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Abstract. Integro–differential evolution equations are becoming increasingly popular in many fields
because of their ability to model and assess complicated procedures. In this paper, we study different
kinds of stabilities for integro–differential evolution equations with nonlocal conditions. The concept of
σ–semi–Ulam–Hyers stability, which lies somewhere between the Ulam–Hyers and Ulam–Hyers–Rassias
stabilities, will be specifically discussed. To ensure Ulam–Hyers–Rassias stability, σ–semi–Ulam–Hyers
stability, and Ulam–Hyers stability for integro–differential evolution equations with nonlocal conditions,
this is considered within the framework of suitable metric spaces. We will examine the many situations in
which the integrals are specified on both bounded and unbounded intervals. Techniques such as fixed–
point arguments and generalizations of the Bielecki metric are utilized. To illustrate the main results, we
also provide examples. The epidemiology application for modeling the transmission of infectious diseases
served as a source of interest.

1. Introduction and preliminaries

Exact solutions are essential for practical research for any physical model. An exact answer of this
type confirms the approximations obtained by analytical or numerical methods and offers the appropriate
physical interpretation. A given (integral, functional, differential, difference, or fractional differential)
equation is said to be stable (in the Ulam definition) if there exists an exact solution that is, in some sense,
close to each approximation (in a particular sense) solution. S. M. Ulam posed an open issue that became
the foundation for the theory of stability in a well–known 1940 speech at the University of Wisconsin (see,
e.g., [8, 50] for further information). The stability theory originated from an intriguing open topic, which
can be best described as follows. Let H,H∗ stand for certain groups, where H∗ is a metric group with a
metric of N. Ulam questioned if there is δ > 0, given ϵ > 0: suppose ϱ : H→ H∗ : ∀(x1, x2 ∈ H)

N(ϱ(x1x2), ϱ(x1)ϱ(x2)) < δ,
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then there exists a homomorphism ℏ : H→ H∗ :

N(ϱ(x1), ℏ(x1)) < ϵ?

For further references, we urge the reader to [27], which covers most of the recent few decades study on
the stability challenge in mathematical analysis.

For the Ulam investigation, there are a few responses accessible. For example, D. H. Hyers provided
a positive response in 1941 when it came to Banach spaces (see [8]). This problem, concerning additive
mappings, received attention from T. Aoki (see [49]). By examining the case of unbounded Cauchy
differences, T. M. Rassias provided a generalized version of the same theorem in 1978 (see [51]). Ulam–
Hyers–Rassias stability is the new name for the stability issue that Rassias (see [51]) invented.

Building upon these foundational and emerging studies, several recent works have focused specifically
on the stability analysis of fractional and integral equations using various generalized concepts. For
instance, Irshad et al. [26] examined the stability of time–fractional nonlinear Schrödinger equations, while
Shah and Irshad [32] addressed Ulam–Hyers–Mittag–Leffler stability in nonlinear fractional reaction–
diffusion equations with delays. The Ulam–Hyers–Rassias stability of nonlinear convolution integral
equations has been explored in the work of Irshad, Shah, and Liaquat [25]. Related contributions include
studies on the Ulam–Hyers stability of Bernoulli’s differential equation [33] and the impulsive Fredholm
integral equations on finite intervals [34]. Shah and Irshad further extended this investigation to oscillatory
Volterra integral equations [35], hybrid differential equations involving Gronwall–type inequalities [36],
and impulsive Hammerstein integral systems [37].

Additional advancements include the application of the Gronwall lemma to Ulam–type stability of
integral equations by Shah et al. [38] and the use of fixed–point methods for stability analysis of delay
fractional integro–differential equations with almost sectorial operators [39]. In the context of generalized
integral systems, Shah and Tanveer [40] studied (k, ψ)–fractional order quadratic integral equations, while
Shah and Abbasi [41] focused on impulsive Hammerstein integral equations. Further related efforts by Shah
and collaborators address the Ulam–Hyers stability of weakly singular Volterra equations [42], nonlinear
Volterra–Fredholm equations [43], and impulsive Volterra integral equations using fixed–point theory [44].
A foundational fixed–point analysis for Volterra–type systems with delay can also be found in [45].

In a parallel line of research integrating fixed–point theory with biological modeling, Turab and Sin-
tunavarat contributed several influential works. The investigations include the analysis of traumatic
avoidance learning models via the Banach fixed–point theorem [3], behavioral modeling of two–choice
decision–making in fish using analytic techniques [4], and a novel study on nonlinear fractional bound-
ary value problems defined over graph structures such as the ethane graph [5]. These cumulative efforts
demonstrate the flexibility and depth of fixed–point techniques and fractional analysis in addressing a wide
variety of nonlinear systems across mathematical and applied domains.

However, Byszewski [16] introduced the concept of a nonlocal condition by examining the existence and
uniqueness of solutions to nonlocal Cauchy problems. As Byszewski [14, 17] and Deng [13] have noted,
the motivation originates from physics, as nonlocal beginning conditions can characterize some physical
processes more effectively and practically than classical ones. Day [54, 55] suggested a linear parabolic
equation with a nonlocal boundary condition arising from static thermoelasticity. In order to examine
the dynamics of gas in a transparent tube, Kerefov [2] and Vabishchevich [29] took into consideration a
one-dimensional parabolic equation with nonlocal initial condition. The nonlocal function, for instance,
could resemble this:

ℑ(z(ζ)) =
p∑

i=1

ciz(ζi)

where ci = 1, ..., p, are given constants and 0 < ζ1 < ... < ζp ≤ T. Afterwards, the issue has been covered by
a number of authors [12, 15] for various kinds of integro–differential and nonlinear differential equations,
such as functional differential equations in Banach spaces.

In this paper, we investigate the Ulam–Hyers stability, the Ulam–Hyers–Rassias stability, and a novel
type of stability, the σ–semi–Ulam–Hyers stability, for the integro–differential evolution equation with
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nonlocal condition of the form:ℜ
′

(ζ) = Ψℜ(ζ) +
∫ ζ

0
ψ(ζ − ℘)ℜ(℘) d℘ + ℵν(ζ) + ϖ(ζ,ℜ(ζ)), ζ ∈ [0, b],

ℜ(0) =ℜ0 + ℑ(ℜ(ζ)),
(1)

with ζ ∈ [0, b], where 0 and b are fixed real numbers,ℜ : [0, b]→ C is the state function, ν(.) ∈ L2([0, b],C),
Ψ : D(Ψ) ⊂ C → C, and ψ(ζ) : D(Ψ) ⊂ C → C, ζ ≥ 0, ψ , 0, are closed operators, ℵ : 𭟋 → C is a bounded
operator, 𭟋 is a separable Hilbert space, ϖ : [0, b] × C→ C and ℑ : C([0, b],C)→ C are given functions to be
specified later, and ϑ0 is given element of C.

A functionℜ : [0, b]→ C is called a mild solution of Equation (1) if

ℜ(ζ) = ψ(ζ)[ϑ0 + ℑ(ℜ(ζ))] +
∫ ζ

0
ψ(ζ − ℘)[ℵν(℘) + ϖ(℘,ℜ(℘))] d℘. (2)

Integro–differential evolution equations find use in numerous domains to simulate intricate dynamic
systems (see, e.g., earlier studies [1, 10, 18, 28, 30, 31, 47, 53]), in which modifications rely on both past and
present states. These equations simulate population dynamics in biology and account for delays brought on
by gestation or maturation times. In thermodynamics, they capture the influence of previous temperature
distributions to represent heat transfer in materials with thermal memory. By simulating the stress–strain
relationship over time, material science uses these equations to understand viscoelastic materials, which
have both viscous and elastic properties. Integro–differential equations are used in electromagnetic theory
to examine electromagnetic fields in materials that possess memory or dispersive properties. They simulate
how economic variables, such as the price of financial derivatives, change over time under the influence of
historical data in economics. These equations are useful to neuroscience because they simulate the dynamics
of neural networks, in which the future state of a neuron is dependent upon its past state as well as the
states of other neurons. To design systems in which past states affect control actions, as in feedback loops
with delays, control systems engineering uses integro–differential equations. These equations are used
by epidemiologists to simulate the transmission of infectious diseases, taking into account the historical
number of afflicted people and their patterns of interaction. Systems with memory effects or non–local
interactions are described using integro–differential equations in quantum mechanics. Subsequently, they
incorporate past states and variables like absorption and dispersion into the hydrodynamics model to
simulate fluid flow in porous media. These varied applications demonstrate how important integro–
differential evolution equations are to providing a thorough knowledge of dynamic, complex systems in a
variety of academic fields.

We now want to quickly summarize this paper’s originality and contributions: Several articles and
books have been written about the study of Ulam–Hyers stability and Ulam–Hyers–Rassias stability of
integro–differential equations, according to the relevant research. To the best of our knowledge, there aren’t
many publications on the Ulam–Hyers and Ulam–Hyers–Rassias stability of integro–differential equations
with nonlocal conditions, according to the pertinent literature (see [52]). Regarding Ulam–Hyers and Ulam–
Hyers–Rassias stability of integro–differential evolution equations with nonlocal conditions on bounded
and unbounded intervals, we didn’t find any previous work. This is the first study and contribution on
the stability of integro–differential evolution Equation (1) with nonlocal conditions under the Ulam–Hyers
and Ulam–Hyers–Rassias. Significantly, our findings also identify a σ–semi–Ulam–Hyers stability, which
falls in between Ulam–Hyers and Ulam–Hyers–Rassias stability. This helps to provide an expanded view
of the stability field. The results for integro–differential equations obtained earlier are refined and extended
to integro–differential evolution equations with nonlocal conditions in this research. Additionally, in the
context of Ulam [48], this is a novel addition to stability theory.

The structure of this paper is as follows: The Ulam–Hyers–Rassias stability of the integro–differential
evolution Equation (1) on a bounded interval is demonstrated in Section 2. In Section 3, the σ–semi–
Ulam–Hyers stability and the Ulam–Hyers stability of the integro–differential evolution Equation (1) on a
bounded interval are established. The Ulam–Hyers–Rassias stability and the σ–semi–Ulam–Hyers stability
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of the integro–differential evolution Equation (1) are extended to an unbounded interval in Section 4. To
demonstrate the findings, examples are presented in Section 5. In Section 6, an application of the integro–
differential evolution equation in epidemiology is discussed. Finally, the conclusion of the paper is given
in Section 7.

For the integro–differential evolution Equation (1), the stabilities previously described are now formally
defined.

Definition 1.1. Let ϑ be a continuous function on [0, b] such that∣∣∣∣ϑ′ (ζ) −Ψϑ(ζ) −
∫ ζ

0
ψ(ζ − ℘)ϑ(℘) d℘ − ℵν(ζ) − ϖ(ζ, ϑ(ζ))

∣∣∣∣ ≤ σ(ζ),

where σ is a nonnegative function. If there is a solutionℜ of the integro–differential evolution equation and a constant
C > 0, independent of ϑ andℜ, satisfying ∣∣∣ϑ(ζ) −ℜ(ζ)

∣∣∣ ≤ Cσ(ζ),

for all ζ ∈ [0, b], then we say that the integro–differential evolution Equation (1) has the Ulam–Hyers–Rassias
stability.

Definition 1.2. Let ϑ be a continuous function on [0, b] such that∣∣∣∣ϑ′ (ζ) −Ψϑ(ζ) −
∫ ζ

0
ψ(ζ − ℘)ϑ(℘) d℘ − ℵν(ζ) − ϖ(ζ, ϑ(ζ))

∣∣∣∣ ≤ θ,
where θ ≥ 0. If there is a solutionℜ of the integro–differential evolution equation and a constant C > 0, independent
of ϑ andℜ, satisfying ∣∣∣ϑ(ζ) −ℜ(ζ)

∣∣∣ ≤ Cθ,

for all ζ ∈ [0, b], then we say that the integro–differential evolution Equation (1) has the Ulam–Hyers stability.

A new kind of stability introduced in Castro and Simões [24] is now presented. This stability can
be characterized as lying between the two previously mentioned stabilities of Ulam–Hyers–Rassias and
Ulam–Hyers.

Definition 1.3. Let σ a nondecreasing function defined on [0, b]. If for each continuous function ϑ satisfying∣∣∣∣ϑ′ (ζ) −Ψϑ(ζ) −
∫ ζ

0
ψ(ζ − ℘)ϑ(℘) d℘ − ℵν(ζ) − ϖ(ζ, ϑ(ζ))

∣∣∣∣ ≤ θ, (3)

where θ ≥ 0, there is a solutionℜ of the integro–differential evolution equation and a constant C > 0, independent
of ϑ andℜ, such that∣∣∣ϑ(ζ) −ℜ(ζ)

∣∣∣ ≤ Cσ(ζ), ζ ∈ [0, b], (4)

then we say that the integro–differential evolution Equation (1) has the σ–semi–Ulam–Hyers stability.

In some cases, fixed–point results are combined with a generalized metric to assess the stability of
integral, differential, and integro–differential equations; previous research on this topic is available at
[6, 11, 19–22].

Consequently, let us revisit what a generalized metric is and examine the significance of the Banach
fixed–point theorem in achieving our goals.

Definition 1.4 ([46]). Let Y be a nonempty set and d : Y × Y → [0,+∞] be a given mapping. We say that d is a
generalized metric on Y if and only if d satisfies the following:

(G1) d(x, y) = 0 if and only if x = y;
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(G2) d(x, y) = d(y, x) for all x, y ∈ Y;

(G3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ Y.

Theorem 1.5 ([9]). Let (Y, d) be a generalized complete metric space and consider a mapping ∆ : Y → Y which is a
strictly contractive operator, that is,

d(∆x,∆y) ≤ L d(x, y), x, y ∈ Y,

for some Lipschitz constant 0 ≤ L < 1. If there exists a nonnegative integer k such that d(∆k+1x,∆kx) < ∞ for some
x ∈ Y, then the following three statements hold:

(M1) The sequence (∆nx)n∈N converges to a fixed–point x∗ of ∆.

(M2) x∗ is the unique fixed–point of ∆ in the set

Y∗ =
{
y ∈ Y

∣∣∣ d(∆kx, y) < ∞
}
.

(M3) If y ∈ Y∗, then

d(y, x∗) ≤
1

1 − L
d(∆y, y). (5)

2. Ulam–Hyers–Rassias stability on a bounded interval

This section will provide adequate requirements for the Ulam–Hyers–Rassias stability of the integro–
differential evolution Equation (1) for a given b > 0, where ζ ∈ [0, b].

We shall examine the space of continuous functions C([0, b]) on [0, b] equipped with a metric [22] that is
a generalization of the Bielecki one

d(ϑ,ω) = sup
ζ∈[0,b]

|ϑ(ζ) − ω(ζ)|
σ(ζ)

, (6)

where the nondecreasing continuous function σ : [0, b] → (0,∞) is represented by σ. The well–known
Bielecki metric can be found in (6) if we have σ(ζ) = e fζ with f > 0. In this study, we decided to look at a
broader type of metric to expand its scope.

Remember that the generalized metric d in this space C([0, b]) is a complete metric space (see, for
example, earlier research [23], [7]).

Theorem 2.1. Let us consider a closed operatorΨ : D(Ψ) ⊂ C→ C. Moreover, assume thatψ(ζ) : D(Ψ) ⊂ C→ C,
ζ ≥ 0, ψ , 0 is a closed operator such that there exists M > 0 so that∫ ζ

0
ψ(ζ − ℘)σ(℘) d℘ ≤Mσ(ζ), (7)

for all ζ ∈ [0, b] and ℵ : 𭟋 → C is a bounded operator. In addition, let ϖ : [0, b] × C → C be a continuous function
for which there exists a constant Lϖ > 0 that satisfies the condition

|ϖ(ζ, ϑ) − ϖ(ζ, ω)| ≤ Lϖ|ϑ − ω| (8)

for all ζ ∈ [0, b], ϑ,ω ∈ C([0, b]) and ℑ : C([0, b],C) → C is a continuous function, and there exists a positive
constant Lℑ > 0 that fulfills the following condition

|ψ(ζ)ℑ(ϑ) − ψ(ζ)ℑ(ω)| ≤ Lℑ|ϑ − ω| (9)
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for all ζ ∈ [0, b] and ϑ,ω ∈ C([0, b]).
If ϑ ∈ C([0, b]) is such that∣∣∣∣ϑ′(ζ) −Ψϑ(ζ) −

∫ ζ

0
ψ(ζ − ℘)ϑ(℘) d℘ − ℵν(ζ) − ϖ(ζ, ϑ(ζ))

∣∣∣∣ ≤ σ(ζ), (10)

for all ζ ∈ [0, b] and Lℑ +MLϖ < 1, then there exists a unique functionℜ ∈ C([0, b]) that serves as the solution to
Equation (1) defined as

ℜ(ζ) = ψ(ζ)[ϑ0 + ℑ(ℜ(ζ))] +
∫ ζ

0
ψ(ζ − ℘)[ℵν(℘) + ϖ(℘,ℜ(℘))] d℘ (11)

such that

|ϑ(ζ) −ℜ(ζ)| ≤
Mσ(ζ)

1 − (Lℑ +MLϖ)
(12)

for all ζ ∈ [0, b], this implies that the integro–differential evolution Equation (1) is Ulam–Hyers–Rassias stable.

Proof. We will examine the operator ∆ : C([0, b])→ C([0, b]), defined by

(∆ϑ)(ζ) = ψ(ζ)[ϑ0 + ℑ(ϑ(ζ))] +
∫ ζ

0
ψ(ζ − ℘)[ℵν(℘) + ϖ(℘, ϑ(℘))] d℘, (13)

for all ζ ∈ [0, b] and ϑ ∈ C([0, b]).
Observe that if ϑ is a continuous function, then ∆ϑ is also continuous. In fact,

|(∆ϑ)(ζ) − (∆ϑ)(ζo)| =
∣∣∣∣ψ(ζ)[ϑ0 + ℑ(ϑ(ζ))] +

∫ ζ

0
ψ(ζ − ℘)[ℵν(℘)

+ϖ(℘, ϑ(℘))] d℘ − ψ(ζ0)[ϑ0 + ℑ(ϑ(ζ0))] −
∫ ζ0

0
ψ(ζ0 − ℘)[ℵν(℘) + ϖ(℘, ϑ(℘))] d℘

∣∣∣∣
≤

∣∣∣∣ψ(ζ)[ϑ0 + ℑ(ϑ(ζ))] − ψ(ζ0)[ϑ0 + ℑ(ϑ(ζ0))]
∣∣∣∣

+
∣∣∣∣ ∫ ζ

0
ψ(ζ − ℘)[ℵν(℘) + ϖ(℘, ϑ(℘))] d℘ −

∫ ζ0

0
ψ(ζ0 − ℘)[ℵν(℘) + ϖ(℘, ϑ(℘))] d℘

∣∣∣∣
=

∣∣∣∣ϑ0ψ(ζ) + ℑ(ϑ(ζ))ψ(ζ) − ϑ0ψ(ζ0) − ℑ(ϑ(ζ0))ψ(ζ0)
∣∣∣∣

+
∣∣∣∣ ∫ ζ

0
ψ(ζ − ℘)[ℵν(℘) + ϖ(℘, ϑ(℘))] d℘ −

∫ ζ

0
ψ(ζ0 − ℘)[ℵν(℘) + ϖ(℘, ϑ(℘))] d℘

+

∫ ζ

0
ψ(ζ0 − ℘)[ℵν(℘) + ϖ(℘, ϑ(℘))] d℘ −

∫ ζ0

0
ψ(ζ0 − ℘)[ℵν(℘) + ϖ(℘, ϑ(℘))] d℘

∣∣∣∣
≤

∣∣∣∣[ϑ0ψ(ζ) − ϑ0ψ(ζ0)] + [ℑ(ϑ(ζ))ψ(ζ) − ℑ(ϑ(ζ0))ψ(ζ0)]
∣∣∣∣

+
∣∣∣∣ ∫ ζ

0
ψ(ζ − ℘)[ℵν(℘) + ϖ(℘, ϑ(℘))] d℘ −

∫ ζ

0
ψ(ζ0 − ℘)[ℵν(℘) + ϖ(℘, ϑ(℘))] d℘

+

∫ ζ

ζ0

ψ(ζ0 − ℘)[ℵν(℘) + ϖ(℘, ϑ(℘))] d℘
∣∣∣∣

≤

∣∣∣∣ϑ0[ψ(ζ) − ψ(ζ0)]
∣∣∣∣ + ∣∣∣∣ℑ(ϑ(ζ))ψ(ζ) − ℑ(ϑ(ζ0))ψ(ζ0)

∣∣∣∣
+

∫ ζ

0

∣∣∣ψ(ζ − ℘) − ψ(ζ0 − ℘)
∣∣∣∣∣∣ℵν(℘) + ϖ(℘, ϑ(℘))

∣∣∣ d℘
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+
∣∣∣∣ ∫ ζ

ζ0

ψ(ζ0 − ℘)[ℵν(℘) + ϖ(℘, ϑ(℘))] d℘
∣∣∣∣→ 0

when ζ→ ζo.
We will conclude that, with respect to the metric (6), the operator ∆ is strictly contractive under the

current conditions.

d(∆ϑ,∆ω) = sup
ζ∈[0,b]

∣∣∣(∆ϑ)(ζ) − (∆ω)(ζ)
∣∣∣

σ(ζ)

= sup
ζ∈[0,b]

1
σ(ζ)

∣∣∣∣ψ(ζ)[ϑ0 + ℑ(ϑ(ζ))] +
∫ ζ

0
ψ(ζ − ℘)[ℵν(℘)

+ϖ(℘, ϑ(℘))] d℘ − ψ(ζ)[ϑ0 + ℑ(ω(ζ))]

−

∫ ζ

0
ψ(ζ − ℘)[ℵν(℘) + ϖ(℘,ω(℘))] d℘

∣∣∣∣
= sup

ζ∈[0,b]

1
σ(ζ)

∣∣∣∣ψ(ζ)ℑ(ϑ(ζ)) − ψ(ζ)ℑ(ω(ζ))

+

∫ ζ

0
ψ(ζ − ℘)[ϖ(℘, ϑ(℘)) − ϖ(℘,ω(℘))] d℘

∣∣∣∣
≤ sup

ζ∈[0,b]

1
σ(ζ)

∣∣∣∣ψ(ζ)ℑ(ϑ(ζ)) − ψ(ζ)ℑ(ω(ζ))
∣∣∣∣

+ sup
ζ∈[0,b]

1
σ(ζ)

∣∣∣∣ ∫ ζ

0
ψ(ζ − ℘)[ϖ(℘, ϑ(℘)) − ϖ(℘,ω(℘))] d℘

∣∣∣∣
≤ Lℑ sup

ζ∈[0,b]

|ϑ(ζ) − ω(ζ)|
σ(ζ)

+ Lϖ sup
ζ∈[0,b]

∫ ζ
0 |ψ(ζ − ℘)||ϑ(℘) − ω(℘)| d℘

σ(ζ)

= Lℑ sup
ζ∈[0,b]

|ϑ(ζ) − ω(ζ)|
σ(ζ)

+ Lϖ sup
ζ∈[0,b]

∫ ζ
0 |ψ(ζ − ℘)| |ϑ(℘)−ω(℘)|

σ(℘) σ(℘) d℘

σ(ζ)

≤ Lℑ sup
ζ∈[0,b]

|ϑ(ζ) − ω(ζ)|
σ(ζ)

+ Lϖ sup
℘∈[0,b]

|ϑ(℘) − ω(℘)|
σ(℘)

sup
ζ∈[0,b]

∫ ζ
0 |ψ(ζ − ℘)|σ(℘) d℘

σ(ζ)

≤ Lℑd(ϑ,ω) +MLϖd(ϑ,ω)
= (Lℑ +MLϖ)d(ϑ,ω).

Since Lℑ +MLϖ < 1, it follows that ∆ is strictly contractive. Therefore, to ensure the Ulam–Hyers–Rassias
stability for the integro–differential evolution equation, we can apply the aforementioned Banach fixed–
point theorem.

Additionally, (12) follows from (5) and (10). Indeed, from (10), we have

|ϑ(ζ) − (∆ϑ)(ζ)| ≤ σ(ζ), ζ ∈ [0, b]. (14)

We are now able to reapply the Banach fixed–point theorem, resulting from (5) that

d(ϑ,ℜ) ≤
1

1 − (Lℑ +MLϖ)
d(∆ϑ, ϑ). (15)
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Based on the definition of the metric d and Equation (14), it can be concluded that

sup
ζ∈[0,b]

|ϑ(ζ) −ℜ(ζ)|
σ(ζ)

≤
M

1 − (Lℑ +MLϖ)
, (16)

and consequently, (12) is valid.

3. σ–semi–Ulam–Hyers stability and Ulam–Hyers stability on a bounded interval

In this section, we will discuss the adequate conditions for the σ–semi–Ulam–Hyers stability and for the
Ulam–Hyers stability of the integro–differential evolution Equation (1).

Theorem 3.1. Let us consider a closed operatorΨ : D(Ψ) ⊂ C→ C. Moreover, assume thatψ(ζ) : D(Ψ) ⊂ C→ C,
ζ ≥ 0, ψ , 0 is a closed operator such that there exists M > 0 so that∫ ζ

0
ψ(ζ − ℘)σ(℘) d℘ ≤Mσ(ζ), (17)

for all ζ ∈ [0, b] and ℵ : 𭟋 → C is a bounded operator. In addition, let ϖ : [0, b] × C → C be a continuous function
for which there exists a constant Lϖ > 0 that satisfies the condition

|ϖ(ζ, ϑ) − ϖ(ζ, ω)| ≤ Lϖ|ϑ − ω| (18)

for all ζ ∈ [0, b], ϑ,ω ∈ C([0, b]) and ℑ : C([0, b],C) → C is a continuous function, and there exists a positive
constant Lℑ > 0 that fulfills the following condition

|ψ(ζ)ℑ(ϑ) − ψ(ζ)ℑ(ω)| ≤ Lℑ|ϑ − ω| (19)

for all ζ ∈ [0, b] and ϑ,ω ∈ C([0, b]).
If ϑ ∈ C([0, b]) is such that∣∣∣∣ϑ′(ζ) −Ψϑ(ζ) −

∫ ζ

0
ψ(ζ − ℘)ϑ(℘) d℘ − ℵν(ζ) − ϖ(ζ, ϑ(ζ))

∣∣∣∣ ≤ θ, (20)

for all ζ ∈ [0, b], where θ ≥ 0 and Lℑ +MLϖ < 1, then there exists a unique functionℜ ∈ C([0, b]) that serves as the
solution to Equation (1) defined as

ℜ(ζ) = ψ(ζ)[ϑ0 + ℑ(ℜ(ζ))] +
∫ ζ

0
ψ(ζ − ℘)[ℵν(℘) + ϖ(℘,ℜ(℘))] d℘ (21)

such that

|ϑ(ζ) −ℜ(ζ)| ≤
bθ

[1 − (Lℑ +MLϖ)]σ(0)
σ(ζ) (22)

for all ζ ∈ [0, b], this implies that the integro–differential evolution Equation (1) is σ–semi–Ulam–Hyers stable.

Proof. Using the same process as previously described, we deduce that ∆ is strictly contractive with respect
to the metric (6), as Lℑ +MLϖ < 1. As a result, the Banach fixed–point theorem can be used to guarantee
that the integro–differential evolution Equation (1) is σ–semi–Ulam–Hyers stable.

However, keeping in mind (20) and the definition of ∆, we have that

|ϑ(ζ) − (∆ϑ)(ζ)| ≤ θ, ζ ∈ [0, b]. (23)

From (5), the definition of the metric d and by (23) implies that

sup
ζ∈[0,b]

|ϑ(ζ) −ℜ(ζ)|
σ(ζ)

≤
1

1 − (Lℑ +MLϖ)
sup
ζ∈[0,b]

bθ
σ(ζ)
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≤
1

1 − (Lℑ +MLϖ)
bθ
σ(0)

and as a result, by the definition of σ, it follows that (22) is satisfied.

Corollary 3.2. Let us consider a closed operatorΨ : D(Ψ) ⊂ C→ C. Moreover, assume thatψ(ζ) : D(Ψ) ⊂ C→ C,
ζ ≥ 0, ψ , 0 is a closed operator such that there exists M > 0 so that∫ ζ

0
ψ(ζ − ℘)σ(℘) d℘ ≤Mσ(ζ), (24)

for all ζ ∈ [0, b] and ℵ : 𭟋 → C is a bounded operator. In addition, let ϖ : [0, b] × C → C be a continuous function
for which there exists a constant Lϖ > 0 that satisfies the condition

|ϖ(ζ, ϑ) − ϖ(ζ, ω)| ≤ Lϖ|ϑ − ω| (25)

for all ζ ∈ [0, b], ϑ,ω ∈ C([0, b]) and ℑ : C([0, b],C) → C is a continuous function, and there exists a positive
constant Lℑ > 0 that fulfills the following condition

|ψ(ζ)ℑ(ϑ) − ψ(ζ)ℑ(ω)| ≤ Lℑ|ϑ − ω| (26)

for all ζ ∈ [0, b] and ϑ,ω ∈ C([0, b]).
If ϑ ∈ C([0, b]) is such that∣∣∣∣ϑ′(ζ) −Ψϑ(ζ) −

∫ ζ

0
ψ(ζ − ℘)ϑ(℘) d℘ − ℵν(ζ) − ϖ(ζ, ϑ(ζ))

∣∣∣∣ ≤ θ, (27)

for all ζ ∈ [0, b], where θ ≥ 0 and Lℑ +MLϖ < 1, then there exists a unique functionℜ ∈ C([0, b]) that serves as the
solution to Equation (1) defined as

ℜ(ζ) = ψ(ζ)[ϑ0 + ℑ(ℜ(ζ))] +
∫ ζ

0
ψ(ζ − ℘)[ℵν(℘) + ϖ(℘,ℜ(℘))] d℘ (28)

such that

|ϑ(ζ) −ℜ(ζ)| ≤
bσ(b)

[1 − (Lℑ +MLϖ)]σ(0)
θ (29)

for all ζ ∈ [0, b], which implies that the integro–differential evolution Equation (1) is Ulam–Hyers stable.

4. Stabilities on an unbounded interval

We will now examine the Ulam–Hyers–Rassias and the σ–semi–Ulam–Hyers stabilities of the integro–
differential evolution Equation (1) considering the unbounded interval [0,∞), for some fixed 0 ∈ R, rather
than considering a finite interval [0, b] (with 0, b ∈ R). The results for infinite intervals (−∞, 0], with
0 ∈ R, and for (−∞,∞) can be presented with the necessary adaptations. Therefore, let’s focus on the
integro–differential evolution equation,ℜ

′

(ζ) = Ψℜ(ζ) +
∫ ζ

0
ψ(ζ − ℘)ℜ(℘) d℘ + ℵν(ζ) + ϖ(ζ,ℜ(ζ)), ζ ∈ [0,∞),

ℜ(0) =ℜ0 + ℑ(ℜ(ζ)),
(30)

with ζ ∈ [0,∞), where 0 is a fixed real number,ℜ : [0,∞) → C is the state function, ν(·) ∈ L2([0,∞),C) is a
bounded function, Ψ : D(Ψ) ⊂ C→ C is a closed bounded operator, and ψ(ζ) : D(Ψ) ⊂ C→ C, with ζ ≥ 0,



R. Shah et al. / Filomat 39:27 (2025), 9627–9649 9636

ψ , 0, is a closed operator. Moreover, ℵ : 𭟋 → C is a bounded operator, where 𭟋 is a separable Hilbert
space, and ϖ : [0,∞) × C→ C and ℑ : C([0,∞),C)→ C are given functions to be specified later. Here, ϑ0 is
a given element of C.

A functionℜ : [0, b]→ C is called a mild solution of Equation (30) if

ℜ(ζ) = ψ(ζ)[ϑ0 + ℑ(ℜ(ζ))] +
∫ ζ

0
ψ(ζ − ℘)[ℵν(℘) + ϖ(℘,ℜ(℘))] d℘. (31)

Here, our approach will use a recurrence procedure based on the results obtained for the corresponding
finite interval case.

Let us consider a fixed non–decreasing continuous function σ : [0,∞)→ ( ȷ, ξ), for some ȷ, ξ > 0 and the
space Cb([0,∞)) of bounded continuous functions equipped with the metric [22]

db(ϑ,ω) = sup
ζ∈[0,∞)

|ϑ(ζ) − ω(ζ)|
σ(ζ)

. (32)

Theorem 4.1. Let us consider a closed bounded operatorΨ : D(Ψ) ⊂ C→ C. Moreover, assume thatψ(ζ) : D(Ψ) ⊂
C→ C, ζ ≥ 0, ψ , 0 is a closed operator such that there exists M > 0 so that∫ ζ

0
ψ(ζ − ℘)σ(℘) d℘ ≤Mσ(ζ), (33)

for all ζ ∈ [0,∞) and ℵ : 𭟋→ C is a bounded operator. In addition, let ϖ : [0,∞) ×C→ C be a bounded continuous
function for which there exists a constant Lϖ > 0 that satisfies the condition

|ϖ(ζ, ϑ) − ϖ(ζ, ω)| ≤ Lϖ|ϑ − ω| (34)

for all ζ ∈ [0,∞), ϑ,ω ∈ Cb([0,∞)) and ℑ : Cb([0,∞),C)→ C is a bounded continuous function, and there exists a
positive constant Lℑ > 0 that fulfills the following condition

|ψ(ζ)ℑ(ϑ) − ψ(ζ)ℑ(ω)| ≤ Lℑ|ϑ − ω| (35)

for all ζ ∈ [0,∞) and ϑ,ω ∈ Cb([0,∞)).
In addition, suppose that∫ ζ

0
ψ(ζ − ℘)ℜ(℘) d℘

is a bounded continuous function for any bounded continuous functionℜ.
If ϑ ∈ Cb([0,∞)) is such that∣∣∣∣ϑ′(ζ) −Ψϑ(ζ) −

∫ ζ

0
ψ(ζ − ℘)ϑ(℘) d℘ − ℵν(ζ) − ϖ(ζ, ϑ(ζ))

∣∣∣∣ ≤ σ(ζ), (36)

for all ζ ∈ [0,∞) and Lℑ +MLϖ < 1, then there exists a unique functionℜ ∈ Cb([0,∞)) that serves as the solution
to Equation (30) defined as

ℜ(ζ) = ψ(ζ)[ϑ0 + ℑ(ℜ(ζ))] +
∫ ζ

0
ψ(ζ − ℘)[ℵν(℘) + ϖ(℘,ℜ(℘))] d℘ (37)

such that

|ϑ(ζ) −ℜ(ζ)| ≤
Mσ(ζ)

1 − (Lℑ +MLϖ)
(38)

for all ζ ∈ [0,∞), which means that the integro–differential evolution Equation (30) is Ulam–Hyers–Rassias stable.
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Proof. For any m ∈N, we will define Im = [0,m]. By Theorem 2.1, there exists a unique bounded continuous
functionℜm ∈ C(Im) such that

ℜm(ζ) = ψ(ζ)[ϑ0 + ℑ(ℜm(ζ)] +
∫ ζ

0
ψ(ζ − ℘)[ℵν(℘) + ϖ(℘,ℜm(℘))] d℘ (39)

and

|ϑ(ζ) −ℜm(ζ)| ≤
Mσ(ζ)

1 − (Lℑ +MLϖ)
(40)

for all ζ ∈ Im. The uniqueness ofℜm implies that if ζ ∈ Im, then

ℜm(ζ) =ℜm+1(ζ) =ℜm+2(ζ) = · · · . (41)

For any ζ ∈ [0,∞), let us define m(ζ) ∈N as

m(ζ) = min{m ∈N | ζ ∈ Im}.

We also define a functionℜ : [0,∞)→ C by

ℜ(ζ) =ℜm(ζ)(ζ). (42)

For any ζ1 ∈ [0,∞), let m1 = m(ζ1). Then ζ1 ∈ IntIm1+1 and there exists an ȷ > 0 such thatℜ(ζ) = ℜm1+1(ζ)
for all ζ ∈ (ζ1 − ȷ, ζ1 + ȷ), (where IntIm1+1 represents the interior of the set Im1+1). By Theorem 2.1, ℜm1+1 is
continuous at ζ1, and so it isℜ.

Now, we will prove thatℜ satisfies

ℜ(ζ) = ψ(ζ)[ϑ0 + ℑ(ℜ(ζ))] +
∫ ζ

0
ψ(ζ − ℘)[ℵν(℘) + ϖ(℘,ℜ(℘))] d℘ (43)

and

|ϑ(ζ) −ℜ(ζ)| ≤
Mσ(ζ)

1 − (Lℑ +MLϖ)
. (44)

For an arbitrary ζ ∈ [0,∞), we choose m(ζ) such that ζ ∈ Im(ζ). By (39) and (42), we have

ℜ(ζ) =ℜm(ζ)(ζ) (45)

= ψ(ζ)[ϑ0 + ℑ(ℜm(ζ)(ζ))] +
∫ ζ

0
ψ(ζ − ℘)[ℵν(℘) + ϖ(℘,ℜm(ζ)(℘))] d℘

= ψ(ζ)[ϑ0 + ℑ(ℜ(ζ))] +
∫ ζ

0
ψ(ζ − ℘)[ℵν(℘) + ϖ(℘,ℜ(℘))] d℘.

Note that m(τ) ≤ m(ζ), for any τ ∈ Im(ζ), and it follows from (41) thatℜ(τ) = ℜm(τ)(τ) = ℜm(ζ)(τ), so the
last equality in (45) holds.

To prove (38), by (42) and (40), we have that for all ζ ∈ [0,∞),

|ϑ(ζ) −ℜ(ζ)| = |ϑ(ζ) −ℜm(ζ)(ζ)| ≤
Mσ(ζ)

1 − (Lℑ +MLϖ)
. (46)

Finally, we will prove the uniqueness ofℜ. Let us consider another bounded continuous functionℜ1
which satisfies (37) and (38), for all ζ ∈ [0,∞). By the uniqueness of the solution on Im(ζ) for any m(ζ) ∈ N,
we have thatℜ|Im(ζ) =ℜm(ζ) andℜ1|Im(ζ) satisfies (37) and (38) for all ζ ∈ Im(ζ), so

ℜ(ζ) =ℜ |Im(ζ) (ζ) =ℜ1 |Im(ζ) (ζ) =ℜ1(ζ).



R. Shah et al. / Filomat 39:27 (2025), 9627–9649 9638

Now, we will present adequate conditions for the σ–semi–Ulam–Hyers stability of the integro–differential
evolution Equation (30).

Theorem 4.2. Let us consider a closed bounded operatorΨ : D(Ψ) ⊂ C→ C. Moreover, assume thatψ(ζ) : D(Ψ) ⊂
C→ C, ζ ≥ 0, ψ , 0 is a closed operator such that there exists M > 0 so that∫ ζ

0
ψ(ζ − ℘)σ(℘) d℘ ≤Mσ(ζ), (47)

for all ζ ∈ [0,∞) and ℵ : 𭟋→ C is a bounded operator. In addition, let ϖ : [0,∞) ×C→ C be a bounded continuous
function for which there exists a constant Lϖ > 0 that satisfies the condition

|ϖ(ζ, ϑ) − ϖ(ζ, ω)| ≤ Lϖ|ϑ − ω| (48)

for all ζ ∈ [0,∞), ϑ,ω ∈ Cb([0,∞)) and ℑ : Cb([0,∞),C)→ C is a bounded continuous function, and there exists a
positive constant Lℑ > 0 that fulfills the following condition

|ψ(ζ)ℑ(ϑ) − ψ(ζ)ℑ(ω)| ≤ Lℑ|ϑ − ω| (49)

for all ζ ∈ [0,∞) and ϑ,ω ∈ Cb([0,∞)).
In addition, suppose that∫ ζ

0
ψ(ζ − ℘)ℜ(℘) d℘

is a bounded continuous function for any bounded continuous functionℜ.
If ϑ ∈ Cb([0,∞)) is such that∣∣∣∣ϑ′(ζ) −Ψϑ(ζ) −

∫ ζ

0
ψ(ζ − ℘)ϑ(℘) d℘ − ℵν(ζ) − ϖ(ζ, ϑ(ζ))

∣∣∣∣ ≤ θ, (50)

for all ζ ∈ [0,∞), where θ ≥ 0 and Lℑ +MLϖ < 1, then there exists a unique functionℜ ∈ Cb([0,∞)) that serves as
the solution to Equation (30) defined as

ℜ(ζ) = ψ(ζ)[ϑ0 + ℑ(ℜ(ζ))] +
∫ ζ

0
ψ(ζ − ℘)[ℵν(℘) + ϖ(℘,ℜ(℘))] d℘ (51)

such that

|ϑ(ζ) −ℜ(ζ)| ≤
bθ

[1 − (Lℑ +MLϖ)]σ(0)
σ(ζ) (52)

for all ζ ∈ [0,∞), which means that the integro–differential evolution Equation (30) is σ–semi– Ulam–Hyers stable.

Proof. The proof can be established by using the same method as previously used in Theorem 3.1. For that
reason, we leave it out here.

5. Examples

We now go over examples demonstrating the applicability and reliability of established findings.

Example 5.1. Let us consider the integro–differential evolution equation with nonlocal condition of the form
ℜ
′(ζ) =

9
2
ℜ(ζ) +

1
4

∫ ζ

0
sin(ζ − ℘)ℜ(℘) d℘ +

1
7
ν(ζ) +

1
30

sin(ℜ(ζ)) −
1
20

cos(ℜ(ζ)), ζ ∈ [0, 1],

ℜ(0) =
ℜ(ζ)

90 +ℜ(ζ)
.

(53)
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We know that the mild solution of this equation is

ℜ(ζ) = sin(ζ)
[
ℜ(ζ)

90 +ℜ(ζ)

]
+

1
4

∫ ζ

0
sin(ζ − ℘)

[1
7
ν(℘) +

1
30

sin(ℜ(℘)) −
1

20
cos(ℜ(℘))

]
d℘. (54)

We observe that all the conditions of Theorem 2.1 are fulfilled in this case. In fact,Ψ : D(Ψ) ⊂ C→ C such that
Ψℜ(ζ) = 9

2ℜ(ζ) is a closed operator; ψ(ζ) : D(Ψ) ⊂ C → C defined by ψ(ζ − ℘) = 1
4 sin(ζ − ℘) is also a closed

operator; there exists M > 0 such that∫ ζ

0
ψ(ζ − ℘)σ(℘) d℘ =

1
4

∫ ζ

0
sin(ζ − ℘)℘d℘

=
1
4

(ζ cos(ζ) − sin(ζ))

≤
1
4
ζ

= Mσ(ζ),

where σ : [0, 1] → (0,∞) is the non–decreasing continuous function given by σ(ζ) = ζ and ℵ : 𭟋 → C such
that ℵν(ζ) = 1

7ν(ζ) is a bounded operator. Moreover, ϖ : [0, 1] × C → C such that ϖ(ζ,ℜ(ζ)) = 1
30 sin(ℜ(ζ)) −

1
20 cos(ℜ(ζ)) is a continuous function that satisfies the condition

|ϖ(ζ, ϑ) − ϖ(ζ, ω)| =
∣∣∣∣∣( 1

30
sin(ϑ) −

1
20

cos(ϑ)
)
−

( 1
30

sin(ω) −
1

20
cos(ω)

)∣∣∣∣∣
≤

1
30
| sin(ϑ) − sin(ω)| +

1
20
| cos(ϑ) − cos(ω)|

≤
1
30
|ϑ − ω| +

1
20
|ϑ − ω|

=
1
12
|ϑ − ω|

= Lϖ|ϑ − ω|, ϑ, ω ∈ C, ζ ∈ [0, 1].

Further, ℑ : C([0, 1],C)→ C such that ℑ(ℜ(ζ)) = ℜ(ζ)
90+ℜ(ζ) is a continuous function that satisfies the condition

|ψ(ζ)ℑ(ϑ) − ψ(ζ)ℑ(ω)| =
∣∣∣∣∣ϑ sin(ζ)

90 + ϑ
−
ω sin(ζ)
90 + ω

∣∣∣∣∣
=

∣∣∣∣∣ [ϑ(90 + ω) − ω(90 + ϑ)] sin(ζ)
(90 + ϑ)(90 + ω)

∣∣∣∣∣
≤

1
90
|ϑ − ω|

= Lℑ|ϑ − ω|, ϑ, ω ∈ C, ζ ∈ [0, 1].

Let ϑ ∈ C([0, 1]) is such that∣∣∣∣∣∣ϑ′(ζ) −
9
2
ϑ(ζ) −

1
4

∫ ζ

0
sin(ζ − ℘)ϑ(℘) d℘ −

1
7
ν(ζ) −

1
30

sin(ϑ(ζ)) +
1

20
cos(ϑ(ζ))

∣∣∣∣∣∣ ≤ σ(ζ) = ζ, ζ ∈ [0, 1].

This demonstrates the Ulam–Hyers–Rassias stability of the integro–differential evolution Equation (53). Furthermore,
taking into account the mild solution (54) and Lℑ +MLϖ = 0.03194444444 < 1, we have

|ϑ(ζ) −ℜ(ζ)| ≤
ζ

4
[
1 −

(
1
90 +

1
4 ×

1
12

)] , ζ ∈ [0, 1].
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Example 5.2. Consider the following integro–differential evolution equation with nonlocal condition of the form
ℜ
′(ζ) =

1
25
+

1
15

sin(ℜ(ζ)) +
1

12

∫ ζ

0
(ζ − ℘)3

ℜ(℘) d℘ +
ν(ζ)

9
ln

(
ν(ζ) + 1

5

)
+

cos(ℜ(ζ))
10(ζ + 2)

, ζ ∈ [0, 1],

ℜ(0) =ℜ0 +
1
7
ℜ(ζ).

(55)

We know that the mild solution of this equation is

ℜ(ζ) =
1
7
ζ3
ℜ(ζ) +

∫ ζ

0
(ζ − ℘)3

[
ν(℘)

9
ln

(ν(℘) + 1
5

)
+

cos(ℜ(℘))
10(℘ + 2)

]
d℘. (56)

It is obvious that each condition stated in the Theorem 3.1 is satisfied. In fact,Ψ : D(Ψ) ⊂ C→ C such that

Ψℜ(ζ) =
1

25
+

1
15

sin(ℜ(ζ))

is a closed operator; ψ(ζ) : D(Ψ) ⊂ C → C defined by ψ(ζ − ℘) = 1
12 (ζ − ℘)3 is also a closed operator; there exists

M > 0 such that∫ ζ

0
ψ(ζ − ℘)σ(℘) d℘ =

1
12

∫ ζ

0
(ζ − ℘)3e℘d℘ ≤

1
2

eζ =Mσ(ζ),

where σ : [0, 1] → (0,∞) is the non–decreasing continuous function given by σ(ζ) = eζ and ℵ : 𭟋 → C such that
ℵν(ζ) = ν(ζ)

9 ln
(
ν(ζ)+1

5

)
is a bounded operator. Moreover, ϖ : [0, 1] × C → C such that ϖ(ζ,ℜ(ζ)) = cos(ℜ(ζ))

10(ζ+2) is a
continuous function that satisfies the condition

|ϖ(ζ, ϑ) − ϖ(ζ, ω)| =
∣∣∣∣∣ cos(ϑ)
10(ζ + 2)

−
cos(ω)

10(ζ + 2)

∣∣∣∣∣
≤

1
10
|ϑ − ω|

= Lϖ|ϑ − ω|, ϑ, ω ∈ C, ζ ∈ [0, 1].

Further, ℑ : C([0, 1],C)→ C such that ℑ(ℜ(ζ)) = 1
7ℜ(ζ) is a continuous function that satisfies the condition

|ψ(ζ)ℑ(ϑ) − ψ(ζ)ℑ(ω)| =

∣∣∣∣∣∣ζ3

7
ϑ −

ζ3

7
ω

∣∣∣∣∣∣
≤

1
7
|ϑ − ω|

= Lℑ|ϑ − ω|, ϑ, ω ∈ C, ζ ∈ [0, 1].

Let ϑ ∈ C([0, 1]) be such that∣∣∣∣∣∣ϑ′(ζ) −
1

25
−

1
15

sin(ϑ)(ζ) −
1
12

∫ ζ

0
(ζ − ℘)3ϑ(℘) d℘ −

ν(ζ)
9

ln
(
ν(ζ) + 1

5

)
−

cos(ϑ)(ζ)
10(ζ + 2)

∣∣∣∣∣∣ ≤ θ, ζ ∈ [0, 1].

Therefore, this demonstrates the σ–semi–Ulam–Hyers stability of the integro–differential evolution Equation (55).
Furthermore, considering the mild solution (56) and Lℑ +MLϖ = 0.1928571429 < 1, we have

|ϑ(ζ) −ℜ(ζ)| ≤
θ

1 −
[

1
7 +

1
2 ×

1
10

] eζ, ζ ∈ [0, 1].
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Example 5.3. Consider the integro–differential evolution equation with nonlocal condition of the formℜ
′(ζ) = tan(ζ)(sin(ζ) − ζ +

√

5) +
∫ ζ

0
cos(ζ − ℘)ℜ(℘) d℘ +

ζ
5
ν(ζ) +

ℜ(ζ)
3 cos2(ζ)

, ζ ∈ [0, 10],

ℜ(0) =ℜ0 + sin(ℜ(ζ)).
(57)

We know that the mild solution of this equation is

ℜ(ζ) = cos(ζ) sin(ℜ(ζ)) +
∫ ζ

0
cos(ζ − ℘)

[
1
5
ν(℘) +

1
3
ℜ(℘)

cos2(℘)

]
d℘. (58)

We observe that this instance satisfies each condition of Corollary 3.2. In fact, Ψ : D(Ψ) ⊂ C → C such that
Ψℜ(ζ) = tan(ζ)(sin(ζ) − ζ +

√
5) is a closed operator; ψ(ζ) : D(Ψ) ⊂ C→ C defined by ψ(ζ − ℘) = cos(ζ − ℘) is

also a closed operator; there exists M > 0 such that∫ ζ

0
ψ(ζ − ℘)σ(℘) d℘ =

∫ ζ

0
cos(ζ − ℘)e2℘d℘ ≤

2
3

e2ζ =Mσ(ζ),

where σ : [0, 10] → (0,∞) is the non–decreasing continuous function given by σ(ζ) = e2ζ and ℵ : 𭟋 → C such that
ℵν(ζ) = ζ

5ν(ζ) is a bounded operator. Moreover, ϖ : [0, 10] × C→ C such that ϖ(ζ,ℜ(ζ)) = ℜ(ζ)
3 cos2(ζ) is a continuous

function that satisfies the condition

|ϖ(ζ, ϑ) − ϖ(ζ, ω)| =
∣∣∣∣∣ ϑ

3 cos2(ζ)
−

ω

3 cos2(ζ)

∣∣∣∣∣
≤

1
3
|ϑ − ω|

= Lϖ|ϑ − ω|, ϑ, ω ∈ C, ζ ∈ [0, 10].

In addition,ℑ : C([0, 10],C)→ C such thatℑ(ℜ(ζ)) = sin(ℜ(ζ)) is a continuous function that satisfies the condition

|ψ(ζ)ℑ(ϑ) − ψ(ζ)ℑ(ω)| =
∣∣∣ cos(ζ) sin(ϑ) − cos(ζ) sin(ω)

∣∣∣
≤ | sin(ϑ) − sin(ω)|
≤ |ϑ − ω|

≤
1
2
|ϑ − ω|

= Lℑ|ϑ − ω|, ϑ, ω ∈ C, ζ ∈ [0, 10].

Let ϑ ∈ C([0, 10]) is such that∣∣∣∣∣∣ϑ′(ζ) − tan(ζ)(sin(ζ) − ζ +
√

5) −
∫ ζ

0
cos(ζ − ℘)ϑ(℘) d℘ −

ζ
5
ν(ζ) −

1
3
ϑ(ζ)

cos2(ζ)

∣∣∣∣∣∣ ≤ θ, ζ ∈ [0, 10].

This demonstrates the Ulam–Hyers stability of the integro–differential evolution Equation (57). Furthermore, taking
into account the mild solution (58) and Lℑ +MLϖ = 0.7222222222 < 1, we have

|ϑ(ζ) − ℑ(ζ)| ≤
10e20

1 −
[

1
2 +

2
3 ×

1
3

] θ, ζ ∈ [0, 10].

Example 5.4. We consider the following integro–differential evolution equation with nonlocal condition of the form
ℜ
′(ζ) =

3
3 + eℜ(ζ)

+

∫ ζ

0
(ζ − ℘)ℜ(℘) d℘ + sec(ν(ζ)) +

ℜ(ζ)
(ζ + 9)2 , ζ ∈ [0,∞),

ℜ(0) =ℜ0 +
1
7

lnℜ(ζ).

(59)
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We know that the mild solution of this equation is

ℜ(ζ) =
ζ
7

lnℜ(ζ) +
∫ ζ

0
(ζ − ℘)

[
sec(ν(ζ)) +

ℜ(℘)
(℘ + 9)2

]
d℘. (60)

We observe that all the conditions of Theorem 4.1 are here satisfied. In fact, Ψ : D(Ψ) ⊂ C → C such that
Ψℜ(ζ) = 3

3+eℜ(ζ) is a closed bounded operator; ψ(ζ) : D(Ψ) ⊂ C→ C defined byψ(ζ−℘) = ζ−℘ is a closed operator;
there exists M > 0 such that∫ ζ

0
ψ(ζ − ℘)σ(℘) d℘ =

∫ ζ

0
(ζ − ℘)e3℘d℘ ≤

1
9

e3ζ =Mσ(ζ),

where σ : [0,∞) → (0,∞) is the non–decreasing continuous function given by σ(ζ) = e3ζ and ℵ : 𭟋 → C such that
ℵν(ζ) = sec(ν(ζ)) is a bounded operator. Moreover, ϖ : [0,∞) × C→ C such that ϖ(ζ,ℜ(ζ)) = ℜ(ζ)

(ζ+9)2 is a bounded
continuous function that satisfies the condition

|ϖ(ζ, ϑ) − ϖ(ζ, ω)| =
∣∣∣∣∣ ϑ

(ζ + 9)2 −
ω

(ζ + 9)2

∣∣∣∣∣
≤

1
9
|ϑ − ω|

= Lϖ|ϑ − ω|, ϑ, ω ∈ C, ζ ∈ [0,∞).

Further, ℑ : Cb([0,∞),C) → C such that ℑ(ℜ(ζ)) = 1
7 lnℜ(ζ) is a bounded continuous function that satisfies the

condition

|ψ(ζ)ℑ(ϑ) − ψ(ζ)ℑ(ω)| =
∣∣∣∣∣ζ7 lnϑ −

ζ
7

lnω
∣∣∣∣∣

≤
1
7
|ϑ − ω|

= Lℑ|ϑ − ω|, ϑ, ω ∈ C, ζ ∈ [0,∞).

Let ϑ ∈ Cb([0,∞)) is such that∣∣∣∣∣∣ϑ′(ζ) −
3

3 + eϑ(ζ)
−

∫ ζ

0
(ζ − ℘)ϑ(℘) d℘ − sec(ν(ζ)) −

ϑ(ζ)
(ζ + 9)2

∣∣∣∣∣∣ ≤ σ(ζ) = e3ζ, ζ ∈ [0,∞).

This demonstrates the Ulam–Hyers–Rassias stability of the integro–differential evolution Equation (59). Furthermore,
considering the mild solution (60) and Lℑ +MLϖ = 0.1552028219 < 1, we have

|ϑ(ζ) −ℜ(ζ)| ≤
e3ζ

9
[
1 −

(
1
7 +

1
9 ×

1
9

)] , ζ ∈ [0,∞).

Example 5.5. Finally, we will consider the integro–differential evolution equation with nonlocal condition of the
form 

ℜ
′(ζ) =

arccos(ℜ(ζ))
ζ2 + 1

+
1

29

∫ ζ

0
eζ−℘ℜ(℘) d℘ + e

1
13 ν(ζ)+2 +

arctan(ℜ(ζ))
36

, ζ ∈ [0,∞),

ℜ(0) =ℜ0 + e
1
14ℜ(ζ).

(61)

We know that the mild solution of this equation is

ℜ(ζ) = e
1
14ℜ(ζ)+ζ +

∫ ζ

0
eζ−℘

[
e

1
13 ν(℘)+2 +

arctan(ℜ(℘))
36

]
d℘. (62)



R. Shah et al. / Filomat 39:27 (2025), 9627–9649 9643

We observe that all the conditions of Theorem 4.2 are here satisfied. In fact, Ψ : D(Ψ) ⊂ C → C such that
Ψℜ(ζ) = arccos(ℜ(ζ))

ζ2+1 is a closed bounded operator; ψ(ζ) : D(Ψ) ⊂ C → C defined by ψ(ζ − ℘) = 1
29 eζ−℘ is also a

closed bounded operator; there exists M > 0 such that∫ ζ

0
ψ(ζ − ℘)σ(℘) d℘ =

1
29

∫ ζ

0
eζ−℘(0.2 + e0.2℘) d℘ ≤

1
20

eζ =Mσ(ζ),

where σ : [0,∞)→ (0,∞) is the non–decreasing continuous function given by σ(ζ) = 0.2+ e0.2ζ and ℵ : 𭟋→ C such
that ℵν(ζ) = e

1
13 ν(ζ)+2 is a bounded operator. Moreover, ϖ : [0,∞) × C → C such that ϖ(ζ,ℜ(ζ)) = arctan(ℜ(ζ))

36 is a
bounded continuous function that satisfies the condition

|ϖ(ζ, ϑ) − ϖ(ζ, ω)| =
∣∣∣∣∣arctan(ϑ)

36
−

arctan(ω)
36

∣∣∣∣∣
≤

1
36
|ϑ − ω|

= Lϖ|ϑ − ω|, ϑ, ω ∈ C, ζ ∈ [0,∞).

Furthermore, ℑ : Cb([0,∞),C)→ C such that ℑ(ℜ(ζ)) = e
1
14ℜ(ζ) is a bounded continuous function that satisfies the

condition

|ψ(ζ)ℑ(ϑ) − ψ(ζ)ℑ(ω)| =
∣∣∣∣eζe ϑ

14 − eζe
ω
14

∣∣∣∣
≤

1
14
|ϑ − ω|

= Lℑ|ϑ − ω|, ϑ, ω ∈ C, ζ ∈ [0,∞).

Let ϑ ∈ Cb([0,∞)) is such that∣∣∣∣∣∣ϑ′(ζ) −
arccos(ϑ(ζ))
ζ2 + 1

−
1
29

∫ ζ

0
eζ−℘ϑ(℘) d℘ − e

1
13 ν(ζ)+2

−
arctan(ϑ(ζ))

36

∣∣∣∣∣∣ ≤ θ, ζ ∈ [0,∞).

This demonstrates the σ–semi–Ulam–Hyers stability of the integro–differential evolution Equation (61). Additionally,
considering the mild solution (62) and Lℑ +MLϖ = 0.07281746032 < 1, we have

|ϑ(ζ) −ℜ(ζ)| ≤
20θ(0.2 + e0.2ζ)

6
5

[
1 −

(
1

14 +
1
20 ×

1
36

)] , ζ ∈ [0,∞).

6. Application

In this section, we describe the application that we used to assess the validity of our theoretical claims:
the integro–differential representation for the spread of infectious diseases in epidemiology that have an
effect on cognition.

6.1. Simulating the transmission of infectious diseases with memory effects

Direct or indirect contact between individuals can result in the transmission of infectious diseases, which
are mostly brought on by pathogenic microorganisms such as bacteria, viruses, parasites, or fungi. For
public health planning and response, understanding how these diseases spread and change over time is
essential. The susceptible–infected–Recovered (SIR) model is one of the classic models of infectious disease
transmission that offers a fundamental framework for comprehending the dynamics of disease propagation.
These models describe variations in the proportion of susceptible, infected, and recovered people within a
population using equations. These models, however, frequently make the unreal assumption that the rates
of transmission and recovery remain constant across time.
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Indeed, memory affects the way that past conditions and experiences affect present and future trans-
mission rates, which can have an impact on the dynamics of infectious disease transmission. For instance,
past health exposure might impact an individual’s immunity, and previous epidemics can alter population
behavior like vaccination uptake or social distancing. Advanced models include memory effects in the
equations regulating the transmission of disease in order to represent these complicated procedures. By in-
corporating previous states into the present dynamics of disease transmission, these models can incorporate
these memory effects through the use of integro–differential, differential, and integral equations.

Furthermore, infectious diseases have a variety of effects on cognition. Infections can cause fever, ex-
haustion, or neurological problems, which can be directly harmful to cognitive processes including memory,
concentration, and decision–making. Furthermore, the anxiety and stress that come with disease outbreaks
might affect behavioral responses and increase cognitive problems. The realism of disease propagation
simulations is improved by our technique, which incorporates cognitive variables into epidemiological
models, including the impact of disease–induced cognitive changes on decision–making and adherence to
preventive measures.

By taking into account variables like changing infectiousness over time and the delayed impacts of
interventions, integro–differential evolution equations provide a more sophisticated simulation of epi-
demiological processes. By using advanced computational techniques and numerical approaches to solve
these improved models, researchers are able to simulate different situations and create efficient plans for
the control and prevention of disease. We can strengthen the efficacy of public health interventions, better
address the cognitive effects of infectious diseases on individuals and populations, and better understand
the dynamics of disease by employing integro–differential evolution equations.

Figure 1: 2D plot of infection rates over time, showing differences between models without memory effects
and with memory effects.

In order to demonstrate infection rates over time, we can make a plot that illustrates the relationship
between models with and without memory effects. This graph shows how the dynamics of infection rates
over time are influenced by memory effects in disease transmission models and how these dynamics may
be modified by various parameters. The graph is made up of visual data that shows how memory effects
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affect the dynamics of infection rates over time in models of disease transmission. We can visually examine
the relationship or connection that these points display over the specified time period by graphing them
and connecting them. With MATLAB and MATHEMATICA, the obtained answers were simulated using
2D and 3D graphs. As seen in Figures 1 and 2, the resulting graph can have the following features:

Rapid Deterioration Over Time: A slow decrease in the infection rate is one important aspect. In the
absence of memory effects, the change happens quickly, indicating that infection rates will decrease rapidly
over time. The decrease is slower in memory effects, indicating a more gradual decrease in infection rates
over time.

Population Density and Exponential Growth: The infection rate grows exponentially with population
density, which is another characteristic. This feature is present in both models, suggesting that increased
infection rates are a function of population densities.

Variations: Periodic variations in the infection rate are a specific characteristic of the memory effects
hypothesis. These variances show how memory effects affect infection rates over time. Without memory
effects, the model is free of this characteristic and declines smoothly and gradually.

External attributes: In the absence of memory effects, the 3D surface is smooth and predictable, exhibiting
a distinct pattern of steady development with increasing population density and rapid degeneration over
time. When memory effects are present, the surface becomes more convoluted and unpredictable as a result
of the combined impacts of oscillations and slower decay.

Figure 2: 3D plot of infection rates with and without memory effects.

It’s crucial to understand that temporal dynamics are drastically changed when memory effects are
included in infection rate models. Instead of fast decay in the absence of memory, there is delayed decay
and oscillations in the presence of memory. These changes impact not only the prediction of infection rates
but also the understanding of seasonal variations and disease persistence in the study of epidemiology.

The integro–differential evolution equation for the transmission of infectious diseases with memory
effects is

ℜ
′(ζ) =

3
10
ℜ(ζ) +

1
10

∫ ζ

0
e−

1
2 (3ζ−2℘)

ℜ(℘) d℘ +
3

10
tan(ζ) −

1
2

sin2(ℜ(ζ)), ζ ∈ [0, 10],

ℜ(0) =
9

10
ℜ(ζ),

(63)
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in which ℜ′(ζ) is the rate of change of the infected population over time ζ. It explains the changes in the
number of infections throughout time. We know that the mild solution of this equation is

ℜ(ζ) =
1

10
e−

3
2 ζ

[ 9
10
ℜ(ζ)

]
+

1
10

∫ ζ

0
e−

1
2 (3ζ−2℘)

[ 3
10

tan(℘) −
1
2

sin2(ℜ(℘))
]

d℘. (64)

We realize that all the conditions of Corollary 3.2 are here satisfied.
In order to establish a connection between the system (63) and our provided integro–differential evolu-

tion Equation (1), we can identify the following:

• Ψℜ(ζ) = 3
10ℜ(ζ) represents the rate of new infections, and the constant rate at which new infections

occur is denoted by Ψ = 3
10 . It implies that the number of new infections is proportional to the total

number of infections at any particular time.

• ψ(ζ − ℘) = 1
10 e−

1
2 (3ζ−2℘) represents that the influence of previous infections reduces exponentially with

time, with the influence of more recent infections being stronger on the current state, which fulfills
the condition∫ ζ

0
ψ(ζ − ℘)σ(℘) d℘ =

1
10

∫ ζ

0
e−

1
2 (3ζ−2℘)e19℘d℘ ≤

1
200

e19ζ =Mσ(ζ),

where σ : [0, 10]→ (0,∞) is the non–decreasing continuous function σ(ζ) = e19ζ.

• ℵν(ζ) = 3
10 tan(ζ) represents external interventions or control measures, and ℵ = 3

10 sets the impact
of these interventions on lowering infection rates. In this case, periodic interventions that could
influence the spread of infectious diseases are modeled by tan(ζ).

• ϖ(ζ,ℜ(ζ)) = − 1
2 sin2(ℜ(ζ)) represents the infection–dynamic saturation effect. It simulates how the

number of affected people could rise while the rate of new infections might fall. Herd immunity
and restricted transmission possibilities are two examples of factors that may affect this non–linear
behavior. It fulfils the condition

|ϖ(ζ, ϑ) − ϖ(ζ, ω)| =
∣∣∣∣∣12 sin2(ϑ) −

1
2

sin2(ω)
∣∣∣∣∣

≤
1
2
|ϑ − ω|

= Lϖ|ϑ − ω|, ϑ, ω ∈ C, ζ ∈ [0, 10].

• ℑ(ℜ(ζ)) = 9
10ℜ(ζ) represents a feedback mechanism reflecting the memory and dynamics of the

system, where the current state depends on a future state. It fulfils the condition

|ψ(ζ)ℑ(ϑ) − ψ(ζ)ℑ(ω)| =
∣∣∣∣∣ 1
10

e−
3
2 ζ

9
10
ϑ −

1
10

e−
3
2 ζ

9
10
ω

∣∣∣∣∣
=

∣∣∣∣∣ 1
10

e−
3
2 ζ

( 9
10
ϑ −

9
10
ω
)∣∣∣∣∣

≤
9

10
|ϑ − ω|

= Lℑ|ϑ − ω|, ϑ, ω ∈ C, ζ ∈ [0, 10].

Let ϑ ∈ C([0, 10]) is such that∣∣∣∣∣∣ϑ′(ζ) −
3

10
ϑ(ζ) −

1
10

∫ ζ

0
e−

1
2 (3ζ−2℘)ϑ(℘) d℘ −

3
10

tan(ζ) +
1
2

sin2(ϑ)(ζ)

∣∣∣∣∣∣ ≤ θ, ζ ∈ [0, 10].
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This demonstrates the Ulam–Hyers stability of the integro–differential evolution Equation (63). In addition,
considering the mild solution (64) and Lℑ +MLϖ = 0.9025 < 1, we have

|ϑ(ζ) − ℑ(ζ)| ≤
10e190θ

1 −
[

9
10 +

1
200 ×

1
2

] , ζ ∈ [0, 10].

Figure 3: A simulation showing the dynamics of infection over time.

The graph 3 illustrates the evolution of infection dynamics impacted by memory effects, infection rate,
external interventions, and nonlinear saturation effects. It shows the number of infected individuals over
time ζ.

7. Conclusion

Nowadays, studies on the stability of differential equations have made a significant contribution to
the literature. Specifically, the literature has discussed the σ–semi–Ulam–Hyers stability of differential
equations, where a variety of conditions have been applied and the Banach fixed–point theorem has been
used to obtain most results. In this paper, we have studied the Ulam–Hyers, the Ulam–Hyers–Rassias, and
the σ–semi–Ulam–Hyers stability of the integro–differential evolution equations with nonlocal conditions
through the Banach fixed–point theorem. This study is crucial for the mathematical community, especially
for researchers who deal with differential equation problems.
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