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Some results on additivity of Moore-Penrose inverse in matrix settings

Jovana Milenkovié¢**, Jovana Nikolov Radenkovié?

*University of Ni$, Faculty of Sciences and Mathematics, Department of Mathematics, Serbia

Abstract. We present the necessary and sufficient conditions for the Moore-Penrose inverse of the sum
of two matrices to be equal to the sum of Moore-Penrose inverses of those matrices when these matrices

are invertible, or one matrix is invertible and the other satisfies certain range inclusions. Similar results are
presented for the group inverse.

1. Introduction

In this paper, we will investigate the additivity of Moore-Penrose and group inverse in the case of two
matrices. C"™" will denote the set of m X n complex matrices while for given A € C™", A*,r(A), R(A)
and N(A) will denote the conjugate transpose, rank, the column space (range) and the null space of A,
respectively. If matrix A € C"™" satisfies A% = A, we say that A is idempotent (projection). The symbol \ - X
(X - /) written after an equality means that in the next step we will multiply that equality from the left (right)
side by the matrix X.

In [5] the authors investigate the equation a}r—b = % + % for real and complex numbers and, further, its

generalization for matrices with real and complex entries. Here we will restate some of the existing results
concerning complex matrices since the generalization of these results will be the subject of our study. For
the sake of completeness, we give the proof of the following

Lemma 1.1. [5] Let A, B € C"™" be invertible matrices. Then A + B is an invertible matrix and

(A+Bt=A"1+B" (1.1)

if and only if AB™! is a diagonalizable matrix whose eigenvalues belong to the set X = {#g, %ﬁ}, ie. A=
PDP!B, for some invertible matrix P and diagonal matrix D whose entries on the main diagonal belong to the set X.
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Proof. Notice that (A+B)™! = A~'+B~!ifand only if A™' + B! is right inverse of A+ B. By direct computation,
we get

Li=A+B(A ' +B ) e AB'+BA'+1,=0 \-AB !(invertible matrix)
SAB Y +AB 41, =0.

Hence, condition (1.1) holds if and only if the matrix M = AB™! satisfies
M>*+M+1,=0. (1.2)

If M = PJP~!, where | is Jordan normal form of M, (1.2) holds if and only if | satisfies the same equation, i.e.
for all Jordan blocks J; of M holds ]l.2 + Ji + I, = 0. If J; is of dimension greater than one,

A+ Ai+1 0 24+1
0 AT+ +1 -0

must hold, which is impossible, so all Jordan blocks are of dimension one, and their entries satisfy )\f +A;+1 =

0,ie AdjeX= {%6, %6}. Hence (1.2) is true if and only if M is diagonalizable matrix whose eigenvalues
belong to the set X. (That M is a diagonalizable matrix, we could conclude from the fact that the polynomial
x? +x + 1 = 0 does not have multiple roots.) O

The concept of regular inverse is generalized by Penrose [17] who showed that for any complex matrix

A € €™ there exists unique matrix X € C"™™ which satisfies the four Penrose equations
(1) AXA=A, (2)XAX=X (O (AX)'=AX, “4) (XA) =XA.

This inverse is known as the Moore-Penrose inverse of A and is denoted by A'. Actually, Penrose redis-
covered this inverse, which was presented first by Moore [15]. Properties of this inverse can be found in
[2, 7]. If matrix X satisfies the Penrose equation (i) for each i € K C {1, 2, 3,4} we say that X is a K-inverse
of A. In particular, we call the {1}—inverse of A the inner inverse of A, while the {2}—-inverse of A is called
the outer inverse of A. The question naturally arises when the equality analogous to (1.1) holds for the
Moore-Penrose inverse, i.e.

(A+B)=A"+B". (1.3)

This problem is not solved in general, while first results on it can already be found in [17].

Lemma1.2. [17] If A; € C™",i = 1,n,A = YL A;and (Yi,j = L,n)(i # | = AAS = AiAj = 0) then
AT =Y AL

Baksalary et al. [1] gave other sufficient conditions for (1.3) independent of those in Lemma 1.2.
Proposition 1.1. [1] Let A, B € C"™" be such that the identities

(A+B)B*=B'(A+B)=0
are satisfied. Then the condition (1.3) is satisfied as well.

Notice that Proposition 1.1 can be derived from Lemma 1.2 if we take n = 2,A; = A+ B and A, = -B.
Necessary and sufficient conditions for (1.3) when A and B are certain functions of orthogonal projectors or
A and B are rank additive are also presented in [1]. In [16] it is shown that if A, B € C"™" and R(B*) = N(A)
and R(B) € N(A"), then A + B is invertible and, of course, (A + B)™! = A" + Bf. An example given in [16],
which relies on singular value decomposition, shows that conditions from Lemma 1.2 and Proposition 1.1
are not necessary for the obedience of equality (1.3). Various formulas for the Moore-Penrose inverse of a
sum of two matrices can be found in [4, 9, 11].
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The second essential inverse for each square matrix (in terms of spectral properties) is the Drazin inverse.
Recall that for a square matrix A € C™" the smallest nonnegative integer k such that r(A¥) = r(A¥1) is called
the index of A and is denoted by ind(A). If matrix A is of index k, there exists the unique matrix X which
satisfies equations

(1k) AAXA = AF, (2) XAX =X, (5) AX = XA.

This matrix is called the Drazin inverse of A and is denoted by AP. First results on the additivity of the
Drazin inverse were published by Drazin himself in the paper [8].

Lemma 1.3. [8]Ifxy,...,x;are given Drazin-invertible elements (of some ring) with xsx; =0 (s,t =1,...,j; s # 1),
then x1 + ... + xj is also Drazin-invertible, with (x1 + ... + xj)? = xP + ... + ij .

Representations of the Drazin inverse of the sum of two matrices satisfying different conditions can be
found in the papers [6, 10, 14, 19].

In the case when ind(A) < 1 we say that A € C"™" is group invertible and its Drazin inverse is called the
group inverse. In other words, the matrix X which satisfies

W) AXA=4, (2)XAX=X, (5)AX=XA

is the group inverse of A and it is denoted by AY. In [12] some formulas for the group inverse of the
sum of two group invertible matrices that satisfy certain conditions are presented, while in [3, 13] the
group invertibility of the linear combination of two k—potent matrices and the group invertibility of some
expressions of two idempotent matrices are investigated, respectively. Among the results on the topic of
additivity of the group inverse, we came across the following result.

Proposition 1.2. [18] Let A, B € C™". Suppose that AY and BY exist and that one has the following relationships
between A and B :

(A+B)B =B(A+B)=0. (1.4)
Then A + B is group invertible and

(A+B)Y =A%+ BY. (1.5)
Let us mention that condition (1.4) is equivalent to

(A+B)B=B(A+B) =0, (1.6)

when BY exists. Actually, in [18], it is stated that condition (1.4) and group invertibility of B imply the group
invertibility of A and A + B. This is not true and the following example illustrates that. If we suppose that
A and B are group invertible (or B and A + B) as in the Proposition 1.2 the statement is valid.

0 0O

-1 00 100

Example1.1. Let A=| 0 0 1 ]and B = [ 0 00 ] Then matrix B is group invertible and BY = B, (A +
0 00

B)BY = 0 = BY(A + B), while ind(A) = ind(A + B) =

2.

In the same manner as in the case of the Moore-Penrose inverse, i.e. by using Lemma 1.3 for j =2,x; = A+B
and x, = —B, we can conclude that condition (1.6) implies equality (A + B)P = AP + B, for arbitrary matrices
A,BeC™"

Now, let B € C"™" be an invertible matrix. The only matrix A € C"*" which satisfies the conditions from
Lemma 1.2 or Lemma 1.3, for n = 2 and matrices A and B is A = 0, while the only matrix A € C"™" that
satisfies the conditions from Proposition 1.1 or Proposition 1.2 is A = —B. Therefore, if B is invertible, in the
literature, there is only a narrow set of matrices A such that the equality (1.3) or equality (1.5) holds. This
fact has motivated our research.
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2. Additivity of Moore-Penrose inverse

First, we will examine when (1.3) holds if A and B are invertible matrices. Of course, the conditions for
that will be weaker than those from Lemma 1.1.

Theorem 2.1. Let A, B € C™" be invertible matrices. Then
A+Bt=A"1+B1=A"+ B

, " oAnel , , , , _ —1+iV3 —1-iV3,
if and only if AB™" is a diagonalizable matrix whose eigenvalues belong to the set Y = {=1, =5, =52}, ifs

eigenspace associated with eigenvalue —1, E_q, is orthogonal to its eigenspaces associated with eigenvalues from the

set X = {#, #} and E_, is invariant under the transformation BB*.

Proof. The matrix A~! + B! is {1}—inverse of the matrix A + B if and only if

A+BA'+BHYA+B) =A+Be (2, +AB'+BA™)A+B)=A+B
©2A+B)+AB'A+BA'B=0 \-B'AB !(invertible matrix)
& (AB1)? +2(AB 1) +2AB7 1 +1, =0,

and A™' + B! is {2}—inverse of the matrix A + B if and only if
AT+BYHYA+BA T +B ) =A"1"+B o A +B Yl +AB' + BA ) = A1 + B!
24 +B Y +BlAB + AT BAT =0, A-/ \-AB™!
& (AB™Y +2(AB™ 12 +2AB  +1, = 0.

So, A™! + B! is inner inverse of the matrix A + B if and only if it is the outer inverse of this matrix, and that
happens exactly when matrix M = AB~! satisfies

M3 +2M? + 2M + I, = 0. (2.1)

Similarly to the proof of Lemma 1.1, if M = PJP~!, where ] is Jordan normal form of M, we can conclude

that (2.1) holds if and only if all Jordan blocks J; of M are of dimension one, and their entries satisfy
/\? + 2/\% +2A;+1=0,ie. A; e Y ={-1, #, %ﬁ}. Hence, (2.1) is true if and only if M is diagonalizable
matrix whose eigenvalues belong to the set Y.

Further, the matrix A" + B~ is {3, 4}—inverse of the matrix A + B if and only if the matrices
A+B)A'+B ) =21, +AB'+BA™! and (A '+BY)A+B)=2I,+BlA+A'B

are hermitian i.e. if and only if matrices M + M~! and B™'(M + M~!)B are hermitian. Let matrix P be
P = [ Py P, ], where the columns of matrix P; € C™* span E_;, the eigenspace of M associated with
eigenvalue —1, while the columns of matrix P, € €™ are the eigenvectors of M corresponding to

eigenvalues 71+zi\/§ and 7172"‘@ and P! = [ l{f ], where U € C*" and V € C"9%"_ Then, the matrix

-2 0 u
-1 _ -1yp-1 _ s -
M+M" =P(J+] )P _[P1 Pz][ 0 -l H V]_—In—Plll (2.2)
is hermitian if and only if the matrix P;U is hermitian. From the identity
u up; UP
—plp— _ 1 2
I,=P p_[v][p1 PZ]_[Vpl VPZ] (2.3)

we get that UP; = [; and VP, = I,_; which implies that U and V are {1,2,4}- inverses of P; and P,
respectively. So P1U is hermitian if and only if U = P}
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If U = P!, we have that

Pl
\%
which implies that V = P} and I,, - P1P} = P,P}. So, R(P;) & R(P,) = C". Suppose now that R(P1) & R(P;) =
C". We have that

IH:PP‘lz[ P, P, ][ ]=P1P{+P2V,

P+
[Pl P, ][ P]r :|=P1PI+P2PZ=P1PI+IH—P1PI=L,“
2

+
which implies that P~! = [ PJ; ], and U = P!
Py 1

Now, let us discuss when the matrix B'(M + M™)B = B'(=I, — P1P})B = —I, — B"'P1P!B is hermitian.
This happens exactly when the matrix B_1P1PIB is hermitian i.e. P1P1r = (BB*)_1P1PIBB". This is true
if and only if the subspace R(P;) is invariant under the transformation BB*. Let us prove it. Suppose
that P1P} = (BB")"'P1PiBB* and let x € R(P1) be arbitrary. Then, x = P;PIx = (BB*)"'P1P!BB*x implies
BB*x = P1P{BB*x, which means that BB*x € R(P1). So, we proved that BB*(R(P1)) € R(P1). Now let us
suppose that BB*(R(P1)) € R(P1) and let v € R(P;1)* = R(P,) be arbitrary. Then

(Yu € R(P1)) 0=<(BB‘u,v)={u,BB'v)) = BBveR{P)",
and consequently BB*(R(P1)*) € R(P1)*. If x € C" is arbitrary there are unique u € R(P;) and v € R(P1)*
such that x = u + 0. We have that (BB)"'P;P!BB*x = (BB*)"\P;P!BB‘u + (BB*)'P,P!BB'v = (BB*)"'BB‘u =
u = P1P{x, which implies P, P} = (BB*)"'P;PIBB". O
In previous theorem, the condition E_; is invariant under the transformation BB* can be replaced with the

condition sum of eigenspaces of matrix AB~! associated with eigenvalues from the set X = {%ﬁ, %@},

E ...vs ® E_ s, 1is invariant under the transformation BB*.
2 2
7, 9%V i(64V3+87i)  i(48 V3+49i)

2613  m T m 1 3 2
Example 2.1. Let A = | W2¥3+)  i(84V3+55)  i(76V3+25) | ppgB=| 1 2 1 | Then AB' =P-D-P-!
26 52 52

i(19V3+34i)  i(69V3+40i)  i(55 V3+56i) 2.2 2
26 52 52

-1 1 3 S
where P=| 7 1 1 |and D = 0 # 0 | It is evident that the eigenspace associated with
11 -4 0 0 -1

3
the eigenvalue —1 is orthogonal to the eigenspaces associated with eigenvalues {_1_2i 2, _1+2i‘/§}. Since BB [ 1 ] =
-4

3
[ 1 ], eigenspace E_y is invariant under the transformation BB*. Matrices A and B are invertible, A + B is singular
-4

matrix and
_Z _57N3 15 59iV3  _3 _ 7iV3
+ 296 4;1036 gg 451103/3 512 31‘2\66 -1 -1
A+B) = —5-%r S+ —m-n |74 TE
29 , 87iV3 51 _ 10LiV3 9 5iV3
5 T 7104 5 7 104 52713
_5 _ 2ivV3  -31-11iV3 -19-9iV3
VAN 1a 1T 1 3 2
Example 2.2, Let A = | 0V2)  _(052)  (V2) l4pgp=|1 2 1| Then AB=P-D-P!
_i(V3-25)  _9-25iv3  —23-39iV3 2.2 2
% 14 28
10 1 S
whereP= 0 1 3 |andD = 0 # 0 | It is evident that the eigenspace associated with the
2 3 - 0 0 -1
2
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—1-iV3 —1+i\6}

eigenvalue —1 is orthogonal to the eigenspaces associated with eigenvalues {=—=-=, =5-=}. E_; is not invariant

1 3
2
under the transformation BB* since BB*[ 2 ] = [ 14 | ¢ E_y. In this case
i 18
2

i(1097V3+847i)  15(49-59V3)  s511-461iV3

1834 1834 1834
(A+B) = 5(49-5iV3)  3(-119+31iV3)  i(179 V3+91i)
917 1834 183
287+83i V3 —98-13iV3 i(44 V3+7i)
1834 917 917
and
15i(V3+i)  25(1-iV3)  15(1-iV3)
28 56 56
A1y Bl=| _1_1iv3 747G _i(V3-7i)
1 28 56 56
23+17iV3 -29-19iV3  5+11iV3
28 56 56
so we have

(A+B)f# A1 +BL

Let B € C"™" be an invertible matrix and A € C"™" an arbitrary matrix. As a continuation of Theorem
2.1, the question naturally arises when is

(A+B)=A"+B" = A"+ B~ (2.4)

Let us see when the matrix A" + B! satisfies the four Penrose equations for the matrix A + B :

(P1) (A+B)A"+BH)YA+B)=A+Be (AA'+AB' +BA"+I,)(A+B)=A+B
©2A+AA'B+ AB'A+BATA+BA'B=0
‘& 2AB+ AAT + ABUAB! + BA'AB™! + BAT = 0,
P2) (A'+B HYA+BAT+B ) =At+B o A"+ B YAA' + AB' +BAT +1,) = AT + B!
e 2A" + B1AAT + ATAB' + B'AB 1 + ATBAT =0
& 2BAT + AA + BATAB™' + AB™! + BATBAY = 0,
(P3) (A+B)A"+B™!) ishermitian © AA" + AB™! + BA" + 1, is hermitian
© AB' + BA"  is hermitian,
(P4) (A" +B 1A +B) ishermitian © A'A+A'B+BA+1, ishermitian
o A'B+B'A s hermitian.

Notice that matrix BA' is {1, 2, 3}— inverse of matrix M = AB™!, so the last equality of (P1) can be written as
2M + MMY?*® + MM + MM + M2 =, (2.5)
for M123) = BA*,

Lemma 2.1. Let B € C"™" be an invertible matrix and A € C™" be an arbitrary matrix. If matrix A* + B! =
AY + Bt is inner inverse of matrix A + B then AB™! is diagonalizable matrix whose eigenvalues belong to the set
7 = {0 -1 —1+iV3 *1*1'\/3}

- 7 7 2 7 2 .

Proof. Since matrix A" + B! is inner inverse of matrix A + B, matrix M = AB~! must satisfies (2.5). If we
multiply (2.5) the left-hand side and the right-hand side by M we get

M* +2M® + 2M? + M = 0. (2.6)
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Since polynomial x* + 2x® + 2x? + x = 0 does not have multiple roots, matrix M must be diagonalizable and
its eigenvalues must satisfy A} +2A% +2A% + ;= 0,ie. }; € Z={0,-1, %, %B}. O

Notice that, by previous lemma, if (2.4) holds matrix M = AB7lis group invertible. In the next theorem,
we derive necessary and sufficient condition for (2.4) to hold if BA" is MY. The resulting conditions will be

analogous to those from Theorem 2.1. We have that

A' = M7 & BATAB™! = AAT & R(BA") = R(A) A N(AB™!) = N(AY)
© B(R(A")) = R(A) A R(B)'A") = R(A)
& B(R(A")) SR(A) A (B) T (R(AM) = R(A)
& B(R(AY)) CR(A) A B'(R(A) = R(A") & B(R(AY)) CR(A) A B (R(A)) C R(AY)

2.7)

Theorem 2.2. Let B € C'™" be invertible matrix and A € C'™" arbitrary matrix such that B* (R(A)) € R(A*) and
B(R(A*)) € R(A). Then

(A+Bt=A"+B1=A" + B

if and only if AB™! is a diagonalizable matrix whose eigenvalues belong to the set Z = {0,-1, _““/3 =l Z\f} its
eigenspace associated with eigenvalue —1, E_1, is orthogonal to its eigenspaces associated with agenvalues from the
set X = { 1+2“B == "f} and E_y is invariant under the transformation BB*.

Proof. If the equality (P1) holds, by Lemma 2.1, M = AB™! is a diagonalizable matrix whose eigenvalues
belong to the set Z = {0,-1, ’“ziﬁ, #}. If M = PJP~!, where | is Jordan normal form of M, let the
matrix P be P = [ Py P, ], where the columns of matrix P; € C™ span R(M), while the columns of

matrix P, € C™"=9) span N(M). Because B* (R(A)) € R(A*) and B(R(A")) C R(A) by (2.7) we have that
BA' = M? = MY, so the matrix M is rang-Hermitian and we have that R(P;) & R(P;) = C". As in the proof

+
of Theorem 2.1 can be proven that P! = [ i} ] . Further, the matrix BA" = MY = PJ*P~1. From the other
side, if matrix M is a diagonalizable matrix whose eigenvalues belong to the set Z =
the identity (2.6) holds, and since M is group invertible, if we multiply this identity by (M) and by (M9)3,
respectively, we get that for all specified matrices M, the equations (P1) and (P2) are satisfied.

{0 1 —1+l 3 —1— l\r}

Let us see when the equations (P3) and (P4) are satisfied. Represent the matrix P; as P; = [ Pipx Pip ] ,

where the columns of matrix P; ; € C"™* span E_;, the eigenspace of M associated with eigenvalue —1, while

1+z\/§

the columns of matrix P1, € C™¢0 are the eigenvectors of M corresponding to eigenvalues and

J%f and P! = [ l{/l ], where U € C*" and V € CE~0*"_ Then, the matrix

2L 0 0
M+M/ =P(J+ P =[ Pia Py P ]| 0 Iy O V | ==Pil-PiP}
o 0 of[P

is hermitian if and only the matrix P; ;U is hermitian. As in the proof of Theorem 2.1 can be concluded that
P11U is hermitian if and only if U = P!,

Ifu-= PI 1» we have that R(P12) C N(U) = N (P;,l) which implies R(P1,1) L R(P172). From the other side
if R(P11) L R(P12) we have that R(P11) &+ R(P12) = R(P1) and since R(P1) & R(P2) = C" we have that
P‘i‘

11
P11Pt | + P1,P!, = P1P! which implies that P! = | P!, |, and U = P!,. So, the equation (P3) is satisfied if
, , of ,
2
and only if R(Pl,l) 1 R(Pl/z).
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Now, let us discuss when the matrix
B~ (M + M?)B = B"'(—P1,,P} , - P\P})B = -B™'P1,P} \B— B™'P;P]B = -B"'P,,P} \B—B'AA'B

is hermitian. Since the condition (2.7) is satisfied we have that BATAB™' = AA" which implies that ATA =
B'AA'B so the equation (P4) is satisfied if and only if B‘1P1I1PhB is hermitian matrix i.e. P1,1PJ{/1 =
(BB*)‘lPl,lPI/lBB*. Similarly as in the proof of Theorem 2.1 can be shown that this is true if and only if the
subspace R(P1,1) = E_; is invariant under the transformation BB*. O

-% 0 g 0 4 0 0 -6
| o —2+2iv3 0 0 o 4 0 o0 4. pd
Example 2.3. Let A = B 0 I and B = 00 4 -3/ Then AB™ =P-D-P
0 0 0 © -2 0 -1 6
0 -1 6 2 -1+iV3 0 0 0
1 0 0 0 0 -100
where P = and D = . Since ATAB*A = B*A and AAYBA* = BA*, the
0 2 3 1 0 0 00
0 0 -51 0 0 00
preconditions B*(R(A)) € R(A*) and B(R(A)) € R(A) are satisfied. Further, the eigenspace associated with the
-1
- ' ' ' L 1-iV3 —1+iV3, a: . 0
eigenvalue —1 is orthogonal to the eigenspaces associated with eigenvalues {—-=, =5—=}. Since BB s | =
0

-1

0 . e . .
16 o | eigenspace E_1 is invariant under the transformation BB*. In this case

0
8 4 2
15 0.\@ 53
1 i
@a+pf= 9 5= O Ol_atip
F oo B3
s 0 5 3
i3 iv3  3(17+iV3)
_% (—;_ ZT 1( 2+i _% (—;_ IT ;
Example 2.4. Let A = s, i é (5vE50)  3(17+ivB) and
0773 80 16
17+iV3 0 17+iV3 3i( V3+31i)
8 16 16
4 0 0 -6 02 6 -1
10 4 0 O 1 _p.on.p |10 0 O
B= 0 0 4 -3 . Then AB~ =P-D P~ where P = 01 3 2 and
-2 0 -1 6 01 -5 0
—L+iy3 0 0
0 _1+i\/§ 0 0 : 1 * * + * * 5 * *
D= 0 (2) 1 . Since A"AB*A = B*A and AATBA* = BA®, the preconditions B*(R(A)) € R(A")
0 0 0 0

and B(R(A)) C R(A) are satisfied. Further, the eigenspace associated with the eigenvalue —1 is not orthogonal to

the eigenspace associated with the eigenvalues {#, #@}, neither is the eigenspace E_q invariant under the
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6 586
; * g * O O .
transformation BB* since BB 3 |=] 203 | In this case
-5 —-535
101-80i V3 0 _L_ 2 2-V)
20 210~ 743 21
0 1-iV3 0 0
t_
A+B) = | 5 (2) 26-5i3 1-iV3
210 ~ 743 105 21
2(1-1V3) 0 1-iV3 1-iv3
7 7 7
and
339 V3+318i 0 319 V3+3i 3(67 V3+51i)
80 V3+1260i 160V3+2520i  8(4V3+63i)
1-iV3
A" +B = 0 2 0 0
1 319543 0 3(133V3+421i)  3(67V3+51i) |’
160 V3+2520i 80(4V3+63i)  16(4 V3+63i)
1-i\3 0 1-iV3 3(1-iV3)
8 16 16

so it follows
(A+B) AT +B7L.

We complete this section with a generalization of Theorem 2.2, whose consequence will be a complete
description of the matrices A € C"™" for which equality (2.4) holds in the case when matrix B is unitary.
Recall that the matrix U € C™" is unitary if UU* = U"U = I,,.

Theorem 2.3. Let B € C™" be invertible matrix and A € C™" arbitrary matrix such that B'B (R(A")) € R(A").
Then (2.4) holds if and only if B(R(A*)) € R(A), AB™! is diagonalizable matrix whose eigenvalues belong to the
set Z =1{0,-1, %6, %ﬁ}, its eigenspace associated with eigenvalue —1, E_y, is orthogonal to its eigenspaces

associated with eigenvalues from the set X = {%ﬁ, %ﬁ} and E_y is invariant under the transformation BB*.

Proof. Since B*'B(R(A*)) = R(A*) = B (R(A+)) = (B) 1 (R(AY) = R(BA) = R(ABY)), we have that
BA' = (AB™)*.

Suppose that (2.4) holds and let x € N(M) be arbitrary, where M = AB~!. From Penrose equations (P1)
and (P2) we get MM*'x + M'x = 0 and 2M*x + MM'x + M"M'x = 0 that imply M'x = ~-MM*x € R(M) and
M'x + MtMfx = 0 = (I, + MYx € N(M') = N(M*) = R(M)*. Further 0 = (M*x, (I, + M)x) = IM'x|? =
Mtx = 0 that as a consequence has N(M) = N(M'). Now, R(M") = N(M)* = N(M")* = R(M) that gives
MY = M' and by (2.7) we have that B* (R(A)) € R(A*) and B (R(A")) € R(A). The rest of the proof follows
from Theorem 2.2.

Let now A € C™" be such that BB (R(A*)) € R(A*), B(R(A*)) € R(A), AB~! is a diagonalizable matrix
0, -1, —1+2i\51 —1—21‘«5}

whose eigenvalues belong to the set Z = , its eigenspace associated with eigenvalue

-1, E_4, is orthogonal to its eigenspaces associated with eigenvalues from the set X = {#ﬁ, %@} and

E_ is invariant under the transformation BB*. We have that B* (R(A)) = B'B (R(A")) = R(A"), so by Theorem
2.2 the equality (2.4) holds. O

Corollary 2.1. Let B € C™" be unitary matrix and A € C™" arbitrary matrix. Then (2.4) holds if and only if
B (R(A™)) € R(A), AB* is a diagonalizable matrix whose eigenvalues belong to the set Z = {0, -1, #, #3} and
its eigenspace associated with eigenvalue —1, E_1, is orthogonal to its eigenspaces associated with eigenvalues from

the set X = {#, %@}'
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3. Additivity of group inverse

In this section, we will present results analogous to those from Section 2. Instead of the Moore-Penrose
inverse, we will investigate the group inverse. As both Moore-Penrose and group inverse satisfy Penrose
equations (1) and (2), we will carry over certain results from the previous section. We will start by examining
the additivity of the group inverse of two invertible matrices.

Theorem 3.1. Let A, B € C™" be invertible matrices. Then A + B is group invertible and
(A+BY =A"'+B 1 =A7+B

ifand only if AB™ is diagonalizable matrix whose eigenvalues belong to the set Y = {-1, _1+21 V3 -1 2’ \F} its eigenspace
associated with eigenvalue —1, E_y, is invariant for the transformation B and sum of its eigenspaces associated with

(L, 20

eigenvalues from the set X = 13143 ©FE SENY is invariant under the transformation B.

Proof. From the proof of Theorem 2.1 we get that A1+ B7lis {1,2}- inverse of the matrix A + B if and only
if matrix M = AB lisa diagonalizable matrix whose eigenvalues belong to the set Y = {-1, #, #}.

Further, A~! + B! is {5}-inverse of the matrix A + B if and only if

A+BA'+BH)=A"+BHYA+B) © AB'+BA'=B'A+A'B

3.1
& M+M'=B'M+MB. 61

If M = PJP7!, where ] is Jordan normal form of M, matrix P be P = [ P P ], where the columns of

matrix P; € C span E_j, the eigenspace of M associated with eigenvalue —1, while the columns of matrix

—14—21\/3 and —1—21 V3

Py € €™ are the eigenvectors of M corresponding to eigenvalues and then span

E_..s ® E_i,ys, the sum of eigenspaces of M associated with eigenvalues #g Let P71 be P71 = [ l{/[ ],
2 2

where U € C" and V € C"=9*" From (2.2), we get that (3.1) is satisfied if and only if
P,U = B'P,UB. (3.2)

Since U € P1{1,2,4} and UB € (B"'P1){1, 2,4}, matrices P;U and B~'P;UB are idempotents and equality (3.2)
holds if and only if these idempotents have the same range and null space, i.e.
R(P1) = B~ (R(P1)) A N(U) = N(UB) ® R(P1) = B(R(P1)) A N(U) =B~ (N(U)
i B(R(P1)) € R(P1) A BN(U) = N(U)

NU)=R(P
S BR(P) € R(P1) A B(R(P2) € R(Py).
m
—26-6iV3 12+3iV3 15+4iV3 ~15 -21
Example 3.1. Let A = | -4 — 11“/3 9+3iV3 2+718 7’( and B = [ -12 -19 ] Then AB™! =
_52_1 - M 12 +3iV3 29 4+ 2V3 9,{ 33 -15 -20
2 1 3 SE R 2 -2
P-D-P'whereP=| 3 1 2 |andD = 0 -1-iV3 0 . Since B -2 |we conclude
113 0 5 -2

21
31
1 1
that E_...ys ® E_.i\5 is invariant under the transformation B. Since B( ] [ ] E_q is also invariant under
2 2
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transformation B. Conditions of Theorem 1.3 are satisfied and

143iy3 _3(2+20V3) - i(V3-9)

1 8 1
(A+BY = 13+4i\5 _3(2+§i‘5) i( \6:1“) =A14+B1
915iv3  _3(212V3) 7 3iv3

4 8 4 4
—20-20iV3 9+10iV3 12+11iV3 34 15 -21
Example3.2. Let A=| -2 -2 7,q91;y3 2B |, p - [ 29 -12 -19 } Then AB~! =
: , V3 -15 -
_3_ ¥ g19i3 21(1;_13) 33 -15 -20
213 ¥ g
P-D-P!whereP =3 1 2 |and D = 0 —1%‘5 o |- As in Example 3.1 we conclude that
111 0 0 -1

¢ E_q. In this case

3 51
E _...s ® E_.s is invariant under the transformation B, but B[ 2 ] = { 44
: 2 1 49

g 29iV3 _41-\/3 3 _7iV3

+
4 2 2
A+Bf =| 143V 1543 _1-4iV3
LBV 1-3iV3 -2-3iV3
but
14 5 97iNB _i(¥3-9i)
171 12 2
A_l + B_1 = i(7\/§+5i) 13-11iV3 i( \B+11i)
12 12 12
_1 i3 53V3 7 i3
12 4 12 12 4
SO

(A+BY #A'+BL.

Now we will consider what happens if the assumption of invertibility of the matrix A is omitted, but
it is assumed that the matrix A is group invertible and satisfies certain conditions analogous to those in
Section 2.

Lemma 3.1. Let B € C™" be invertible matrix and A € C"™" be matrix such that ind(A) < 1. If matrix A9 + B! =
AY + BY is inner inverse of matrix A + B then AB™! is diagonalizable matrix whose eigenvalues belong to the set

Z= {0/ _1/ _1+2i‘/§/ _1_2i\/§}'

Proof. As in the case of Moore-Penrose inverse, matrix A7 + B™! satisfies the first Penrose equation for the
matrix A + B if and only if 2AB™! + AB"'1BAY + AB"'AB™! + BAYAB™! + BAY = 0. Since BA? € (AB™1){1,2}, the
rest of the proof is the same as in Lemma 2.1. O

Theorem 3.2. Let B € C™" be invertible matrix and A € C™" be matrix such that ind(A) < 1,B(R(A)) € R(A)
and B(N(A)) € N(A). Then matrix A + B is group invertible and

(A+B)Y =A7+B 1 = A7 + BY (3.3)

if and only if AB™! is a diagonalizable matrix whose eigenvalues belong to the set Z = {0,-1, #ﬁ, #}, its

eigenspace associated with eigenvalue —1, E_4, is invariant for the transformation B and the sum of its eigenspaces

associated with eigenvalues from the set X = {%ﬁ, %ﬁ}, E ... ®E _..\, is invariant under the transformation
2

2
B.
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Proof. Because of the following equivalences

BAY = MY & BAYAB™' = AAY & R(BAY) = R(A) A N(AB™1) = N(A)
& B(R(A) = R(A) A BIN(A) = N(A) & B(R(A)) CR(A) A B(N(A)) € N(A)

we have that BAY = MY.

If matrix A7 + B! satisfies first and second Penrose equation for matrix A + B by Lemma 3.1 matrix
M = AB7! is diagonalizable and its eigenvalues belong to the set Z = {0, -1, #, %ﬁ}. Conversely, for
all matrices A such that matrix M is diagonalizable matrix whose eigenvalues belong to the set Z, in the
same manner as in Theorem 2.2, since BAY = MY, it can be concluded that AY + B~! € (A + B){1,2}.

Further, A7 + B! is {5}-inverse of the matrix A + B if and only if M + M7 = B"Y(M + MY)B. If M = PJP~},
where ] is Jordan normal form of M, matrix P = [ P11 Pip Py ] , where the columns of matrix P;; € K

span E_, the eigenspace of M associated with eigenvalue —1, the columns of matrix P1, € C™¢0 are the

eigenvectors of M corresponding to eigenvalues _1*'2"‘6 and _1_2“6 and thenspan E _,,,;; ®E 5, the sum of
2 2

eigenspaces of M associated with eigenvalues #, and the columns of matrix P, € C™"*) span N'(M).

u
1%
2%
is projection with range N(M) = N(AB™!) = BN(A) = N(A) and null space R(A), so P11U + P1,V = AAY.
Furthermore, MY = PJ*P~! and we obtain

Let P71 = , where U € C*",V € C6~0*" and W € C"=9*", By direct computation we get that P, W

2, 0 O01[UuU
M+M =P(J+ NP =[ Pix Pia Pa]| 0 —lew 0| V |==Piall-AA".
0 0o of|lw

Since AAY = B"LAAYB, we have that A7+B™! is {5}-inverse of the matrix A+ B if and only if P ;U = B'P;;UB,
i.e. if and only if B(R(P1,1)) € R(P1,1) and B (N(U)) € N(U), i.e. if and only if

B(E.)CE, and B(EM ®F, EBN(A)) CE s ®F s ®N(A). (3.4)
2 2 2 2

Since B (R(A)) € R(A), E _.ivs ®E ;s € R(A) and B (N(A)) € N(A) conditions from (3.4) are equivalent with
2 2

B(E4) CE, and B(E_m @E_l_z,@) CE.s®EL

=
O
Let us mention that our Theorem 3.2 is in accordance with Corollary 2.5. from [12].

Corollary 3.1. [12] Let P, Q € C™™" be two group invertible matrices and let a, b be two nonzero complex numbers.
If PQQY = QPP? and QQIP = PPIQ, then aP + bQ and PQ are group invertible. Ifa + b # 0, then

(@P +DQY = ——PIQQ” + (I, ~ Q)P + 3 (I, ~ PP (3.5)
Moreover,
(P—QY =P —Q' and (PQY = (PQQ')? = (QPY. (3.6)

Suppose that Q is invertible matrix in previous corollary. Then matrix P and Q satisfy P = QPPY = PP7Q).
Set A = aP and B = bQ. Then A is group invertible matrix, B is invertible matrix, B (R(A)) € R(A) and
B(N(A)) € N(A), so Theorem 3.2 can be applied. Notice that AB™ = $PQ™" = 4PPY, and since PP is an
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idempotent, by Theorem 3.2 the equality (3.3) is satisfied if and only if P=0or € Y = {-1, #, %6}.
(The subspaces which need to be invariant under transformation B are trivial or R(A).) Let us see what
Corollary 3.1 says. If P is trivial in equation (3.5), the equality (3.3) is obviously satisfied. If § = —1 by (3.6),

the equality (3.3) is satisfied. Since Q is invertible matrix, the equality (3.5) has a form

(aP + bQ)! = 1 poy 1Q—1 - l13139(3—1 =- P7+ 1Q—1,

a+b b(a + b)
ie. (A+B)Y = ;A7 + BY, 50 (3.3) holds if and only if a® +ab + 1? = 1, ie. § € X = (=43 2513y
However, notice that B (R(A)) € R(A) and B (N(A)) € N(A) if and only if QPPYQ~! = PP? which is weaker
condition than P = QPP? = PPQ.

1 9 -1 _3 B o 3 _3
2 ) 4 4 10 20 4
0 1_-i8 o 0 -1 0 0 . »
Example 3.3. Let A = 2 2 and B =] 3 3 3 | Then AB~ =P-D-P
IR ‘% n 0§ 4
-1 0 -5 -3 -1 05 %
02 6 -1 S8 g g 0
wherep =| L0 0 0 ap=| O =10 0 cioAA'BA = BA and AB = ABA'A, the
01 3 2 0 0O 0 O
01 -5 0 0 0 00

preconditions B(R(A)) € R(A) and B(N(A)) € N(A) are satisfied. It can easily be checked that the eigenspaces
E SN S E_, BEN, and E_y are invariant under transformation B. In this case

Z 0 13 _3
20 (V541 T40 8
| o =20 o0 |_ -1
(A+B)Y = B (2) 7 3 =AY +B".
g %
e
_5i 1 + 31\6 3-23iV3 —3-11iV3
3 6 6
. 31(( 1) 7+5i\3 1+5i V3
Example 3.4. Let A=| 1+2i V3 = =
i(11 V3+3i) 1- 3“@ i(19vV3+3i)  i(13V3+30)
6 2 6 6
1 -1 2 1
-3 4 -7 -8 1 2 3 2
|2 3 -7 -4 a 1 |13 0 3 1
B= 0 0 -1 0 . Then AB~" =P -D-P~" where P = 1 -1 -1 o0 and
2 -2 4 5 00 1 -1
-1+iV3
90 0 0
0 —1—i\6 0 0 . + t 111
D= 0 6 1ol Since AA"BA = BA and AB = ABA'A, the preconditions B(R(A)) € R(A) and
0 0 0 O
1 2 2 1
o . 30 0 3 . .
B(N(A)) € N(A) are satisfied. Since B 1 117 1 1 |we conclude that E _,,.s ®E __; 5 is invariant under
- - 2 2
0 0 0 0
3 2
the transformation B. Since B _31 = ? , E_1 is not invariant under transformation B. In this case
1 1

(A+B) # A7+ B,
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4. Conclusion

In this paper we presented the necessary and sufficient conditions for the Moore-Penrose inverse or the
group inverse of the sum of two invertible matrices to be equal to the sum of (regular) inverses of those
matrices.

We also stated the equivalent conditions to additivity of Moore-Penrose inverse for matrix A such that
B*(R(A)) € R(A") and B (R(A")) € R(A) and invertible matrix B. In the case when matrix B is unitary the
set of matrices A for which additivity of Moore-Penrose inverse holds is fully described. The equivalent
conditions to additivity of group inverse are given in the case when A is group invertible matrix such that
B(R(A)) € R(A) and B(N(A)) € N(A) and B is invertible matrix.

The introduced results are illustrated with appropriate examples and compared with already existing
results in the literature.

Acknowledgements: The authors would like to thank the referee for his/her valuable comments.
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