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On novel developments of Mean-type fractional integral inequalities
and trapezoid type error bounds
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Abstract. In this article, we establish fractional integral inequalities based on fundamental integral iden-
tities involving the second-order derivatives of a given function. We utilize specific functions to explore
these inequalities and illustrate their 2D and 3D graphs along with corresponding table values providing
evidence for the validity of the obtained results. As applications, we present trapezoid bounds as error es-

timates for the obtained results. Many limiting outcomes are presented as remarks by drawing connections
with the existing findings in the literature.

1. Introduction

The study of differentiation and integration extended to non-integer orders is identified as fractional
calculus. This branch of mathematics deals with complicated real life problems for which traditional
calculus is inadequate. It plays a significant role to increase forecast accuracy[12], build up control volume
[30] and to improve problem-solving techniques across a wide range of industries[22, 30].

Moreover, the classes of convex functions are the key ideas for effective optimization, analytical methods
and other various disciplines of research [8, 27]. Convex optimization is an effective tool for problems of
scientific and engineering fields [2]. This theory is applicable in different ways in a variety of fields
such as machine learning [29], game theory [11], economics [20] and other areas of study. The field of
mathematical inequalities and theory of convex functions are correlated and have played significant role
in developments of science [9]. Numerous mathematical problems are expressed in terms of inequalities.
It finds multiple applications in different mathematical sciences [23]. The scientists have developed and
extended the inequalities such as the Hardy type inequalities [13], Gagliardo-Nirenberg inequality [18],
Ostrowski type inequalities [28], Griiss type inequalities [5], Milne type inequalities [6], weighted integral
inequalities involving Chebyshev functionals [7], and Olsen inequality [19]. One of the majorally used
inequality which is recognized in literature as Hermite-Hadamard’s inequality was first presented in 1893
[14]. After this the mathematicians explored many refinements and extensions of this classical inequality
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[4, 15, 21, 25] via different convexities. These inequalities are well-known in the areas of convex functions.
They have been studied and refined for different convexities under specific conditions and parameters. It is
an important inequality of analysis among many classical inequalities due to its geometrical meaning and
range of usefulness. This inequality has been applied to solve many kinds of fractional calculus problems
[3]. In this work, we utilize the definition of the (h — m)-convex functions via fractional calculus to establish
certain new results for the fractional integrals of Riemann-type, as a continuation of the research of the
Hermite-Hadamard inequality.

Definition 1.1. [25] Consider a non-negative functionh : 1 € R — R, then the non-negative function’¥ : [vq,v,] —
R is referred to as (h, m)-convex, for all 61,0, € [v1,v2], m € [0,1] and ¢ € (0,1), if the following condition is
satisfied:

¥(@01 + m(1 — ¢)02) < h()¥(61) + mh(1l — @)¥(6,). (1)
Davis stated the definition of the gamma function in [24] which is as follows.

Definition 1.2. For Re(6) > 0, the gamma function is expressed as

(o) = fom e Pdp. 2)

The k-gamma function describe in [26] is stated by the following definition.

Definition 1.3. For Re(0) > 0, the k-gamma function is given by

_ mlk"(mk) 1
T(0) = lim ————
KO = o, ™ Ot

7

where (0), x indicates the Pochhammer k-symbol for k > 0 and includes the factorial function. The integral form can
be expressed by the following

00 k
I'v(0) = f (pe_le(_%)d(p.
0
Obviously, I'(0) = limy_,1 I't(0) and k-gamma and classical gamma have the relationship T'y(0) = k%‘ll"(%).
Definition 1.4. [17] The beta function is described by the equation
1
Bvi,vo) = f PN (1L - @) g,
0

where Re(v1) > 0, Re(v;) > 0.

Definition 1.5. [10] Let ¥ € L[v1, V2], then the Riemann-Liouville fractional integrals having order S are determined

by
1 0
(Jf;¥)(9) O] f 0 - @) Me)dp, (0<v<0),
and
1 V2
(37.¥%)(0) = o fg (@ - 0)" " Hp)dp, (0<06<wy).

These expressions are identified as the left- and right-sided Riemann-Liouville fractional integrals, respectively.
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Definition 1.6. [26] Let ¥ € L[v1,v,], then the fractional integrals of order 3 are determined by

9 1 ’ 3-1
(:v;,k¥)(6) = mﬁ O —-@)F ¥p)dp, (0<v;<0),

and

1

(37.,9(0) = O]

[ @-0i¥eoup, 0<0<r)
0
are identified as the left and right sided k-Riemann-Liouville fractional integrals respectively.

Definition 1.7. (Holder’s inequality [1]) Let p > 1, ; +
[¥|7 € L[v1,v2]. Then the following inequality

f 2Ix(<P)¥((P)Id(PS( f 2|X(<P)I”d(P)p( f 2|¥<<p>|qd<o)",

holds. The equality is valid if and only if |x|\P is multiple of [¥|7 almost everywhere.

% =Tland x,¥: [v1,v2] = R be functions such that |x|¥,

Definition 1.8. (Power mean inequality [1]) Suppose that q > 1, % +-=1and x, ¥ : [v1,v2] = R are functions

such that |xIP, [¥|7 € L[v1,v2]. Then the following relation

V2 V2 1_}7 V2 %
f IX(<P)¥(<P)Id<PS( f |X(<P)Idfp) ( f |x<<p)||¥<<o>|qd(p)

holds.

1
q

Lemma 1.9. [21] Let ¥ : [v1,v2] — R be a function such that Y exists on (v1,v2). If¥ € L[vy, V), then, we have
the following identity involving fractional integrals

¥v) +¥) | T +K)

|35, 40 + 33 )

2 2vy —v1)}
_ (n-n)? fl 1-(1- )i+l — i+l )
2 o A

2. Main Result

This section is dedicated to explore new mean inequalities via (h, m)-convexity. To establish these
inequalities, we first need the following identity that help to derive the targeted inequalities.

Lemma 2.1. Suppose that ¥ : [v1,v2] — R is a twice differentiable function on (v1,vp) with v1 < mvy < vo. If
¥’ € L[vy, vy, then the equation for Riemann-type fractional integrals

¥(v1) + ¥(mv IS +k
( 1) ( 2) _ k( ) n I::S+/k¥(mvz) + :Sﬂf’k¥(v1):|
2 2(mvy — v1)* ! 2

_ k(mvy —v1)?

1
(1 — )+ Sy _
2(9 + k) j(; (1 (1-9) % )¥ (pv1 +m(1l — @)vo)de

holds.
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Proof. Consider

1(1-(1—- 241 _ 341 .
I= f ( ( (sP) i ](¥ (pvi +m(1 - (p)vz)) do.
0 % +1

By using integration by parts, we get

1 - . 1 . .
—mﬁ ¥ (pv1 + m(1 — @)2)(1 — ) d@‘mﬁ ¥ (pv1 +m(l — @)va)prdep

_ 1
(mvy —v1)

1 1
[ f ¥ (v +m(l - 21— )F - f ¥ vy + m(1 - @)vZ)cp?] dg 3)
0 0
(I + 1) @

- (mvy —v1)

Let
1 ’ 9
L = f ¥ (pv1 +m(l — @)r2)(1 — p)kdo,
0

1
I = f ¥ (pvy + m(1 - (p)vz)(p%d(p.
0

First, we solve I;

1
b= [ ¥ (v s mla - i - ).
0
Integrating by parts, we get

9 1
_ X)) % f (1 - @) F vy + m(1 - p)va)dg.
0

mvy; — 11 mvy; — 11

After changing the variable pv; + m(1 — @)v, = z, we get

¥(mv,) 3 MUz —yp \EL dz
S N
(mvy —v1)  mvy—vy Jp,, \mva —vq V1 — mvy
¥(mv2) i f = )1
= - ¥(z)d
(mvy —v1)  (mvy —v1)? " myvy —vq @)z
¥(m1/2) _ Fk(S + k) 9

= _ ¥(1n).
(mva =v1)  (mv, — vy) i1 mvy k 1)

By using the same procedure on I, we derive

), DOFD oy,

I=-
(Mmvy =v1)  (my, —vy) i+l K

Now using the value of integrals I; and I, in (3), we get

__ 1 ¥mvy) TS +k) g
= (mVZ - 1/1) (mV2 — Vl) (mv2 _ Vl)%ﬂ :mv;,k¥(V1)
¥v) Tu@ +k) 25 Ymv)

(Mmva =v1)  (my, —vy)E+t 0k
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_ ¥+ ¥(m1;z) _ L+ k)“ [:3 Hmvy) +2° k¥(V1)]-
(mvy —v1) (mvy —vp)e*2 L 7 -

(mva—v1)?

Multiplying both sides by “—5—~
¥(‘I/1) + ¥(m1/2) _ Fk(S + k)

2 2(mvy — V1)%

|35, ¥ + 35, )|

- k(mv, — V1)2 ! B2 PN 5 e N SV B
T2+ S (1= =@t = @F)¥ (pu1 + m(1 - g)va)dgp

Hence, we obtained the required result. [J

Theorem 2.2. Suppose that ¥ : [vi,v,] — R is a twice differentiable function. If the function [¥ |7 is integrable
and (h, m)-convex on [v1,v,], then for a non-negative function h : 1 C R — R, q > 1 and m € [0,1], the fractional
integrals inequality

() +¥(mv))  Li(S + k)

|30 ¥ + 35, o)

2 2mvs — 1)t
KMS(mvy —vi)2 [0 .
< o051 B a2 ¥ ol + ml¥ el

is satisfied with h(x) < M.
Proof. First, we prove the result for the case g = 1. By using Lemma 2.1, we obtain
¥(v1) + ¥(mvy)  Ti(® +k)
2 2(mvy —vi)F
(mvy =) (M(1=(A =) =i,
<= o (¥ (1 + m(1 = o)) do. )

Since [¥ | is (h, m)-convex, therefore we can write

(=) f (1 —(1-@)i! - <p‘?”)
0

- 2 241

[JfTrk¥(mv2) +3° ¥(v1)]

mvy k

X (H@)[¥ @] + mh(1 = @) [¥ 02)]) dp
k(mvy —vi)? (9 B ;
2(é2 n k)1 (9 n Zk)(M [¥ )|+ mM ¥ (v2)])
_ kSM(mv, —v1)?
T 28+ k(S + 2)

(¥ o]+ m ¥ @)

This proved the result for the case g = 1.
Now, we prove the result for the case g > 1. By applying Lemma 2.1 and power mean inequality, we achieve

¥(vq) + ¥(mvy) 3 TS +k)

2 2(mvy —v1)f

|35, ¥ + 35, )|

_ 2 1 o 5 "

1 1-1
< ( fo (1-a-g —qﬁ“))
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" 1
S 7" q 7
x (f (1 -(1- @%H _ qorrl) |(¥ (pv1 +m(1 - (p)vz))| d(p) . (6)
0
Since [¥'|7 is (1, m)-convex, therefore we can have

1-1

k( - )2 ! 34 S !
S‘%%:%L(£0-0—¢V1-W1D

1 q
X ( fo (1- @ - @) = pf) () ¥ )| + mh(1 - ) [¥" (n)]") d@)

 Mk(mv, = v1)? ( 9 )1-3 ( 9

2(8 +k) 3+ 2k 9+ 2k
_ kMS(mv, - v1)?
T 28 +K)(S + 2k)

1

1 1
) (¥ @l + m ¥ G|
[[¥ @)l +m ¥ (vz)|"]% :

The proof is done. [

Remark 2.3. By choosing h(¢) = ¢° and k = 1 in Theorem 2.2, we get
¥(v1) + ¥(mvy) B rd+1)

|35, ¥0m) + 35, %)

2 2(m1/2—v1)‘9
<(mvz—v1)2( 9 )1‘31( 1 (541,942 - 1 )3
T 28+1) \8+2 s+1 P ! d+s+2

1
X (¥ )l” + mP¥’ (va)l")7 .

Theorem 2.4. Suppose that ¥ : [v1,v2] — R is a twice differentiable function. If the function ¥ |1 is integrable and
(h, m)-convex on [v1,v,] for a non-negative function h : 1 € R — R, q > 1 and m € [0,1], then for Riemann-type
fractional integrals the following inequality

¥(V1) + ¥(m1/2) _ rk(s + k) [:f;,k¥(m1/2) + :,‘?W;k¥(vl):|

2 2(mvy — v1)F
kM(mv, — v1)? 2 v q B .
_ y ¥ 1
R {1 P(%+1)+1] (¥ eff +ml¥ 20

is satisfied with h(x) < M and % + % =1

Proof. Utilizing Lemma 2.1 and Holder’s inequality, we obtain

¥(v1) + ¥(mv Ie(®+k
2(mvy — v1)*

k(mv, — V1)2 ! 241 241y '
SW(]O‘ (1_(1_(P) - )d(P)

: ;A
(£K¥@m+mu—@de@-

By using the relation

(1-a-pit—pf) <1- -yl -,
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for any ¢ € (0,1) derived from
(E-F' <F -P,

for any E > F > 0, p > 1. Also using the Definition of (, m)-convexity, we get

k(mva —v1)? [ (T . . )
< W(ﬁ (1—(1—@#( 1) — gl U)dt)

1 1 i
X (|¥ ()|’ ](; hp)dp +m[¥" ()|’ fo h(1 - (P)d(P)

Mk(mvz — V1)2 2 ’ . q . N
= 1- ¥ ¥ q
< 2(8 + k) [ p(%+1)+1] () )| +m| (w)|)
_ kM(mVZ _Vl)z 2 ’ " q V q %
T 2(8+k) [1_p(%+1)+1] ()¥ ()| +m ¥ (vz)|) .

Hence, we obtained the required result. [J

Example 2.5. Here, we confirm the validly of Theorem 2.4 via graphical representations. For this purpose, we
substitute ¥(p) = e2? to get the following integral values

1 1A%) 5
2= g -0 ?
and
2 oo L [y 8
mvg,ke - ka(S) ((P Vl) € @. ( )

By using the expressions (7) and (8) in Theorem 2.4, we get

==

1
e 4 2™ kM(mvy — vq)? 2 TP 22
— — v w4
5 25+ 0 1 I ((46 ) + m(4e ))

Tk(S + k) fva . o
S S myy — )k + — )k 294
2kT(9)(mva = vi)F Ju (2= (p —v)i ] odg

==

©)

e 4+ 22 kM(mvy — vp)? 2 g v \1 12
< _ 4 V1 4 (m) q .
< > 2040 p(%)+1 ((e )+m(e ))

By setting the parameters M =1,k =1,v1 =0, va =1, p =2, g = 2, m = 1 in the double inequality (9), we obtain
the following functions

14.9128 (23 +1 )%

po(S) =4.1945 — (8 n 1) m

s e
n®) = Efo [(1 — )"+ ™ e2de,

14.9128 (zs +1 )%
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— leftside

5- middle side

6 — rightside

Figure 1: The 2D graphical view of the inequality (9) corresponding to 0 < 9 < 6 is shown in Figure 1.

Table 1: The following table represents the comparison findings between the double inequality in Example 2.5.

Functions 1 2 3 4 5
po(d) —0.861175 | 0.713323 | 1.62656 | 2.2167 2.62823
p1(9) 3.19453 3.19453 | 3.29179 | 3.389056 | 3.472640
p2(9) 10.6902 9.71573 | 8.20249 | 7.61236 | 7.20082

By setting the parameters M =1,k =1, 9 =1, g =2, m = 1, we get the following functions

621/1 + 62V2
2

1 2 2
< — ePd
(v2a—11) fv; 4

621/1 + eZVZ
- 2

3(641/1 + 641/2));

- (v —V1)2( 5

3(e4v1 +€4V2) %
5 .

+ (=1 (

H left side
Il middle side
M right side

Figure 2: The 3D graphical view of the inequality (9) corresponding to 1 < v; < 2,3 < v, < 4 is shown in Figure 2.

9688
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Remark 2.6. By choosing h(¢) = ¢° and k = 1 in Theorem 2.4, we get

'¥(mv2) YY) TE+1)
2 B 2(mvy —v1)®

S(1111/2—1/1)2(1_ 2 )’1’( 1 )}1
2(8+1) pE+1)+1) \s+1

X (¥ )| +m ¥ (v2)|q)5 .

[3§+¥(m1/2) + 3¢ V,¥(v1)]
1 2

Theorem 2.7. Suppose that ¥ : [v1,v,] — R is a twice differentiable function. If the function ¥ |1 is integrable and
(h, m)-convex on [v1,v,] for a non-negative function h : 1 C R — R, q > 1 and m € [0,1], then for Riemann-type
fractional integrals the following inequality

¥(1) +¥(mvy)  Ti(S + k) [:f;,k¥(mv2) + :’iv;/k¥(v1)]

2 2(mvy — vl)%
kM(mv, — v1)? 2 - . i
= T840 [[1 B m](!’f )| +m]¥ 1) )}

is satisfied with h(x) < M.

Proof. Utilizing Lemma 2.1 and the Holder’s inequality, we obtain

¥(r1) + ¥(mvy) TS + k) [

38 ¥(mvy)+3° V;,k¥(v1)]

2 2(11’[1/2 - 1/1)% vk
(mvy —v1)? fl 1-(1-@)itl -+t
< ¥ (pv1 + m(1 — p)vy)|d
> | E ¥ (pv1 + m(1 - @)2)| dg

k(mv, —v1)2 [ (1 S oy 841y
< () ([ 0-a-pir-et)

X |¥ (v +m(1 - (p)vz)lq dqo)ﬁ .
By using the relation
(1-a-@i —ptt) <1 - i) - i),

for any ¢ € (0,1) and g > 1. Also using the Definition of (, m)-convexity, we get

Kmv =i [ [ e
Sﬁ[fo (1= (1= @pi+D) — (1)
q)dt]q

< k(mvy — vq)? [[1 _ ( 2 ](M (¥N(V1)|q +mM |¥ (V2)|q)]
q

X (h((p) [¥ o)+ mh(1 - ) ‘¥ (%)

1

209 +k) 2+ 1) +1
_ kM(mv, — vq)? 2 . . [
T 209+ [[1 Ca(Ee1)+t 1](|¥ o)+ m ¥ () )} ~

Hence, we obtained the required result. [
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Remark 2.8. By choosing h(g) = ¢° and k = 1 in Theorem 2.7, we get
¥(n) +¥(mv)) TS +1)
2 2(7’}11/2 - 1/1)‘9

(I’I’lV2 -1 )2 1 1 1
= 2w+1)(s+1_m9+n+s+1‘ﬁww+1wdﬁ+1ﬂ

|35, ¥0m) + 35, %)
1 2

(¥ @l + m]¥ 0ff)"

Theorem 2.9. Suppose that ¥ : [0,v;] — R is a twice differentiable function. If the function [¥"| is integrable and
(h, m)-convex on [vy, fn—z], then for a non-negative functionh : IC R - R, q>1,0 < vy < vy withm € (0,1] and
2 <V}, the following inequality

¥0) +¥02)  Ti(S+K)

‘ [Jfl LX) + Df;,k¥(v1)]

2 2(1/2 - Vl);
SkM(v, — Vl)2 4 q v (va ! i
< m [|¥ (Vl)l +m ‘¥ (%) ] (10)

is satisfied with h(x) < M.
Proof. First, we prove the result for the case g = 1. By using Lemma 1.9, we obtain

¥() +¥(v2)  TW(® +k)

! [:ffrkag(vz) ; Jf£,k¥(v1)]

2 2(vy —v1)¥
—uv)2 (1= =)t =it
Skl f Q=D =07 | (v + (1 - p)va)| (1)
0 x +1

Since (1 — (p)%‘r1 - (p%” < 1 for each ¢ € [vq,v2]. Since |¥| is (h, m)-convex, therefore we can write

¥(v) +¥(va) _ Tk(S +k) [39 ¥(v) + 3 ¥(V1)]
2 2y —vp)f L1H =

=) [1-1-@)itt—p®+1 ) . (V2
<2 fo T (h((p) ¥ (v)| + mh(1 - @) '¥ (E))d(p
(=12 [|1-@1 =)t — it , Y (Vs
<2 fo — (M(¥ (vl))+mM‘¥ (E))d(p

- _2V1)2 ®+ 1?)%1 2K) (|¥” )] +m '¥ (%)

This prove the result for g = 1.
Now, we prove the result for the case g > 1. By applying Lemma 1.9 and then power mean inequality, we
obtain

¥(v) +¥(v2) _ Tk(S +k) [39 ¥(v) + 3 ¥(V1)]
2 2(vy — )i i =

k(va —v1)? i s
S [ ln-epiepi

k(VZ - Vl)z ! g-{- %+ 1_%
Ty (f0|(1—(1—<p> '—¢ 1)|)

¥ (pv1 + (1 — p)v2)| dg
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y (j: |(1 - (P)gﬂ _ (P%Jrl)

Since |¥ |q is (h, m)-convex, therefore we can have

1

¥ (v + (1 - o))’ d({))q : (12)

Yo+ ¥) | Ti@+K)
2 2(v2 —v)f

k(VZ_V1)2 ! 2y 2
T (fo (1--p)i" ¢ +1))

q] dt)é

Sk(Vz—m)z( 9 )13( 9 );[M|¥,,(V1)‘q+mM’¥"(%)

|35, %0 + 25, )|

1-1

7 1 N
(fo (1-(1-@)f +1-9F*)

X [h((p) ¥ @) +mh(1 - ) ‘¥ (%)

f

28 +k) \9+2k 3+ 2k

_ M@z =) [, e 1A
T 201 h© + 2k [|¥ ) +m‘¥ (Z) ] '

Example 2.10. Here, we confirm the validity of Theorem 2.9 via graphical representations. For this purpose, we
substitute ¥(¢) = e? to get the following integral values

==

The proof is done. [

1 vz ;
N V2 _ -1,
i krk(s)fvl 2=yt elde, o
and
20 o 1 f V2(<p—v1)%—1e@d<p. (14)
AT RE) J,,

By using the expressions (13) and (14) in Theorem 2.9, we get
e +e2 SkM(vy —1p)?

ok
2 20+ k) +2k) ]
Te(S +K) f o g s
< 5 (2= @) +(p—v1)F |e¥de
2k () (va —v1)* Jny [ ]
- eVl + "2 N SkM(vy — 11)?
) 2(8 + b9 + 2k)

2
em

[Iev1 " +m

1

r . (15)

v |9
m

[le"1 1+ mle

By setting the parameters M =1,k =1,v; =0, v, =1, q = 2, m = 1 in the double inequality (15), we obtain the
following functions

2.89649

po(S) =1.8591 — m,

s (! S, e
p®) = 5[} [(1 — @)+ % ePde,

2.89649
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aF—

201

— leftside
19+

middleside

— right side

15 20 25 30

S

16+

Figure 3: The 2D graphical view of the inequality (15) corresponding to 1 < § < 3 is shown in Figure 3.

Table 2: The following table represents the comparison findings between the double inequality in Example 2.10.

Functions 1 1.5 2 2.5 3
po(d) 1.61777 | 1.61088 | 1.61777 | 1.62927 | 1.64191
p1(9) 1.71828 | 1.71428 | 1.71828 | 1.72494 | 1.73227
p2(9) 2.10091 | 2.1074 | 2.10091 | 2.08901 | 2.07637

By setting the parameters M =1,k =1,9 =1, g =2, m = 1 we get the following functions

2
eVl + e¥2 B (v2 —11) (levl |2 + |€V2|2)%
2 12

1 V2
- - P
< (m—vl)fw erdp

e +e?  (va—v1)? 1
< # 2z (Ie" 2 +1e1)* .
2 12

H left side
Il middle side
H right side

Figure 4: The 3D graphical view of the inequality (15) corresponding to 6 < v < 10, 11 < v, < 15 is shown in Figure 4.

Remark 2.11. By choosing h(g) = @ and k = 1 in Theorem 2.9, we attain [16, Theorem 2.2],
¥() +¥(v2)  TE+1)

l 2 2(1/2 - 1/1)S

[35%02) + 35 %)

9692
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15

vz —v1)? ¥ ()l +m ’¥ (%z)
T2+ +2) >

Theorem 2.12. Suppose that ¥ : [0,v;] — R is a twice differentiable function. If the function [¥|4 is integrable and
also (h, m)-convex on [v1, %], then for a non-negative functionh: 1C R —- R, q>1,0 < vy < v, withm € (0,1]
and 22 < v;, the following inequality

¥v1) +¥(2) TS +k) [os .
2 2wt [:‘v;#(vz) + 3y;,,<¥(m)]

kM(vy — v1)? 2 g " A\
R [1_P(%+1)+1] (‘¥ (Vl)’q+m'¥ (i) ) (16

is satisfied with h(x) < M and % + % =1

Proof. By employing Lemma 1.9 and Hoélder’s inequality, we obtain

¥() +¥(v2)  Ti(@ +k)

2 Z(VZ_Vl)%
L= f 1-(1-g)i - it
<=5

$+1
k(vo —v1)? ( 241 241!
<Sero ) (-a-eft-ei)d

| L
x( fo |¥”<<pv1+(1—<p>vz>|"d<o) :

By using the relation

[:f;,,}(vz) + :f;kaé(vl)]

¥ (pv1 + (1 - @)v)| dg

1
P

(1-@-@)F =t <1- (1 - i) - (i),

for any ¢ € (0,1) and p > 1. Also using the Definition of (i, m)-convexity, we get

¥(v) +¥(02)  Tk@+k) [ 9
; T |35, %) + 2 ¥

1 1 i
x(|¥”(v1)|q fo h(go)dgo+m‘¥” (%)q fo h(1 —(P)d(p)
k(vy —v1)? 2 % " v (v
< 2(28 +I;) [1 - p(% " 1) ; 1] (M|¥ (1/1)"7 +mM‘¥ (Ez)

_ kM(vy —v7)? 2 ' " v (v
o2 (e o (2)

The required result is proved. O

1
‘1)4
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Example 2.13. Here, we confirm the validity of the Theorem 2.12 via graphical representations. For this purpose, we
substitute ¥(p) = ¢? to get the following integral values

S v _ 1 sz o\l 2
:vf,k(P - krk(S) " (V2 (P) (P d(p’ (17)
and
2= f (-t igdp, (18)
vk kLk(9) Ju,

By using the expressions (17) and (18) in Theorem 2.12, we get

Vit kM- [ 2
2 20 +K) p(E+1)

],, (@' + m@

[ (9 + k) sz EPRY — i1 2
) [v2 = @)F 1 + (@ - v) i pPde
V% + V% kM(V2 - V1)2 2 %7 q q 1
< 7 + 2570 [1—}9(%4_1)} [@)7T +m(2)T] . (19)

By setting the parameters M =1,k=1,v1 =0,v, =1, p =2, 9 =2, m = 1 in the double inequality (19), we obtain
the following functions

1 [2(29+1)r

1
P =3-571| 2943

1
) = gfo [(1 —p)* 1+ (Ps_l](PZd(P,

1 [2(2s+1)r

1
PO =5+57 2573

10

0.8;
[ — leftside

O.Gj
7 middleside
0.4j

i : T . — rightside
[ 4 6 8 10
02r

0.0

Figure 5: The 2D graphical view of the inequality (19) corresponding to 1 < § < 10 is shown in Figure 5.
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Table 3: The following table represents the comparison findings between the double inequality in Example 2.13.

Functions 1 2.5 4 5.5 7 8.5 10
po(d) —0.04773 | 0.15007 | 0.24416 | 0.29857 | 0.33395 | 0.35878 | 0.37715
p1(d) 0.33333 | 0.34127 | 0.36667 | 0.38718 | 0.40278 | 0.41479 | 0.42424
p2(9) 1.04772 | 0.84993 | 0.75584 | 0.70143 | 0.66605 | 0.64123 | 0.62285

By setting the parameters M =1,k =1,9 =1, 9 =2, m = 1, we get the following functions

Vi+v) _(m=wm)? (é)é
2 2 5
1 V2

T (v2—v1) v

P*do

1

< vit+ys L2 - 1) (§)2
z) -

-2 2

B leftside
B middleside
M rightside

20

g0 40

Figure 6: The 3D graphical view of the inequality (19) corresponding to 2 < vy <4, 6 < v, < 8 is shown in Figure 6.

Remark 2.14. By choosing h(g) = @ and k = 1 in Theorem 2.12, we attain [16, Theorem 2.4],

H) +¥w) T+ 1)

(25402 + 30 ¥0)|)

2 2(vy —1p)®
1 4 am q i
(v — 1) 1 2 | ¥ (V1)|‘7+m|¥ (z) ‘
=20+ ( _p(8+1)+1) 2

Theorem 2.15. Suppose that ¥ : [0,v;] — R is a twice differentiable mapping. If the function I¥'|7 is integrable
and (h, m)-convex on [vq, %]for a non-negative functionh : 1 C R - R, q>1,0 < vy < vy withm € (0,1] and
22 < v}, then the following inequality

Yo +¥m) | T +K) [ ,
. T [:vfrkag(vz) ; :vg,k¥(v1)]
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kM(vy — v1)? 2 " vy
2(92+k)1 [[ - q(% +1)+1](|¥ (V1)|q+m|¥ (£)| )}

is true with h(x) < M.
Proof. By employing Lemma 1.9 and Hoélder’s inequality, we obtain

YD) +¥0n) | T+ (oo .
- TR |35, %) + 2 ¥

< (v2 —v1)? fl 1_(1_(P)%+1_(PS%+1
< 5 i

241
— 2 1 ’l) 1 N N
<G (o) ([ 0-ampin gty

X |¥ (pvi+(1 - go)vz))q d(p)

¥ (pv1 + (1 — )v2)| dgp

o

ey

By using the relation
(1 —(1-g)it - (p%ﬂ)q <1-(1-g@)i(E) = pr(i+1)

for any ¢ € (0,1) and g > 1. Also using the Definition of (, m)-convexity, we get

k(v — V1)2 ! 241 41
< W[l{; (1_(1_@4( ) — il ))

q)d(P]é

x (h((p) ¥ )| + mh(1 - ) '¥” (fn—z)

k(va — 1) 2 . NG
M2 Z Vi) [[1 - m}(M ¥ (V1)|q +mM |¥ (%)| )}

204K
kM(vy —11)? 2 . TN i
= 2(92+k)1 [[1_q(%+1)+1](|¥ (V1)|q+m|¥ (£)| )} .

Hence the proof is completed. O
Example 2.16. To confirm the validity of the Theorem 2.15 via graphical representations. Let’s substitute ¥(¢p) = ¢>

to get the following integral values
(20)

y 1 " o
vag,k(P P = mf (v2 —@)F '@ do,

and
(21)

V 1 . 8
3" = Wf (p - v g’de.

By using the expressions (20) and (21) in Theorem 2.15, we get

q

ViV kM(va — ) 2 b
I 25+ 0 (—q(%)+1]((6a)q+m(6a)ﬂ)
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Ii(® + k) fw 21 211 3
< 5 (2= @)F " + (@ -v1)F T | @idp
2k (D) (v —v1)* In [ ]

Y kM - ) 2 b\|’
R T YT [(1_q(%)+1)((6a)q+m(6a)q)]'

(22)

By setting the parameters M =1,k =1,v1 =0,v, =1, 9 = 2,m = 1 in the graph of the double inequality (22), we
obtain the following functions

1 3 ([29+41)\:
p”(s)‘§_9+1(29+3)’
s M _ _
2l Ef [(1 -9+ ¢° 1](p3d(p,
0

3 (2s+1)%
I+1\28+3/) °

\:
. \ — leftside

05 middleside

1
p2(9) = 5+

10 15 20 —— roghtside

Figure 7: The 2D graphical view of the inequality (22) corresponding to 1 < 9 < 20 is shown in Figure 7.

Table 4: The following table represents the comparison findings between the double inequality in Example 2.16.

Functions 1 2 3 4 5
po(d) —0.66189 | —0.34515 | —0.16144 | —0.04272 | 0.040067
p1(9) 0.25 0.25 0.275 0.3 0.32143
p2(9) 1.6619 1.34515 1.16144 1.04272 0.95993

By setting the parameters M =1,k =1,9 =1, 9 =2, m = 1, we get the following functions

1
Vv 3(rp —1)? (307 + )Y’
2 2 5

]. V2 3
<— d
(1/2—1/1)\[/1 it

1
VA B -w)? (304 W)Y
-2 2 5 ’
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3000

B Ieftside
2000 W middleside
A, /1000 [l rightside

11

15719

Figure 8: The 3D graphical view of the inequality (22) corresponding to 6 < v < 10,11 < v, < 15 is shown in Figure 8.

Remark 2.17. By choosing h(g) = @ and k = 1 in Theorem 2.15, we attain [16, Theorem 2.6],

¥v) +¥) TR +1)
2 2(1/2 - Vl)s

| [35%02) + 35 %)

N

_Gamwp (q@+ -1y ¥ o0 e (3)
A8+ (q(8+1)+1) 5

3. Applications

In this section, we relate the main results with trapezoid type bounds. Trapezoidal inequalities for func-
tions of diverse nature are useful in numerical computation. Trapezoid-type inequalities are fundamental
in geometry and mathematics, offering a structural foundation for the comprehension and examination of
trapezoids. They are essential tools for proving theorems, solving problems and laying the groundwork
for more advanced mathematical concepts.

Proposition 3.1. The following “trapezoid type inequality” is obtained by using the assumptions of Theorem 2.2
withk=1,M=1,and 3 = 1.

¥(v1) + ¥(mvy) 1 ) f " ¥(v)dv

2 B (mvy — 1y

mvy —v1)? 1 " 1
< 22V ¥ )]

Proposition 3.2. The following “trapezoid type inequality” is obtained by using the assumptions of Theorem 2.4
withk=1,M=1,and S = 1.

¥(V1) + ¥(7’}’l1/2) 1 2
> - s =) fw ¥(v)do

(mvy — )2 (2p =1\ , . o
<= |gp) oo +m¥ o).
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Proposition 3.3. The following “trapezoid type inequality” is obtained by using the assumptions of Theorem 2.7
withk=1,M=1,and 3 = 1.

¥(v1) + ¥(mvy) 1 2
2 - (1’)11/2 - 1/1) L ¥(U)d0

- (mvy —11)? [(29 -1
=T 4 2q+1

)(|¥” (va)lf + ml¥’ (w)ﬂ)]q .

Proposition 3.4. The following "trapezoid type inequality” is obtained by using the assumption of Theorem 2.9 with
k=1, M=1m=1and S =1.

¥(v1) + ¥(12) 1 "
> - P L ¥(v)do
(v

< @22 [y 4 ]
12 ! S

Proposition 3.5. The following "trapezoid type inequality” is obtained by using the assumption of Theorem 2.12
withk=1,M=1,m=1and 9 =1.

¥v) +¥(2) 1 "
5 T L ¥(v)do

(2= (22 =1\ (0 Y
<= (2p+1 (I 0l + ¥ ")

Proposition 3.6. The following "trapezoid type inequality” is obtained by using the assumption of Theorem 2.15
withk=1,M=1,m=1and 3 =1.

¥(V1) + ¥(V2) _ 1 V2
T j; ¥(v)dv

2

_ 2 —
<2 [(§Z+1)(|¥”<vl>w+|¥"<vz)|q)] .

=

4. Conclusion

The results of the work are derived through Hoélder’s inequality, which is related to the Lp norms of
different functions. It is used in analysis, functional analysis, and probability theory. We also utilized the
power mean inequality to explore the results. Both of these inequalities have strong applications in real-
life problems. In this paper, we introduced novel developments of Hermite-Hadamard fractional integral
inequalities via (h,m)-convexity. The graphs and corresponding tables of certain particular functions
demonstrate the validity of the established findings. The results are coordinated with existing published
works, presented as remarks. These remarks demonstrate that the presented results strongly generalize
several previously reported works. The ideas and approaches presented in this paper may stimulate more
investigation into this fascinating area.
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