣ ),

where

M(ϵ) = sup
Λ∈[0,1]

max
{
M
Λ
− (ϵ),MΛ

+ (ϵ)
}
.

Therefore,

pφk−λD
∗(Li(1̃), 1̃) ≦ pφk−λ sup

t∈[a,b]
ε +H(ε)

(
pφk−λ sup

t∈[a,b]

∣∣∣L∗i (1, t) − 1
∣∣∣

+ pφk−λ sup
t∈[a,b]

∣∣∣L∗i (r, t) − t
∣∣∣ + pφk−λ sup

t∈[a,b]

∣∣∣L∗i (r2, t) − t2
∣∣∣ ). (16)

Next, for given κ > 0, choose ε > 0 such that pφk−λ supt∈[a,b] ε < κ.

Then, we can write

Θi(t; ε) =
∣∣∣∣{i : i ≦ Pi and pφk−λD

∗
(
Lm(1̃), 1̃

)
≧ ε′

}∣∣∣∣
and

Θ j,i(t, ε) =

∣∣∣∣∣∣
{

i : i ≦ Pi and pφk−λD

(
L∗i 1̃ j(t), 1̃ j(t)

)
≧
ϵ′ − ϵ

3HΛ
±

}∣∣∣∣∣∣,
we easily obtain from (16) that

Θi(t, ε) ≦
2∑

j=0

Θ j,i(t, ε).
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Thus, we fairly have

∥Θi(t, ε)∥
Pi

≦
2∑

j=0

∥∥∥Θ j,i(t, ε)
∥∥∥

Pi
. (17)

Thus, based on Definition 2.1 and the assumptions outlined for the implications in equations (6) through
(8), the right-hand side of equation (17) approaches zero as i→∞. Therefore, we obtain the following result

lim
i→∞

∥Θi(t, ε)∥
Pi

= 0 (ε > 0).

As a result, the implication in equation (5) holds true.

Theorem 3.2. Let (ϕi) and (φi) ∈ Z0+, and let Li : CL[a, b] → CL[a, b] (i ∈ N) be the fuzzy number valued
sequence of positive linear operators. Also, let {L∗i }∈N be the respective sequence of positive linear operators from
C[a, b] into itself with

{Li(1̃; t)}Λ± = L
∗

i (1̃
Λ
± ; t) (18)

for all t ∈ [a, b], Λ ∈ [0, 1], i ∈N. Then, for 1̃ ∈ CL[a, b]

statDNFR lim
i→∞
D
∗
(
Li(1̃; t), 1̃(t)

)
= 0 (19)

if and only if

statDNFR lim
i→∞
D

(
L∗i (1; t), 1

)
= 0, (20)

statDNFR lim
i→∞
D

(
L∗i (t; t), t

)
= 0 (21)

and

statDNFR lim
i→∞
D

(
L∗i (t

2; t), t2
)
= 0. (22)

Proof. In a similar manner to the proof of Theorem 3.1, Theorem 3.2 can be demonstrated. Therefore, we
will omit the detailed steps of the proof.

Based on Theorem 3.2, we provide an example of a sequence of positive linear operators that does not
align with the statistical version of the deferred Nörlund Riemann integrable sequence of fuzzy number-
valued functions (as outlined in Theorem 3.1), but instead works effectively with Theorem 3.2. From this,
we conclude that Theorem 3.2 represents a significant extension of the statistical Nörlund Riemann inte-
grable sequence of fuzzy number-valued functions presented in Theorem 3.1.

We now revisit the operator given by

ϖ(1 + ϖD)
(
D =

d
dϖ

)
, (23)

which was previously employed by Al-Salam [1] and more recently by Viskov and Srivastava [39].

Example 3.3. Consider the Bernstein polynomial Bk(1̃; β) [4] on C[0, 1] given by

Bϱ(1̃; β) =
k∑
ϱ=0

1̃

(ϱ
k

) (k
ϱ

)
βϱ(1 − b)k−ϱ (β ∈ [0, 1]; ϱ = 0, 1, · · ·). (24)
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We now define the positive linear operators on C[0, 1] through the composition of the Bernstein polynomial and
the operators described in equation (23) as follows:

Aϱ(1̃; β) = [1 + 1̃ϱ]β(1 + βD)Bϱ(1̃; β) (∀ 1̃ ∈ C[0, 1]), (25)

where (1̃ϱ) is the same as mentioned in Example 2.5.

We now evaluate the values of each of the test functions 1, β and β2 by using the operators proposed in equation
(25) as follows:

Lϱ(1; β) = [1 + 1̃ϱ]β(1 + βD)1 = [1 + 1̃ϱ]β,

Lϱ(t; β) = [1 + 1̃ϱ]β(1 + βD)β = [1 + 1̃ϱ]β(1 + β)

and

Lϱ(t2; β) = [1 + 1̃ϱ]β(1 + βD)
{
β2 +

β(1 − β)
ϱ

}
= [1 + 1̃ϱ]

{
β2

(
2 −

3β
ϱ

)}
.

Consequently, we have

statDNFR lim
ϱ→∞
D(L∗ϱ(1; β), 1) = 0, (26)

statDNFR lim
ϱ→∞
D(L∗ϱ(β; β), β) = 0 (27)

and

statDNFR lim
ϱ→∞
D(L∗ϱ(β

2; β), β2) = 0, (28)

that is, the sequence L∗ϱ(1̃; β) satisfies the conditions (20) to (22). Therefore, by Theorem 3.2, we have

statDNFR lim
ϱ→∞
D
∗(Lϱ(1̃; β), 1) = 0.

The sequence (1̃ϱ) of fuzzy number-valued functions presented in Example 2.5 is statistically deferred Nörlund Rie-
mann summable, but not deferred Nörlund statistically Riemann integrable. As a result, the operators defined by
(25) fulfill the conditions of Theorem 3.2, but they do not meet the criteria for the statistical version of the deferred
Nörlund Riemann integrable sequence of fuzzy number-valued functions as stated in Theorem 3.1.
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Figure 2:
(Convergence Behavior of the Operator Lϱ(1; β))

Figure 2 represents the convergence behavior of the operator Lϱ(1; β) as a function of β. The graph depicts how the
function evolves under the action of the operator involving the sequence (1̃ϱ), which exhibits distinct behavior in the
two regions: [0, 1/2] and (1/2, 1]. In view of convergence condition given in equation Lϱ(1; β) = [1+ 1̃ϱ]β, the graph
shows how the function evolves as ϱ → ∞. In light of the convergence condition under equation (26), the statistical
deferred Nörlund Riemann summability requires that as ϱ increases, Lϱ(1; β) should converge to 1. This is reflected
in the graph, where the function stabilizes (or converges) to a constant value as β approaches its boundaries 0 and 1.
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Figure 3:
(Convergence Behavior of the Operator Lϱ(β; β))
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Figure 3 represents how the operator Lϱ(β; β) behaves for different values of β. In view of the operator defined
as Lϱ(β; β) = [1 + 1̃ϱ]β(1 + β), the graph demonstrates how the function responds to variations in β within the
interval [0, 1]. In light of the convergence condition under equation (27), this operator should approach the function
β as ϱ → ∞.This expectation is reinforced by the convergence condition statDNFR limϱ→∞D(L∗ϱ(β; β), β) = 0, which
implies that L∗ϱ(β; β) increasingly align with β as ϱ grows. Consequently, the plot exhibits a trend where the operator
approaches the identity function for β, reflecting the desired convergence behavior.
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Figure 4:
(Convergence Behavior of the Operator Lϱ(β2; β))

Figure 4 represents the behavior of the operator Lϱ(β2; β), defined as Lϱ(β2; β) = [1 + 1̃ϱ]
{
β2

(
2 − 3β

ϱ

)}
. This plot

demonstrates how the function responds to variations in β under the influence of this operator, highlighting the effect
of the parameter ϱ on the quadratic term β2. From the convergence condition given in equation (28), we expect that as
ϱ→∞, the operator Lϱ(β2; β) should approach β2. The graph fairly shows that the operator converges to the quadratic
function β2 as ϱ increases, with the term 3β

ϱ diminishing over time. This trend confirms that the operator is correctly
summable, satisfying the required convergence condition:

statDNFR lim
ϱ→∞
D(L∗ϱ(β

2; β), β2) = 0.

Each of the operators Lϱ(1; β), Lϱ(β; β) and Lϱ(β2; β) demonstrates how the sequence of fuzzy number-valued
functions behaves in the statistical sense under the action of the operator. The convergence of each operator
to its respective function 1, β and β2 as ϱ → ∞ validates the conditions of deferred Nörlund Riemann
summability in the statistical sense. The plots 2 to 4 highlight that Theorem 3.2 extends classical Korovkin-
type approximation theorems, showing that even though the sequence is statistically deferred Nörlund
Riemann summable, it may not necessarily be deferred Nörlund statistically Riemann integrable. The
graphs visually support this extension by demonstrating convergence in terms of statistical summability,
while also suggesting that classical Riemann integrability may not hold for the sequence.

4. Conclusion and Discussion

In this final section, we highlight the practical significance and theoretical advantages of Theorem 3.2
over Theorem 3.1, as well as its improvements upon classical fuzzy Korovkin-type approximation results.
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While Theorem 3.1 establishes convergence criteria based on statistical deferred Nörlund Riemann inte-
grability, Theorem 3.2 introduces statistical deferred Nörlund Riemann summability a broader and more
flexible framework. This generalization allows for a wider class of fuzzy-number-valued functions to be
approximated effectively, even in cases where classical summability methods may fail to guarantee conver-
gence.

The fuzzy Korovkin-type theorem presented in Theorem 3.2 extends the classical Korovkin approxima-
tion theorem into the realm of fuzzy function spaces. It ensures uniform convergence of sequences of fuzzy
positive linear operators by testing their behavior on the standard algebraic test functions 1, x and x2. While
this test set is classical, our use of it in conjunction with the newly proposed statistical deferred Nörlund
summability method allows for stronger convergence results under uncertainty. This framework provides
a robust mathematical tool for approximating fuzzy continuous functions in the presence of imprecision or
incomplete information.

Our work further illustrates the applicability of Theorem 3.2 through an example involving fuzzy
Bernstein-type operators. By analyzing their convergence behavior both analytically and graphically (us-
ing MATLAB visualizations), we demonstrate the enhanced approximation accuracy and stability offered
by our approach. These results have promising implications for computational methods in fields such as
fuzzy control systems, machine learning, and numerical analysis, where fuzzy approximations are essen-
tial. Thus, the contributions made in this paper not only bridge classical approximation theory with fuzzy
set theory but also offer new techniques for handling uncertainty in real-world data.

Consider the sequence (1̃ϱ)ϱ∈N of functions from Example 2.5. Additionally, assume that (1̃ϱ) is statisti-
cally deferred Nörlund Riemann summable, so that we have the following limit

statDNFR lim
ϱ→∞
D

(
δ(1̃ϱ; Ṗ),

1
2

)
on [0, 1].

Then, we have

statDNFR lim
ϱ→∞
D(L∗ϱ(1̃ν;ϖ), 1̃ν(ϖ)) = 0 (ν = 0, 1, 2). (29)

Thus, by Theorem 3.2, we immediately get

statDNFR lim
ϱ→∞
D
∗(Lϱ(1̃;ϖ), 1̃(ϖ)) = 0, (30)

where

1̃0(ϖ) = 1, 1̃1(ϖ) = ϖ and 1̃2(ϖ) = ϖ2.

The sequence (1̃ϱ) of fuzzy number-valued functions is statistically deferred Nörlund Riemann summable,
but it is neither deferred Nörlund statistically Riemann integrable nor classically Riemann integrable. Con-
sequently, our fuzzy Korovkin-type approximation result in Theorem 3.2 holds for the operators defined in
equation (25), while both the classical and statistical versions of the deferred Nörlund Riemann integrable
sequence of fuzzy number-valued functions do not apply to these operators. From this, we conclude that
Theorem 3.2 serves as a significant extension of both Theorem 3.1 and the classical Korovkin-type approxi-
mation theorem [20].
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