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Some results on additivity of Moore-Penrose inverse in matrix settings

Jovana Milenkovića,∗, Jovana Nikolov Radenkovića

aUniversity of Niš, Faculty of Sciences and Mathematics, Department of Mathematics, Serbia

Abstract. We present the necessary and sufficient conditions for the Moore-Penrose inverse of the sum
of two matrices to be equal to the sum of Moore-Penrose inverses of those matrices when these matrices
are invertible, or one matrix is invertible and the other satisfies certain range inclusions. Similar results are
presented for the group inverse.

1. Introduction

In this paper, we will investigate the additivity of Moore-Penrose and group inverse in the case of two
matrices. Cm×n will denote the set of m × n complex matrices while for given A ∈ Cm×n, A∗, r(A),R(A)
and N(A) will denote the conjugate transpose, rank, the column space (range) and the null space of A,
respectively. If matrix A ∈ Cn×n satisfies A2 = A, we say that A is idempotent (projection). The symbol \ ·X
(X ·/) written after an equality means that in the next step we will multiply that equality from the left (right)
side by the matrix X.

In [5] the authors investigate the equation 1
a+b =

1
a +

1
b for real and complex numbers and, further, its

generalization for matrices with real and complex entries. Here we will restate some of the existing results
concerning complex matrices since the generalization of these results will be the subject of our study. For
the sake of completeness, we give the proof of the following

Lemma 1.1. [5] Let A,B ∈ Cn×n be invertible matrices. Then A + B is an invertible matrix and

(A + B)−1 = A−1 + B−1 (1.1)

if and only if AB−1 is a diagonalizable matrix whose eigenvalues belong to the set X = {−1+i
√

3
2 , −1−i

√
3

2 }, i.e. A =
PDP−1B, for some invertible matrix P and diagonal matrix D whose entries on the main diagonal belong to the set X.
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Proof. Notice that (A+B)−1 = A−1+B−1 if and only if A−1+B−1 is right inverse of A+B.By direct computation,
we get

In = (A + B)(A−1 + B−1)⇔ AB−1 + BA−1 + In = 0 \ · AB−1(invertible matrix)
⇔(AB−1)2 + AB−1 + In = 0.

Hence, condition (1.1) holds if and only if the matrix M = AB−1 satisfies

M2 +M + In = 0. (1.2)

If M = PJP−1,where J is Jordan normal form of M, (1.2) holds if and only if J satisfies the same equation, i.e.
for all Jordan blocks Ji of M holds J2

i + Ji + Iki = 0. If Ji is of dimension greater than one,
λ2

i + λi + 1 2λi + 1
0 λ2

i + λi + 1
. . .

 = 0

must hold, which is impossible, so all Jordan blocks are of dimension one, and their entries satisfyλ2
i +λi+1 =

0, i.e. λi ∈ X = {−1+i
√

3
2 , −1−i

√
3

2 }.Hence (1.2) is true if and only if M is diagonalizable matrix whose eigenvalues
belong to the set X. (That M is a diagonalizable matrix, we could conclude from the fact that the polynomial
x2 + x + 1 = 0 does not have multiple roots.) □

The concept of regular inverse is generalized by Penrose [17] who showed that for any complex matrix
A ∈ Cm×n there exists unique matrix X ∈ Cn×m which satisfies the four Penrose equations

(1) AXA = A, (2) XAX = X, (3) (AX)∗ = AX, (4) (XA)∗ = XA.

This inverse is known as the Moore-Penrose inverse of A and is denoted by A†. Actually, Penrose redis-
covered this inverse, which was presented first by Moore [15]. Properties of this inverse can be found in
[2, 7]. If matrix X satisfies the Penrose equation (i) for each i ∈ K ⊆ {1, 2, 3, 4} we say that X is a K−inverse
of A. In particular, we call the {1}−inverse of A the inner inverse of A, while the {2}−inverse of A is called
the outer inverse of A. The question naturally arises when the equality analogous to (1.1) holds for the
Moore-Penrose inverse, i.e.

(A + B)† = A† + B†. (1.3)

This problem is not solved in general, while first results on it can already be found in [17].

Lemma 1.2. [17] If Ai ∈ Cm×n, i = 1,n,A =
∑n

i=1 Ai and (∀i, j = 1,n)(i , j ⇒ AiA∗j = A∗i A j = 0) then
A† =

∑n
i=1 A†i .

Baksalary et al. [1] gave other sufficient conditions for (1.3) independent of those in Lemma 1.2.

Proposition 1.1. [1] Let A,B ∈ Cm×n be such that the identities

(A + B)B∗ = B∗(A + B) = 0

are satisfied. Then the condition (1.3) is satisfied as well.

Notice that Proposition 1.1 can be derived from Lemma 1.2 if we take n = 2,A1 = A + B and A2 = −B.
Necessary and sufficient conditions for (1.3) when A and B are certain functions of orthogonal projectors or
A and B are rank additive are also presented in [1]. In [16] it is shown that if A,B ∈ Cn×n and R(B∗) = N(A)
and R(B) ⊆ N(A∗), then A + B is invertible and, of course, (A + B)−1 = A† + B†. An example given in [16],
which relies on singular value decomposition, shows that conditions from Lemma 1.2 and Proposition 1.1
are not necessary for the obedience of equality (1.3). Various formulas for the Moore-Penrose inverse of a
sum of two matrices can be found in [4, 9, 11].
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The second essential inverse for each square matrix (in terms of spectral properties) is the Drazin inverse.
Recall that for a square matrix A ∈ Cn×n the smallest nonnegative integer k such that r(Ak) = r(Ak+1) is called
the index of A and is denoted by ind(A). If matrix A is of index k, there exists the unique matrix X which
satisfies equations

(1k) AkXA = Ak, (2) XAX = X, (5) AX = XA.

This matrix is called the Drazin inverse of A and is denoted by AD. First results on the additivity of the
Drazin inverse were published by Drazin himself in the paper [8].

Lemma 1.3. [8] If x1, . . . , x j are given Drazin-invertible elements (of some ring) with xsxt = 0 (s, t = 1, . . . , j; s , t),
then x1 + . . . + x j is also Drazin-invertible, with (x1 + . . . + x j)D = xD

1 + . . . + xD
j .

Representations of the Drazin inverse of the sum of two matrices satisfying different conditions can be
found in the papers [6, 10, 14, 19].

In the case when ind(A) ≤ 1 we say that A ∈ Cn×n is group invertible and its Drazin inverse is called the
group inverse. In other words, the matrix X which satisfies

(1) AXA = A, (2) XAX = X, (5) AX = XA

is the group inverse of A and it is denoted by A1. In [12] some formulas for the group inverse of the
sum of two group invertible matrices that satisfy certain conditions are presented, while in [3, 13] the
group invertibility of the linear combination of two k−potent matrices and the group invertibility of some
expressions of two idempotent matrices are investigated, respectively. Among the results on the topic of
additivity of the group inverse, we came across the following result.

Proposition 1.2. [18] Let A,B ∈ Cn×n. Suppose that A1 and B1 exist and that one has the following relationships
between A and B :

(A + B)B1 = B1(A + B) = 0. (1.4)

Then A + B is group invertible and

(A + B)1 = A1 + B1. (1.5)

Let us mention that condition (1.4) is equivalent to

(A + B)B = B(A + B) = 0, (1.6)

when B1 exists. Actually, in [18], it is stated that condition (1.4) and group invertibility of B imply the group
invertibility of A and A + B. This is not true and the following example illustrates that. If we suppose that
A and B are group invertible (or B and A + B) as in the Proposition 1.2 the statement is valid.

Example 1.1. Let A =

 −1 0 0
0 0 1
0 0 0

 and B =

 1 0 0
0 0 0
0 0 0

 . Then matrix B is group invertible and B1 = B, (A +

B)B1 = 0 = B1(A + B), while ind(A) = ind(A + B) = 2.

In the same manner as in the case of the Moore-Penrose inverse, i.e. by using Lemma 1.3 for j = 2, x1 = A+B
and x2 = −B,we can conclude that condition (1.6) implies equality (A+B)D = AD+BD, for arbitrary matrices
A,B ∈ Cn×n.

Now, let B ∈ Cn×n be an invertible matrix. The only matrix A ∈ Cn×n which satisfies the conditions from
Lemma 1.2 or Lemma 1.3, for n = 2 and matrices A and B is A = 0, while the only matrix A ∈ Cn×n that
satisfies the conditions from Proposition 1.1 or Proposition 1.2 is A = −B. Therefore, if B is invertible, in the
literature, there is only a narrow set of matrices A such that the equality (1.3) or equality (1.5) holds. This
fact has motivated our research.
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2. Additivity of Moore-Penrose inverse

First, we will examine when (1.3) holds if A and B are invertible matrices. Of course, the conditions for
that will be weaker than those from Lemma 1.1.

Theorem 2.1. Let A,B ∈ Cn×n be invertible matrices. Then

(A + B)† = A−1 + B−1 = A† + B†

if and only if AB−1 is a diagonalizable matrix whose eigenvalues belong to the set Y = {−1, −1+i
√

3
2 , −1−i

√
3

2 }, its
eigenspace associated with eigenvalue −1, E−1, is orthogonal to its eigenspaces associated with eigenvalues from the
set X = {−1+i

√
3

2 , −1−i
√

3
2 } and E−1 is invariant under the transformation BB∗.

Proof. The matrix A−1 + B−1 is {1}−inverse of the matrix A + B if and only if

(A + B)(A−1 + B−1)(A + B) = A + B⇔ (2In + AB−1 + BA−1)(A + B) = A + B
⇔ 2(A + B) + AB−1A + BA−1B = 0 \ · B−1AB−1(invertible matrix)
⇔ (AB−1)3 + 2(AB−1)2 + 2AB−1 + In = 0,

and A−1 + B−1 is {2}−inverse of the matrix A + B if and only if

(A−1 + B−1)(A + B)(A−1 + B−1) = A−1 + B−1
⇔ (A−1 + B−1)(2In + AB−1 + BA−1) = A−1 + B−1

⇔ 2(A−1 + B−1) + B−1AB−1 + A−1BA−1 = 0, A · / \ · AB−1

⇔ (AB−1)3 + 2(AB−1)2 + 2AB−1 + In = 0.

So, A−1 + B−1 is inner inverse of the matrix A+ B if and only if it is the outer inverse of this matrix, and that
happens exactly when matrix M = AB−1 satisfies

M3 + 2M2 + 2M + In = 0. (2.1)

Similarly to the proof of Lemma 1.1, if M = PJP−1, where J is Jordan normal form of M, we can conclude
that (2.1) holds if and only if all Jordan blocks Ji of M are of dimension one, and their entries satisfy
λ3

i + 2λ2
i + 2λi + 1 = 0, i.e. λi ∈ Y = {−1, −1+i

√
3

2 , −1−i
√

3
2 }.Hence, (2.1) is true if and only if M is diagonalizable

matrix whose eigenvalues belong to the set Y.
Further, the matrix A−1 + B−1 is {3, 4}−inverse of the matrix A + B if and only if the matrices

(A + B)(A−1 + B−1) = 2In + AB−1 + BA−1 and (A−1 + B−1)(A + B) = 2In + B−1A + A−1B

are hermitian i.e. if and only if matrices M + M−1 and B−1(M + M−1)B are hermitian. Let matrix P be
P =

[
P1 P2

]
, where the columns of matrix P1 ∈ Cn×s span E−1, the eigenspace of M associated with

eigenvalue −1, while the columns of matrix P2 ∈ Cn×(n−s) are the eigenvectors of M corresponding to

eigenvalues −1+i
√

3
2 and −1−i

√
3

2 and P−1 =

[
U
V

]
,where U ∈ Cs×n and V ∈ C(n−s)×n. Then, the matrix

M +M−1 = P(J + J−1)P−1 =
[

P1 P2

] [ −2Is 0
0 −In−s

] [
U
V

]
= −In − P1U (2.2)

is hermitian if and only if the matrix P1U is hermitian. From the identity

In = P−1P =
[

U
V

] [
P1 P2

]
=

[
UP1 UP2
VP1 VP2

]
(2.3)

we get that UP1 = Is and VP2 = In−s which implies that U and V are {1, 2, 4}− inverses of P1 and P2,
respectively. So P1U is hermitian if and only if U = P†1.
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If U = P†1,we have that

In = PP−1 =
[

P1 P2

] [ P†1
V

]
= P1P†1 + P2V,

which implies that V = P†2 and In−P1P†1 = P2P†2. So,R(P1)⊕⊥R(P2) = Cn. Suppose now thatR(P1)⊕⊥R(P2) =
Cn.We have that [

P1 P2

] [ P†1
P†2

]
= P1P†1 + P2P†2 = P1P†1 + In − P1P†1 = In,

which implies that P−1 =

[
P†1
P†2

]
, and U = P†1.

Now, let us discuss when the matrix B−1(M +M−1)B = B−1(−In − P1P†1)B = −In − B−1P1P†1B is hermitian.
This happens exactly when the matrix B−1P1P†1B is hermitian i.e. P1P†1 = (BB∗)−1P1P†1BB∗. This is true
if and only if the subspace R(P1) is invariant under the transformation BB∗. Let us prove it. Suppose
that P1P†1 = (BB∗)−1P1P†1BB∗ and let x ∈ R(P1) be arbitrary. Then, x = P1P†1x = (BB∗)−1P1P†1BB∗x implies
BB∗x = P1P†1BB∗x, which means that BB∗x ∈ R(P1). So, we proved that BB∗(R(P1)) ⊆ R(P1). Now let us
suppose that BB∗(R(P1)) ⊆ R(P1) and let v ∈ R(P1)⊥ = R(P2) be arbitrary. Then

((∀u ∈ R(P1)) 0 = ⟨BB∗u, v⟩ = ⟨u,BB∗v⟩) ⇒ BB∗v ∈ R(P1)⊥,

and consequently BB∗(R(P1)⊥) ⊆ R(P1)⊥. If x ∈ Cn is arbitrary there are unique u ∈ R(P1) and v ∈ R(P1)⊥

such that x = u + v. We have that (BB∗)−1P1P†1BB∗x = (BB∗)−1P1P†1BB∗u + (BB∗)−1P1P†1BB∗v = (BB∗)−1BB∗u =
u = P1P†1x,which implies P1P†1 = (BB∗)−1P1P†1BB∗. □

In previous theorem, the condition E−1 is invariant under the transformation BB∗ can be replaced with the
condition sum of eigenspaces of matrix AB−1 associated with eigenvalues from the set X = {−1+i

√
3

2 , −1−i
√

3
2 },

E −1+i
√

3
2
⊕ E −1−i

√
3

2
, is invariant under the transformation BB∗.

Example 2.1. Let A =


−

7
26 +

9i
√

3
13

i(64
√

3+87i)
52

i(48
√

3+49i)
52

11i(2
√

3+i)
26

i(84
√

3+55i)
52

i(76
√

3+25i)
52

i(19
√

3+34i)
26

i(69
√

3+40i)
52

i(55
√

3+56i)
52

 and B =

 1 3 2
1 2 1
2 2 2

. Then AB−1 = P · D · P−1

where P =

 −1 1 3
7 1 1
1 1 −4

 and D =


−1−i

√
3

2 0 0
0 −1+i

√
3

2 0
0 0 −1

. It is evident that the eigenspace associated with

the eigenvalue −1 is orthogonal to the eigenspaces associated with eigenvalues {−1−i
√

3
2 , −1+i

√
3

2 }. Since BB∗
 3

1
−4

 = 3
1
−4

, eigenspace E−1 is invariant under the transformation BB∗. Matrices A and B are invertible, A+B is singular

matrix and

(A + B)† =


−

7
26 −

57i
√

3
104

15
26 +

59i
√

3
104 −

3
52 −

7i
√

3
26

−
9
52 −

47i
√

3
104

23
52 +

45i
√

3
104 −

1
52 −

3i
√

3
13

29
52 +

87i
√

3
104 −

51
52 −

101i
√

3
104

9
52 +

5i
√

3
13

 = A−1 + B−1.

Example 2.2. Let A =


−

5
7 −

2i
√

3
7

−31−11i
√

3
14

−19−9i
√

3
14

i(5
√

3+23i)
28 −

i(
√

3−29i)
14 −

i(
√

3−29i)
28

−
i(
√

3−25i)
28

−9−25i
√

3
14

−23−39i
√

3
28

 and B =

 1 3 2
1 2 1
2 2 2

. Then AB−1 = P · D · P−1

where P =

 1 0 1
0 1 3

2
2 3 −

1
2

 and D =


−1−i

√
3

2 0 0
0 −1+i

√
3

2 0
0 0 −1

. It is evident that the eigenspace associated with the
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eigenvalue −1 is orthogonal to the eigenspaces associated with eigenvalues {−1−i
√

3
2 , −1+i

√
3

2 }. E−1 is not invariant

under the transformation BB∗ since BB∗
 1

3
2
−

1
2

 =


43
2

14
18

 < E−1. In this case

(A + B)† =


i(1097

√
3+847i)

1834
15(49−59i

√
3)

1834
511−461i

√
3

1834
5(49−5i

√
3)

917
3(−119+31i

√
3)

1834
i(179

√
3+91i)

1834
287+83i

√
3

1834
−98−13i

√
3

917
i(44
√

3+7i)
917


and

A−1 + B−1 =


15i(
√

3+i)
28

25(1−i
√

3)
56

15(1−i
√

3)
56

−
1
4 −

13i
√

3
28

7+17i
√

3
56 −

i(
√

3−7i)
56

23+17i
√

3
28

−29−19i
√

3
56

5+11i
√

3
56

 ,
so we have

(A + B)† , A−1 + B−1.

Let B ∈ Cn×n be an invertible matrix and A ∈ Cn×n an arbitrary matrix. As a continuation of Theorem
2.1, the question naturally arises when is

(A + B)† = A† + B† = A† + B−1. (2.4)

Let us see when the matrix A† + B−1 satisfies the four Penrose equations for the matrix A + B :

(P1) (A + B)(A† + B−1)(A + B) = A + B⇔ (AA† + AB−1 + BA† + In)(A + B) = A + B
⇔ 2A + AA†B + AB−1A + BA†A + BA†B = 0
\·B−1

⇔ 2AB−1 + AA† + AB−1AB−1 + BA†AB−1 + BA† = 0,
(P2) (A† + B−1)(A + B)(A† + B−1) = A† + B−1

⇔ (A† + B−1)(AA† + AB−1 + BA† + In) = A† + B−1

⇔ 2A† + B−1AA† + A†AB−1 + B−1AB−1 + A†BA† = 0
B·/
⇔ 2BA† + AA† + BA†AB−1 + AB−1 + BA†BA† = 0,

(P3) (A + B)(A† + B−1) is hermitian⇔ AA† + AB−1 + BA† + In is hermitian
⇔ AB−1 + BA† is hermitian,

(P4) (A† + B−1)(A + B) is hermitian⇔ A†A + A†B + B−1A + In is hermitian
⇔ A†B + B−1A is hermitian.

Notice that matrix BA† is {1, 2, 3}− inverse of matrix M = AB−1, so the last equality of (P1) can be written as

2M +MM(1,2,3) +MM +M(1,2,3)M +M(1,2,3) = 0, (2.5)

for M(1,2,3) = BA†.

Lemma 2.1. Let B ∈ Cn×n be an invertible matrix and A ∈ Cn×n be an arbitrary matrix. If matrix A† + B−1 =
A† + B† is inner inverse of matrix A + B then AB−1 is diagonalizable matrix whose eigenvalues belong to the set
Z = {0,−1, −1+i

√
3

2 , −1−i
√

3
2 }.

Proof. Since matrix A† + B−1 is inner inverse of matrix A + B, matrix M = AB−1 must satisfies (2.5). If we
multiply (2.5) the left-hand side and the right-hand side by M we get

M4 + 2M3 + 2M2 +M = 0. (2.6)



J. Milenković, J. Nikolov Radenković / Filomat 39:27 (2025), 9371–9384 9377

Since polynomial x4 + 2x3 + 2x2 + x = 0 does not have multiple roots, matrix M must be diagonalizable and
its eigenvalues must satisfy λ4

i + 2λ3
i + 2λ2

i + λi = 0, i.e. λi ∈ Z = {0,−1, −1+i
√

3
2 , −1−i

√
3

2 }. □
Notice that, by previous lemma, if (2.4) holds matrix M = AB−1 is group invertible. In the next theorem,

we derive necessary and sufficient condition for (2.4) to hold if BA† is M1. The resulting conditions will be
analogous to those from Theorem 2.1. We have that

BA† =M1
⇔ BA†AB−1 = AA† ⇔ R(BA†) = R(A) ∧N(AB−1) = N(A∗)
⇔ B (R(A∗)) = R(A) ∧ R((B∗)−1A∗) = R(A)
⇔ B (R(A∗)) ⊆ R(A) ∧ (B∗)−1 (R(A∗)) = R(A)
⇔ B (R(A∗)) ⊆ R(A) ∧ B∗ (R(A)) = R(A∗) ⇔ B (R(A∗)) ⊆ R(A) ∧ B∗ (R(A)) ⊆ R(A∗)

(2.7)

Theorem 2.2. Let B ∈ Cn×n be invertible matrix and A ∈ Cn×n arbitrary matrix such that B∗ (R(A)) ⊆ R(A∗) and
B (R(A∗)) ⊆ R(A). Then

(A + B)† = A† + B−1 = A† + B†

if and only if AB−1 is a diagonalizable matrix whose eigenvalues belong to the set Z = {0,−1, −1+i
√

3
2 , −1−i

√
3

2 }, its
eigenspace associated with eigenvalue −1, E−1, is orthogonal to its eigenspaces associated with eigenvalues from the
set X = {−1+i

√
3

2 , −1−i
√

3
2 } and E−1 is invariant under the transformation BB∗.

Proof. If the equality (P1) holds, by Lemma 2.1, M = AB−1 is a diagonalizable matrix whose eigenvalues
belong to the set Z = {0,−1, −1+i

√
3

2 , −1−i
√

3
2 }. If M = PJP−1, where J is Jordan normal form of M, let the

matrix P be P =
[

P1 P2

]
, where the columns of matrix P1 ∈ Cn×s span R(M), while the columns of

matrix P2 ∈ Cn×(n−s) span N(M). Because B∗ (R(A)) ⊆ R(A∗) and B (R(A∗)) ⊆ R(A) by (2.7) we have that
BA† = M1 = M†, so the matrix M is rang-Hermitian and we have that R(P1) ⊕⊥ R(P2) = Cn. As in the proof

of Theorem 2.1 can be proven that P−1 =

[
P†1
P†2

]
. Further, the matrix BA† = M1 = PJ†P−1. From the other

side, if matrix M is a diagonalizable matrix whose eigenvalues belong to the set Z = {0,−1, −1+i
√

3
2 , −1−i

√
3

2 },
the identity (2.6) holds, and since M is group invertible, if we multiply this identity by (M1)2 and by (M1)3,
respectively, we get that for all specified matrices M, the equations (P1) and (P2) are satisfied.

Let us see when the equations (P3) and (P4) are satisfied. Represent the matrix P1 as P1 =
[

P1,1 P1,2

]
,

where the columns of matrix P1,1 ∈ Cn×k span E−1, the eigenspace of M associated with eigenvalue −1,while
the columns of matrix P1,2 ∈ Cn×(s−k) are the eigenvectors of M corresponding to eigenvalues −1+i

√
3

2 and

−1−i
√

3
2 and P†1 =

[
U
V

]
,where U ∈ Ck×n and V ∈ C(s−k)×n. Then, the matrix

M +M1 = P(J + J†)P−1 =
[

P1,1 P1,2 P2

]  −2Ik 0 0
0 −I(s−k) 0
0 0 0


 U

V
P†2

 = −P1,1U − P1P†1

is hermitian if and only the matrix P1,1U is hermitian. As in the proof of Theorem 2.1 can be concluded that
P1,1U is hermitian if and only if U = P†1,1.

If U = P†1,1, we have that R(P1,2) ⊆ N(U) = N(P∗1,1) which implies R(P1,1) ⊥ R(P1,2). From the other side
if R(P1,1) ⊥ R(P1,2) we have that R(P1,1) ⊕⊥ R(P1,2) = R(P1) and since R(P1) ⊕⊥ R(P2) = Cn we have that

P1,1P†1,1 + P1,2P†1,2 = P1P†1 which implies that P−1 =


P†1,1
P†1,2
P†2

 , and U = P†1,1. So, the equation (P3) is satisfied if

and only if R(P1,1) ⊥ R(P1,2).



J. Milenković, J. Nikolov Radenković / Filomat 39:27 (2025), 9371–9384 9378

Now, let us discuss when the matrix

B−1(M +M1)B = B−1(−P1,1P†1,1 − P1P†1)B = −B−1P1,1P†1,1B − B−1P1P†1B = −B−1P1,1P†1,1B − B−1AA†B

is hermitian. Since the condition (2.7) is satisfied we have that BA†AB−1 = AA† which implies that A†A =
B−1AA†B so the equation (P4) is satisfied if and only if B−1P1,1P†1,1B is hermitian matrix i.e. P1,1P†1,1 =
(BB∗)−1P1,1P†1,1BB∗. Similarly as in the proof of Theorem 2.1 can be shown that this is true if and only if the
subspace R(P1,1) = E−1 is invariant under the transformation BB∗. □

Example 2.3. Let A =


−

4
5 0 8

5 0
0 −2 + 2i

√
3 0 0

8
5 0 −

16
5 0

0 0 0 0

 and B =


4 0 0 −6
0 4 0 0
0 0 4 −3
−2 0 −1 6

. Then AB−1 = P · D · P−1

where P =


0 −1 6 2
1 0 0 0
0 2 3 1
0 0 −5 1

 and D =


−1+i

√
3

2 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

 . Since A†AB∗A = B∗A and AA†BA∗ = BA∗, the

preconditions B∗(R(A)) ⊆ R(A∗) and B(R(A∗)) ⊆ R(A) are satisfied. Further, the eigenspace associated with the

eigenvalue −1 is orthogonal to the eigenspaces associated with eigenvalues {−1−i
√

3
2 , −1+i

√
3

2 }. Since BB∗


−1
0
2
0

 =

16


−1
0
2
0

, eigenspace E−1 is invariant under the transformation BB∗. In this case

(A + B)† =


8

15 0 4
15

2
3

0 1
8 −

i
√

3
8 0 0

4
15 0 2

15
1
3

2
9 0 1

9
4
9

 = A† + B−1.

Example 2.4. Let A =


−

59
20 +

i
√

3
4 0 −

59
40 +

i
√

3
8

3(17+i
√

3)
8

0
i(
√

3+i)
2 0 0

−
59
40 +

i
√

3
8 0

i(5
√

3+59i)
80

3(17+i
√

3)
16

17+i
√

3
8 0 17+i

√
3

16
3i(
√

3+31i)
16


and

B =


4 0 0 −6
0 4 0 0
0 0 4 −3
−2 0 −1 6

. Then AB−1 = P ·D · P−1 where P =


0 2 6 −1
1 0 0 0
0 1 3 2
0 1 −5 0

 and

D =


−1+i

√
3

2 0 0 0
0 −1+i

√
3

2 0 0
0 0 −1 0
0 0 0 0

 . Since A†AB∗A = B∗A and AA†BA∗ = BA∗, the preconditions B∗(R(A)) ⊆ R(A∗)

and B(R(A∗)) ⊆ R(A) are satisfied. Further, the eigenspace associated with the eigenvalue −1 is not orthogonal to
the eigenspace associated with the eigenvalues {−1−i

√
3

2 , −1+i
√

3
2 }, neither is the eigenspace E−1 invariant under the
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transformation BB∗ since BB∗


6
0
3
−5

 =


586
0

293
−535

. In this case

(A + B)† =



101−80i
√

3
420 0 −

1
210 −

2i
7
√

3

2(1−i
√

3)
21

0 1−i
√

3
2 0 0

−
1

210 −
2i

7
√

3
0 26−5i

√
3

105
1−i
√

3
21

2(1−i
√

3)
7 0 1−i

√
3

7
1−i
√

3
7


and

A† + B−1 =



339
√

3+318i
80
√

3+1260i
0 319

√
3+3i

160
√

3+2520i

3(67
√

3+51i)
8(4
√

3+63i)
0 1−i

√
3

2 0 0
319
√

3+3i
160
√

3+2520i
0

3(133
√

3+421i)
80(4

√
3+63i)

3(67
√

3+51i)
16(4

√
3+63i)

1−i
√

3
8 0 1−i

√
3

16
3(1−i

√
3)

16


,

so it follows
(A + B)† , A† + B−1.

We complete this section with a generalization of Theorem 2.2, whose consequence will be a complete
description of the matrices A ∈ Cn×n for which equality (2.4) holds in the case when matrix B is unitary.
Recall that the matrix U ∈ Cn×n is unitary if UU∗ = U∗U = In.

Theorem 2.3. Let B ∈ Cn×n be invertible matrix and A ∈ Cn×n arbitrary matrix such that B∗B (R(A∗)) ⊆ R(A∗).
Then (2.4) holds if and only if B (R(A∗)) ⊆ R(A),AB−1 is diagonalizable matrix whose eigenvalues belong to the
set Z = {0,−1, −1+i

√
3

2 , −1−i
√

3
2 }, its eigenspace associated with eigenvalue −1, E−1, is orthogonal to its eigenspaces

associated with eigenvalues from the set X = {−1+i
√

3
2 , −1−i

√
3

2 } and E−1 is invariant under the transformation BB∗.

Proof. Since B∗B (R(A∗)) = R(A∗) ⇒ B
(
R(A†)

)
= (B∗)−1 (R(A∗)) ⇒ R(BA†) = R((AB−1)∗), we have that

BA† = (AB−1)†.
Suppose that (2.4) holds and let x ∈ N(M) be arbitrary, where M = AB−1. From Penrose equations (P1)

and (P2) we get MM†x +M†x = 0 and 2M†x +MM†x +M†M†x = 0 that imply M†x = −MM†x ∈ R(M) and
M†x +M†M†x = 0 ⇒ (In +M†)x ∈ N(M†) = N(M∗) = R(M)⊥. Further 0 = ⟨M†x, (In +M†)x⟩ = ∥M†x∥2 ⇒
M†x = 0 that as a consequence has N(M) = N(M†). Now, R(M†) = N(M)⊥ = N(M∗)⊥ = R(M) that gives
M1 = M† and by (2.7) we have that B∗ (R(A)) ⊆ R(A∗) and B (R(A∗)) ⊆ R(A). The rest of the proof follows
from Theorem 2.2.

Let now A ∈ Cn×n be such that B∗B (R(A∗)) ⊆ R(A∗), B (R(A∗)) ⊆ R(A), AB−1 is a diagonalizable matrix
whose eigenvalues belong to the set Z = {0,−1, −1+i

√
3

2 , −1−i
√

3
2 }, its eigenspace associated with eigenvalue

−1, E−1, is orthogonal to its eigenspaces associated with eigenvalues from the set X = {−1+i
√

3
2 , −1−i

√
3

2 } and
E−1 is invariant under the transformation BB∗.We have that B∗ (R(A)) = B∗B (R(A∗)) = R(A∗), so by Theorem
2.2 the equality (2.4) holds. □

Corollary 2.1. Let B ∈ Cn×n be unitary matrix and A ∈ Cn×n arbitrary matrix. Then (2.4) holds if and only if
B (R(A∗)) ⊆ R(A),AB∗ is a diagonalizable matrix whose eigenvalues belong to the set Z = {0,−1, −1+i

√
3

2 , −1−i
√

3
2 } and

its eigenspace associated with eigenvalue −1, E−1, is orthogonal to its eigenspaces associated with eigenvalues from
the set X = {−1+i

√
3

2 , −1−i
√

3
2 }.
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3. Additivity of group inverse

In this section, we will present results analogous to those from Section 2. Instead of the Moore-Penrose
inverse, we will investigate the group inverse. As both Moore-Penrose and group inverse satisfy Penrose
equations (1) and (2),we will carry over certain results from the previous section. We will start by examining
the additivity of the group inverse of two invertible matrices.

Theorem 3.1. Let A,B ∈ Cn×n be invertible matrices. Then A + B is group invertible and

(A + B)1 = A−1 + B−1 = A1 + B1

if and only if AB−1 is diagonalizable matrix whose eigenvalues belong to the set Y = {−1, −1+i
√

3
2 , −1−i

√
3

2 }, its eigenspace
associated with eigenvalue −1, E−1, is invariant for the transformation B and sum of its eigenspaces associated with
eigenvalues from the set X = {−1+i

√
3

2 , −1−i
√

3
2 }, E −1+i

√
3

2
⊕ E −1−i

√
3

2
, is invariant under the transformation B.

Proof. From the proof of Theorem 2.1 we get that A−1 + B−1 is {1, 2}− inverse of the matrix A+ B if and only
if matrix M = AB−1 is a diagonalizable matrix whose eigenvalues belong to the set Y = {−1, −1+i

√
3

2 , −1−i
√

3
2 }.

Further, A−1 + B−1 is {5}-inverse of the matrix A + B if and only if

(A + B)(A−1 + B−1) = (A−1 + B−1)(A + B) ⇔ AB−1 + BA−1 = B−1A + A−1B
⇔ M +M−1 = B−1(M +M−1)B.

(3.1)

If M = PJP−1, where J is Jordan normal form of M, matrix P be P =
[

P1 P2

]
, where the columns of

matrix P1 ∈ Cn×s span E−1, the eigenspace of M associated with eigenvalue −1,while the columns of matrix
P2 ∈ Cn×(n−s) are the eigenvectors of M corresponding to eigenvalues −1+i

√
3

2 and −1−i
√

3
2 and then span

E −1+i
√

3
2
⊕ E −1−i

√
3

2
, the sum of eigenspaces of M associated with eigenvalues −1±i

√
3

2 . Let P−1 be P−1 =

[
U
V

]
,

where U ∈ Cs×n and V ∈ C(n−s)×n. From (2.2),we get that (3.1) is satisfied if and only if

P1U = B−1P1UB. (3.2)

Since U ∈ P1{1, 2, 4} and UB ∈ (B−1P1){1, 2, 4},matrices P1U and B−1P1UB are idempotents and equality (3.2)
holds if and only if these idempotents have the same range and null space, i.e.

R(P1) = B−1 (R(P1)) ∧ N(U) = N(UB) ⇔ R(P1) = B (R(P1)) ∧ N(U) = B−1 (N(U))
⇔ B (R(P1)) ⊆ R(P1) ∧ B (N(U)) = N(U)

N(U)=R(P2)
⇔ B (R(P1)) ⊆ R(P1) ∧ B (R(P2)) ⊆ R(P2).

□

Example 3.1. Let A =


−26 − 6i

√
3 12 + 3i

√
3 15 + 4i

√
3

−
41
2 −

11i
√

3
2 9 + 3i

√
3 25

2 +
7i
√

3
2

−
51
2 −

13i
√

3
2 12 + 3i

√
3 29

2 +
9i
√

3
2

 and B =

 34 −15 −21
29 −12 −19
33 −15 −20

 . Then AB−1 =

P ·D ·P−1 where P =

 2 1 3
3 1 2
1 1 3

 and D =


−1+i

√
3

2 0 0
0 −1−i

√
3

2 0
0 0 −1

 . Since B

 2 1
3 1
1 1

 =
 2 −2

3 −2
1 −2

 we conclude

that E −1+i
√

3
2
⊕ E −1−i

√
3

2
is invariant under the transformation B. Since B

 3
2
3

 = 3

 3
2
3

 , E−1 is also invariant under
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transformation B. Conditions of Theorem 1.3 are satisfied and

(A + B)1 =


11+3i

√
3

4 −
3(2+2i

√
3)

8 −
i(
√

3−9i)
4

13+i
√

3
4 −

3(2+2i
√

3)
8

i(
√

3+11i)
4

9+5i
√

3
4 −

3(2+2i
√

3)
8 −

7
4 −

3i
√

3
4

 = A−1 + B−1.

Example 3.2. Let A =


−20 − 20i

√
3 9 + 10i

√
3 12 + 11i

√
3

−
33
2 −

43i
√

3
2 7 + 11i

√
3 21+23i

√
3

2

−
35
2 −

37i
√

3
2 8 + 9i

√
3

21(1+i
√

3)
2

 and B =

 34 −15 −21
29 −12 −19
33 −15 −20

 . Then AB−1 =

P · D · P−1 where P =

 2 1 3
3 1 2
1 1 1

 and D =


−1+i

√
3

2 0 0
0 −1−i

√
3

2 0
0 0 −1

 . As in Example 3.1 we conclude that

E −1+i
√

3
2
⊕ E −1−i

√
3

2
is invariant under the transformation B, but B

 3
2
1

 =
 51

44
49

 < E−1. In this case

(A + B)1 =


5
4 +

29i
√

3
4 −4i

√
3 −

3
2 −

7i
√

3
2

−
1
4 +

35i
√

3
4 1 − 5i

√
3 −1 − 4i

√
3

11
4 +

23i
√

3
4 −1 − 3i

√
3 −2 − 3i

√
3


but

A−1 + B−1 =


−

1
4 +

5i
4
√

3
9−7i

√
3

12 −
i(
√

3−9i)
12

i(7
√

3+5i)
12

13−11i
√

3
12

i(
√

3+11i)
12

−
1

12 +
i
√

3
4

5−3i
√

3
12 −

7
12 −

i
√

3
4

 ,
so

(A + B)1 , A−1 + B−1.

Now we will consider what happens if the assumption of invertibility of the matrix A is omitted, but
it is assumed that the matrix A is group invertible and satisfies certain conditions analogous to those in
Section 2.

Lemma 3.1. Let B ∈ Cn×n be invertible matrix and A ∈ Cn×n be matrix such that ind(A) ≤ 1. If matrix A1 + B−1 =
A1 + B1 is inner inverse of matrix A + B then AB−1 is diagonalizable matrix whose eigenvalues belong to the set
Z = {0,−1, −1+i

√
3

2 , −1−i
√

3
2 }.

Proof. As in the case of Moore-Penrose inverse, matrix A1 + B−1 satisfies the first Penrose equation for the
matrix A+B if and only if 2AB−1 +AB−1BA1 +AB−1AB−1 +BA1AB−1 +BA1 = 0. Since BA1 ∈ (AB−1){1, 2}, the
rest of the proof is the same as in Lemma 2.1. □

Theorem 3.2. Let B ∈ Cn×n be invertible matrix and A ∈ Cn×n be matrix such that ind(A) ≤ 1,B (R(A)) ⊆ R(A)
and B (N(A)) ⊆ N(A). Then matrix A + B is group invertible and

(A + B)1 = A1 + B−1 = A1 + B1 (3.3)

if and only if AB−1 is a diagonalizable matrix whose eigenvalues belong to the set Z = {0,−1, −1+i
√

3
2 , −1−i

√
3

2 }, its
eigenspace associated with eigenvalue −1, E−1, is invariant for the transformation B and the sum of its eigenspaces
associated with eigenvalues from the set X = {−1+i

√
3

2 , −1−i
√

3
2 }, E −1+i

√
3

2
⊕E −1−i

√
3

2
, is invariant under the transformation

B.
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Proof. Because of the following equivalences

BA1 =M1
⇔ BA1AB−1 = AA1 ⇔ R(BA1) = R(A) ∧N(AB−1) = N(A)
⇔ B (R(A)) = R(A) ∧ B (N(A)) = N(A) ⇔ B (R(A)) ⊆ R(A) ∧ B (N(A)) ⊆ N(A)

we have that BA1 =M1.
If matrix A1 + B−1 satisfies first and second Penrose equation for matrix A + B by Lemma 3.1 matrix

M = AB−1 is diagonalizable and its eigenvalues belong to the set Z = {0,−1, −1+i
√

3
2 , −1−i

√
3

2 }. Conversely, for
all matrices A such that matrix M is diagonalizable matrix whose eigenvalues belong to the set Z, in the
same manner as in Theorem 2.2, since BA1 =M1, it can be concluded that A1 + B−1

∈ (A + B){1, 2}.
Further, A1 + B−1 is {5}-inverse of the matrix A + B if and only if M +M1 = B−1(M +M1)B. If M = PJP−1,

where J is Jordan normal form of M,matrix P =
[

P1,1 P1,2 P2

]
,where the columns of matrix P1,1 ∈ Cn×k

span E−1, the eigenspace of M associated with eigenvalue −1, the columns of matrix P1,2 ∈ Cn×(s−k) are the
eigenvectors of M corresponding to eigenvalues −1+i

√
3

2 and −1−i
√

3
2 and then span E −1+i

√
3

2
⊕E −1−i

√
3

2
, the sum of

eigenspaces of M associated with eigenvalues −1±i
√

3
2 , and the columns of matrix P2 ∈ Cn×(n−s) span N(M).

Let P−1 =

 U
V
W

 , where U ∈ Ck×n,V ∈ C(s−k)×n and W ∈ C(n−s)×n. By direct computation we get that P2W

is projection with range N(M) = N(AB−1) = BN(A) = N(A) and null space R(A), so P1,1U + P1,2V = AA1.
Furthermore, M1 = PJ†P−1 and we obtain

M +M1 = P(J + J†)P−1 =
[

P1,1 P1,2 P2

]  −2Ik 0 0
0 −I(s−k) 0
0 0 0


 U

V
W

 = −P1,1U − AA1.

Since AA1 = B−1AA1B,we have that A1+B−1 is {5}-inverse of the matrix A+B if and only if P1,1U = B−1P1,1UB,
i.e. if and only if B

(
R(P1,1)

)
⊆ R(P1,1) and B (N(U)) ⊆ N(U), i.e. if and only if

B (E−1) ⊆ E−1 and B
(
E −1+i

√
3

2
⊕ E −1−i

√
3

2
⊕N(A)

)
⊆ E −1+i

√
3

2
⊕ E −1−i

√
3

2
⊕N(A). (3.4)

Since B (R(A)) ⊆ R(A),E −1+i
√

3
2
⊕E −1−i

√
3

2
⊆ R(A) and B (N(A)) ⊆ N(A) conditions from (3.4) are equivalent with

B (E−1) ⊆ E−1 and B
(
E −1+i

√
3

2
⊕ E −1−i

√
3

2

)
⊆ E −1+i

√
3

2
⊕ E −1−i

√
3

2
.

□
Let us mention that our Theorem 3.2 is in accordance with Corollary 2.5. from [12].

Corollary 3.1. [12] Let P,Q ∈ Cn×n be two group invertible matrices and let a, b be two nonzero complex numbers.
If PQQ1 = QPP1 and QQ1P = PP1Q, then aP + bQ and PQ are group invertible. If a + b , 0, then

(aP + bQ)1 =
1

a + b
P1QQ1 +

1
a

(In −QQ1)P1 +
1
b

(In − PP1)Q1. (3.5)

Moreover,

(P −Q)1 = P1 −Q1 and (PQ)1 = (P1QQ1)2 = (QP)1. (3.6)

Suppose that Q is invertible matrix in previous corollary. Then matrix P and Q satisfy P = QPP1 = PP1Q.
Set A = aP and B = bQ. Then A is group invertible matrix, B is invertible matrix, B (R(A)) ⊆ R(A) and
B (N(A)) ⊆ N(A), so Theorem 3.2 can be applied. Notice that AB−1 = a

b PQ−1 = a
b PP1, and since PP1 is an
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idempotent, by Theorem 3.2 the equality (3.3) is satisfied if and only if P = 0 or a
b ∈ Y = {−1, −1+i

√
3

2 , −1−i
√

3
2 }.

(The subspaces which need to be invariant under transformation B are trivial or R(A).) Let us see what
Corollary 3.1 says. If P is trivial in equation (3.5), the equality (3.3) is obviously satisfied. If a

b = −1 by (3.6),
the equality (3.3) is satisfied. Since Q is invertible matrix, the equality (3.5) has a form

(aP + bQ)1 =
1

a + b
P1 +

1
b

Q−1
−

1
b

PP1Q−1 = −
a

b(a + b)
P1 +

1
b

Q−1,

i.e. (A + B)1 = − a2

b(a+b) A
1 + B1, so (3.3) holds if and only if a2 + ab + b2 = 1, i.e. a

b ∈ X = {−1+i
√

3
2 , −1−i

√
3

2 }.

However, notice that B (R(A)) ⊆ R(A) and B (N(A)) ⊆ N(A) if and only if QPP1Q−1 = PP1 which is weaker
condition than P = QPP1 = PP1Q.

Example 3.3. Let A =


−

1
2 0 −

1
4 −

3
4

0 1
2 −

i
√

3
2 0 0

−
1
4 0 −

1
8 −

3
8

−
1
4 0 −

1
8 −

3
8

 and B =


13
10 0 3

20 −
3
4

0 −1 0 0
3

20 0 43
40 −

3
8

−
1
4 0 −

1
8

13
8

. Then AB−1 = P · D · P−1

where P =


0 2 6 −1
1 0 0 0
0 1 3 2
0 1 −5 0

 and D =


−1+i

√
3

2 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

 . Since AA†BA = BA and AB = ABA†A, the

preconditions B(R(A)) ⊆ R(A) and B(N(A)) ⊆ N(A) are satisfied. It can easily be checked that the eigenspaces
E −1+i

√
3

2
⊕ E −1−i

√
3

2
and E−1 are invariant under transformation B. In this case

(A + B)1 =


7
20 0 −

13
40 −

3
8

0
i(
√

3+i)
2 0 0

−
13
40 0 67

80 −
3

16
−

1
8 0 −

1
16

5
16

 = A1 + B−1.

Example 3.4. Let A =


−

5i
√

3
−

1
2 +

3i
√

3
2

3−23i
√

3
6

−3−11i
√

3
6

1 + 2i
√

3 −
3i(
√

3−i)
2

7+5i
√

3
2

1+5i
√

3
2

i(11
√

3+3i)
6

1−3i
√

3
2

i(19
√

3+3i)
6

i(13
√

3+3i)
6

1 −1 2 1

 and

B =


−3 4 −7 −8
−2 3 −7 −4
0 0 −1 0
2 −2 4 5

. Then AB−1 = P ·D · P−1 where P =


1 2 3 2
3 0 3 1
1 −1 −1 0
0 0 1 −1

 and

D =


−1+i

√
3

2 0 0 0
0 −1−i

√
3

2 0 0
0 0 −1 0
0 0 0 0

 . Since AA†BA = BA and AB = ABA†A, the preconditions B(R(A)) ⊆ R(A) and

B(N(A)) ⊆ N(A) are satisfied. Since B


1 2
3 0
1 −1
0 0

 =


2 1
0 3
−1 1
0 0

we conclude that E −1+i
√

3
2
⊕E −1−i

√
3

2
is invariant under

the transformation B. Since B


3
3
−1
1

 =


2
6
1
1

 , E−1 is not invariant under transformation B. In this case

(A + B)1 , A1 + B−1.
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4. Conclusion

In this paper we presented the necessary and sufficient conditions for the Moore-Penrose inverse or the
group inverse of the sum of two invertible matrices to be equal to the sum of (regular) inverses of those
matrices.

We also stated the equivalent conditions to additivity of Moore-Penrose inverse for matrix A such that
B∗ (R(A)) ⊆ R(A∗) and B (R(A∗)) ⊆ R(A) and invertible matrix B. In the case when matrix B is unitary the
set of matrices A for which additivity of Moore-Penrose inverse holds is fully described. The equivalent
conditions to additivity of group inverse are given in the case when A is group invertible matrix such that
B (R(A)) ⊆ R(A) and B (N(A)) ⊆ N(A) and B is invertible matrix.

The introduced results are illustrated with appropriate examples and compared with already existing
results in the literature.

Acknowledgements: The authors would like to thank the referee for his/her valuable comments.
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