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Abstract. We examined and analyzed the characteristics of generalized convex functions defined on fractal
sets. We then conducted a comprehensive analysis of the properties associated with these generalized con-
vex functions, and these characteristics were utilized in proving two significant inequalities: the extended
Jensen’s inequality and the generalized Hermite-Hadamard inequality. Through these inequalities, we
derived valuable insights into the behavior of these functions and their relationships with other mathemat-
ical concepts. Additionally, practical applications that showcase the significance and applicability of these
generalized inequalities in various fields are discussed.

1. Introduction

Fractional calculus has advanced significantly recently, especially in developing local fractional deriva-
tives. These mathematical tools are now widely used to model complex systems with memory effects and
nonlocal behaviors in physics, engineering, and biology. This hybrid operator combines features of both
Riemann-Liouville and Caputo fractional derivatives. It has proven effective for solving nonlinear fractional
differential equations with nonlocal initial conditions by establishing connections to cotangent Volterra inte-
gral equations. These new operators maintain beneficial mathematical properties while extending classical
fractional calculus concepts. Numerical methods for fractional systems have also improved. Wang [1]
used the local fractional derivative for the first time in his research to define a novel fractional low-pass
electrical transmission lines model (LPETLM). Two special functions are used in conjunction with Yang’s
non-differentiable transformation to find the non-differentiable (ND) exact solutions (ESs) by defining the
Mittag-Leffler function (MLF) on the Cantor set (CS). Saleh et al. [2] recently worked on integral inequalities
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utilizing a new identity involving fractal–fractional integrals. This identity enabled them to use general-
ized convexity to derive new Bullen-type inequalities. By giving a variety of conclusions for fractional
integrals and fractal calculus and a revision of the well-known Bullen-type inequality, this work represents
a substantial advancement in the field of fractal–fractional inequalities. Lakhdari et al. [3] addressed fractal
sets and corrected Simpson-type inequalities. Based on an introduced identity, they used the generalized
s-convexity and s-concavity of the local fractional derivative to derive certain error bounds for the formula
under consideration. Alqhtani et al. [4] created the Mittag-Leffler-Caputo-Fabrizio derivative, which uses
a special kernel based on Mittag-Leffler functions. Their numerical approach shows good convergence
properties as computational steps become smaller. Researchers have also created specialized fractional
tools for specific applications. For quantum physics problems, Sadek et al. [5] combined fractional calculus
with trigonometric functions to develop new analysis methods. The field has also expanded to include
fractal mathematics. Further, Sadek et al. [6] also generalized fractal derivatives by incorporating arbitrary
functions, developing new transform methods and chain rules for solving differential equations in fractal
spaces. These advances demonstrate how fractional calculus continues to grow as researchers develop both
theoretical foundations and practical applications across multiple scientific disciplines.

A function Ȟ : I ⊆ R → R is considered convex on the interval I when, for any s1, s2 ∈ I and µ ∈ [0, 1],
the subsequent inequality is satisfied:

Ȟ
(
µs1 + (1 − µ)s2

)
≤ µȞ (s1) + (1 − µ)Ȟ (s2) .

In other words, a function Ȟ is convex on I if the value of the function at the midpoint of any interval in I
is less than or equal to the weighted average of the function values at the endpoints of the interval, where
the weights are determined by the parameter µ.

Definition 1.1. [7] Suppose ϱ : J → R is a function that is both non-negative and non-zero. We define an ϱ-convex
function as Ȟ : I → R that satisfies the following conditions: (1) Ȟ is non-negative, and (2) for any s1, s2 ∈ I and
µ ∈ [0, 1].

Ȟ((1 − µ)s1 + µs2) ≤ ϱ(1 − µ)Ȟ(s1) + ϱ(µ)Ȟ(s2). (1)

If this inequality is reversed, then Ȟ is said to be ϱ-concave.

Convex functions hold great importance in various fields such as biology, economics, optimization,
and more [8, 9]. They are associated with several significant inequalities that have been established in
the literature. Among these, the well-known Jensen’s inequality and Hermite-Hadamard’s inequality are
particularly noteworthy.

According to Jensen’s inequality [10], if Ȟ is a convex function defined on the interval [a, b], then for any
si ∈ [a, b] and µi ∈ [0, 1] (i = 1, 2, . . . ,n) with the condition that

∑n
i=1 µi = 1, the following inequality holds:

Ȟ

 n∑
i=1

µisi

 ≤ n∑
i=1

µiȞ (si) .

Hermite-Hadamard’s inequality [11] can be stated in simpler language as follows:
If we have a function Ȟ that is convex on the interval [u, v], where u < v and if the function is also

defined for all values between u and v, then the average value of Ȟ over this interval is always greater than
or equal to the integral of Ȟ over the same interval i.e.

Ȟ
(u + v

2

)
≤

1
v − u

∫ v

u
Ȟ(s)ds ≤

Ȟ(u) + Ȟ(v)
2

.

In recent times, there has been a noticeable upsurge of interest among scientists and engineers in the
realm of fractals. Fractal sets, as defined by Mandelbrot, exhibit a Hausdorff dimension that surpasses
their topological dimension [12–16]. A multitude of researchers have dedicated their efforts to exploring
the properties of functions defined on fractal spaces, employing diverse approaches to fractional calculus
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within this domain (see [17–21]). Notably, Yang’s comprehensive analysis of local fractional functions on
fractal spaces in [20] encompasses topics such as local fractional calculus and the monotonicity of functions.

Building upon comprehensive research in the field, our main goal is to introduce the concept of gener-
alized convex functions on fractal sets and present associated results. This encompasses the development
of the generalized Jensen’s inequality and the generalized Hermite-Hadamard inequality. Our particular
emphasis centers on convexity, as we note a profound interconnection between concave functions and their
convex equivalents, where a function Ȟ is concave if and only if −Ȟ is convex. Consequently, any results
concerning convex functions can be readily adapted for concave functions. Some of recent works related to
fractional calculus and inequalities can be found in the following articles and the references therein [22–28].

The article follows this structure:
Section 2 dives into how we work with numbers on fractals, explaining things like local fractional

derivatives and integrals. In Section 3, we define a new kind of function on fractals and explore what
makes them tick. Then, in Section 4, we introduce two special rules for fractals: the generalized Jensen’s
inequality and the generalized Hermite-Hadamard’s inequality. We show why they matter. Finally, in
Section 5, we see how these rules play out in real-life situations on fractals.

2. Preliminaries

The definitions of the local fractional derivative and local fractional integral on the real number line set
Rr can be described using the concept proposed by Gao-Yang-Kang. A new theory called Yang’s fractional
sets, introduced by Yang [20], provides valuable insights into the following aspects.

For values of 0 < r ≤ 1, a set consisting of various element sets can be defined, referred to as the r-type
set.
Zr : The set of integers with an r-type is defined as follows: {0r,±1r,±2r, · · · ,±nr, · · · }.
Qr : The set of rational numbers with an r-type is defined as follows:

{
mr = (p/q)r : p ∈ Z, q , 0

}
.

Jr : The set of irrational numbers with an r-type is defined as follows:
{
mr , (p/q)r : p ∈ Z, q , 0

}
.

Rr : The set of real numbers with an r-type is defined as follows: Rr = Qr
∪ Jr.

If ar, br and cr belong to the set Rr of real line numbers, then
(1) ar + br and arbr belong to the set Rr;
(2) ar + br = br + ar = (a + b)r = (b + a)r;
(3) ar + (br + cr) = (a + b)r + cr;
(4) arbr = baar = (ab)r = (ba)r;
(5) ar (brcr) = (arbr) cr

(6) ar (br + cr) = arbr + arcr;
(7) ar + 0r = 0r + ar = ar and ar1r = 1rar = ar.
Now, let’s introduce some definitions regarding local fractional calculus on the real number line set Rr.

Definition 2.1. [20] If we have a function Ȟ : R→ Rr, Ȟ → Ȟ(s) we say that Ȟ is locally fractionally continuous
at Ȟ0 if, for any positive number ‘ε‘, there is a positive number δ such that∣∣∣Ȟ(s) − Ȟ (s0)

∣∣∣ < εr

holds for |s − s0| < δ, where ε, δ ∈ R. If Ȟ(s) is local fractional continuous on the interval (a, b), we denote
Ȟ(s) ∈ Cr(a, b).

Definition 2.2. [20] The local fractional derivative of Ȟ(s) with an order of r at s = s0 is determined as

Ȟ(r) (s0) =
drȞ(s)

dsr

∣∣∣∣∣∣
s=s0

= lim
s→s0

∆r
(
Ȟ(s) − Ȟ (s0)

)
(
s − Ȟ0

)r

where ∆r
(
Ȟ(s) − Ȟ (s0)

)
= Γ(1 + r)

(
Ȟ(s) − Ȟ (s0)

)
.
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Definition 2.3. [20] The local fractional integral of the function Ȟ(s) of order r is defined by

aI(r)
b Ȟ(s) =

1
Γ(1 + r)

∫ b

a
Ȟ(s)(ds)r

=
1

Γ(1 + r)
lim
∆s→0

N−1∑
j=0

Ȟ
(
s j

) (
∆s j

)r
,

with ∆s j = s j+1 − s j and ∆s = max
{
∆s j | j = 0, 1, 2, . . . ,N − 1

}
, where

[
s j, s j+1

]
, j = 0, . . . ,N− 1 and s0 = a < s1 <

· · · < si < · · · < sN−1 < sN = b is a partition of the interval [a, b].

Here, it follows that aI(r)
a Ȟ(s) = 0 if a = b and aI(r)

b Ȟ(s) = −bI(r)
a Ȟ(s) if a < b. If for any s ∈ [a, b], there exists

I(r)
s Ȟ(s), then it is denoted by Ȟ(s) ∈ I(r)

s [a, b].

Main Results:

3. A local fractional derivative with respect to another function and their integral

Let C1(I) =
{
ϱ : I→ R | ϱ is differentiable and ϱ′ is continuous on I

}
.

Definition 3.1. Let 0 < r ≤ 1, ϱ ∈ C1(I) and function Ȟ. Let ϱ be a strictly increasing function with continuous
derivative ϱ′ on the interval ]a, b[. The local fractional derivative with respect to another function ϱ of Ȟ(s) of order r
at s = s0 is defined by

Ȟ(r,ϱ) (s0) =
dr,ϱȞ(s)

dsr,ϱ

∣∣∣∣∣∣
s=s0

= lim
s→s0

∆r
(
Ȟ(s) − Ȟ (s0)

)
(
ϱ(s) − ϱ(s0)

)r .

If Ȟ(r,ϱ) (s0) exists for all s0, so Ȟ is r-differentiable.

Remark 3.2. If ϱ(s) = s, then Ȟ(r,ϱ) (s0) = Ȟ(r) (s0).

Lemma 3.3. We have

• (µ)(r,ϱ) = 0.

• ( (ϱ(s))r

Γ(r+1) )
(r,ϱ) = 1.

Proof. 1. From the definition, we have (µ)(r,ϱ) = lims→s0
∆r(µ−µ)

(ϱ(s)−ϱ(s0))r = 0.

2. Using the definition, we have ( (ϱ(s))r

Γ(r+1) )
(r,ϱ) = lim∆s→0

1
Γ(1+r)

Γ(1+r)[(ϱ(s)+∆s)r
−(ϱ(s))r]

(∆s)r = 1.

This proves the desired equality.

Lemma 3.4. We have
(Er(µ(ϱ(s))r))(r,ϱ) = µEr(µ(ϱ(s))r).
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Proof. Using the definition of the fractional operator, we have

(
(ϱ(s))kr

Γ(1 + kr)
)(r,ϱ) = lim

∆s→0

 Γ(r + 1)
Γ(kr + 1)

[
(ϱ(s) + ∆s)kr

− (ϱ(s))kr
]

(∆s)r


= lim
∆s→0

 Γ(r + 1)
Γ(kr + 1)

[
(ϱ(s))kr +

Γ(1+kr)
Γ(1+r)Γ(1+(k−1)r) (ϱ(s))

(k−1)r(∆s)r + · · · − (ϱ(s))kr
]

(∆s)r


= lim
∆s→0

 Γ(r + 1)
Γ(1 + kr)

[
Γ(1+kr)

Γ(1+r)Γ(1+(k−1)r) (ϱ(s))
(k−1)r(∆s)r

]
(∆s)r


=

(ϱ(s))(k−1)r

Γ((k − 1)r + 1)
.

(2)

In this case, from (2) we have

(Er(µ(ϱ(s))r))(r,ϱ) =

 ∞∑
k=0

µk(ϱ(s))kr

Γ(1 + kr)


(r,ϱ)

=

∞∑
k=1

µk(ϱ(s))(k−1)r

Γ((k − 1)r + 1)
,

Therefore, we conclude that

(Er(µ(ϱ(s))r))(r,ϱ) = µEr(µ(ϱ(s))r).

Theorem 3.5. Let I ⊂ R, a, b, µ ∈ I and Ȟ : I −→ Rr and 1 : I −→ Rr are r-differentiable. We have:

1. (aȞ + b1)(r,ϱ) = aȞ(r,ϱ) + b1(r,ϱ).
2. (Ȟ1)(r,ϱ) = Ȟ(r,ϱ)1 + Ȟ1(r,ϱ).

3.
(

Ȟ
1

)(r,ϱ)
=

Ȟ(r,ϱ)1−1(r,ϱ)Ȟ
12 .

Proof. Parts (1) using the Definition 3.1. For (2): Now, for fixed Ȟ0,

(Ȟ1)(r,ϱ)(s0) = lim
s→s0

∆r(Ȟ(s)1(s) − Ȟ(s0)1(s0))
(ϱ(s) − ϱ(s0))r

= lim
s→s0

∆r(Ȟ(s)1(s) − Ȟ(s0)1(s) + Ȟ(s0)1(s) − Ȟ(s0)1(s0))
(ϱ(s) − ϱ(s0))r

= lim
s→s0

∆r(Ȟ(s0)(1(s) − 1(s0)) + Ȟ(s)(1(s) − Ȟ(s0)))
(ϱ(s) − ϱ(s0))r

= lim
s→s0

∆r(1(s)(Ȟ(s) − Ȟ(s0))
(ϱ(s) − ϱ(s0))r +

∆r(Ȟ(s0)(1(s) − 1(s0)))
(ϱ(s) − ϱ(s0))r

= lim
s→s0
1(s)
∆r(Ȟ(s) − Ȟ(s0)
(ϱ(s) − ϱ(s0))r + Ȟ(s0)

∆r(1(s) − 1(s0))
(ϱ(s) − ϱ(s0))r

= Ȟ(r,ϱ)(s)1(s) + 1(r,ϱ)(s)Ȟ(s).
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For (3): Now, for fixed s0,

(
Ȟ
1

)(r,ϱ)(s0) = lim
s→s0

∆r( Ȟ(s)
1(s) −

Ȟ(s0)
1(s0) )

(ϱ(s) − ϱ(s0))r

= lim
s→s0

Ȟ(s0)1(s)−1(s0)Ȟ(s)
1(s0)1(s)

(ϱ(s) − ϱ(s0))r

= lim
s→s0

Ȟ(s)1(s) − Ȟ(s)1(s) + Ȟ(s)1(s) − 1(s0)Ȟ(s)
1(s0)1(s)((ϱ(s) − ϱ(s0))r)

= lim
s→s0

Ȟ(s0) − Ȟ(s)
(ϱ(s) − ϱ(s0))r

1(s)
1(s0)1(s)

− lim
Ȟ→Ȟ0

Ȟ(s)
1(s0)1(s)

1(s0) − 1(s)
(ϱ(s) − ϱ(s0))r .

Since, Ȟ and 1 are r-differentiable, so
(

Ȟ
1

)(r,ϱ)
=

Ȟ(r,ϱ)1−1(r,ϱ)Ȟ
12 .

Definition 3.6. Let I ⊂ R and the continuous function Ȟ : I −→ Rr. Then the local fractional integral Ir of Ȟ of
order r ∈ (0, 1] is defined by:

aIr,ϱ
b Ȟ(s) =

1
Γ(r + 1)

∫ b

a
Ȟ(s)(ϱ′(s)ds)r.

The following results are easy to obtain.

Proposition 3.7. If Ȟ(s) ∈ Cr[a, b], then it can be considered as a local fractional integral on the interval [a, b]. To
make things easier, we can summarize the following rules:

(a) aI(r,ϱ)
b Ȟ(s) = 0 if a = b.

(b) aI(r,ϱ)
b Ȟ(s) = −bI(r,ϱ)

a Ȟ(s) if a < b.
(c) aI(r,ϱ)

b Ȟ(s) = Ȟ(s) if r = 0.

Proposition 3.8. Let’s say we have three functions: Ȟ(s), Ȟ1(s), and Ȟ2(s) ∈ Cr[a, b]. Now, we’ll discuss the rules
for performing local fractional integration on these functions, even if they are not differentiable and are defined on
fractal sets. Here are the rules you need to know:

(a) aI(r,ϱ)
b

[
Ȟ1(s) + Ȟ2(s)

]
= aI(r,ϱ)

b Ȟ1(s) + aI(r,ϱ)
b Ȟ2(s).

(b) aI(r,ϱ)
b [CȞ(s)] = CaI(r,ϱ)

b Ȟ(s), provided a constant C;
(c) aI(r,ϱ)

b 1 = (ϱ(b) − ϱ(a))r/Γ(1 + r);
(d) aI(r,ϱ)

b Ȟ(s) ≥ 0, provided Ȟ(s) ≥ 0;

(e)
∣∣∣∣aI(r,ϱ)

b Ȟ(s)
∣∣∣∣ ≤ aI(r,ϱ)

b |Ȟ(s)|;

(f) aI(r,ϱ)
b Ȟ(s) = aI(r,ϱ)

c Ȟ(s) + cI
(r,ϱ)
b Ȟ(s), provided a < c < b;

(g) aI(r,ϱ)
b Ȟ(s) ∈

[T(ϱ(b)−ϱ(a))r

Γ(1+r) , Π(ϱ(b)−ϱ(a))r

Γ(1+r)

]
, if we know that the highest value of Ȟ(s) is Π and the lowest value is T.

• Fractal Mean Value Theorem: Insights into Local Fractional Integrals

Theorem 3.9. If we have a function Ȟ(s) ∈ Cr[a, b], then there is a point ξ within the interval (a, b) such that the
following condition holds:

aI(r,ϱ)
b Ȟ(s) = Ȟ(ξ)

(ϱ(b) − ϱ(a))r

Γ(1 + r)
.

Proof. In view of Ȟ(s) ∈ Cr[a, b], we have

aI(r,ϱ)
b Ȟ(s) ∈

[
T(ϱ(b) − ϱ(a))r

Γ(1 + r)
,
Π(ϱ(b) − ϱ(a))r

Γ(1 + r)

]
,
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which leads us to
aI(r,ϱ)

b Ȟ(s)
(ϱ(b)−ϱ(a))r

Γ(1+r)

∈ [T,Π].

Therefore, for ξ ∈ (a, b), we have
aI(r,ϱ)

b Ȟ(s)
(ϱ(b)−ϱ(a))r

Γ(1+r)

= Ȟ(ξ),

which yields the required proof.

• Local Fractional Integrals: A Newton-Leibniz Perspective

Theorem 3.10. Suppose that
Φ(r,ϱ)(s) = Ȟ(s) ∈ Cr[a, b].

Then,
aI(r,ϱ)

b Ȟ(s) = Φ(b) −Φ(a).

Proof. Now, we will define the function Φ0(s) = aI(r,ϱ)
Ȟ

Ȟ(s). Thus, we have

∂r,ϱ

∂Ȟr,ϱ
(Φ0(s) −Φ(s)) =

∂r,ϱ

∂Ȟr,ϱ
Φ0(s) −

∂r,ϱ

∂Ȟr,ϱ
Φ(s) = Ȟ(s) − Ȟ(s) = 0. (3)

This leads to
Φ0(s) −Φ(s) = C,

with C representing a constant, we can use equation (3) to establish the following identity:

aI(r,ϱ)
b Ȟ(s) = Φ0(b) −Φ0(a) = Φ(b) −Φ(a).

Thus, the desired result is obtained.

Theorem 3.11. Suppose that D(kr,ϱ)Ȟ(s),D((k+1)r,ϱ)Ȟ(s) ∈ Cr(a, b). For values of 0 < r < 1, there exists a point
s0 ∈ (a, b) such that

s0 I(kr,ϱ)
s

[
D(kr,ϱ)Ȟ(s)

]
− s0 I((k+1)r,ϱ)

s

[
D((k+1)r,ϱ)Ȟ(s)

]
= D(kr,ϱ)Ȟ (s0)

(
ϱ(s) − ϱ(s0)

)kr

Γ(1 + kr)
,

where s0I(kr,ϱ)
s Ȟ(s) =

k-times︷            ︸︸            ︷
s0I(r,ϱ)
s · · · s0I(r,ϱ)

s Ȟ(s) and D(kr,ϱ)Ȟ(s) =

k-times︷          ︸︸          ︷
D(r,ϱ)

· · ·D(r,ϱ) Ȟ(s).

Proof. We present the formula

s0 I((k+1)r,ϱ)
s

[
D((k+1)r,ϱ)Ȟ(s)

]
= s0 I(kr,ϱ)

s

{
s0I(r,ϱ)
s

[
D((k+1)r,ϱ)Ȟ(s)

]}
= s0 I(kr,ϱ)

s

{
D(kr,ϱ)Ȟ(s) −D(kr,ϱ)Ȟ (s0)

}
= s0 I(kr,ϱ)

s

[
D(kr,ϱ)Ȟ(s)

]
− s0 I(kr,ϱ)

s

[
D(kr,ϱ)Ȟ (s0)

]
.

Adopting the formula

s0 I(kr,ϱ)
s

[
D(kr,ϱ)Ȟ (s0)

]
= D(kr,ϱ)Ȟ (s0)s0 I(kr,ϱ)

s 1

= D(kr,ϱ)Ȟ (s0) s0I((k−1)r,ϱ)
s

(
ϱ(s) − ϱ(s0)

)r

Γ(1 + r)

= D(kr,ϱ)Ȟ (s0)
(
ϱ(s) − ϱ(s0)

)kr

Γ(1 + kr)
,
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there is

s0 I(kr,ϱ)
s

[
D(kr,ϱ)Ȟ(s)

]
− s0 I((k+1)r,ϱ)

s

[
D((k+1)r,ϱ)Ȟ(s)

]
= D(kr,ϱ)Ȟ (s0)

(
ϱ(s) − ϱ(s0)

)kr

Γ(1 + kr)
.

• Generalized local fractional Taylor theorem

Lemma 3.12. Let’s say we have a function Ȟ(k+1)r,ϱ(s) ∈ Cr(I), where I is an interval in the real numbers. Here, k
takes values from 0 to n, and 0 < r ≤ 1. Suppose s0 ∈ [a, b]. Now, for any value of t within the interval I, we can
guarantee the existence of at least one point ξ. This point ξ lies between s and s0, and satisfies the following condition:

Ȟ(s) =
n∑

k=0

Ȟ(kr,ϱ) (s0)
Γ(1 + kr)

(
ϱ(s) − ϱ(s0)

)kr +
Ȟ((n+1)r,ϱ)(ξ)
Γ(1 + (n + 1)a)

(
ϱ(s) − ϱ(s0)

)(n+1)r .

Proof. By making use of

s0 I(kr,ϱ)
s

[
D(kr,ϱ)Ȟ(s)

]
− s0 I((k+1)r,ϱ)

s

[
D((k+1)r,ϱ)Ȟ(s)

]
= D(kr,ϱ)Ȟ (s0)

(
ϱ(s) − ϱ(s0)

)kr

Γ(1 + kr)
,

we conclude that
n∑

k=0

{
s0 I(kr,ϱ)
s

[
D(kr,ϱ)Ȟ(s)

]
− s0 I((k+1)r,ϱ)

s

[
D((k+1)r,ϱ)Ȟ(s)

]}
= Ȟ(s) − s0I((n+1)r,ϱ)

s

[
D((n+1)r,ϱ)Ȟ(s)

]
=

n∑
k=0

D(kr,ϱ)Ȟ (s0)
(
ϱ(s) − ϱ(s0)

)kr

Γ(1 + kr)

 .
Thus, we show that

s0I((n+1)r,ϱ)
s

[
D((n+1)r,ϱ)Ȟ(s)

]
= s0I(r,ϱ)

s

{
s0I(nr,ϱ)
s

[
D((n+1)r,ϱ)Ȟ(s)

]}
= D((n+1)r,ϱ)Ȟ(ξ)s0 I((n+1)r,ϱ)

s 1

= D((n+1)r,ϱ)Ȟ(ξ)
(
ϱ(s) − ϱ(s0)

)(n+1)r

Γ(1 + (n + 1)r)
,

where s0 < ξ < t,∀t ∈ (a, b). Therefore, we have proved the result.

4. Generalized convex functions

Looking at it analytically, we can define it as follows.

Definition 4.1. Consider a function Ȟ : I ⊆ R → Rr. Now, for any two points s1 and s2 ∈ I, and for any value of
µ ∈ [0, 1], if the following inequality holds:

Ȟ
(
µs1 + (1 − µ)s2

)
≤ µrȞ (s1) + (1 − µ)rȞ (s2) .

In that case, we say that Ȟ is a generalized convex function on the interval I.

Definition 4.2. Consider a function Ȟ : I → Rr. Now, for any two distinct points s1 and s2 ∈ I, and for any value
of µ ∈ [0, 1], if the following inequality holds:

Ȟ
(
µs1 + (1 − µ)s2

)
< µrȞ (s1) + (1 − µ)rȞ (s2) .

Then we refer to Ȟ as a generalized strictly convex function on the interval I ⊆ R.
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Definition 4.3. A non-negative and non-zero function ϱ : J → R defines the conditions for considering Ȟ : I → R
as a generalized ϱ-convex function or a member of the class SX(I). For Ȟ to qualify, it must satisfy two requirements:
Ȟ is non-negative and for all s, z ∈ I and µ ∈]0, 1[,

Ȟ((1 − µ)s + µz) ≤ ϱ(1 − µ)rȞ(s) + ϱ(µ)rȞ(z). (4)

If this inequality is reversed, then Ȟ is said to be generalized ϱ-concave.

Definition 4.4. Suppose ϱ : J → R be a function that is both non-negative and non-zero. We define a function
Ȟ : I→ Rr to be a generalized (p, ϱ)-convex function or a member of the class 1hx(ϱ, p, I) if it fulfills the properties of
being non-negative and

Ȟ
([

(1 − µ)sp + µzp] 1
p

)
≤ ϱ(1 − µ)rȞ(s) + ϱ(µ)rȞ(z) (5)

for all s, z ∈ I and consider a value of µ ∈ (0, 1). In a similar manner, if we reverse the inequality sign in equation (5),
we refer to the function Ȟ as a generalized (p, ϱ)-concave function or as a member of the class 1hv(ϱ, p, I).

If r = 1 we obtain in [29].

Definition 4.5. [30] Let ϱ : J→ R. If

ϱ(s)ϱ(z) ≤ ϱ(sz), (6)

for all s, z ∈ J, then ϱ is said to be a super-multiplicative function. When the inequality in equation (6) is reversed,
we classify the function ϱ as a sub-multiplicative function. On the other hand, if equality is achieved in equation (6),
we refer to ϱ as a multiplicative function.

Definition 4.6. [30] Consider a function ϱ : J→ R. If for every s, z ∈ J, the following condition holds true:

ϱ(s) + ϱ(z) ≤ ϱ(s + z), (7)

then we classify it as a super-additive function. Conversely, if the inequality (7) is reversed, we refer to ϱ as a
sub-additive function. Furthermore, if equality is satisfied in (7), we describe ϱ as an additive function.

Example 4.7. Let ϱ : I→ (0,∞) be defined by ϱ(s) = sk, Ȟ > 0. Then ϱ is
1. additive if k = 1,
2. sub-additive if k ∈ (−∞,−1] ∪ [0, 1),
3. super-additive if k ∈ (−1, 0) ∪ (1,∞).

Let ϱ : [1,+∞) 7→ R+ be defined by ϱ(s) = s3 − s2 + s.We have
1. ϱ(sz) − ϱ(s)ϱ(z) = Ȟ(s + z)(1 − s)(1 − z) ≥ 0
2. ϱ(s + z) − ϱ(s) − ϱ(z) = sz(s + z + (s − 1) + (z − 1)) ≥ 0.

Then ϱ is a super-multiplicative and super-additive function.

The definitions provided indicate that a generalized strictly convex function falls under the category of
generalized convex functions. However, it is important to note that the opposite is not necessarily true.
If we reverse these two inequalities, we categorize the function as a generalized concave function or a
generalized strictly concave function, respectively.

Let’s consider two simple examples of generalized strictly convex functions:
(1) Ȟ(s) = srp, s ≥ 0, p > 1
(2) Er (sr) = Ȟ(s), s ∈ R, where Er (sr) =

∑
∞

k=0
srk

Γ(1+kr) is the Mittag-Leffer function.
It’s worth noting that the linear function Ȟ(s) = arsr + br, where s ∈ R, is an example of a function that

is both generalized convex and generalized concave.
We will primarily focus on convexity, as it is important to note that a function Ȟ is concave if and only

if the function −Ȟ is convex. As a result, any findings or conclusions regarding convex functions can be
easily translated into statements about concave functions.

Next, we will examine the characteristics and properties of generalized convex functions.
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Theorem 4.8. Let Ȟ : I→ Rr and let ϱ super-additive function and super-multiplicative function. A function Ȟ is
considered a generalized convex function if and only if the inequality

Ȟ (s1) − Ȟ (s2)(
ϱ(s1) − ϱ(s2)

)r ≤
Ȟ (s3) − Ȟ (s2)(
ϱ(s3) − ϱ(s2)

)r ,

holds, for any s1, s2, s3 ∈ I with s1 < s2 < s3.

Proof. In fact, take µ = s3−s2
s3−s1

, then s2 = µs1 + (1 − µ)s3. And by the generalized convexity of Ȟ, we get

Ȟ (s2) = Ȟ
(
µs1 + (1 − µ)s3

)
≤ ϱ(µ)rȞ (s1) + ϱ((1 − µ))rȞ (s3)

=
(
ϱ(
s3 − s2

s3 − s1
)
)r

Ȟ (s1) +
(
ϱ(
s2 − s1

s3 − s1
)
)r

Ȟ (s3) .

Since ϱ super-additive and super-multiplicative function we get

Ȟ (s2) ≤
(ϱ(s3) − ϱ(s2))r

(ϱ(s3) − ϱ(s1))r Ȟ (s1) +
(ϱ(s2) − ϱ(s1))r

(ϱ(s3) − ϱ(s1))r Ȟ (s3) .

From the above formula, it is easy to see that

Ȟ (s1) − Ȟ (s2)(
ϱ(s1) − ϱ(s2)

)r ≤
Ȟ (s3) − Ȟ (s2)(
ϱ(s3) − ϱ(s2)

)r .

Reversely, for any two points s1, s3 (s1 < s3) on I ⊆ R, we take s2 = µs1 + (1 − µ)s3 for µ ∈ (0, 1). Then
s1 < s2 < s3 and µ = s3−s2

s3−s1
. Using the above inverse process, we have

Ȟ
(
µs1 + (1 − µ)s3

)
≤ ϱ(µ)rȞ (s1) + (ϱ(1 − µ))rȞ (s3) .

Thus, if Ȟ satisfies this inequality, it is a convex function on I ⊆ R. Similarly, it can be demonstrated that Ȟ
is a generalized convex function on I ⊆ R if and only if

Ȟ (s2) − Ȟ (s1)(
ϱ(s2) − ϱ(s1)

)r ≤
Ȟ (s3) − Ȟ (s1)(
ϱ(s3) − ϱ(s1)

)r ≤
Ȟ (s3) − Ȟ (s2)(
ϱ(s3) − ϱ(s2)

)r ,

for any s1, s2, s3 ∈ I with s1 < s2 < s3.

Theorem 4.9. Let Ȟ ∈ Dr(I) and ϱ super-additive, super-multiplicative function, the following conditions hold the
same meaning:

(1) Ȟ exhibits generalized ϱ-convexity over the interval I.
(2) Ȟ(r,ϱ) displays increasing behavior across the interval I.
(3) For any s1, s2 ∈ I,

Ȟ (s2) ≥ Ȟ (s1) +
Ȟ(r,ϱ) (s1)
Γ(1 + r)

(s2 − s1)r .

Proof. (1 → 2) Consider s1 and s2 as elements of I with s1 < s2. Let h > 0 be a positive value small enough
such that s1−h and s2+h also belong to I. Since s1−h < s1 < s2 < s2+h, we can apply Theorem 4.8 to obtain

Γ(1 + r)
Ȟ (s1) − Ȟ (s1 − h)
(ϱ(s1) − ϱ(s1 − h))r ≤ Γ(1 + r)

Ȟ (s2) − Ȟ (s1)(
ϱ(s2) − ϱ(s1)

)r ≤ Γ(1 + r)
Ȟ (s2 + h) − Ȟ (s2)
(ϱ(s2 + h) − ϱ(s2))r .

Since ϱ super-additive, super-multiplicative function, we have

Γ(1 + r)
Ȟ (s1) − Ȟ (s1 − h)

ϱ(h)r ≤ Γ(1 + r)
Ȟ (s2) − Ȟ (s1)(
ϱ(s2) − ϱ(s1)

)r ≤ Γ(1 + r)
Ȟ (s2 + h) − Ȟ (s2)

ϱ(h)r .
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As, f ∈ Da(I), we can consider ϱ(h)→ 0+. Consequently, we can deduce that

Ȟ(r,ϱ) (s1) ≤ Γ(1 + r)
Ȟ (s2) − Ȟ (s1)(
ϱ(s2) − ϱ(s1)

)r ≤ Ȟ(r,ϱ) (s2) .

So, Ȟ(r,ϱ) is increasing in I.
(2→ 3) Let s1 and s2 be elements of I, with s1 < s2. Since Ȟ(r,ϱ) is an increasing function in the interval I,

we can utilize the generalized local fractional Taylor theorem to obtain the following expression:

Ȟ (s2) − Ȟ (s1) =
Ȟ(r,ϱ)(ξ)
Γ(1 + r)

(
ϱ(s2) − ϱ(s1)

)r
≥

Ȟ(r,ϱ) (s1)
Γ(1 + r)

(
ϱ(s2) − ϱ(s1)

)r ,

where ξ ∈ (s1, s2). That is to say

Ȟ (s2) ≥ Ȟ (s1) +
Ȟ(r,ϱ) (s1)
Γ(1 + r)

(
ϱ(s2) − ϱ(s1)

)r .

(3 → 1) For any s1, s2 ∈ I, we let s3 = µs1 + (1 − µ)s2, where 0 < µ < 1. It is easy to see that
s1 − s3 = (1 − µ) (s1 − s2) and s2 − s3 = µ (s2 − s1). Then from the third condition, we have

Ȟ (s1) ≥ Ȟ (s3) +
Ȟ(r,ϱ) (s3)
Γ(1 + r)

(
ϱ(s1) − ϱ(s3)

)r
≥ Ȟ (s3) + (1 − µ)r Ȟ(r,ϱ) (s3)

Γ(1 + r)
(
ϱ(s1) − ϱ(s2)

)r ,

and

Ȟ (s2) ≥ Ȟ (s3) +
Ȟ(r,ϱ) (s3)
Γ(1 + r)

(
ϱ(s2) − ϱ(s3)

)r
≥ Ȟ (s3) + µr Ȟ(r,ϱ) (s3)

Γ(1 + r)
(
ϱ(s2) − ϱ(s1)

)r .

At the above two formulas, multiply ϱ(µ)r and ϱ((1 − µ))r, respectively, then we obtain

ϱ(µ)rȞ (s1) + (ϱ(1 − µ))rȞ (s2) ≥ Ȟ (s3) = Ȟ
(
µs1 + (1 − µ)s2

)
.

Therefore, we can establish that Ȟ is a generalized ϱ-convex function on I.

Corollary 4.10. Consider a function Ȟ in D2r(a, b). If Ȟ is a generalized ϱ-convex function (or a generalized
ϱ-concave function), then we have the following equivalence:

Ȟ(2r,ϱ)(s) ≥ 0
(

or Ȟ(2r,ϱ)(s) ≤ 0
)
,

for any Ȟ ∈ (a, b).

• Generalized Jensen’s inequality

Theorem 4.11. Let’s consider Ȟ as a generalized ϱ-convex function defined on the interval [a, b]. Then, for any si
belonging to [a, b] and µi within the range [0, 1] (i = 1, 2, . . . ,n) with

∑n
i=1 µi = 1, the following relation applies:

Ȟ

 n∑
i=1

µisi

 ≤ n∑
i=1

ϱ(µi)rȞ (si) . (8)

Proof. For n = 2, the inequality is evidently valid. Let’s assume that the inequality holds for n = k. Then,
for any s1, s2, . . . , sk ∈ [a, b] and γi > 0 (i = 1, 2, . . . , k) with

∑k
i=1 γi = 1, we can state that:

Ȟ

 k∑
i=1

γisi

 ≤ k∑
i=1

ϱ(γi)rȞ (si) .
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If s1, s2, . . . , sk, s(k+1) lie within the interval [a, b], and µi > 0 for i = 1, 2, . . . , k + 1 with
∑k+1

i=1 µi = 1, then one
can define γi =

µi

1−µk+1
, i = 1, 2, . . . , k. It’s evident that

∑k
i=1 γi = 1 is straightforward to observe. Thus,

Ȟ
(
µ1s1 + µ2s2 + . . . + µkȞk + µk+1Ȟk+1

)
= Ȟ

((
1 − µk+1

) µ1s1 + µ2s2 + . . . + µkȞk

1 − µk+1
+ µk+1Ȟk+1

)
≤

(
ϱ(1 − µk+1)

)r Ȟ
(
γ1s1 + γ2s2 + . . . + γkȞk

)
+ ϱ(µk+1)rȞ (sk+1)

≤
(
ϱ(1 − µk+1)

)r
[
ϱ(γ1)rȞ (s1) + ϱ(γ2)rȞ (s2) + . . . + ϱ(γk)rȞ (sk)

]
+ ϱ(µk+1)rȞ (sk+1)

=
(
ϱ(1 − µk+1)

)r
[(
ϱ(

µ1

1 − µk+1
)
)r

Ȟ (s1) +
(
ϱ(

µ2

1 − µk+1
)
)r

Ȟ (s2) + . . .

+

(
ϱ(

µk

1 − µk+1
)
)r

Ȟ (sk)
]
+ ϱ(µk+1)rȞ (sk+1)

=

k∑
i=1

ϱ(µi)rȞ (si) .

Therefore, the proof of Theorem 4.11 is established through mathematical induction.

Remark 4.12. For ϱ(s) = s, inequality (8) becomes the classical Jensen’s inequality.

Corollary 4.13. Let Ȟ ∈ D2r,ϱ[a, b] and Ȟ(2r,ϱ)(s) ≥ 0 for any Ȟ ∈ [a, b]. Then for any si ∈ [a, b] and µi ∈ [0, 1](i =
1, 2, . . . ,n) with

∑n
i=1 µi = 1, we have

Ȟ

 n∑
i=1

µisi

 ≤ n∑
i=1

ϱ(µi)rȞ (si) .

Utilizing the generalized Jensen’s inequality alongside the convexity of functions enables the derivation
of various integral inequalities.

In the paper by Yang [20], the generalized Cauchy-Schwarz’s inequality was established by estimating
a

r
p b

r
q ≤

ar

p
br

q , where ar, br > 0, p, q ≥ 1 and 1
p +

1
q = 1.

Employing the generalized Jensen’s inequality offers a clearer path to demonstrating the generalized
Cauchy-Schwarz’s inequality.
• The extended version of the Cauchy-Schwarz inequality

Corollary 4.14. Let |ak| > 0, |bk| > 0, k = 1, 2, . . . ,n, and let ϱ super-multiplicative, super-additive function. Then
we have

n∑
k=1

ϱ(|ak|)rϱ(|bk|)r
≤

 n∑
k=1

ϱ(|ak|)2r


1
2
 n∑

k=1

ϱ(|bk|)2r


1
2

.

Proof. Take Ȟ(s) = ϱ(s)2r. It is easy to see that Ȟ(2r,ϱ)(s) ≥ 0 for any Ȟ ∈ (a, b). Take

µk =
|bk|

2∑n
k=1 |bk|

2 , sk =
|ak|

|bk|
. Then 0 ≤ µk ≤ 1 (k = 1, 2, . . . ,n) with

n∑
k=1

µk = 1.

Therefore, according to Jensen’s inequality Ȟ
(∑n

k=1 µksk
)
≤

∑n
k=1 ϱ(µk)(r)Ȟ (sk), we haveϱ( n∑

k=1

|bk|
2∑n

k=1 |bk|
2

|ak|

|bk|
)


2r

≤

n∑
k=1

ϱ( |bk|
2∑n

k=1 |bk|
2 )

r [
ϱ(
|ak|

|bk|
)
]2r

.
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Since ϱ super-multiplicative function, we haveϱ( n∑
k=1

|bk| |ak|∑n
j=1

∣∣∣b j

∣∣∣2 )


2r

≤

n∑
k=1

ϱ( |bk|
2∑n

j=1

∣∣∣b j

∣∣∣2 |ak|
2

|bk|
2 )


r

.

So ϱ( n∑
k=1

|bk| |ak|∑n
j=1

∣∣∣b j

∣∣∣2 )


2r

≤

n∑
k=1

ϱ( |ak|
2∑n

j=1

∣∣∣b j

∣∣∣2


r

.

Since, ϱ super-additive function, we have n∑
k=1

ϱ(
|bk| |ak|∑n
j=1

∣∣∣b j

∣∣∣2 )


2r

≤

n∑
k=1

ϱ( |ak|
2∑n

j=1

∣∣∣b j

∣∣∣2


r

.

The formula above simplifies to n∑
k=1

ϱ(|bk| |ak|)ϱ(
1∑n

j=1

∣∣∣b j

∣∣∣2 )


2r

≤

n∑
k=1

 ϱ(|ak|
2)

ϱ(
∑n

j=1

∣∣∣b j

∣∣∣2)


r

.

This indicates that  n∑
k=1

ϱ(|bk∥ak|)


2r

≤

n∑
k=1

ϱ(|ak|)2r
n∑

k=1

ϱ(|bk|)2r.

Thus, we have
n∑

k=1

ϱ(|ak|)rϱ(|bk|)r
≤

 n∑
k=1

ϱ(|ak|)2r


1
2
 n∑

k=1

ϱ(|bk|)2r


1
2

.

Theorem 4.15. (Generalized Hermite-Hadmard’s inequality) Consider Ȟ(s) ∈ I(r)
s [a, b], a generalized ϱ-convex

function on the interval [a, b], where a < b. Assume ϱ is both super-multiplicative and super-additive. Then

Ȟ
(

b + a
2

)
≤
Γ(1 + r)

(ϱ(b − a))r aI(r,ϱ)
b Ȟ(s) ≤ ϱ(

1
2

)r(Ȟ(b) + Ȟ(a)).

Proof. Let s = a + b − y. Then

∫ b+a
2

a
Ȟ(s)(ϱ′(s)ds)r =

∫ b

b+a
2

Ȟ(b + a − y)(ϱ′(y)dy)r.

Furthermore, when s ∈
[

b+a
2 , b

]
, a + b − s ∈

[
a, b+a

2

]
. By the hypotheses of convexity of Ȟ, we have

Ȟ(b + a − s) + Ȟ(s) ≥
1
ϱ( 1

2 )r
Ȟ

(
b + a

2

)
.
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Thus, ∫ b

a
Ȟ(s)(ϱ′(s)ds)r

=

∫ b+a
2

a
Ȟ(s)(ϱ′(s)ds)r +

∫ b

b+a
2

Ȟ(s)(ϱ′(s)ds)r

=

∫ b

b+a
2

[Ȟ(b + a − s) + Ȟ(s)](ϱ′(s)ds)r

≥

∫ b

b+a
2

1
ϱ( 1

2 )r
Ȟ

(
b + a

2

)
(ϱ′(s)ds)r.

Since ϱ super-multiplicative, super-additive function, we have∫ b

a
Ȟ(s)(ϱ′(s)ds)r

≥

∫ b

b+a
2

1
ϱ( 1

2 )r
Ȟ

(
b + a

2

)
(ϱ′(s)ds)r

= (ϱ(b) − ϱ(
a + b

2
))r 1
ϱ( 1

2 )r
Ȟ

(
b + a

2

)
≥ (ϱ(

b − a
2

)r 1
ϱ( 1

2 )r
Ȟ

(
b + a

2

)
≥ ϱ(b − a)rϱ(

1
2

)r 1
ϱ( 1

2 )r
Ȟ

(
b + a

2

)
= ϱ(b − a)rȞ

(
b + a

2

)
.

(9)

In another aspect, it is important to highlight that when considering a generalized ϱ-convex function Ȟ,
it follows that for s ∈ [0, 1], the following relationship holds:

Ȟ((1 − s)b + sa) ≤ ϱ(s)rȞ(a) + (ϱ(1 − s))rȞ(b),

and
Ȟ(sb + (1 − s)a) ≤ (ϱ(1 − s))rȞ(a) + (ϱ(s)rȞ(b).

By summing up these inequalities, we arrive at the following expression:

Ȟ(sa + (1 − s)b) + Ȟ((1 − s)a + sb)

≤ ϱ(s)rȞ(a) + (ϱ(1 − s))rȞ(b) + (ϱ(1 − s))rȞ(a) + ϱ(s)rȞ(b)

≤ ϱ(1)r(Ȟ(a) + Ȟ(b)).

Next, by integrating the resulting inequality with respect to s over the interval [0, 1], we derive the following
expression:

1
Γ(1 + r)

∫ 1

0
[Ȟ((1 − s)a + sb) + Ȟ(sa + (1 − s)b)](ϱ′(s)ds)r

≤
1

Γ(1 + r)

∫ 1

0
ϱ(1)r(Ȟ(a) + Ȟ(b))(ϱ′(s)ds)r.

It is obvious that

1
Γ(1 + r)

∫ 1

0
[Ȟ((1 − s)a + sb) + Ȟ(sa + (1 − s)b)](ϱ′(s)ds)r =

2r

(ϱ(b − a))r aI(r,ϱ)
b Ȟ(s),
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and
1

Γ(1 + r)

∫ 1

0
ϱ(1)r(Ȟ(a) + Ȟ(b))(ϱ′(s)ds)r = ϱ(1)r(ϱ(1)r

− ϱ(0)r)
Ȟ(a) + Ȟ(b)
Γ(1 + r)

≤ ϱ(1)2r Ȟ(a) + Ȟ(b)
Γ(1 + r)

.

So,

Γ(1 + r)
(ϱ(b − a))r aI(r,ϱ)

b Ȟ(s) ≤ ϱ(1)2r Ȟ(a) + Ȟ(b)
2r . (10)

By merging the inequalities (9) and (10), we obtain the following expression:

Ȟ
(

a + b
2

)
≤
Γ(1 + r)

(ϱ(b − a))r aI(r)
b Ȟ(s) ≤ ϱ(1)2r Ȟ(a) + Ȟ(b)

2r .

It’s worth noting that if r = 1 and ϱ(s) = s, the inequality simplifies to the Hermite-Hadamard inequality.

5. Versatility of Generalized Jensen’s Inequality: Diverse Applications

Example 1

Let a1 > 0, a2 > 0 and a3r
2 + a3r

1 ≤
1r

ϱ( 1
2 )r . Then a1 + a2 ≤ 2.

Proof. Let Ȟ(s) = s3r, s ∈ (0,+∞). It is evident that the function Ȟ is a generalized ϱ-convex function. So,

Ȟ
(a2 + a1

2

)
≤ ϱ(

1
2

)r(Ȟ(a2) + Ȟ(a1)).

That is
(a2 + a1)3r

8r ≤ ϱ(
1
2

)r(a3r
2 + a3r

1 ) ≤ 1r.

Therefore, it can be concluded that the inequality a2 + a1 ≤ 2 holds.

Example 2

Consider s and y as elements of the real numbers. Then

Er

((
ϱ(s) + ϱ(y)

2

)r)
≤ ϱ(

1
2

)r (Er
(
ϱ(s)r) + Er

(
ϱ(y)r)) ,

where Er (sr) =
∑
∞

k=0
srk

Γ(1+kr) is the Mittag-Leffer function.

Proof. Take Ȟ(s) = Er
(
ϱ(s)r). It is easy to see (Er (sr))(2r,ϱ) = Er

(
ϱ(s)r) > 0. Consequently, the application of

the generalized Jensen’s inequality yields

Er

((
ϱ(s) + ϱ(y)

2

)r)
≤ ϱ(

1
2

)r (Er
(
ϱ(s)r) + Er

(
ϱ(y)r)) .
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Example 3

Let’s say we have positive numbers a1, a2, . . . , an > 0. We also have two cases: either s is between 0 and
t, or t is between 0 and s.

Sr =
(
ϱ(

1
n

)r(ϱ(ar
1)r + ϱ(ar

2)r + · · · + ϱ(ar
n)r)

)1/r

, r ∈ R,

Sr =

(
arr

1 + arr
2 + · · · + arr

n

nr

)1/r

, r ∈ R.

So, we conclude that Ss is less than or equal to St. Furthermore, Ss equals St if and only if a1 = a2 = · · · = an.
The inequality holds: Ss ≤ St. Moreover, equality between Ss and St occurs solely when all values of

a1, a2, . . . , an are identical.

Proof. Scenario I: 0 < s < t. Take Ȟ(s) = [ϱ(s(
t
s ))]r, t > 0. Then

Ȟ(2r,ϱ)(s) =
Γ
(
1 + tr

s

)
Γ
(
1 +

(
t
s − 1

)
r
)ϱ(s)(t/s−2)r > 0.

Through the application of the generalized Jensen’s inequality, we obtain the following expression:

Ȟ
(

as
1 + as

2 + · · · + as
n

n

)
≤ ϱ(

1
n

)r(Ȟ
(
as

1

)
+ Ȟ

(
as

2

)
+ · · · + Ȟ

(
as

n
)
).

That is,

[ϱ(
(

as
1 + as

2 + · · · + as
n

n

)(t/s)

)]r
≤ ϱ(

1
n

)r(ϱ(
(
as

1

)(t/s)
)r + ϱ(

(
as

2

)(t/s)
)r + · · · + ϱ(

(
as

n
)(t/s))r).

So

[ϱ(
(

as
1 + as

2 + · · · + as
n

n

)(t/s)

)]r
≤ ϱ(

1
n

)r(ϱ(
(
at

1

)
)r + ϱ(

(
at

2

)
)r + · · · + ϱ(

(
at

n

)
)r).

Since ϱ super-multiplicative then

[ϱ(
(

as
1 + as

2 + · · · + as
n

n

)(1/s)

)]r
≤ [ϱ(

1
n

)r(ϱ(
(
at

1

)
)r + ϱ(

(
at

2

)
)r + · · · + ϱ(

(
at

n

)
)r)]

1
t .

So

[ϱ(
(

as
1 + as

2 + · · · + as
n

n

)
)r](1/s)

≤ [ϱ(
1
n

)r(ϱ(
(
at

1

)
)r + ϱ(

(
at

2

)
)r + · · · + ϱ(

(
at

n

)
)r)]

1
t .

Since ϱ super-multiplicative and super-additive then

[ϱ(
1
n

)r
(
ϱ(as

1)r + ϱ(as
2)r + · · · + ϱ(as

n)r
)
)](1/s)

≤ [ϱ(
1
n

)r(ϱ(
(
at

1

)
)r + ϱ(

(
at

2

)
)r + · · · + ϱ(

(
at

n

)
)r)]

1
t .

Thus, we establish St ≥ Ss.
Scenario II: When s < t < 0.
If we consider the case where 0 < −t < −s and define bi as the reciprocal of ai, we can reach a

conclusion.
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Example 4

If we have positive numbers a1, a2, a3, and their sum is 1 (i.e., a1 + a2 + a3 = 1), we need to find the
minimum value of the expression( 1

a1
+ a1

)10r

+
( 1

a2
+ a2

)10r

+
( 1

a3
+ a3

)10r

.

Consider the stipulation: 0 < a1, a2, a3 < 1. Let Ȟ(s) =
(
ϱ(s) + 1

ϱ(s)

)10r
, s ∈ (0, 1). Then, via the formula

dr,ϱϱ(s)kr

dtr,ϱ =
Γ(kr + 1)

Γ(1 + (k − 1)r)
ϱ(s)(k−1)r.

We have

Ȟ(2r,ϱ)(s) =
Γ(1 + 10r)
Γ(1 + 8r)

(
ϱ(s) +

1
ϱ(s)

)8r (
1 −

1
ϱ(s)2

)2r

+
Γ(1 + r)Γ(1 + 10r)
Γ(9r + 1)

(
ϱ(s) +

1
ϱ(s)

)9r ( 2
ϱ(s)3

)r

> 0.

By the generalized Jensen’s inequality,(
ϱ(1/3) +

1
ϱ(1/3)

)10r

= Ȟ
(a1 + a2 + a3

3

)
≤ ϱ(

1
3

)r[Ȟ(a1) + Ȟ(a2) + Ȟ(a3)]

= ϱ(
1
3

)r

(ϱ(a1) +
1
ϱ(a1)

)10r

+

(
ϱ(a2) +

1
ϱ(a2)

)10r

+

(
ϱ(a3) +

1
ϱ(a3)

)10r .
The minimum value occurs at a1 = a2 = a3 =

1
3 and equals

(
ϱ(1/3)+ 1

ϱ(1/3)

)10r

ϱ( 1
3 )r .

When we have ϱ(s) = s, the minimum value is obtained as 1010r

39r when a1 = a2 = a3 =
1
3 .

6. Conclusions

This paper’s major goal is to present generalized convex functions and give them a precise definition
with respect to fractal sets. Before unveiling two significant inequalities, we thoroughly scrutinized the
properties linked with these generalized convex functions. Additionally, we provide real-world exam-
ples that highlight the usefulness of these inequalities in the context of fractal collections. In the future,
the concepts of fractal sets can be further investigated using coordinated convexity and interval-valued
functions.

The field of fractal sets using inequalities is still a new area. We can use our new definition about
generalized local fractional derivative with respect to another function to derive Markov inequality, Yang
inequality, Hölder inequality, Power-mean inequality, and so on. These will be our future research and
recommendations for interested researchers.
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