

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

New integral inequalities on the co-ordinates for geometrically exponentially *s*-convex functions in the second sense

Sinan Aslana, Ahmet Ocak Akdemirb,*, Cavanshir Zeynalov^c

^a Ağrı Türk Telekom Social Sciences High School, Ağrı Türkiye

^b Department of Mathematics, Faculty of Science and Letters, Ağri İbrahim Çeçen University, Ağrı, Türkiye

^c Department of Electronics and Information Technologies, Faculty of Architecture and Engineering, Nakhchivan State University,

AZ 7012, Nakhchivan, Azerbaijan

Abstract. The primary objective of this study is to introduce novel definitions for geometrically exponentially s— convex functions in the second sense and establish new integral inequalities associated with them. To derive the main results, we employed classical mathematical inequalities, including Hölder's and Young's inequalities. These fundamental tools played a crucial role in obtaining refined and generalized forms of integral inequalities, thereby contributing to the existing body of knowledge in this field.

1. Introduction

The concept of convexity holds a significant position in inequality theory and has been a focal point of research due to its broad applicability in various mathematical disciplines. In particular, convex functions serve as essential tools in optimization, mathematical analysis, and functional inequalities, making them a subject of great interest among scholars. Their properties and generalizations have been widely explored, leading to numerous advancements in the field. A formal definition of convex functions is provided in [3] and the definition of exponentially convex functions is expressed as follows.

Definition 1.1. [2] A function $\Omega: I \subseteq \mathbb{R} \longrightarrow \mathbb{R}$ is said to be exponentially convex function, if

$$\Omega\left((1-\xi)\varrho_1+\xi\varrho_2\right) \leq (1-\xi)\frac{\Omega(\varrho_1)}{e^{\alpha\varrho_1}}+\xi\frac{\Omega(\varrho_2)}{e^{\alpha\varrho_2}}$$

for all $\varrho_1, \varrho_2 \in I, \alpha \in \mathbb{R}$ and $\xi \in [0, 1]$.

The concept of geometrically convex functions, which plays a significant role in mathematical analysis and optimization, was first introduced in [4]. This notion extends the classical idea of convexity by incorporating geometric considerations, leading to a broader class of functions with diverse applications. A formal definition of geometrically convex functions, as presented in [4], is given below.

2020 Mathematics Subject Classification. Primary 26D15; Secondary 26A51.

Keywords. Hadamard-Type Inequalities; Geometrically Exponentially s-Convex in the Second Sense; Co-ordinates

Received: 30 April 2025; Revised: 03 July 2025; Accepted: 07 August 2025

Communicated by Miodrag Spalević

Email addresses: sinanaslan0407@gmail.com (Sinan Aslan), aocakakdemir@gmail.com (Ahmet Ocak Akdemir), cavansirzeynalov@ndu.edu.az (Cavanshir Zeynalov)

^{*} Corresponding author: Ahmet Ocak Akdemir

Definition 1.2. A function $\Omega: I \subseteq \mathbb{R}^+ \longrightarrow \mathbb{R}^+$ is said to be a geometrically convex function, if

$$\Omega(\varrho_1^{\xi}\varrho_2^{1-\xi}) \leq \left[\Omega(\varrho_1)\right]^{\xi} \left[\Omega(\varrho_2)\right]^{1-\xi}$$

for all $o_1, o_2 \in I$ and $\xi \in [0, 1]$.

Several recent studies have explored various properties and applications of geometrically convex functions, contributing to the ongoing development of this field. For a detailed discussion and related results, refer to [5],[6],[7],[8],[9],[10], [23]-[31].

Aslan and Akdemir introduced the definition of exponential convex functions on the coordinates, which extends the classical concept of convexity to a broader framework. Their formal definition is given as follows.

Definition 1.3. [11] Let us consider the bidimensional interval $\Delta = [a,b] \times [c,d]$ in \mathbb{R}^2 with a < b and c < d. The mapping $\Omega : \Delta \longrightarrow \mathbb{R}$ is exponentially convex on the co-ordinates on Δ , if the following inequality holds,

$$\Omega\left(\xi\varrho_{1}+\left(1-\xi\right)\varrho_{3},\xi\varrho_{2}+\left(1-\xi\right)\varrho_{4}\right)\leq\xi\frac{\Omega(\varrho_{1},\varrho_{2})}{e^{\alpha(\varrho_{1}+\varrho_{2})}}+\left(1-\xi\right)\frac{\Omega(\varrho_{3},\varrho_{4})}{e^{\alpha(\varrho_{3}+\varrho_{4})}}$$

for all (ϱ_1, ϱ_2) , $(\varrho_3, \varrho_4) \in \Delta$, $\alpha \in R$, and $\xi \in [0, 1]$.

Aslan and Akdemir provided an alternative but equivalent formulation of the definition of exponentially convex functions on the coordinates on Δ . Their refined definition is presented as follows.

Definition 1.4. [11] The mapping $\Omega : \Delta \longrightarrow \mathbb{R}$ is exponentially convex on the co-ordinates on Δ , if the following inequality holds,

$$\Omega\left(\xi\varrho_{1}+\left(1-\xi\right)\varrho_{2},\omega\varrho_{3}+\left(1-\omega\right)\varrho_{4}\right) \\
\leq \xi\omega\frac{\Omega(\varrho_{1},\varrho_{3})}{e^{\alpha(\varrho_{1}+\varrho_{3})}}+\xi(1-\omega)\frac{\Omega(\varrho_{1},\varrho_{4})}{e^{\alpha(\varrho_{1}+\varrho_{4})}}+(1-\xi)\omega\frac{\Omega(\varrho_{2},\varrho_{3})}{e^{\alpha(\varrho_{2}+\varrho_{3})}}+(1-\xi)(1-\omega)\frac{\Omega(\varrho_{2},\varrho_{4})}{e^{\alpha(\varrho_{2}+\varrho_{4})}}$$

for all (ρ_1, ρ_3) , (ρ_1, ρ_4) , (ρ_2, ρ_3) , $(\rho_2, \rho_4) \in \Delta$, $\alpha \in \mathbb{R}$ and $\xi, \omega \in [0, 1]$.

The representation of convex functions on the coordinates naturally led to the question of whether the Hermite-Hadamard inequality could be extended to the coordinates. This intriguing problem was addressed in Dragomir's work [12], where a significant generalization of the Hermite-Hadamard inequality was established. As a result, this extension, which broadens the inequality from the plane \mathbb{R}^2 to a rectangular domain, has become a well-recognized result in the literature. The formal statement of this extension is given below.

Theorem 1.5. [12] Suppose that $\Omega : \Delta = [\varrho_1, \varrho_2] \times [\varrho_3, \varrho_4] \to \mathbb{R}$ is convex on the co-ordinates on Δ . Then, one has the inequalities:

$$\begin{split} &\Omega\left(\frac{\varrho_{1}+\varrho_{2}}{2},\frac{\varrho_{3}+\varrho_{4}}{2}\right)\\ &\leq \frac{1}{(\varrho_{2}-\varrho_{1})(\varrho_{4}-\varrho_{3})}\int_{\varrho_{1}}^{\varrho_{2}}\int_{\varrho_{3}}^{\varrho_{4}}\Omega(x,y)dxdy\\ &\leq \frac{\Omega(\varrho_{1},\varrho_{3})+\Omega(\varrho_{1},\varrho_{4})+\Omega(\varrho_{2},\varrho_{3})+\Omega(\varrho_{2},\varrho_{4})}{4}. \end{split}$$

The above inequalities are sharp

Theorem 1.6. [11] Let $\Omega : \Delta = [\varrho_1, \varrho_2] \times [\varrho_3, \varrho_4] \to \mathbb{R}$ be partially differentiable mapping on $\Delta = [\varrho_1, \varrho_2] \times [\varrho_3, \varrho_4]$ and $\Omega \in L(\Delta)$, $\alpha \in \mathbb{R}$. If Ω is exponentially convex function on the co-ordinates on Δ , then the following inequality holds:

$$\begin{split} &\frac{1}{(\varrho_2-\varrho_1)(\varrho_4-\varrho_3)}\int_{\varrho_1}^{\varrho_2}\int_{\varrho_3}^{\varrho_4}\Omega(x,y)dxdy\\ &\leq \frac{\frac{\Omega(\varrho_1,\varrho_3)}{e^{\alpha(\varrho_1+\varrho_3)}}+\frac{\Omega(\varrho_1,\varrho_4)}{e^{\alpha(\varrho_1+\varrho_4)}}+\frac{\Omega(\varrho_2,\varrho_3)}{e^{\alpha(\varrho_2+\varrho_3)}}+\frac{\Omega(\varrho_2,\varrho_4)}{e^{\alpha(\varrho_2+\varrho_4)}}}{4}. \end{split}$$

Numerous recent studies have investigated the properties and applications of exponentially convex functions, along with their extensions on the coordinates. These works have contributed significantly to the understanding and further development of this area. For a thorough exploration and additional results, refer to [13],[14],[15],[16],[17],[18],[19], [32]-[39].

In their paper [20], Anderson et al. introduced the following definition, which significantly advanced the theoretical framework in this field and contributed to the ongoing development of the topic.

Definition 1.7. A function $M:(0,\infty)\times(0,\infty)\to(0,\infty)$ is called a Mean function if

- (1) $M(\varrho_1, \varrho_2) = M(\varrho_2, \varrho_1),$
- $(2) M(\varrho_1, \varrho_1) = \varrho_1,$
- (3) $\varrho_1 < M(\varrho_1, \varrho_2) < \varrho_2$, whenever $\varrho_1 < \varrho_2$,
- (4) $M(a\varrho_1, a\varrho_2) = aM(\varrho_1, \varrho_2)$ for all a > 0.

Let us recall special means as in [20],[21],[22] as followings.

- 1. Arithmetic Mean: $M(\varrho_1, \varrho_2) = A(\varrho_1, \varrho_2) = \frac{\varrho_1 + \varrho_2}{2}$.
- 2. Geometric Mean: $M(\varrho_1, \varrho_2) = G(\varrho_1, \varrho_2) = \sqrt{\bar{\varrho}_1 \varrho_2}$.
- 3. Harmonic Mean: $M(\varrho_1, \varrho_2) = H(\varrho_1, \varrho_2) = 1/A\left(\frac{1}{\varrho_1}, \frac{1}{\varrho_2}\right)$. 4. Logarithmic Mean: $M(\varrho_1, \varrho_2) = L(\varrho_1, \varrho_2) = (\varrho_1 \varrho_2)/(\log \varrho_1 \log \varrho_2)$ for $\varrho_1 \neq \varrho_2$ and $L(\varrho_1, \varrho_1) = \varrho_1$.
- 5. Identric Mean: $M(\varrho_1, \varrho_2) = I(\varrho_1, \varrho_2) = (1/e) \left(\varrho_1^{\varrho_1}/\varrho_2^{\varrho_2}\right)^{1/(\varrho_1-\varrho_2)}$ for $\varrho_1 \neq \varrho_2$ and $I(\varrho_1, \varrho_1) = \varrho_1$.

Now, we are in a position to put in order as:

$$H(\varrho_1,\varrho_2) \le G(\varrho_1,\varrho_2) \le L(\varrho_1,\varrho_2) \le I(\varrho_1,\varrho_2) \le A(\varrho_1,\varrho_2) \le K(\varrho_1,\varrho_2).$$

In [20], the authors also introduced a concept known as MN-convexity, providing the following definition to characterize this class of functions.

Definition 1.8. Let $\Omega: I \to (0, \infty)$ be continuous, where I is subinterval of $(0, \infty)$. Let M and N be any two Mean functions. We say Ω is MN-convex (concave) if

$$\Omega(M(\varrho_1,\varrho_2)) \leq (\geq) N(\Omega(\varrho_1),\Omega(\varrho_2))$$

for all $\varrho_1, \varrho_2 \in I$.

Aslan provided the following definition for geometrically exponentially convex functions on the coordinates:

Definition 1.9. [1] Let us consider the bidimensional interval $\Delta = [\varrho_1, \varrho_2] \times [\varrho_3, \varrho_4]$ in R^2 with $\varrho_1 < \varrho_2$ and $\varrho_3 < \varrho_4$. The mapping $\Omega: \Delta \longrightarrow R^+$ is geometrically-exponentially convex on the co-ordinates on Δ , if the following inequality holds,

$$\Omega\left(\varrho_1^{\xi}\varrho_3^{(1-\xi)},\varrho_2^{\xi}\varrho_4^{(1-\xi)}\right) \leq \frac{\Omega^{\xi}\left(\varrho_1,\varrho_2\right)}{e^{\alpha\left(\varrho_1+\varrho_2\right)}} \frac{\Omega^{(1-\xi)}\left(\varrho_3,\varrho_4\right)}{e^{\alpha\left(\varrho_3+\varrho_4\right)}}$$

for all (ϱ_1, ϱ_2) , $(\varrho_3, \varrho_4) \in \Delta$, $\alpha \in R$ and $\xi \in [0, 1]$.

Aslan presented an alternative but equivalent formulation of the definition of geometrically-exponentially convex functions on the coordinates, as detailed below:

Definition 1.10. [1] The mapping $\Omega : \Delta \longrightarrow R_+$ is geometrically exponentially convex on the co-ordinates on Δ , if the following inequality holds,

$$\begin{split} &\Omega\left(\varrho_{1}^{\xi}\varrho_{2}^{(1-\xi)},\varrho_{3}^{\omega}\varrho_{4}^{(1-\omega)}\right)\\ &\leq \frac{\Omega^{\xi\omega}\left(\varrho_{1},\varrho_{3}\right)}{e^{\alpha\left(\varrho_{1}+\varrho_{3}\right)}}\frac{\Omega^{\xi\left(1-\omega\right)}\left(\varrho_{1},\varrho_{4}\right)}{e^{\alpha\left(\varrho_{1}+\varrho_{4}\right)}}\frac{\Omega^{(1-\xi)\omega}\left(\varrho_{2},\varrho_{3}\right)}{e^{\alpha\left(\varrho_{2}+\varrho_{3}\right)}}\frac{\Omega^{(1-\xi)(1-\omega)}\left(\varrho_{2},\varrho_{4}\right)}{e^{\alpha\left(\varrho_{2}+\varrho_{4}\right)}} \end{split}$$

for all (ρ_1, ρ_3) , (ρ_1, ρ_4) , (ρ_2, ρ_3) , $(\rho_2, \rho_4) \in \Delta$, $\alpha \in R$ and $\xi, \omega \in [0, 1]$.

In this work, we introduce the concept of geometrically-exponentially s-convex functions in the second sense on the coordinates and establish a fundamental Hadamard-type integral inequality specifically for these functions. This result expands the theoretical framework for geometrically exponentially s-convex functions in the second sense and provides new insights into their integral properties.

2. Main Results

Definition 2.1. Let us consider the bidimensional interval $\Delta = [\varrho_1, \varrho_2] \times [\varrho_3, \varrho_4]$ in R^2 with $\varrho_1 < \varrho_2$ and $\varrho_3 < \varrho_4$. The mapping $\Omega : \Delta \longrightarrow R^+$ is geometrically-exponentially s-convex function in the second sense on the co-ordinates on Δ , if the following inequality holds,

$$\Omega\left(\varrho_1^{\xi}\varrho_3^{(1-\xi)},\varrho_2^{\xi}\varrho_4^{(1-\xi)}\right) \leq \frac{\Omega^{\xi^s}\left(\varrho_1,\varrho_2\right)}{\rho^{\alpha}\left(\varrho_1+\varrho_2\right)} \frac{\Omega^{(1-\xi)^s}\left(\varrho_3,\varrho_4\right)}{\rho^{\alpha}\left(\varrho_3+\varrho_4\right)}$$

for all (ϱ_1, ϱ_2) , $(\varrho_3, \varrho_4) \in \Delta$, $\alpha \in R$, $s \in (0, 1]$ and $\xi \in [0, 1]$.

An alternative but equivalent formulation of the definition of geometrically exponentially s– convex function in the second sense on the coordinates can be expressed as follows:

Definition 2.2. Let us consider the bidimensional interval $\Delta = [\varrho_1, \varrho_2] \times [\varrho_3, \varrho_4]$ in R^2 with $\varrho_1 < \varrho_2$ and $\varrho_3 < \varrho_4$. The mapping $\Omega : \Delta \longrightarrow R^+$ is geometrically exponentially s-convex function in the second sense on the co-ordinates on Δ , if the following inequality holds,

$$\begin{split} &\Omega\left(\varrho_{1}^{\xi}\varrho_{2}^{(1-\xi)},\varrho_{3}^{\omega}\varrho_{4}^{(1-\omega)}\right)\\ &\leq \frac{\Omega^{(\xi^{s})(\omega^{s})}\left(\varrho_{1},\varrho_{3}\right)}{e^{\alpha\left(\varrho_{1}+\varrho_{3}\right)}}\frac{\Omega^{(\xi^{s})(1-\omega)^{s}}\left(\varrho_{1},\varrho_{4}\right)}{e^{\alpha\left(\varrho_{1}+\varrho_{4}\right)}}\frac{\Omega^{(1-\xi)^{s}(\omega^{s})}\left(\varrho_{2},\varrho_{3}\right)}{e^{\alpha\left(\varrho_{2}+\varrho_{3}\right)}}\frac{\Omega^{(1-\xi)^{s}(1-\omega)^{s}}\left(\varrho_{2},\varrho_{4}\right)}{e^{\alpha\left(\varrho_{2}+\varrho_{4}\right)}} \end{split}$$

for all (ρ_1, ρ_3) , (ρ_1, ρ_4) , (ρ_2, ρ_3) , $(\rho_2, \rho_4) \in \Delta$, $\alpha \in R$, $s \in (0, 1]$ and $\xi, \omega \in [0, 1]$.

Lemma 2.3. A function $\Omega: \Delta \longrightarrow \mathbb{R}^+$ will be called geometrically exponentially s-convex function in the second sense on the co-ordinates on Δ , if the partial mappings $\Omega_{\rho_2}: [\varrho_1,\varrho_2] \longrightarrow \mathbb{R}$, $\Omega_{\rho_2}(u) = e^{\alpha \rho_2} f(u,\rho_2)$ and $\Omega_{\rho_1}: [\varrho_3,\varrho_4] \longrightarrow \mathbb{R}$, $\Omega_{\rho_1}(v) = e^{\alpha \rho_1} f(\rho_1,v)$ are geometrically exponentially s-convex function in the second sense on the co-ordinates on Δ , where defined for all $\rho_2 \in [\varrho_3,\varrho_4]$ and $\rho_1 \in [\varrho_1,\varrho_2]$.

Proof. From the definition of partial mapping Ω_{ρ_1} we can write

$$\begin{split} \Omega_{\rho_{1}}\left(v_{1}^{\xi}v_{2}^{(1-\xi)}\right) &= e^{\alpha\rho_{1}}\Omega\left(\rho_{1},v_{1}^{\xi}v_{2}^{(1-\xi)}\right) \\ &= e^{\alpha\rho_{1}}\Omega\left(\rho_{1}^{\xi}\rho_{1}^{(1-\xi)},v_{1}^{\xi}v_{2}^{(1-\xi)}\right) \\ &\leq e^{\alpha\rho_{1}}\left[\frac{\Omega^{(\xi^{s})}\left(\rho_{1},v_{1}\right)}{e^{\alpha(\rho_{1}+v_{1})}}\frac{\Omega^{(1-\xi)^{s}}\left(\rho_{1},v_{2}\right)}{e^{\alpha(\rho_{1}+v_{2})}}\right] \\ &= \frac{\Omega^{(\xi^{s})}\left(\rho_{1},v_{1}\right)}{e^{\alpha v_{1}}}\frac{\Omega^{(1-\xi)^{s}}\left(\rho_{1},v_{2}\right)}{e^{\alpha v_{2}}} \\ &= \frac{\Omega^{(\xi^{s})}\left(v_{1}\right)}{e^{\alpha v_{1}}}\frac{\Omega^{(1-\xi)^{s}}\left(v_{2}\right)}{e^{\alpha v_{2}}}. \end{split}$$

Similarly, one can easily see that

$$\Omega_{\rho_2}\left(u_1^{\xi}u_2^{(1-\xi)}\right) \leq \frac{\Omega_{\rho_2}^{(\xi^s)}(u_1)}{e^{\alpha u_1}} \frac{\Omega_{\rho_2}^{(1-\xi)^s}(u_2)}{e^{\alpha u_2}}.$$

The proof is completed. \Box

Theorem 2.4. Let $\Omega : \Delta = [\varrho_1, \varrho_2] \times [\varrho_3, \varrho_4] \to R^+$ be partially differentiable mapping on $\Delta = [\varrho_1, \varrho_2] \times [\varrho_3, \varrho_4]$ and $\Omega \in L(\Delta)$, $\alpha \in R$, $s \in (0, 1]$ and $0 < \Omega \le 1$. If Ω is geometrically exponentially s-convex function in the second sense on the co-ordinates on Δ , then the following inequality holds:

$$\begin{split} &\frac{1}{\left(\ln\varrho_{2}-\ln\varrho_{1}\right)\left(\ln\varrho_{4}-\ln\varrho_{3}\right)}\int_{\varrho_{1}}^{\varrho_{2}}\int_{\varrho_{3}}^{\varrho_{4}}\frac{\Omega\left(\rho_{1},\rho_{2}\right)}{\rho_{1}\rho_{2}}d\rho_{1}d\rho_{2}\\ &\leq \frac{L\left(\Omega^{(s^{2})}\left(\varrho_{1},\varrho_{3}\right),\Omega^{(s^{2})}\left(\varrho_{1},\varrho_{4}\right)\right)+L\left(\Omega^{(s^{2})}\left(\varrho_{2},\varrho_{3}\right)\Omega^{(s^{2})}\left(\varrho_{2},\varrho_{4}\right)\right)}{2e^{2\alpha\left(\varrho_{1}+\varrho_{3}+\varrho_{1}+\varrho_{4}\right)}}. \end{split}$$

where $\rho_1 \in [\varrho_1, \varrho_2]$ and $\rho_2 \in [\varrho_3, \varrho_4]$.

Proof. By the definition of the geometrically exponentially s–convex function in the second sense on the co-ordinates on Δ , we can write

$$\begin{split} &\Omega\left(\varrho_{1}^{\xi}\varrho_{2}^{(1-\xi)},\varrho_{3}^{\omega}\varrho_{4}^{(1-\omega)}\right)\\ &\leq \frac{\Omega^{(\xi^{s})(\omega^{s})}\left(\varrho_{1},\varrho_{3}\right)}{e^{\alpha\left(\varrho_{1}+\varrho_{3}\right)}}\frac{\Omega^{(\xi^{s})(1-\omega)^{s}}\left(\varrho_{1},\varrho_{4}\right)}{e^{\alpha\left(\varrho_{1}+\varrho_{4}\right)}}\frac{\Omega^{(1-\xi)^{s}\omega^{s}}\left(\varrho_{2},\varrho_{3}\right)}{e^{\alpha\left(\varrho_{2}+\varrho_{3}\right)}}\frac{\Omega^{(1-\xi)^{s}(1-\omega)^{s}}\left(\varrho_{2},\varrho_{4}\right)}{e^{\alpha\left(\varrho_{2}+\varrho_{4}\right)}} \end{split}$$

By integrating both sides of the above inequality with respect to ξ , ω on $[0,1]^2$, we have

$$\begin{split} & \int_0^1 \int_0^1 \Omega\left(\varrho_1^{\xi}\varrho_2^{(1-\xi)},\varrho_3^{\omega}\varrho_4^{(1-\omega)}\right) d\xi d\omega \\ \leq & \int_0^1 \int_0^1 \frac{\Omega^{(\xi^s)(\omega^s)}\left(\varrho_1,\varrho_3\right)}{e^{\alpha(\varrho_1+\varrho_3)}} \frac{\Omega^{(\xi^s)(1-\omega)^s}\left(\varrho_1,\varrho_4\right)}{e^{\alpha(\varrho_1+\varrho_4)}} \frac{\Omega^{(1-\xi)^s(\omega^s)}\left(\varrho_2,\varrho_3\right)}{e^{\alpha(\varrho_2+\varrho_3)}} \frac{\Omega^{(1-\xi)^s(1-\omega)^s}\left(\varrho_2,\varrho_4\right)}{e^{\alpha(\varrho_2+\varrho_4)}} d\xi d\omega \end{split}$$

If $0 < \mu \le 1, 0 < \alpha, s \le 1$

$$\mu^{(\alpha^s)} \le \mu^{\alpha s}$$

$$\begin{split} & \int_{0}^{1} \int_{0}^{1} \Omega\left(\varrho_{1}^{\xi}\varrho_{2}^{(1-\xi)},\varrho_{3}^{\omega}\varrho_{4}^{(1-\omega)}\right) d\xi d\omega \\ \leq & \frac{1}{e^{2\alpha(\varrho_{1}+\varrho_{3}+\varrho_{1}+\varrho_{4})}} \\ \times & \int_{0}^{1} \int_{0}^{1} \Omega^{s\xi(\omega^{s})}\left(\varrho_{1},\varrho_{3}\right) \Omega^{s\xi(1-\omega)^{s}}\left(\varrho_{1},\varrho_{4}\right) \Omega^{s(1-\xi)(\omega^{s})}\left(\varrho_{2},\varrho_{3}\right) \Omega^{s(1-\xi)(1-\omega)^{s}}\left(\varrho_{2},\varrho_{4}\right) d\xi d\omega \\ = & \frac{1}{e^{2\alpha(\varrho_{1}+\varrho_{3}+\varrho_{1}+\varrho_{4})}} \\ \times & \int_{0}^{1} \frac{\Omega^{s(\omega^{s})}\left(\varrho_{1},\varrho_{3}\right) \Omega^{s(1-\omega)^{s}}\left(\varrho_{1},\varrho_{4}\right) - \Omega^{s(\omega^{s})}\left(\varrho_{2},\varrho_{3}\right) \Omega^{s(1-\omega)^{s}}\left(\varrho_{2},\varrho_{4}\right) d\omega \\ = & \frac{1}{e^{2\alpha(\varrho_{1}+\varrho_{3}+\varrho_{1}+\varrho_{4})}} \\ \times & \int_{0}^{1} L\left(\Omega^{s(\omega^{s})}\left(\varrho_{1},\varrho_{3}\right) \Omega^{s(1-\omega)^{s}}\left(\varrho_{1},\varrho_{4}\right), \Omega^{s(\omega^{s})}\left(\varrho_{2},\varrho_{3}\right) \Omega^{s(1-\omega)^{s}}\left(\varrho_{2},\varrho_{4}\right) d\omega \end{split}$$

If we perform a change of variables as $\rho_1 = \varrho_1^{\xi} \varrho_2^{1-\xi}$, $\rho_2 = \varrho_3^{\omega} \varrho_4^{(1-\omega)}$ and the L(a,b) < A(a,b) feature is taken into account, the following result is obtained.

$$\frac{1}{(\ln \varrho_2 - \ln \varrho_1)(\ln \varrho_4 - \ln \varrho_3)} \int_{\varrho_1}^{\varrho_2} \int_{\varrho_3}^{\varrho_4} \frac{\Omega(\rho_1, \rho_2)}{\rho_1 \rho_2} d\rho_1 d\rho_2$$

$$\leq \frac{1}{e^{2\alpha\left(\varrho_{1}+\varrho_{3}+\varrho_{1}+\varrho_{4}\right)}}\int_{0}^{1}A\left(\Omega^{s(\omega^{s})}\left(\varrho_{1},\varrho_{3}\right)\Omega^{s(1-\omega)^{s}}\left(\varrho_{1},\varrho_{4}\right),\Omega^{s(\omega^{s})}\left(\varrho_{2},\varrho_{3}\right)\Omega^{s(1-\omega)^{s}}\left(\varrho_{2},\varrho_{4}\right)\right)d\omega$$

If
$$0 < \mu \le 1, 0 < \alpha, s \le 1$$

$$\mu^{(\alpha^s)} \leq \mu^{\alpha s}$$

$$\frac{1}{(\ln \varrho_{2} - \ln \varrho_{1}) (\ln \varrho_{4} - \ln \varrho_{3})} \int_{\varrho_{1}}^{\varrho_{2}} \int_{\varrho_{3}}^{\varrho_{4}} \frac{\Omega(\rho_{1}, \rho_{2})}{\rho_{1}\rho_{2}} d\rho_{1} d\rho_{2}$$

$$\leq \frac{1}{e^{2\alpha(\varrho_{1} + \varrho_{3} + \varrho_{1} + \varrho_{4})}}$$

$$\times \int_{0}^{1} A\left(\Omega^{(s^{2})\omega}(\varrho_{1}, \varrho_{3}) \Omega^{(s^{2})(1-\omega)}(\varrho_{1}, \varrho_{4}), \Omega^{(s^{2})\omega}(\varrho_{2}, \varrho_{3}) \Omega^{(s^{2})(1-\omega)}(\varrho_{2}, \varrho_{4})\right) d\omega$$

$$= \frac{1}{e^{2\alpha(\varrho_{1} + \varrho_{3} + \varrho_{1} + \varrho_{4})}}$$

$$\times \int_{0}^{1} \frac{\Omega^{(s^{2})\omega}(\varrho_{1}, \varrho_{3}) \Omega^{(s^{2})(1-\omega)}(\varrho_{1}, \varrho_{4}) + \Omega^{(s^{2})\omega}(\varrho_{2}, \varrho_{3}) \Omega^{(s^{2})(1-\omega)}(\varrho_{2}, \varrho_{4})}{2} d\omega$$

$$= \frac{L\left(\Omega^{(s^{2})}(\varrho_{1}, \varrho_{3}), \Omega^{(s^{2})}(\varrho_{1}, \varrho_{4})\right) + L\left(\Omega^{(s^{2})}(\varrho_{2}, \varrho_{3}) \Omega^{(s^{2})}(\varrho_{2}, \varrho_{4})\right)}{2e^{2\alpha(\varrho_{1} + \varrho_{3} + \varrho_{1} + \varrho_{4})}}.$$

The proof is completed. \Box

Remark 2.5. If we choose s = 1 and $\alpha = 0$ in Theorem 2.4, the result is consistent with geometrically convex functions on the coordinates.

$$\begin{split} &\frac{1}{(\ln\varrho_{2}-\ln\varrho_{1})(\ln\varrho_{4}-\ln\varrho_{3})}\int_{\varrho_{1}}^{\varrho_{2}}\int_{\varrho_{3}}^{\varrho_{4}}\frac{\Omega\left(\rho_{1},\rho_{2}\right)}{\rho_{1}\rho_{2}}d\rho_{1}d\rho_{2}\\ &\leq \frac{L\left(\Omega\left(\varrho_{1},\varrho_{3}\right),\Omega\left(\varrho_{1},\varrho_{4}\right)\right)+L\left(\Omega\left(\varrho_{2},\varrho_{3}\right)\Omega\left(\varrho_{2},\varrho_{4}\right)\right)}{2}. \end{split}$$

where $\rho_1 \in [\varrho_1, \varrho_2]$ and $\rho_2 \in [\varrho_3, \varrho_4]$

Remark 2.6. If we choose s = 1 in Theorem 2.4, the result is consistent with geometrically convex functions

$$\frac{1}{(\ln \varrho_{2} - \ln \varrho_{1})(\ln \varrho_{4} - \ln \varrho_{3})} \int_{\varrho_{1}}^{\varrho_{2}} \int_{\varrho_{3}}^{\varrho_{4}} \frac{\Omega(\rho_{1}, \rho_{2})}{\rho_{1}\rho_{2}} d\rho_{1} d\rho_{2}$$

$$\leq \frac{L(\Omega(\varrho_{1}, \varrho_{3}), \Omega(\varrho_{1}, \varrho_{4})) + L(\Omega(\varrho_{2}, \varrho_{3})\Omega(\varrho_{2}, \varrho_{4}))}{2e^{2\alpha(\varrho_{1} + \varrho_{3} + \varrho_{1} + \varrho_{4})}}.$$

where $\rho_1 \in [\varrho_1, \varrho_2]$ and $\rho_2 \in [\varrho_3, \varrho_4]$.

Theorem 2.7. Let $\Omega : \Delta = [\varrho_1, \varrho_2] \times [\varrho_3, \varrho_4] \to R^+$ be partially differentiable mapping on $\Delta = [\varrho_1, \varrho_2] \times [\varrho_3, \varrho_4]$ and $\Omega \in L(\Delta)$, $\alpha \in R$ and $0 < \Omega \le 1$. If $|\Omega|$ is geometrically exponentially s-convex function in the second sense on the co-ordinates on Δ , p > 1 and $s \in (0, 1]$, then the following inequality holds:

$$\begin{split} &\left|\frac{1}{\left(\ln\varrho_{2}-\ln\varrho_{1}\right)\left(\ln\varrho_{4}-\ln\varrho_{3}\right)}\int_{\varrho_{1}}^{\varrho_{2}}\int_{\varrho_{3}}^{\varrho_{4}}\frac{\Omega\left(\rho_{1},\rho_{2}\right)}{\rho_{1}\rho_{2}}d\rho_{1}d\rho_{2}\right| \\ &\leq &\left.\frac{L^{\frac{1}{q}}\left(\left|\Omega\left(\varrho_{1},\varrho_{3}\right)\right|^{q(s^{2})},\left|\Omega\left(\varrho_{1},\varrho_{4}\right)\right|^{q(s^{2})}\right)+L^{\frac{1}{q}}\left(\left|\Omega\left(\varrho_{1},\varrho_{3}\right)\right|^{q(s^{2})},\left|\Omega\left(\varrho_{1},\varrho_{4}\right)\right|^{q(s^{2})}\right)}{2e^{2\alpha\left(\varrho_{1}+\varrho_{3}+\varrho_{1}+\varrho_{4}\right)} \end{split}$$

where $\rho_1 \in [\rho_1, \rho_2], \rho_2 \in [\rho_3, \rho_4]$ and $p^{-1} + q^{-1} = 1$.

Proof. By the definition of the geometrically exponentially s–convex function in the second sense on the co-ordinates on Δ , we can write

$$\begin{split} &\Omega\left(\varrho_{1}^{\xi}\varrho_{2}^{(1-\xi)},\varrho_{3}^{\omega}\varrho_{4}^{(1-\omega)}\right)\\ &\leq \frac{\Omega^{(\xi^{s})(\omega^{s})}\left(\varrho_{1},\varrho_{3}\right)}{e^{\alpha\left(\varrho_{1}+\varrho_{3}\right)}}\frac{\Omega^{(\xi^{s})(1-\omega)^{s}}\left(\varrho_{1},\varrho_{4}\right)}{e^{\alpha\left(\varrho_{1}+\varrho_{4}\right)}}\frac{\Omega^{(1-\xi)^{s}(\omega^{s})}\left(\varrho_{2},\varrho_{3}\right)}{e^{\alpha\left(\varrho_{2}+\varrho_{3}\right)}}\frac{\Omega^{(1-\xi)^{s}(1-\omega)^{s}}\left(\varrho_{2},\varrho_{4}\right)}{e^{\alpha\left(\varrho_{2}+\varrho_{4}\right)}} \end{split}$$

By integrating both sides of the above inequality with respect to ξ , ω on $[0,1]^2$, we have

$$\int_{0}^{1} \int_{0}^{1} \Omega\left(\varrho_{1}^{\xi}\varrho_{2}^{(1-\xi)},\varrho_{3}^{\omega}\varrho_{4}^{(1-\omega)}\right)d\xi d\omega$$

$$\leq \int_{0}^{1} \int_{0}^{1} \frac{\Omega^{(\xi^{s})(\omega^{s})}\left(\varrho_{1},\varrho_{3}\right)}{e^{\alpha(\varrho_{1}+\varrho_{3})}} \frac{\Omega^{(\xi^{s})(1-\omega)^{s}}\left(\varrho_{1},\varrho_{4}\right)}{e^{\alpha(\varrho_{1}+\varrho_{4})}} \frac{\Omega^{(1-\xi)^{s}(\omega^{s})}\left(\varrho_{2},\varrho_{3}\right)}{e^{\alpha(\varrho_{2}+\varrho_{4})}} \frac{\Omega^{(1-\xi)^{s}(1-\omega)^{s}}\left(\varrho_{2},\varrho_{4}\right)}{e^{\alpha(\varrho_{2}+\varrho_{4})}} d\xi d\omega$$

If $0 < \mu \le 1, 0 < \alpha, s \le 1$

$$\mu^{(\alpha^s)} \le \mu^{\alpha s}$$

$$\begin{split} & \int_{0}^{1} \int_{0}^{1} \Omega\left(\varrho_{1}^{\xi}\varrho_{2}^{(1-\xi)},\varrho_{3}^{\omega}\varrho_{4}^{(1-\omega)}\right) d\xi d\omega \\ \leq & \frac{1}{e^{2\alpha(\varrho_{1}+\varrho_{3}+\varrho_{1}+\varrho_{4})}} \\ \times & \int_{0}^{1} \int_{0}^{1} \Omega^{s\xi(\omega^{s})} \left(\varrho_{1},\varrho_{3}\right) \Omega^{s\xi(1-\omega)^{s}} \left(\varrho_{1},\varrho_{4}\right) \Omega^{s(1-\xi)(\omega^{s})} \left(\varrho_{2},\varrho_{3}\right) \Omega^{s(1-\xi)(1-\omega)^{s}} \left(\varrho_{2},\varrho_{4}\right) d\xi d\omega \\ = & \frac{1}{e^{2\alpha(\varrho_{1}+\varrho_{3}+\varrho_{1}+\varrho_{4})}} \\ & \times \int_{0}^{1} \frac{\Omega^{s(\omega^{s})} \left(\varrho_{1},\varrho_{3}\right) \Omega^{s(1-\omega)^{s}} \left(\varrho_{1},\varrho_{4}\right) - \Omega^{s(\omega^{s})} \left(\varrho_{2},\varrho_{3}\right) \Omega^{s(1-\omega)^{s}} \left(\varrho_{2},\varrho_{4}\right)}{\ln \Omega^{\omega} \left(\varrho_{1},\varrho_{3}\right) \Omega^{(1-\omega)} \left(\varrho_{1},\varrho_{4}\right) - \ln \Omega^{\omega} \left(\varrho_{2},\varrho_{3}\right) \Omega^{(1-\omega)} \left(\varrho_{2},\varrho_{4}\right)} d\omega \\ = & \frac{1}{e^{2\alpha(\varrho_{1}+\varrho_{3}+\varrho_{1}+\varrho_{4})}} \\ & \times \int_{0}^{1} L\left(\Omega^{s(\omega^{s})} \left(\varrho_{1},\varrho_{3}\right) \Omega^{s(1-\omega)^{s}} \left(\varrho_{1},\varrho_{4}\right), \Omega^{s(\omega^{s})} \left(\varrho_{2},\varrho_{3}\right) \Omega^{s(1-\omega)^{s}} \left(\varrho_{2},\varrho_{4}\right)\right) d\omega \end{split}$$

If we perform a change of variables as $\rho_1 = \varrho_1^{\xi} \varrho_2^{1-\xi}$, $\rho_2 = \varrho_3^{\omega} \varrho_4^{(1-\omega)}$ and the L(a,b) < A(a,b) feature is taken into account, the following result is obtained.

$$\frac{1}{(\ln \varrho_{2} - \ln \varrho_{1})(\ln \varrho_{4} - \ln \varrho_{3})} \int_{\varrho_{1}}^{\varrho_{2}} \int_{\varrho_{3}}^{\varrho_{4}} \frac{\Omega(\rho_{1}, \rho_{2})}{\rho_{1}\rho_{2}} d\rho_{1} d\rho_{2}$$

$$\leq \frac{1}{e^{2\alpha(\varrho_{1} + \varrho_{3} + \varrho_{1} + \varrho_{4})}}$$

$$\times \int_{0}^{1} A\left(\Omega^{s(\omega^{s})}(\varrho_{1}, \varrho_{3})\Omega^{s(1-\omega)^{s}}(\varrho_{1}, \varrho_{4}), \Omega^{s(\omega^{s})}(\varrho_{2}, \varrho_{3})\Omega^{s(1-\omega)^{s}}(\varrho_{2}, \varrho_{4})\right) d\omega$$

If
$$0 < \mu \le 1, 0 < \alpha, s \le 1$$

$$\mu^{(\alpha^s)} \le \mu^{\alpha s}$$

$$\frac{1}{(\ln \varrho_{2} - \ln \varrho_{1})(\ln \varrho_{4} - \ln \varrho_{3})} \int_{\varrho_{1}}^{\varrho_{2}} \int_{\varrho_{3}}^{\varrho_{4}} \frac{\Omega(\rho_{1}, \rho_{2})}{\rho_{1}\rho_{2}} d\rho_{1} d\rho_{2}$$

$$\leq \frac{1}{e^{2\alpha(\varrho_{1} + \varrho_{3} + \varrho_{1} + \varrho_{4})}} \int_{0}^{1} A\left(\Omega^{(s^{2})\omega}(\varrho_{1}, \varrho_{3})\Omega^{(s^{2})(1-\omega)}(\varrho_{1}, \varrho_{4}), \Omega^{(s^{2})\omega}(\varrho_{2}, \varrho_{3})\Omega^{(s^{2})(1-\omega)}(\varrho_{2}, \varrho_{4})\right) d\omega$$

$$= \frac{1}{e^{2\alpha(\varrho_{1} + \varrho_{3} + \varrho_{1} + \varrho_{4})}} \int_{0}^{1} \frac{\Omega^{(s^{2})\omega}(\varrho_{1}, \varrho_{3})\Omega^{(s^{2})(1-\omega)}(\varrho_{1}, \varrho_{4}) + \Omega^{(s^{2})\omega}(\varrho_{2}, \varrho_{3})\Omega^{(s^{2})(1-\omega)}(\varrho_{2}, \varrho_{4})}{2} d\omega$$

If we take the absolute value of both sides of the inequality and apply Hölder's inequality to the right-hand side, we obtain the following expression.

$$\begin{split} &\left|\frac{1}{(\ln\varrho_{2}-\ln\varrho_{1})\left(\ln\varrho_{4}-\ln\varrho_{3}\right)}\int_{\varrho_{1}}^{\varrho_{2}}\int_{\varrho_{3}}^{\varrho_{4}}\frac{\Omega\left(\rho_{1},\rho_{2}\right)}{\rho_{1}\rho_{2}}d\rho_{1}d\rho_{2}\right| \\ &\leq \left(\frac{1}{2e^{2\rho\alpha\left(\varrho_{1}+\varrho_{3}+\varrho_{1}+\varrho_{4}\right)}}\right)^{\frac{1}{p}}\times\left[\left(\int_{0}^{1}\left|\Omega\left(\varrho_{1},\varrho_{3}\right)\right|^{q(s^{2})\omega}\left|\Omega\left(\varrho_{1},\varrho_{4}\right)\right|^{q(s^{2})(1-\omega)}d\omega\right)^{\frac{1}{q}} \\ &+\left(\int_{0}^{1}\left|\Omega\left(\varrho_{2},\varrho_{3}\right)\right|^{q(s^{2})\omega}\left|\Omega\left(\varrho_{2},\varrho_{4}\right)d\omega\right|^{q(s^{2})(1-\omega)}d\omega\right)^{\frac{1}{q}}\right] \\ &= \frac{1}{2e^{2\alpha\left(\varrho_{1}+\varrho_{3}+\varrho_{1}+\varrho_{4}\right)}}\left[L^{\frac{1}{q}}\left(\left|\Omega\left(\varrho_{1},\varrho_{3}\right)\right|^{q(s^{2})},\left|\Omega\left(\varrho_{1},\varrho_{4}\right)\right|^{q(s^{2})}\right)+L^{\frac{1}{q}}\left(\left|\Omega\left(\varrho_{1},\varrho_{3}\right)\right|^{q(s^{2})},\left|\Omega\left(\varrho_{1},\varrho_{4}\right)\right|^{q(s^{2})}\right)\right] \end{split}$$

Corollary 2.8. *If we choose* s = 1 *and* $\alpha = 0$ *in Theorem 2.7, the result is consistent with the geometric convexity on the co-ordinates*

$$\begin{split} &\left|\frac{1}{(\ln\varrho_{2}-\ln\varrho_{1})\left(\ln\varrho_{4}-\ln\varrho_{3}\right)}\int_{\varrho_{1}}^{\varrho_{2}}\int_{\varrho_{3}}^{\varrho_{4}}\frac{\Omega\left(\rho_{1},\rho_{2}\right)}{\rho_{1}\rho_{2}}d\rho_{1}d\rho_{2}\right|\\ \leq &\left.\frac{L^{\frac{1}{q}}\left(\left|\Omega\left(\varrho_{1},\varrho_{3}\right)\right|^{q}\left|\Omega\left(\varrho_{1},\varrho_{4}\right)\right|^{q}\right)+L^{\frac{1}{q}}\left(\left|\Omega\left(\varrho_{2},\varrho_{3}\right)\right|^{q}\left|\Omega\left(\varrho_{2},\varrho_{4}\right)\right|^{q}\right)}{2} \end{split}$$

where $\rho_1 \in [\varrho_1, \varrho_2], \rho_2 \in [\varrho_3, \varrho_4]$ and $p^{-1} + q^{-1} = 1$.

Corollary 2.9. *If we choose* s = 1 *in Theorem 2.7, the result is consistent with the geometric exponentially convexity on the co-ordinates*

$$\begin{split} &\left|\frac{1}{(\ln\varrho_{2}-\ln\varrho_{1})\left(\ln\varrho_{4}-\ln\varrho_{3}\right)}\int_{\varrho_{1}}^{\varrho_{2}}\int_{\varrho_{3}}^{\varrho_{4}}\frac{\Omega\left(\rho_{1},\rho_{2}\right)}{\rho_{1}\rho_{2}}d\rho_{1}d\rho_{2}\right| \\ \leq &\left.\frac{L^{\frac{1}{q}}\left(\left|\Omega\left(\varrho_{1},\varrho_{3}\right)\right|^{q},\left|\Omega\left(\varrho_{1},\varrho_{4}\right)\right|^{q}\right)+L^{\frac{1}{q}}\left(\left|\Omega\left(\varrho_{1},\varrho_{3}\right)\right|^{q},\left|\Omega\left(\varrho_{1},\varrho_{4}\right)\right|^{q}\right)}{2e^{2\alpha\left(\varrho_{1}+\varrho_{3}+\varrho_{1}+\varrho_{4}\right)}} \end{split}$$

where $\rho_1 \in [\rho_1, \rho_2], \rho_2 \in [\rho_3, \rho_4]$ and $p^{-1} + q^{-1} = 1$.

Theorem 2.10. Let $\Omega : \Delta = [\varrho_1, \varrho_2] \times [\varrho_3, \varrho_4] \to R^+$ be partially differentiable mapping on $\Delta = [\varrho_1, \varrho_2] \times [\varrho_3, \varrho_4]$ and $\Omega \in L(\Delta)$, $\alpha \in R$ and $0 < \Omega \le 1$. If $|\Omega|$ is geometrically exponentially s-convex function in the second sense on the co-ordinates on Δ , p > 1 and $s \in (0, 1]$, then the following inequality holds:

$$\left| \frac{1}{(\ln \varrho_2 - \ln \varrho_1) (\ln \varrho_4 - \ln \varrho_3)} \int_{\varrho_1}^{\varrho_2} \int_{\varrho_3}^{\varrho_4} \frac{\Omega(\rho_1, \rho_2)}{\rho_1 \rho_2} d\rho_1 d\rho_2 \right|$$

$$\leq \frac{1}{2pe^{2p\alpha\left(\varrho_{1}+\varrho_{3}+\varrho_{1}+\varrho_{4}\right)}} + \frac{L\left(\left|\Omega\left(\varrho_{1},\varrho_{3}\right)\right|^{q(s^{2})},\left|\Omega\left(\varrho_{1},\varrho_{4}\right)\right|^{q(s^{2})}\right) + L\left(\left|\Omega\left(\varrho_{1},\varrho_{3}\right)\right|^{q(s^{2})},\left|\Omega\left(\varrho_{1},\varrho_{4}\right)\right|^{q(s^{2})}\right)}{q}$$

where $\rho_1 \in [\varrho_1, \varrho_2], \rho_2 \in [\varrho_3, \varrho_4], \text{ and } p^{-1} + q^{-1} = 1.$

Proof. By the definition of the geometrically exponentially s–convex function in the second sense on the co-ordinates on Δ , we can write

$$\begin{split} & \Omega\left(\varrho_{1}^{\xi}\varrho_{2}^{(1-\xi)},\varrho_{3}^{\omega}\varrho_{4}^{(1-\omega)}\right) \\ \leq & \frac{\Omega^{(\xi^{s})(\omega^{s})}\left(\varrho_{1},\varrho_{3}\right)}{\rho^{\alpha}(\varrho_{1}+\varrho_{3})} \frac{\Omega^{(\xi^{s})(1-\omega)^{s}}\left(\varrho_{1},\varrho_{4}\right)}{\rho^{\alpha}(\varrho_{1}+\varrho_{4})} \frac{\Omega^{(1-\xi)^{s}(\omega^{s})}\left(\varrho_{2},\varrho_{3}\right)}{\rho^{\alpha}(\varrho_{2}+\varrho_{3})} \frac{\Omega^{(1-\xi)^{s}(1-\omega)^{s}}\left(\varrho_{2},\varrho_{4}\right)}{\rho^{\alpha}(\varrho_{2}+\varrho_{4})} \end{split}$$

By integrating both sides of the above inequality with respect to ξ , ω on $[0,1]^2$, we have

$$\int_{0}^{1} \int_{0}^{1} \Omega\left(\varrho_{1}^{\xi}\varrho_{2}^{(1-\xi)},\varrho_{3}^{\alpha}\varrho_{4}^{(1-\omega)}\right) d\xi d\omega$$

$$\leq \int_{0}^{1} \int_{0}^{1} \frac{\Omega^{(\xi^{s})(\omega^{s})}\left(\varrho_{1},\varrho_{3}\right)}{e^{\alpha(\varrho_{1}+\varrho_{3})}} \frac{\Omega^{(\xi^{s})(1-\omega)^{s}}\left(\varrho_{1},\varrho_{4}\right)}{e^{\alpha(\varrho_{1}+\varrho_{4})}} \frac{\Omega^{(1-\xi)^{s}(\omega^{s})}\left(\varrho_{2},\varrho_{3}\right)}{e^{\alpha(\varrho_{2}+\varrho_{3})}} \frac{\Omega^{(1-\xi)^{s}(1-\omega)^{s}}\left(\varrho_{2},\varrho_{4}\right)}{e^{\alpha(\varrho_{2}+\varrho_{4})}} d\xi d\omega$$

If $0 < \mu \le 1, 0 < \alpha, s \le 1$

$$\mu^{(\alpha^s)} \le \mu^{\alpha s}$$

$$\int_{0}^{1} \int_{0}^{1} \Omega\left(\varrho_{1}^{\xi}\varrho_{2}^{(1-\xi)},\varrho_{3}^{\omega}\varrho_{4}^{(1-\omega)}\right) d\xi d\omega
\leq \frac{1}{e^{2\alpha(\varrho_{1}+\varrho_{3}+\varrho_{1}+\varrho_{4})}}
\times \int_{0}^{1} \int_{0}^{1} \Omega^{s\xi(\omega^{s})} (\varrho_{1},\varrho_{3}) \Omega^{s\xi(1-\omega)^{s}} (\varrho_{1},\varrho_{4}) \Omega^{s(1-\xi)(\omega^{s})} (\varrho_{2},\varrho_{3}) \Omega^{s(1-\xi)(1-\omega)^{s}} (\varrho_{2},\varrho_{4}) d\xi d\omega
= \frac{1}{e^{2\alpha(\varrho_{1}+\varrho_{3}+\varrho_{1}+\varrho_{4})}} \int_{0}^{1} \frac{\Omega^{s(\omega^{s})} (\varrho_{1},\varrho_{3}) \Omega^{s(1-\omega)^{s}} (\varrho_{1},\varrho_{4}) - \Omega^{s(\omega^{s})} (\varrho_{2},\varrho_{3}) \Omega^{s(1-\omega)^{s}} (\varrho_{2},\varrho_{4}) d\omega
= \frac{1}{e^{2\alpha(\varrho_{1}+\varrho_{3}+\varrho_{1}+\varrho_{4})}} \int_{0}^{1} L\left(\Omega^{s(\omega^{s})} (\varrho_{1},\varrho_{3}) \Omega^{s(1-\omega)^{s}} (\varrho_{1},\varrho_{4}), \Omega^{s(\omega^{s})} (\varrho_{2},\varrho_{3}) \Omega^{s(1-\omega)^{s}} (\varrho_{2},\varrho_{4})\right) d\omega$$

If we perform a change of variables as $\rho_1 = \varrho_1^{\xi} \varrho_2^{1-\xi}$, $\rho_2 = \varrho_3^{\omega} \varrho_4^{(1-\omega)}$ and the L(a,b) < A(a,b) feature is taken into account, the following result is obtained.

$$\frac{1}{(\ln \varrho_{2} - \ln \varrho_{1})(\ln \varrho_{4} - \ln \varrho_{3})} \int_{\varrho_{1}}^{\varrho_{2}} \int_{\varrho_{3}}^{\varrho_{4}} \frac{\Omega(\rho_{1}, \rho_{2})}{\rho_{1}\rho_{2}} d\rho_{1} d\rho_{2}$$

$$\leq \frac{1}{e^{2\alpha(\varrho_{1} + \varrho_{3} + \varrho_{1} + \varrho_{4})}} \int_{0}^{1} A\left(\Omega^{s(\omega^{s})}(\varrho_{1}, \varrho_{3})\Omega^{s(1-\omega)^{s}}(\varrho_{1}, \varrho_{4}), \Omega^{s(\omega^{s})}(\varrho_{2}, \varrho_{3})\Omega^{s(1-\omega)^{s}}(\varrho_{2}, \varrho_{4})\right) d\omega$$

If $0 < \mu \le 1, 0 < \alpha, s \le 1$

$$\mu^{(\alpha^s)} \leq \mu^{\alpha s}$$

$$\frac{1}{(\ln \varrho_2 - \ln \varrho_1)(\ln \varrho_4 - \ln \varrho_3)} \int_{\varrho_1}^{\varrho_2} \int_{\varrho_3}^{\varrho_4} \frac{\Omega(\rho_1, \rho_2)}{\rho_1 \rho_2} d\rho_1 d\rho_2$$

$$\leq \frac{1}{e^{2\alpha(\varrho_{1}+\varrho_{3}+\varrho_{1}+\varrho_{4})}} \int_{0}^{1} A\left(\Omega^{(s^{2})\omega}(\varrho_{1},\varrho_{3})\Omega^{(s^{2})(1-\omega)}(\varrho_{1},\varrho_{4}),\Omega^{(s^{2})\omega}(\varrho_{2},\varrho_{3})\Omega^{(s^{2})(1-\omega)}(\varrho_{2},\varrho_{4})\right) d\omega
= \frac{1}{e^{2\alpha(\varrho_{1}+\varrho_{3}+\varrho_{1}+\varrho_{4})}} \int_{0}^{1} \frac{\Omega^{(s^{2})\omega}(\varrho_{1},\varrho_{3})\Omega^{(s^{2})(1-\omega)}(\varrho_{1},\varrho_{4}) + \Omega^{(s^{2})\omega}(\varrho_{2},\varrho_{3})\Omega^{(s^{2})(1-\omega)}(\varrho_{2},\varrho_{4})}{2} d\omega$$

If we take the absolute value of both sides of the inequality and apply Young's inequality to the right-hand side, we obtain the following expression.

$$\begin{split} & \left| \frac{1}{(\ln \varrho_{2} - \ln \varrho_{1}) (\ln \varrho_{4} - \ln \varrho_{3})} \int_{\varrho_{1}}^{\varrho_{2}} \int_{\varrho_{3}}^{\varrho_{4}} \frac{\Omega(\rho_{1}, \rho_{2})}{\rho_{1} \rho_{2}} d\rho_{1} d\rho_{2} \right| \\ & \leq \frac{1}{p} \left(\frac{1}{2e^{2p\alpha(\varrho_{1} + \varrho_{3} + \varrho_{1} + \varrho_{4})}} \right) + \left[\frac{1}{q} \left(\int_{0}^{1} \left| \Omega(\varrho_{1}, \varrho_{3}) \right|^{q(s^{2})\omega} \left| \Omega(\varrho_{1}, \varrho_{4}) \right|^{q(s^{2})(1-\omega)} d\omega \right) \\ & + \frac{1}{q} \left(\int_{0}^{1} \left| \Omega(\varrho_{2}, \varrho_{3}) \right|^{q(s^{2})\omega} \left| \Omega(\varrho_{2}, \varrho_{4}) d\omega \right|^{q(s^{2})(1-\omega)} d\omega \right) \right] \\ & = \frac{1}{2pe^{2p\alpha(\varrho_{1} + \varrho_{3} + \varrho_{1} + \varrho_{4})}} \\ & + \frac{1}{q} L\left(\left| \Omega(\varrho_{1}, \varrho_{3}) \right|^{q(s^{2})}, \left| \Omega(\varrho_{1}, \varrho_{4}) \right|^{q(s^{2})} \right) + \frac{1}{q} L\left(\left| \Omega(\varrho_{1}, \varrho_{3}) \right|^{q(s^{2})}, \left| \Omega(\varrho_{1}, \varrho_{4}) \right|^{q(s^{2})} \right). \end{split}$$

The proof is completed. \Box

Corollary 2.11. *If we choose* s = 1 *and* $\alpha = 0$ *in Theorem 2.10, the result is consistent with geometrically convex functions on the co-ordinates.*

$$\begin{split} &\left|\frac{1}{\left(\ln\varrho_{2}-\ln\varrho_{1}\right)\left(\ln\varrho_{4}-\ln\varrho_{3}\right)}\int_{\varrho_{1}}^{\varrho_{2}}\int_{\varrho_{3}}^{\varrho_{4}}\frac{\Omega\left(\rho_{1},\rho_{2}\right)}{\rho_{1}\rho_{2}}d\rho_{1}d\rho_{2}\right|\\ &\leq& \frac{1}{2p}+\frac{L\left(\left|\Omega\left(\varrho_{1},\varrho_{3}\right)\right|^{q},\left|\Omega\left(\varrho_{1},\varrho_{4}\right)\right|^{q}\right)+L\left(\left|\Omega\left(\varrho_{1},\varrho_{3}\right)\right|^{q},\left|\Omega\left(\varrho_{1},\varrho_{4}\right)\right|^{q}\right)}{q} \end{split}$$

where $\rho_1 \in [\varrho_1, \varrho_2], \rho_2 \in [\varrho_3, \varrho_4], \text{ and } p^{-1} + q^{-1} = 1$.

Corollary 2.12. *If we choose* s = 1 *in Theorem 2.10, the result is consistent with geometrically convex functions on the co-ordinates.*

$$\left| \frac{1}{(\ln \varrho_{2} - \ln \varrho_{1}) (\ln \varrho_{4} - \ln \varrho_{3})} \int_{\varrho_{1}}^{\varrho_{2}} \int_{\varrho_{3}}^{\varrho_{4}} \frac{\Omega(\rho_{1}, \rho_{2})}{\rho_{1} \rho_{2}} d\rho_{1} d\rho_{2} \right| \\
\leq \frac{1}{2pe^{2p\alpha(\varrho_{1} + \varrho_{3} + \varrho_{1} + \varrho_{4})}} \\
+ \frac{L(|\Omega(\varrho_{1}, \varrho_{3})|^{q}, |\Omega(\varrho_{1}, \varrho_{4})|^{q}) + L(|\Omega(\varrho_{1}, \varrho_{3})|^{q}, |\Omega(\varrho_{1}, \varrho_{4})|^{q})}{q}$$

where $\rho_1 \in [\varrho_1, \varrho_2]$, $\rho_2 \in [\varrho_3, \varrho_4]$ and $p^{-1} + q^{-1} = 1$.

Proposition 2.13. *If* Ω , Ψ : $\Delta \to R$ *are two geometrically exponentially s-convex functions in the second sense on the co-ordinates on* Δ *, then* $\Omega \Psi$ *is geometrically exponential s-convex in the second sense on the co-ordinates on* Δ *.*

Proof. From the definition of geometrically exponentially *s*–convex function, we can write

$$\Omega\left(\varrho_1^{\xi}\varrho_2^{(1-\xi)},\varrho_3^{\omega}\varrho_4^{(1-\omega)}\right)\times\Psi\left(\varrho_1^{\xi}\varrho_2^{(1-\xi)},\varrho_3^{\omega}\varrho_4^{(1-\omega)}\right)$$

$$\leq \frac{\Omega^{(\xi^{s})(\omega^{s})}\left(\varrho_{1},\varrho_{3}\right)}{e^{\alpha(\varrho_{1}+\varrho_{3})}} \frac{\Omega^{(\xi^{s})(1-\omega)^{s}}\left(\varrho_{1},\varrho_{4}\right)}{e^{\alpha(\varrho_{1}+\varrho_{4})}} \frac{\Omega^{(1-\xi)^{s}(\omega^{s})}\left(\varrho_{2},\varrho_{3}\right)}{e^{\alpha(\varrho_{2}+\varrho_{3})}} \frac{\Omega^{(1-\xi)^{s}(1-\omega)^{s}}\left(\varrho_{2},\varrho_{4}\right)}{e^{\alpha(\varrho_{2}+\varrho_{4})}} \\ \times \frac{\Psi^{(\xi^{s})(\omega^{s})}\left(\varrho_{1},\varrho_{3}\right)}{e^{\alpha(\varrho_{1}+\varrho_{3})}} \frac{\Psi^{(\xi^{s})(1-\omega)^{s}}\left(\varrho_{1},\varrho_{4}\right)}{e^{\alpha(\varrho_{1}+\varrho_{4})}} \frac{\Psi^{(1-\xi)^{s}(\omega^{s})}\left(\varrho_{2},\varrho_{3}\right)}{e^{\alpha(\varrho_{2}+\varrho_{3})}} \frac{\Psi^{(1-\xi)^{s}(1-\omega)^{s}}\left(\varrho_{2},\varrho_{4}\right)}{e^{\alpha(\varrho_{2}+\varrho_{4})}} \\ = \frac{(\Omega\Psi)^{(\xi^{s})(\omega^{s})}\left(\varrho_{1},\varrho_{3}\right)}{e^{\alpha(\varrho_{1}+\varrho_{3})}} \frac{(\Omega\Psi)^{(\xi^{s})(1-\omega)^{s}}\left(\varrho_{1},\varrho_{4}\right)}{e^{\alpha(\varrho_{1}+\varrho_{4})}} \\ \times \frac{(\Omega\Psi)^{(1-\xi)^{s}(\omega^{s})}\left(\varrho_{2},\varrho_{3}\right)}{e^{\alpha(\varrho_{2}+\varrho_{3})}} \frac{(\Omega\Psi)^{(1-\xi)^{s}(1-\omega)^{s}}\left(\varrho_{2},\varrho_{4}\right)}{e^{\alpha(\varrho_{2}+\varrho_{4})}}$$

Therefore $\Omega\Psi$ is geometrically exponentially s-convex function in the second sense on the co-ordinates on Δ . \square

3. Conclusion

In this study, we propose and formalize the notion of geometrically-exponentially s-convex functions in the second sense defined on the coordinates of a domain. We then proceed to derive a Hadamard-type integral inequality that is particularly suited for this new class of functions. The inequality we establish not only generalizes existing results in the literature concerning convex and s-convex functions, but also enriches the theoretical structure surrounding geometrically-exponentially s-convexity in the second sense on the co-ordinates. Furthermore, our findings contribute to a deeper understanding of the integral behaviors and properties of such functions, potentially opening new avenues for applications in mathematical analysis and related fields.

References

- [1] Aslan, S., Some novel integral inequalities on the co-ordinates for geometrically exponentially convex functions, Turkish Journal of Nature and Science, 1, 96-102, 2024.
- [2] Awan, M.U., Noor, M.A. and Noor, K.I., Hermite-Hadamard Inequalities for Exponentially Convex Functions, *Appl. Math. Inf. Sci.*, 12, No. 2, 405-409 (2018).
- [3] Pecaric, J. E., Tong, Y. L., Convex functions, partial orderings, and statistical applications. Academic Press, 1992.
- [4] Niculescu, C. P. (2000). Convexity according to the geometric mean. Math. Inequal. Appl, 3(2), 155-167.
- [5] Özdemir, M. E., Yildiz, Ç., Gürbüz, M., A note on geometrically convex functions. Journal of Inequalities and Applications, 2014 (1), 1-12, 2014.
- [6] Xi, B. Y., Bai, R. F., Qi, F., Hermite-Hadamard type inequalities for the m- and(alpha, m)-geometrically convex functions. Aeguationes mathematicae. 84(3), 261-269, 2012.
- [7] Özdemir, M. E., Inequalities on geometrically convex functions. arXiv preprint arXiv:1312.7725, 2013.
- [8] Dokuyucu, M., Aslan, S., Some New Approaches for Geometrically Convex Functions, Proceedings of the 8th International Conference on Control and Optimization with Industrial Applications (COIA 2022), 156, 2022.
- [9] Rashid, S., Akdemir, A. O., Ekinci, A., Aslan, S., Some Fractional Integral Inequalities for Geometrically Convex Functions, In 3rd International Conference on Mathematical and Related Sciences: Current Trends and Developments Proceedings Book (p. 246), 2020.
- [10] Butt, S. I., Ekinci, A., Akdemir, A. O., Aslan, S., Inequalities for Geometrically Convex FunctionsIn 3rd International Conference on Mathematical and Related Sciences: Current Trends and Developments Proceedings Book (p. 238), 2020.
- [11] Aslan, S., Akdemir, A. O., Exponentially convex functions on the co-ordinates and related integral inequalities. In Proceedings of the 8th International Conference on Control and Optimization with Industrial Applications (Vol. 2, pp. 120-122), 2022.
- [12] S.S. Dragomir, On Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwanese Journal of Math., 5, 2001, 775-788.
- [13] S. Aslan, Eksponansiyel konveks fonksiyonlar için koordinatlarda integral eşitsizlikler. PhD thesis, Ağrı İbrahim Çeçen University, Institute of Graduate Sciences, 2023.
- [14] Akdemir, A. O., Aslan, S., Dokuyucu, M. A., Çelik, E., Exponentially Convex Functions on the Coordinates and Novel Estimations via Riemann-Liouville Fractional Operator, Journal of Function Spaces, 2023(1), 4310880, 2023.
- [15] Aslan, S., Akdemir, A. O., Exponential s—Convex Functions in the First Sense on the Co-ordinates and Some Novel Integral Inequalities, Turkish Journal of Science, 8(2),85-92, 2023.
- [16] Aslan, S., Akdemir, A. O., Dokuyucu, M. A., Exponentially m- and $(\alpha, m)-$ Convex Functions on the Coordinates and Related Inequalities, Turkish Journal of Science, 7(3), 231-244, 2022.
- [17] Nie, D., Rashid, S., Akdemir, A. O., Baleanu, D., Liu, J. B., On some new weighted inequalities for differentiable exponentially convex and exponentially quasi-convex functions with applications. Mathematics, 7(8), 727, 2019.

- [18] Rashid, S., Noor, M. A., Noor, K. I., Akdemir, A. O., Some new generalizations for exponentially s-convex functions and inequalities via fractional operators. Fractal and fractional, 3(2), 24, 2019.
- [19] Rashid, S., Safdar, F., Akdemir, A. O., Noor, M. A., Noor, K. I., Some new fractional integral inequalities for exponentially m-convex functions via extended generalized Mittag-Leffler function. Journal of Inequalities and Applications, 2019, 1-17, 2019.
- [20] Anderson, G.D., Vamanamurthy, M.K. and Vuorinen, M., Generalized convexity and inequalities, J. Math. Anal. Appl., 335 (2007), 1294-1308.
- [21] Bullen, P.S., Handbook of Means and Their Inequalities, Math. Appl., vol. 560, Kluwer Academic Publishers, Dordrecht, 2003.
- [22] Bullen, P.S., Mitrinovic, D.S. and Vasic P.M, Means and Their Inequalities, Reidel, Dordrecht, 1988.
- [23] Set, E. Inequalities Involving Conformable Fractional Integrals for η -Convex Functions, Turkish Journal of Science, 8(3), 2023, 107-113.
- [24] Butt, S., Inam, H., Dokuyucu, M. New Fractal Simpson Estimates For Twice Local Differentiable Generalized Convex Mappings. Applied and Computational Mathematics, 23(4), 2024, pp.474-503.
- [25] Kalsoom, H., Ali, M. A., Abbas, M., Budak, H., Murtaza, G. (2022). Generalized quantum Montgomery identity and Ostrowski type inequalities for preinvex functions. TWMS Journal of Pure and Applied Mathematics, 13(1), 2022, pp.72-90.
- [26] Celik, B., Akdemir, A. O., Set, E., Aslan, S. Ostrowski-Mercer type integral inequalities for differentiable convex functions via Atangana-Baleanu fractional integral operators, TWMS Journal of Pure and Applied Mathematics, 15 (2), 2024, pp.269-285.
- [27] Celik, B., Set, E., Akdemir, A. O., Özdemir, M.E., Novel generalizations for Grüss type inequalities pertaining to the constant proportional fractional integrals, Applied and Computational Mathematics, 2023, 22 (2), 275-291.
- [28] Du, T., Peng, Y. Hermite–Hadamard type inequalities for multiplicative Riemann– Liouville fractional integrals. Journal of Computational and Applied Mathematics, 440, 2024, 115582.
- [29] Butt, S.I., Akdemir, A.O, Gül, E., Nadeem, M., Yalçın, A. Some Novel Results for Chebyshev Type Inequalities via Generalized Proportional Fractional Integral Operators, Turkish Journal of Science, 8(3), 2023, 114-123.
- [30] Butt, S. I., Khan, A. New fractal-fractional parametric inequalities with applications. Chaos, Solitons and Fractals, 172, 2023, 113529.
- [31] Butt, S. I., Javed, I., Agarwal, P., Nieto, J. J. Newton–Simpson-type inequalities via majorization. Journal of Inequalities and Applications, 2023(1), 2023, 16.
- [32] A new approach to the existence and uniqueness of solutions for a class of nonlinear q-fractional boundary value problems, Applied and Computational Mathematics, 2025, 24(2), 245-249.
- [33] Akdemir, A. O., Deniz, E., Yüksel, E. On some integral inequalities via conformable fractional integrals. Applied Mathematics and Nonlinear Sciences, 2021, 6(1), 489-498.
- [34] Butt, S. I., Akdemir, A. O., Nasir, J., Jarad, F. Some Hermite-Jensen-Mercer like inequalities for convex functions through a certain generalized fractional integrals and related results. Miskolc Mathematical Notes, 2020, Vol. 21, No. 2, pp. 689–715.
- [35] Set, E., Akdemir, A. O., Gözpinar, A., Jarad, F. Ostrowski type inequalities via new fractional conformable integrals. Aims Math, 2019, 4(6), 1684-1697.
- [36] Sadek, L., Yuzbas, S., Alaoui, H. T. Two numerical solutions for solving linear and nonlinear systems of differential equations. Applied and Computational Mathematics, 2024, 23(4), 421-436.
- [37] Aydin, M., Mahmudov, N. Qualitative analysis of the Prabhakar-Caputo type fractional delayed equations. TWMS Journal of Pure and Applied Mathematics, 2023, 16 (1), 115-136.
- [38] Goel, P., Singh, D., Gopal, D., Aydi, H. F-Kannan mappings in non-triangular metric spaces and applications to integral and fractional calculus. TWMS Journal of Pure and Applied Mathematics, 2025, 16(1), 19-43.
- [39] Özdemir, M.E., Akdemir, A.O. and Yıldız, Ç. On co-ordinated quasi-convex functions. Czechoslovak Mathematical Journal, 2012, 62 (4), pp.889-900.