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Convergence properties related to Bézier type of A-Bernstein
Kantorovich shifted knots operators

Md. Nasiruzzaman®*, Esmail Alshaban?®

*Department of Mathematics, Faculty of Science, University of Tabuk, PO Box 4279, Tabuk-71491, Saudi Arabia

Abstract. In this article, we introduce the L,-spaces and create the Kantorovich-type operators of Schurer
A-Bernstein-Bézier basis functions, starting with shifted knots polynomials. We describe the convergence
of our novel operators in the Lebesgue spaces and the continuous function space for any 1 < p < co. The
central moments for these operators are determined by computing the test functions. We then examine the
properties of the Korovkin’s type approximation with modulus of continuity of order one and two. We also
derive the convergence theorems for these new operators using Peetre’s K-functional and the fundamental
conditions of Lipschitz continuous functions. Several direct approximation theorems are also derived by
us. In last we given a numerical example with a graphical analysis.

1. Introduction and Preliminaries

One of the most famous Weierstrass approximation theorems was demonstrated most quickly and
elegantly by S. N. Bernstein, who is one of the world’s most famous mathematicians. Bernstein created the
set of positive linear operators, suppose {B;}s»1 : C[0,1] — C[0, 1], and known the Bernstein polynomial
[6]. Bernstein, in his investigation, shows that the set of all continuous functions [0, 1] (suppose CI[0, 1])
is uniformly approximated by the sequences of polynomials {B,}s>1. Thus, for any y € [0, 1], the famous
Bernstein yields the following operators:

S

Bs(g;y) = Z g(g)bs,i(y),

i=0

where the Bernstein polynomials bs ;(y) are the maximum degree of s for s € IN, and IN are the positive
integers.

(‘f)}/l(l - y)s_i for i=0,1,---,s,

bsi = . .
i) 0 for i>s or i<O.
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There is a very straightforward recursive connection to check for the Bernstein polynomials. The
recursive relationship for Bernstein polynomials b, ;(v) is easily demonstrated as:

bs,i(y) = (1 = Y)bs—1,i(y) + ybs-1,i-1(y).

Furthermore, the Kantorovich [13] definition of the traditional Bernstein operators is modified if mea-
surable functions are used instead of continuous functions. For s € N and f € Lp[O,l], Kantorovich
defined the operators known in the mathematical literature as Kantorovich operators in his paper by
Ks : Ly[0,1] — L,[0, 1] such that:

k+1

K(fip=6+1))] (,i)yk 1-p f km fBdt, ©)
k=0 s+

s+1

and he demonstrated that the sequence of these operators converges almost everywhere to the function f
on [0,1] for any f € L,[0,1],1 < p < co.

Assuming S;‘k : C[0,1+ x] — C[0,1], Schurer [27] introduced new Bernstein-type operators in 1962
using a positive integer, called y, known as the Bernstein-Schurer operators. These operators are as follows:

S+x

; k
%@WZZﬂt%m@ (vel0,1]), @

k=0

where 7, , k() is known as the fundamental Bernstein-Schurer polynomials and y is a constant positive
integer so that

am@zf;ﬂfa—W”* (k=0,1,+ 5+ ). (3)

Cai et al. introduced the Bernstein polynomials in 2010 by introducing the shape parameter A € [-1,1].
According to [8], these bases are known as A-Bernstein operators:

S

B = Y g (L) B, @

i=0

where the new Bernstein basis function bs;(A; y) is used to express the Bernstein polynomial b ;(y) defined
by Ye et al., [33] as follows:

. A

bso(A; y) = bso(y) — mbsﬂ,l(y),

s—2i+1
s2—1

s—2i—1
b i) - —(5 -7~

1 bs+1,i+1(y))/ 1<i<s-1

Busthiy) = bui() + A
Bos(As 1) = DoY) = ——brars(1)
5,s\ A Y) = Oss(Y s+1 s+1,5(Y)-

Additionally, Cai et al. proposed the shape-preserving features of generalized Bernstein operators [10] and
the Kantorovich form of the A-Bernstein Bézier operators [9]. Gadjiev et al. (2010) developed the following
recent Bernstein-type Stancu polynomials, which are used to analyze the features of shifted knots [11]:

sy s\ xe V[stxe T (it
Ss,)(,ﬁ(g/y)_( s )Z(l)(y S+P2) (S+p2 }/) g(S+P1)’ (5)

i=0

X2 stXe
stp2” s+p2

assuming that, y € [ ], and therefore 0 < x» < x1 < p1 < p2, Xi, pi, i = 1,2 are positive real numbers.
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Recently, academics have constructed the Bernstein-type operators with the shape-preserving properties
and the shifted knots properties approaches. These include the Bernstein-Kantorovich-Stancu type shifted
knots operators [2], Szasz-Durrmeyer operators [3], Szdsz-Jakimovski-Leviatan Beta Type Integral Opera-
tors [4], Schurer-Stancu operators with shape parameter A [5], the g-Bernstein operators related to the A [7],
Bernstein-Kantorovich operators by Stancu form [16], g-Bernstein shifted knots operators [17], the A-Szész
Kantorovich type operators [19], @ type Bernstein-Schurer operators [20], Bézier bases with Schurer poly-
nomials [22], Bernstein operators based in Bézier bases functions [29] and g-Bernstein operators based on
the shape parameter A [30]. The most recent works related to shape parameters we discuss [14, 23-26, 31, 32].

The shifted knots of A-Bernstein-operators were developed by [18] by using the Bézier basis functions.

The A-Bernstein shifted knots operators By} for any ;- < y < 772! and the real number 0 < @; < @ are
defined as follows:

5y (s+cD2) Zbalwz(/\;y)g(g)/ ©)

where the Bézier bases functions b”***(4; y) defined by:

Bﬂ)l 02

7.1, 17 A a
by =B W) = b )

s+1,i

o 2i+1 4 0 o1, .
bg;”z(/\;y) = bf,l.l"”z(y)+/\(sz—_b’ P2 (y) — —ballﬂ(y)) forl<i<s-1

- A
B (A5 ) = () = —2 D)

and

. (s B @1 i s+ @ ~ s—i
b (y)_(i)(y s+w2) (s+w2 y) ' @)

F. Ozger [22] defined the Schurer variant of A-Bernstein Bézier bases functions b‘D1 (*(A;y) and built
the Schurer variant of the traditional A-Bernstein Bézier bases functions. Most recently, A. Alotaibi [1]
constructed the Schurer form of A. Bernstein shifted knots operators in terms of Bézier bases functions with
the help of a recently published article [18, 22] and constructed the operators as follows:

s+ N+ @

s+N s+N
s+ N )

i
B0 =6+ AL ) ®
i=0
where,

(0 o A o
B (y) = By W) = et v

bch (DZ(A,y) bDl @2( )+ A(S +N 2] + 1 1,072 ( )_

S+8_2]_ (D1LDZ .
e —(S+N)2—1 1N (y)) for1<j<s+N-1

(S + N)Z — s+1 JHLN

1,0 A ﬂl
BNy = W) — e )

and the Schurer variation of the Bernstein basis function b?}? in terms of shifted knots defined by: for a
positive integer N

i s+N—i
e =N ) (S -] ©)

s+N8+@/ \s+N+a
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Clearly, for X = 0, the Bernstein basis function b} (* reduced to b71"” by equality (7). For @1 = @, =0
and N = 0, then the classical Bernstein polynomial and classical Be21er basis functions are obtained.

Lemma 1.1. Operators B(Dl "< having following equalities:

BN L)

1
1,02 [ .
Boix (s' d )

1;
5+ N+ @) 2A ( B 1 )
s+N  ss+N-1) Y s+ N+ @

S+N+ @ 5+N( @ )5”‘*1
s(s+N—1) s+ N Y

s+ N+ @
~ A s+N+ @\ s+N+@1 S+N+1+ A s+8+@)
s+N-1)\ s+N s+ N+ s+N-1)\ s+8 /)
oo i2 B s+N2[s+N+(Dz S+N+ 21 ]( @ )
SAN S,y B s s+ N s+n-1]V S+N+ @
S+N+ @ [s+8—1s+N+ca2 4)\]( ™ )2
+ —_—— —
s+ N s s s2 S+ @3
NEEDETS s”‘[(s+z<+1)2 L1 s+x2]( & )S+N+l
s+ N S2(s+N8-1) s+N8+1\ s Y s+ N+ @

A s+N8+ 0, s+N+a1 S+N+1_ A s+ N+ @
2+RX-1) s+N s+ N+ S2s+N-1)\ s+NX |

2. Operators and basic results

In this section, we consider the recently published article by Abdullah Alotaibi [1], the Schurer form
of A-Bernstein shifted knots operators, and their applications in various mathematical contexts. Alotaibi’s
work provides new insights into the behavior of these operators and demonstrates revealing potential for
solving many problems in the approximation theory and related fields. Our motive is here to construct the
Kantorovich form of the operators B‘SMA‘;Z and to obtain the approximation in L,[0, 1 + N] spaces. We take

_ . cps @ < Vo _ | @ ytor
s+8 =y and N to be a fixed positive constant. Moreover, letp € [1, o), Tie; SV S 555, and Q= [yﬂlaz, ymz],

then for any g € L,[0,1 + X] and s € IN, we define the operators B‘Dl & 2 Lp[0,1+ K] — L,(Qs) such that:

@1,0: + o v - 7.01,:; H-l
GoN@y) =06+ 1)(7/ ” 2) st,il,'xz(/\ ) L9 (F)dF, (10)
i=0 s+

s+

where, 0 < @1 < @,,IN be the positive integers, Bézier basis functions E;Dllﬁ ?(A; y) defined by equality (8) in
terms of bernstein polynomial b?!*(y) by equality (9).

In this study, the Bézier basis functions are used to construct the Kantorovich form of Schurer-type
A-Bernstein operators. The Schurer form of A-Bernstein shifted knots operators and the classical form of A-
Bernstein Bézier basis functions are used and the novel Kantorovich type operators are introduced. For any
function g that belongs to L,[0, 1 + K], we compute the convergence of operators BY/{? in L,-spaces. Lastly,
we provide a theorem of convergence for Lipschitz continuous functions, a theorem of local approximation,
a computation of Korovkin’s theorem, and some direct approximations.
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Remark 2.1.
i + for h=1,
; . )
) (F) ! df = 2(5_}_1)2 + (54,11)2/ fOV h=2, (11)
. ) .

s+1

5+ for h=3.

1 7 i
3orp T e T G

Lemma 2.2. Take g = 1,1, 2, then forall y € Qs and s € N \ {1}, the operators G;DA'";Z have the following identities:

Gy i) =1

L2 (L. _ S )/+CD2_ 2A @
G y) _(s+1)( y s()/—l))(y 7/+c02)

s (5 -]
+ Y-
s+D-D\ » Y+ @

1 A (y+a\ (y+on r+
w50 (e

1 A Y+ @ 1
+@+1my—n( y ) 2s+1)

2 y
@102 (F2. __7 @ [ 2A Y+ @ ]
G (Fv) ®+1V(y V+®J -1y
L& V+®2P“4V+®z_@1(_ @ f
(s+1)2 y S s 52 Y S+ @)
N 52 1 )/+602 V[ ()/_'_1)2 . 1 (Z)z] ~ i) y+1
(s+1)2 y sS(y-1) y+11\s Y Y+ @
L1 A (y+a\ (y+or
(s+1)2(-1 Y Y+ @2 y

_ 1 A (]/+ch)
E+12(-D\ ¥

+ S )/+(Dz_ 2A _ o1
(s + 1)2 Y s(y —1) Y Y+ @

+ 1 A ]/+(DZ)/ @ v
s+1)>(y-1) y y Y+ @

S e [
+1D2(y-D\ vy Y+ @

1 A (y+a 1
+ + .
s+1)2(-1 ( Y ) 3(s + 1)?

Proof. We proof the identities in the light of Lemma 1.1 and equality 11, thus

i+l

s+1

GI(Ly) = (s+ 1B f .9
S+

= (s + DB (Ly)
=1,
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i+l

G (Fy) =+ 1DBY™ f G

s+1

1 (Dl:Dz (01,02 . .
T 26+1) B Ly + +1)BSA Fy);

I+1
() =ernsye [ (F)er

s+

1 (D1 2 2 1,02 2. S (D )
F 1,02
3(5 + 1)2 S/\ ( y) + 1)ZBSA ( y) (S + 1)2 S/\ ( y)

Thus we get the results of Lemma 2.2. [

Lemma 2.3. For the operators B;D‘A';Df, we get the following central moments of order one and two:
s(y + @2) 21 s [(y+a 21 @1
R R e
A =G e ey o) ie

. A (y+@2)y( o1 )V” A (y+m2>’(y+@1

s+Dy-D\ vy Y Y+ E+Dy-D\ vy ) Y+ @2
A Y+ @2 1 )

+(s+1)(7/—1)( y )+2(s+1)'

01,02 (F _ 1)2. (7 2[ y+a) 2)\] R
(-0 =) ( y )+V—1 Iy e

. 2 V+ @ ( @ )2[)/—1)/+LD2_£2]
(s+1)2 Y S+ @

s s s?
(v V[ o+1? 1 ( )% )2] A
Y (s+1*(y-1) y+1ls+1 Y )/+(Dz

A y+a\ (y+ o i
+(s+1)2()/—1)( y )(y+<a2 y) (s+1)2(y 1

Y

%)

@

Yyt o

A y+a\ [y + o ¥l
_(s+1)2()/—1)( y ) (7/+ch y) (s+1)2(y 1
25(y + @7) 4A 2, 251y Y+ @ 21

((S+1)(y) +Dy-1) )y (s+1)(y+@2)( 4 _S(V—l))

4
5
e ) (e 52 bl
(s +1)2 Y s(y —1) Y+ @2 (s+1)27/ 1) y Y+ @2
+
5

2
3(5 + 1)2

9706

y+1

21y (y+ch)V( @ )V“+ 21y ()/+ch) (y+ch )V“
c+no-n\ y )V y+va c+00-D\ ¥ Jhra Y

~ 21y (7/+c02)_ y
c+DO-D\ vy s+1)

Remark 2.4. We define the auxiliary operators H. ' given by

D1,02 ( 4. _ (Dl tDz(g, ]/) Zf ]/ € QSI
& (g,y)—{() if ye[0,1+N]\Qs.

(12)
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Yty y+a;

Theorem 2.5. Forall g € C[0,1 + W] and Q; = [ o1 7’+91] the operators G2™ satisfying:

lim IG7™(9; ) = 9(Wllc@) =0
Proof. We take g (F) = (F)"" for all £ = 1,2,3, then from Lemma 2.2 it is easy to get that:

lim max|G?™ ((F)";y) -y =0, (13)

S—00 yEQs

from (12), it is obvious to write:
IHZY (93 9) = 9W)llcpo 8 = max IGoy ™ (7 y) — 9(y)l- (14)
From (13), (14) we get
lim [IHZy™ (A5 y) = v Mleoamg =0, €=1,2,3.
By Korovkin’s theorem to operators Hg}\"az, we see
hm ||H"71 2(g;y) — 9Wllcpo,4n = 0,

for all f € C[0,1 + N], (14) gives

lim max IG‘Dl (g y)— gyl =0

S—>00yQ

O

Theorem 2.6. Let p € [1,0), then for any g € L,[0,1 + N], the operators BE™* satisfying:
lim 1G> (7 9) = 9Wl,@) =0

Proof. Using Theorem 2.5 and the operators Hg'mz by (12), we establish the result. We use Luzin’s Theorem
[15], then for a continuous function f on [0,1 + N], a positive € exists such that [lg — f ||L,,[0,1+N] < €. We use
Theorem 2.5, then for any € > 0, there exists sy € IN such that s > sy, and ||H‘D1 “2(f;9) — fWllcoa+x) < €.For
s € IN, let the operator of H.; be ||H“°1 “®|| and be considered aslIH’Dl ‘DZII L,[0,1 + N] — L,[0,1 + N].

To establish the results of Theorem 2.6, it is sufficient to show that a posmve constant M exists such that
IIH;Dl ®2|| < M. Thus, from this discussion, we immediately write:

IHZ (g5 9) = 9l ponsny < IHEY(g59) = HEY (F L, o,14x)
HIH Y () = fW)llcro )
+||g - f”L,,,[O,1+N]- (15)

By Jensen’s inequality we can get,

y Y x+l
@2) ZEZE,;?Z(A W[, 9@ dF}
i s+1

S+

y v :+1
) Yiwwy [ e@ar)

i=0

Gyl < {(s +1) (y

S{()/+1+c02)(
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<loen(2) ([ beler) (L2 )

i=0 51

Y i+l
@ o1 +1+o s+ p
< Z(y 2) b2 (A;y)(y+1){% fi |9(F)|dF}

b4 11
Y+ @2 o100 7. y+1+ar
32( ) g o (252 [T

s+1

@1 yto1

By taking integral on both sides over [ h

y+ar” y+an

], we can obtain

Y+,
y+o.

y+ay i=0 i=0 5+1
Y y 7
Y+ @2 N
-1 (57 Lo
i=0 i=0

V_2j+1 pRL@2 Y~ 2] pPL@2
+A( G2 -1 s+1]a<( Y- ( 2 -1 s+1;+18(y))}

y+1+@; P
f:
x<y+1>(—y )f gl aF

+1
=X + Xo + Zg(suppose),

i+1

+1 p
% Z(”@) Zb?;?(y(wn(—:l@z) INGE?S

V4

V4 b4 . i+l
Y+ Y—=2j+ . y+1 s+1 I
r :Z( y ) ZA ()2 -1 :)+1(D;N(]/)(7+1)(T) f{ |!](F)| dF

i=0 i=0

Y+ @ . +1+ o =
%3 Z ( ) Z bsw+1 s +1) (—)/ 1 ) f
—~ i

i=0 1

Now we can conclude that:

)/+LD2 D2 )/+ + @7 % p
I Z;‘( ) beﬂ: (v) (V‘*‘U(T) f g(F)| dF
Zy:(ymz) Z( )( - )(—”‘Dl— )H< +1)(—V”+‘Dz) fmll ®f oF
pary 101 Y y+a2) \y+ a2 Y 7 y+1 i g
)/+(Dz)( y )y y+1l+a,\ (i .
= (+ L2222 ") dF
;( 4 Y+ @ 7 y+1 i g |
y+1+a\
S(W) 1917 015
(1 + (DZ) ||!]||L [0 1+K]

)4 y Y _ 1 P %
afar < B (57 Yoo (5 [ et

9708
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< Miligll} M; > 0.

L,[0,1+8]

In similar way we can conclude that

il

) y . ,
- Y+ @2 )/—2]+1@(D y+1+a &1 .
= - Z ( )4 ) - A (7/)2 — s-:l ]Zx(y)()/ +1) —1 B g(F)| dF
o = s+1
< Malgll oty M2>0,

il

Y PN
Y+ o 01,09 y+1l+o s+
L3 :Z( y 2) Z(_ Ve (o )2 bs+1]+1N(y)(7/+1)(T12) f{

i=0 s+1

< Msligll;

L,[0,1+8]/ M; >0,

If we consider f 014X1\Q. lgy)IPdy < llgllf Ly[0,14X] and the above-mentioned inequality then we immediately
can find

1+8
f HO g )Py < [1 My + M, + M3]||g|| ores (16)
0
In the view of above expression we can write:

||H$’(Dz (7 WL, 10,148 < (1+ My + Mo + Ms)ligllr, o,148]
< MlIgllL, o,1+8]-

Thus, there exists a positive number M such that ||H‘D1 2| Ll01+x8] < M.
By taking into account the equality (15), we can write here:

IHY (3 9) = Wl 00081 < (1 + ||H;Dj’mz||L,,[o,1+x]) 9 = flle,0,04n1 + 1HL Y (5 ) = FWIIL 0,181
< Me + 2e.

Thus, in the view of above inequality we have

1

1+N8
P
”H:?/l\/m (!]) ]/) - g(]/)”LP[O,HN] = ([) |H:?/1\’m2 (g; y) — !](]/)|pd]/)

=( f G gy - g(y)l”dy)l

= IGY™ (7 y) = 9 W)L, @)
< Me + 2e¢.

Thus we can conclude limg e IGT**(7; ) = 9(¥)llL, @) = 0. This gives the complete proof of our Theorem
26. O '
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3. Rate of Convergence and approximation in Lipschitz-spaces

In the present section, we calculate the convergence properties, derive various Lipschitz-type approxima-
tions, and provide some direct approximation properties. Assume that all uniformly continuous functions
on [0, 1] belong to the class g € C[0, 1]. Let @(g; ) be used to represent the classical modulus of continuity
for every positive 6, and lim;_,, @(g; §) = 0, and

@(g;0) = sup |g(y1) —g(y2) ; vy1,y2€[0,1], (17)
[y1-121<0
| 9(y) - 9(y2) |< (1 + %) (0:9). (1)

Theorem 3.1. [28] Let [a1, az] C [B1, o], then operators {Ki}r>1 : [a1, 2] — [B1, B2] one have
1. ifg € C[B1, p2l and y € [a1, a2]
K ) =gl < 1gWIKA(Ly) — 1]
Hi W) + 2 K- ) VKTl

2. if g € C[B1, ol and y € [, az]
K(g; ) =gl <lgIIK(L;y) = 1] + Ig’(y)IIKr(t -y )

(= 9 (VKAL) + Ki((t = )% )}alg';9).
Theorem 3.2. Forany g € C[0,1 + N] and y € Q, we have
GV (7 v) — 9l < 28 (f; NI y)),
where 67V (y) = Goy™ ((F —y); y) which defined by Lemma 2.3.

Proof. It is simple to write when taking into account the (1) of Theorem 3.1 and applying the Lemma 2.2:

G (@) =gl <lgWIGIy ™ (Ly) = 11 + {G:?;"Dz(l; y)

#2JG2 ((F = 1) 39) G2 (i) s ),

By choosing, § = \/(5“)1 “2(y) = \/ Gy DZ (F -y y), then easy to get result. [

Corollary 3.3. Let g € C[0,1+ N] and y € Q, then
GV (g5 y) — 9l < 20 (g; \/5),
where & = maxyeq, 571 (y)-
Theorem 3.4. Forany f’ € C[0,1 + N] and y € Q; we have
CHT i -l < T W+ 297 0)a (£ o2 ),

where @7 (y) = maxyeq, )Gml 2 (F —y; y)l W2 (y) = maxyeq, Ssk’mz(yﬂ and 57,7 (y) = GIY™ ((F -y); y).
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Proof. From the (2) of Theorem 3.1 and applying the Lemma 2.2:

GO (fiy —fWl < lgWIGS =L y) =1+ 1f WGy (F—y;y)‘

+G2 ((F =y y) { \/m

o1 ez (E = P o))

We choose @1 (y) = max,eq, |Gfkmz F-vy) | and taking into account Theorem 3.2 we get result. [

Here, we derive the approximations in terms of Lipschitz spaces and Peetre’s K-functional. Therefore,
we remember the integral modification of the modulus of continuity provided for every g € L,(©,) for
p € [1,00).

@1p(g,t) = sup sup |l g(y +A) = g() Il @), (19)
y€[0,1] 0<A<t
where the L,-norm over ®, = [0,1 — A] is the equipped by [ . llzp @) .Furthermore, we construct f as an

absolutely contmuous function such that W1 ,(0,) = {f, f' € L,(®4)} in order to quantify the quantitative
estimations using Peetre’s K-functional. Given g € L »(©4r), Peetre s K-functional for every p € [1,0) is as
follows:

7( ,t = inf ( — +t ! ) 2
1p(g; ) (peml/?p(@,\) lg—¢ll,@n 1" L@, (20)

The relationship between the Peetre’s K-functional and integral modulus of continuity is then given by the
inequality [12].

Cio1p(9, 1) < Kyp(g,t) < Cadnp(g,t). (21)

Theorem 3.5. Let g € Wy ,(©,), then for all p > 1 we get

G(Dl ,02 (g’ y) (

1 1,072 )
v <Y (1 + —l)max (5 W) ]

p —_—
where 67 (y) given by Theorem 3.2 and G ((F -y y) is defined by Lemma 2.3.

Proof. For any y € Q;, we can write

crwn-ow|  =e+0|Y (2 e [ 66 -swe]
i=0

)4
S(S”)Z(y = ) bfiﬁz(?\;y)fa f
=0 s JY

)4
ngf(y)(sH)Z(y ) bfifz(ﬁ;y)fa IF - y|aF,
i=0 g

where Q, (y) is the Hardy-Littlewood’s majorant of g’, given by

1
Qy(y) = sup F=y (F #y).

Fel0,1]
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It is obvious to write from Cauchy-Schwarz’s inequality that

D1,@ 1 ! + @\ 5 :
G @y g <O+ 1)} [Z(%) B (A )

i=0

X(i(y ':/ch) b y) fa (F-y) dt);

i=0

<Qu(y) ryré%x (Gg}(oz ((F -y); y) ) .

We apply the Hardy-Littlewood’s Theorem by [34] for all 1 < p < oo, then

1+8 p P pI+N
Qp(y)dy <2 —— f dy.
jo‘ 7 )y (P - 1) 0 Y
Thus we get
GV y) - 9(v) H < max (G‘Dl"DZ ((F —y) 'y) ); q 21+
’ = yeq, \ A ’ Ly[0,1+X] p-1
0

Theorem 3.6. Let p € [1, ), then for any g € L,[0,1 + N] we get

with K = Z%KQ(Z% + (1 + p%l) ), Py (y) = maxyeq, \/ Gy ((F —y); y) and K be positive real number.

G gi) - 9|, < Many (902 W),

Ly(Qs)

Proof. We Consider

2|IAllL, fo,14% -
- for h e L,[0,1+N],
LI01+8] ~ |27 (p 1)pf3“72(y) 1AllL, 0,487 /
for h € W1,[0,1+K],

G2V (h; ) — I (22)

where, we denote maxyeq, (ij\’mz ((F —y); y) ) =V ().
For an arbitrary function f € W ,[0,1 + N], we can write:

ez - £ ~(g- f)(y)H +|

Ly(@Q) ’
< 2{2 7 (1 . )pg@z

< 21<1,p{g; 27 (P%l) pik””z(y)}

Ly(Q)

o1+ ||g B fHLp[O,1+N] }

=1
< 2Mzcb1,p{g; 27 (ﬁ) p?j"”z(y)}

v p 1,02
< 2M2{1 +27 (p_l) }a)lp (g, [ (y))
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< MCl)l » (g/ PS }\(DZ(]/))
O
The operators G2}“* are now approximated using Lipschitz-type maximum functions and local direct

estimates. We assume that p;, p2 > 0and 6 € (0, 1] are real constants. From [21], we recall the Lipschitz-type
maximal function:

—_ 40
=y teo )

Lip®y®[0,1] :={®@ € C[0, 1] : [®(t) - D(y)| < K
(p1y? + p2y + 1)2

where K be any positive constant.

Theorem 3.7. Let f € Lz;a‘Dl 22[0,1 + N], then for all O € (0, 1] there exists positive K

NI

G2 () ~ FW)| < K(pro? + pay) 2 [G212 ((F — w3 )]*
where GSTA’"DZ ((F —y); y) is defined by Lemma 2.3.

Proof. Suppose that f € sz‘D1 “2[0,1 + N] as well as 6 € (0,1]. First, we wish to demonstrate that our
equivalence is true for 0 = 1. Consequently, we can say that

G (i) = fl <IGHUfB = FWEI+ fW) IG (L y) -1
3(s+1)2(7 © ) 50 A;y)f;”
i=0 s+1

- + @ = IF -yl
SK(s+1)Z(V )bf;;fzm y) . A
e a4 (py? + pay + 1)2

where a positive constant K is used. Therefore, we utilize (p1y* + p2y + )™/ < (p1y* + p2y)/? for constants
p1, p2 = 0,. The Cauchy-Schwarz inequality can be applied, and then it is easy to get

£ (F) —f(y)‘dF

vy o ) z+1
G (fiy) = fw) sK(S+1)(p1y2+pzy)‘”22(%) O y)f IF - y|dF

i=0
S

GOy ((F=);y)

As aresult, we can conclude that equality is true for 0 = 1. However, we now demonstrate that our findings
apply to 6 € (0,1). Using the Holder’s inequality and the monotonicity property on G2, we observe here

<K(p1y* + p2y)™?

1/2
< K(p1y? + pay) ™2

)4 i+l
G2 (f) - fw)| s<s+1>Z(V +y‘° ) B (A ) f ]f(F) f(y)\dF
i=0 1

S (y+ @2\ o0
s((s+1)Z(V 2) B4 )
i=0

4

2-0

x f y)\ <s+1>Z( ) B y) f ar) "

SK(i(”ﬁ) B2 (1) f (F - 2 dF )(—H;y”jpy)

i=0
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i+l

< K(pug? 4 pay 2| Y. (= @2) ey [ -7 ar)

i=0

NI

S+
1/2

< Klpry? + pay) |G ((F = )3 y)

Thus we complete the our proof. O

4. Numerical Comparison with Classical Kantorovich-Bernstein Operators

To highlight the efficiency and flexibility of the newly constructed Kantorovich-type Schurer A-Bernstein
operators with shifted knots, we compare them with the Schurer A-Bernstein shifted knots operators of
Bézier bases functions.

We consider the function:

gly)=¢', yelo1],
For comparison, we fix the parameters:
s=5 N=2 A=05 o1=1 @=2

The following figure presents the plots of the original function g(y), its approximation using the Schurer
A-Bernstein shifted knots operators of Bézier bases functions K;(g; v), and the newly developed operator

Gx @y

Strong Approximation of g(y) = €Y by Developed Operator

Original: e

== == Schurer A\-Bernstein with shifted knots operators
= = === Developed operator

2.5

N

Function Value
o

0 0.2 0.4 0.6 0.8 1

Figure 1: Comparison of g(y) = e¥ with Schurer A-Bernstein shifted knots operators of Bézier bases functions and the developed
Kantorovich-Schurer A-Bernstein operator with shifted knots for s = 5,10,15, 8 =2, A = 0.5.

As shown, the developed operator provides a closer approximation to the original function g(y) over the
interval [0, 1], exhibiting enhanced convergence behavior due to the involvement of the shape parameter
A, the Schurer variation, and the shifted knot properties.
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5. Conclusion & Observation

Based on the published article [1], we deduce that the new operators (10) are the Kantorovich formula-

tion of the Schurer A-Bernstein shifted knots operators of Bézier bases functions. For any 1 < p < co and N
is a fixed positive integer, we showed in our work that the sequence of these operators converges nearly
everywhere to the function f € L,[0,1+N]on [0,1+ N]. The operators 8?2 provide the nearly convergent

s,AN

results in the continuous function spaces, as we can finally show using Korovkin’s theorem, the modulus
of continuity, Lipschitz spaces, and Peetre’s K-functional. They are a generalized version of the previously
published article [1, 6, 8, 18, 22] and Lebesgue spaces.
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