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Abstract. The primary objective of this study is to introduce novel definitions for geometrically expo-
nentially s— convex functions in the second sense and establish new integral inequalities associated with
them. To derive the main results, we employed classical mathematical inequalities, including Holder’s and
Young’s inequalities. These fundamental tools played a crucial role in obtaining refined and generalized
forms of integral inequalities, thereby contributing to the existing body of knowledge in this field.

1. Introduction

The concept of convexity holds a significant position in inequality theory and has been a focal point of
research due to its broad applicability in various mathematical disciplines. In particular, convex functions
serve as essential tools in optimization, mathematical analysis, and functional inequalities, making them a
subject of great interest among scholars. Their properties and generalizations have been widely explored,
leading to numerous advancements in the field. A formal definition of convex functions is provided in [3]
and the definition of exponentially convex functions is expressed as follows.

Definition 1.1. [2] A function ) : I € R — R is said to be exponentially convex function, if

Q- an+ o) < (1 - 62 | L&)

eDth eagz

forall ;y,00 € ,a e Rand £ € [0,1].

The concept of geometrically convex functions, which plays a significant role in mathematical analysis
and optimization, was first introduced in [4]. This notion extends the classical idea of convexity by
incorporating geometric considerations, leading to a broader class of functions with diverse applications.
A formal definition of geometrically convex functions, as presented in [4], is given below.
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Definition 1.2. A function Q) : I € R* — R* is said to be a geometrically convex function, if

Qgi0y™) < [Qlen)]* [Qe)]
forall 01,00 € Iand £ € 0,1].

Several recent studies have explored various properties and applications of geometrically convex func-
tions, contributing to the ongoing development of this field. For a detailed discussion and related results,
refer to [5],[6],[71,[81,9],[10], [23]-[31].

Aslan and Akdemir introduced the definition of exponential convex functions on the coordinates,
which extends the classical concept of convexity to a broader framework. Their formal definition is given
as follows.

Definition 1.3. [11] Let us consider the bidimensional interval A = [a,b] X [c,d] in R? witha < band ¢ < d. The
mapping Q) : A — R is exponentially convex on the co-ordinates on A, if the following inequality holds,

Q(ar, 02) (03, 04)

ea(or+02) {19 e(03+04)

Qo +1 -8, +(1-&E o) <&
forall (01, 02),(03,04) € A, € Rand £ € [0,1].

Aslan and Akdemir provided an alternative but equivalent formulation of the definition of exponentially
convex functions on the coordinates on A. Their refined definition is presented as follows.

Definition 1.4. [11] The mapping QO : A — R is exponentially convex on the co-ordinates on A, if the following
inequality holds,

Qo+ -&) o, wos + (1 - w)os)

< Q(01, 03) Q(01, 04) (02, 03)
< &fw

Q(02, 04)
e(01+03) ea(o1+04) (1 -8 e(02+03)

+&(1-w) “ea(ates)

+(1-8)01-w)
forall (o1, 03),(01,04),(02,03), (02, 04) € A,a € Rand &, w € [0,1].

The representation of convex functions on the coordinates naturally led to the question of whether
the Hermite-Hadamard inequality could be extended to the coordinates. This intriguing problem was
addressed in Dragomir’s work [12], where a significant generalization of the Hermite-Hadamard inequality
was established. As aresult, this extension, which broadens the inequality from the plane IR? to a rectangular
domain, has become a well-recognized result in the literature. The formal statement of this extension is
given below.

Theorem 1.5. [12] Suppose that Q) : A = [g1, 02] X [03, 04] = R is convex on the co-ordinates on A. Then, one has
the inequalities:

01t Qs+@4)
(o) By CRN )
(#5255

1 02 f@l
S — Q(x, y)dxd
(02— 01)(0s — 03) fgl o G iy

- Q(01, 03) + €01, 04) + €202, 03) + (02, 04)
< 1 )

The above inequalities are sharp.

Theorem 1.6. [11] Let Q) : A = [01, 02] X [03, 04] = R be partially differentiable mapping on A = [01, 02] X [03, 04]
and Q € L(A), a € R. If Q is exponentially convex function on the co-ordinates on A, then the following inequality
holds:

1 02 f@4
Q(x, y)dxd
(2-0)(os—03) Jo Joy (v Phdxdy

Q01,03) | Aovos) | ANoo03) | 02,04)
e(01+03) e(01+04) e(02+03) e(otey)

- 4
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Numerous recent studies have investigated the properties and applications of exponentially convex
functions, along with their extensions on the coordinates. These works have contributed significantly to
the understanding and further development of this area. For a thorough exploration and additional results,
refer to [13],[14],[15],[16],[17],[18],[19], [32]-[39].

In their paper [20], Anderson et al. introduced the following definition, which significantly advanced
the theoretical framework in this field and contributed to the ongoing development of the topic.

Definition 1.7. A function M : (0, c0) X (0, 00) — (0, o0) is called a Mean function if

(1) M(01,02) = M (02, 01),

) M (o1, 01) = o1,

(3) ;1 < M (01, 02) < 02, whenever g1 < g,

(4) M (ap,a0;) = aM (01, 02) foralla > 0.

Let us recall special means as in [20],[21],[22] as followings.

1. Arithmetic Mean: M (01, 02) = A (01, 02) = Ql;—oz

2. Geometric Mean: M (g1, 02) = G (01, 02) = /0102

3. Harmonic Mean: M (g1, 22) = H (o1, 22) = 1/A (01—1, olz)

4. Logarithmic Mean: M (01, 02) = L (01, 02) = (01 — 02) / (log o1 — log 02) for o1 # g2 and L(¢1, 01) = 1.
5. Identric Mean: M (g1, 02) = I (01, 02) = (1/e) (@f1 /@é’z)l/(@1 ») for g1 # 02 and I(01, 1) = &1
Now, we are in a position to put in order as:

H(o1,02) < G(01,02) < L(01,02) <1(01,02) < A(01,02) < K(01,02)-

In [20], the authors also introduced a concept known as MN—convexity, providing the following defini-
tion to characterize this class of functions.

Definition 1.8. Let Q : I — (0, 00) be continuous, where I is subinterval of (0, c0). Let M and N be any two Mean
functions. We say ) is MN-convex (concave) if

QM (o1, 2)) < ()N (Q(01),Q(22))
forall g1, 00 € L.

Aslan provided the following definition for geometrically exponentially convex functions on the coor-
dinates:

Definition 1.9. [1] Let us consider the bidimensional interval A = [p1, 02] X [03, 04] in R*> with g1 < 0y and 03 < .
The mapping QO : A — R* is geometrically-exponentially convex on the co-ordinates on A, if the following inequality
holds,

- oy _ Q% (01,02) Q") (03, 04)
Q (ot (1 é), & (1-€) <
(Ql 03 QZ 04 ) ea(gl +£)2) ea(£)3+()4)

forall (01,02),(03,04) € A,a € Rand & € [0,1].

Aslan presented an alternative but equivalent formulation of the definition of geometrically-exponentially
convex functions on the coordinates, as detailed below:

Definition 1.10. [1] The mapping QQ : A — R, is geometrically exponentially convex on the co-ordinates on A, if
the following inequality holds,

& (1-8) w (1-w)
9(0102 10304 )
< Q% (o1, 03) QX9 (g1, 04) Q199 (3, 03) QU=E1=9) (g, 9y)
- ea(01+£)3) ea(91+04) ea(02+03) ea(()2+@4)

forall (01,03),(01,04),(02,03),(02,04) € A,a € Rand &, w € [0,1].
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In this work, we introduce the concept of geometrically-exponentially s—convex functions in the second
sense on the coordinates and establish a fundamental Hadamard-type integral inequality specifically for
these functions. This result expands the theoretical framework for geometrically exponentially s—convex
functions in the second sense and provides new insights into their integral properties.

2. Main Results

Definition 2.1. Let us consider the bidimensional interval A = [01, 02] X [03, 04] in R* with g < gy and 03 < 04
The mapping Q : A — R™ is geometrically-exponentially s—convex function in the second sense on the co-ordinates
on A, if the following inequality holds,

Q(Qép(lfg) 95@(175)> < Q% (01, 02) Q" (05, 04)
153 7284 - ea(mﬂ)z) ea(@ﬂq)

forall (01,02),(03,04) € A,a €R,s€(0,1]and & € [0,1].

An alternative but equivalent formulation of the definition of geometrically exponentially s— convex
function in the second sense on the coordinates can be expressed as follows:

Definition 2.2. Let us consider the bidimensional interval A = [01, 0] X [03, 04] in R*> with gy < g and g3 < pq.
The mapping QO : A — R™ is geometrically exponentially s—convex function in the second sense on the co-ordinates
on A, if the following inequality holds,

Q(gfe} ™, g6} ™)

- QEXW) (g1, 03) QENA=0) (g1, 04) QU= @) (g, 03) QU=E A=) (5, 0,)

e(e+es) er+s) e(2+03) e(2+s)

forall (01,03),(01,04),(02,03),(02,01) € A,a€R,s€(0,1] and &, w € [0,1] .

Lemma 2.3. A function Q : A — R* will be called geometrically exponentially s—convex function in the second
sense on the co-ordinates on A, if the partial mappings Q,, : [01,02] — R, Q,,(u) = e**f(u, p2) and Q,, :
[03, 04] — R, Q,, (v) = e*" f(p1, v) are geometrically exponentially s—convex function in the second sense on the
co-ordinates on A, where defined for all p; € 03, 04] and p1 € [01, 02].

Proof. From the definition of partial mapping (2, we can write
Q,, (0587) = enQ(py, 0t )
= e (phpl ), ool )
1 Q&) (pl, 1) Q0= (pl,vz)
e(prtor) e(p1+02)
Q&) (p1, 1) Qa-¢r (p1,v2)

eav1 eav2
S 1_5 S
Q5 (0) QY (2)

eam eavz

< e*

Similarly, one can easily see that

3 Q8 (u1) Q7 (u2)

2

sz (ufu(zl_é))

eaul eauz

The proof is completed. [
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Theorem 2.4. Let QO : A = [p1, 02] X [03, 04] = R* be partially differentiable mapping on A = [01, 02] X [03, 04] and
QeLl(A),aeR,se(0,1]and 0 < Q < 1. If Q is geometrically exponentially s—convex function in the second sense
on the co-ordinates on A, then the following inequality holds:

1 02 ]‘04 Q(Plx PZ)
——dpid
(Ing, —Ing) (In gy — Ing3) n  P1p2 pip

(Q(sz) (01, 03), Q%) (o1, 04)) +L(Q(SZ) (22,03) Q%) (02, @4))
262(1(@]+£)3+01+04)

where p1 € [01, 02] and pa € [03, 4].

Proof. By the definition of the geometrically exponentially s—convex function in the second sense on the
co-ordinates on A, we can write

o (1-w)

Q (g6l ™, g50 ™)

3 Q(és)(a’ﬁ) (01/ 03) Q(és)(l—a))s (Qll 04) Q(l_g)sms (02/ 03) Q(l—é)S(l—w)s (LOZ, 04)
< ea(91+93) ea(@1+(}4) ea(gz+m) ea(92+(14)

By integrating both sides of the above inequality with respect to &, @ on [0, 1]?, we have

1
f(; f(; 0%9(21 ar@3 041 w)) dédw

fl fl QEN) (0, 03) QEN=D" (g 04) QU= @) (g, 03) QU= A=) (g, 1)
e(o1+e3) et(o1+os) e(o2+03) e(o2+or)

dédw

f0<p<10<a,s<1

[J(oﬁ) < ”as

f f (679, gyl ~) déda

2[{(()1+()3+01 +()4)

1 1
f f Q@) (91, 03) Q1= (g, 04) F1@) (g5, g3) I-8N1—0) (02, 04) dédw
o Jo
I S
52“(01+@3+91+@4)
x f PO (01, 03) Y (g1, 01) = Q) (02, 03) X (03, 04)
o InQ (o1, 03) Q1) (01, 04) = InQ (02, 03) Q"1=2) (02, 04)
1
eZa(gl+g3+Ql +g4)

1
8 f L(Q“) (g1, 03) ™ (01, 04), Q) (2, 03) O (02, 04)) dew
0

dw

If we perform a change of variables as p; = Qfgz P2 = nggfll “) and the L (a,b) < A(a,b) feature is taken
into account, the following result is obtained.

1 * f‘MQ(m,pz)
2R0p2)
(ln@z—lrwl)(ln@rln@a)fm . pipa PMP2
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1 1 o° —w)’ W® —-w)’
2a(01+03+01+01) ,fo A (QS( ! (1, ¢5) Sh (@1, 01), Q) (02, 05) Q= (@2, 04)) dw
e <

f0<p<10<a,s<1

y(as) < /Jas
1 % Q(p1,
f (p1, p2) , dprdps
(Ing —Ingr) (Ings —Ings) s P1P2
1
D —
2a(o+ototo)
1
8 f A(Q (a1, 03) Q) (g1, 01), Q) (02, 03) Q) (02, 1)) dw
0
_ 1
— Ra(otoroto)
X f L QO (g1, 05) Q) (g1, 9g) + Q9 (g, 05) Q) (g, 04)
0 2
(9 (01,09), Q) (01, 00) + L(Q) (02, 0) Q) (02, 04))
B 2€2a(01+g3+gl+g4)

The proof is completed. [

Remark 2.5. If we choose s = 1 and a = 0 in Theorem 2.4, the result is consistent with geometrically convex
functions on the coordinates.

02 04 Q ,
1 (p1, p2) dprdps

(Ing—Ing)(ngs—Ing) J, J,,  p1p2

< L(Q(01,03),Q(01,04)) + L(Q(02,03) Q2 (02, 04))
< 5 .

where p1 € [p1, 02] and p2 € [3, 04].

Remark 2.6. If we choose s = 1 in Theorem 2.4, the result is consistent with geometrically convex functions

f f04 Q (Pl’ pZ) dp2
(Ing, —In 01) (Ings —Ings) J,,

< LQ(01,03),Q(01,00) + L (Q(22,03) Q (sz @4))
- 262a(ol+g3+gl+g4)

where p1 € [p1, 02] and p2 € [3, 04].

Theorem 2.7. Let Q: A = [0, 02] X [03, 04] = R* be partially differentiable mapping on A = [01, 02] X [03, 04] and
Qe L(A),a € Rand 0 < Q < 1. If|Q] is geometrically exponentially s—convex function in the second sense on the
co-ordinates on A, p > 1 and s € (0, 1], then the following inequality holds:

1 f@z f@4 Q(Plz pz)d d
(Ingz —Ing) (ln 04 —Ing3) p1p2 1P

vl e o o)+ 1 (0@ e,

2p2a(01+o3+01+0s)

Q4)|q(52))

where p1 € [01,02), p2 € [03, 0] and p™ + g7 =
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Proof. By the definition of the geometrically exponentially s—convex function in the second sense on the
co-ordinates on A, we can write

0 (Qf@él_g)/ Q;)Qil_w))

- QEN) (g1, 3) QE-wy (01, 04) Q-8 @) (02, 03) Q-8 -wy (02, 04)
- ea(g1+g3) ea(gl+g4) ea(gz+gg) ea(gz+g4)

By integrating both sides of the above inequality with respect to &, @ on [0, 1]?, we have

1 1
fo fo Q (gf@(;*g), Qg’gff’“’)) d&dw

- f‘l fl QEN @) (01, 03) QE1-w) (01, 04) Q1-8’(@”) (02, 3) Q1-&rd-wy (02, 04)
< o Jo ea(g] +03) ea(g1 +04) ea(pz+g3) ea(g2+g4)

dédw

f0<p<1,0<a,s<1

[J(oﬁ) < ‘las

1 1
j; fo Q g0y ™, ool ™) déda
1

320‘(01+03+01+04)

1 1
0 0
v
e2a(y1+03+91 +04)
T O%) (01, 03) X (01, 04) — ) (03, 03) ) (02, 04)

o InQ®(01,03) Q=9 (01, 04) = INQ (0, 03) Q1) (02, 04)
1

62a(01+03+91 +g4)

1
xf L () (01, 03) @ (01, 04), 2 (02, 03) Q™ (02, 04)) dew
0

dw

If we perform a change of variables as p; = ¢5g) %, p2 = Q;’@(l_“))

4
into account, the following result is obtained.

1 f&f@‘Q(Perz)d J
(Ingx—Ing)(Ings—Ings) J, J,,  p1p2 pip

1

eZa(g1+93+Ql +g4)

1
x [ A 010) Q0 (01,00, 0 (02 ) O (g2, 00) o
0

and the L (a,b) < A (a,b) feature is taken

f0<p<10<a,s<1

as

L < g
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1 e f‘“ Q(p1, p2)
——dpyd
(Ingy —Ing1)(In gy —Ing3) «[91 s P1p2 piip

1 ! *)w s)(1-w 52w s2)(1-w
)fo A(Q (01, 03) Q1) (g1, 01), Q) (03, 03) Q) (g, 4)) dew

a(o+oto+a

- f L QI (g1, 05) Q-9 (g1, 04) + QI (3, 03) QI (g, 04)dw
20(01+03+01+01) 2

If we take the absolute value of both sides of the inequality and apply Holder’s inequality to the right-hand
side, we obtain the following expression.

% Q) (py,
f f (p1,p2) Qp1p2) ) 40
(Ing; —In Ql) (In o4 — In g3) p1p2
1 ’7 eon o), \°
(262pa(@1+93+@1+04)) X [(j(; Qe )" |2 (o1, 04)] da))

1 1
+( f (02, 03)|q<s2>w 1 (02, 0) da)|‘1(52)(1—a)) dw)”}
0

1
26211(91+93+g1+g4)

Q4)|q(52))]

04)|q(52)) +Li (|Q (o1, Qs)|q(52) ,

[L% (|Q (o1, Q3))q(52) /
O

Corollary 2.8. If we choose s = 1 and a = 0 in Theorem 2.7, the result is consistent with the geometric convexity on
the co-ordinates

1 e f"“ Q(p1, p2) ‘
———dpd
(Ing, —Ing)(Ings —Ing3) L o P1p2 pLép2

Li (|2 e o) |2 (o1, 0)|") + LT (|2 (02, 03)]" |2 (02, 04)]")
= 2

where p1 € [01, 021, p2 € [o3, 4l and p~™ +q7' =

Corollary 2.9. If we choose s = 1 in Theorem 2.7, the result is consistent with the geometric exponentially convexity
on the co-ordinates

f f@4 Q (p1, ,02) dpz‘
(Ing, —Ingy (ln 04 —1n g3)

Li (|Q(01/ os)[' ) +Li (|Q(01/ Q4)|q)
2€2a(gl+93+g1+@4)

where p1 € [01,02), p2 € [03, 4] and p™ + g7 =
Theorem 2.10. Let Q) : A = [o1,02] X [03, 04] — R* be partially differentiable mapping on A = [o1, 021 X [03, 04]

and Q€ L(A), a € Rand 0 < Q < 1. If|Q) is geometrically exponentially s—convex function in the second sense on
the co-ordinates on A, p > 1 and s € (0, 1], then the following inequality holds:

f f‘“ Q(p1, p2) LGN
(Ing, —Ingy (ln 01 —In g3) p1pP2
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04)|q(52))

1 L(|Q(£’1f03) 7, 04)|Q(52))+L(|Q(01/Q3) “
+

Zpezpa(01+03+91+04) q

where p1 € [01, 2], p2 € [03, 04), and p™' + g7 =
Proof. By the definition of the geometrically exponentially s—convex function in the second sense on the

co-ordinates on A we can write

Q (o™, ey ™)

QEY) (01, 03) QEA-w) (01, 04) Q1= (@) (02, 03) Q1-&rd-wy (02, 04)
ea(91+£)3) ea(01+04) ea(@2+03) ea(02+04)

By integrating both sides of the above inequality with respect to &,  on [0, 1]?, we have

1 1
fo fo (i ™, o5 ™) dedeo

fl fl QEN@) (7, 03) QENA=D" (o), 04) QU= @) (g, 03) Q- A=) (g, 1)
ea(01+03) ea(01+94) ea(02+03) ea(02+04)

dédw

f0<pu<10<a,s<1

[J(as) < ‘las

f f (6r0y ™, 05l ™) dédew

2“(01+03+01+04)
1 _
0 0
1 L Q%) (01, 03) QY (01, 04) — ) (02, 03) X (02, 04)

a(ararata) Jo  InQ (01,03) Q1) (01, 04) = In Q© (02, 03) Q1) (02, 04)

1 ! S —-w)’ o8 —w)’
= WL L(Qs(“ (01, 03) X (01, 04), 2“7 (02, 03) Q1 )(02/94))d0)

If we perform a change of variables as p; = Qfgz P2 = Qg’@il “) and the L (a,b) < A (a,b) feature is taken
into account, the following result is obtained.

1 f f“ Q(m,pz)
(Ing —Ing)(Ings —Ings) J,,

1 1 o° —w)’ @® —-w)’
mfo A (01, 03) X (01, 01), 2 (02, 03) X (02, 04)) dev
e ¢

f0<pu<10<a,s<1

”(as) < Has

1 * f‘MQ(m,pz)
2R0p2)
(ln@z—lrwl)(ln@rln@a)fm . pipa PMP2
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1 ! 2w 2)(1-w 2w 2)(1-w
20(o1+03+01+01) ,fo A (Q(s " (01,03) A (o1, 04), QN (02,03 AV (2, 94)) dow
e <

1 f L QY (g1, 03) QI (g1, 0g) + QI (g3, 03) QA=) (g5, ) J
62a(01+03+01+04) 0 2 @

If we take the absolute value of both sides of the inequality and apply Young's inequality to the right-hand
side, we obtain the following expression.

% Q(p1, p2) ‘
———dpid
(Ing —Ing (11104 —ln@a)f f p1p2 1P

1 9w 1) (1-w)
P(W)+[q(f Qe 03] |01, 00)] da))

1 2w $2)(1-w
+3( j{; 1 (02, 00)|"™ |2 (2, 04) deo|" " )dw)}

1
2PeZpa(m+03+gl +g4)

+$L ()Q (01,03)|q(52) p

IA

Q4))q(sz)) + éL (}Q (o1, Q3)|q(52) ,

qu(sz)) .

The proof is completed. O

Corollary 2.11. If we choose s = 1 and o = 0 in Theorem 2.10, the result is consistent with geometrically convex
functions on the co-ordinates.

ff (pupz)d dp‘
(ln@z—lnm)(lnprln&) p1p2

1, L(|a(e, o0)|') + L2 (e,
2 q

where p1 € [01, 2], p2 € [03, 04), and p™ + g7 =

04)|q)

Corollary 2.12. If we choose s = 1 in Theorem 2.10, the result is consistent with geometrically convex functions on
the co-ordinates.

% Q(p1,p2) ‘
= dpd
(ln@z—lnm)(lnerln@a)f f p1p2 14p2

zpezpa(01+03+@1+04)

L(|Q (o1,

o))+ L(|Q (o,
q

where p1 € [01,02), p2 € [03, 0] and p™ + g7 =

a)[')

Proposition 2.13. If Q, W : A — R are two geometrically exponentially s—convex functions in the second sense on
the co-ordinates on A, then QW is geometrically exponential s—convex in the second sense on the co-ordinates on A.
Proof. From the definition of geometrically exponentially s—convex function, we can write

(Ql 0(21 9), ot Qfll m)) (Ql Q;l 5), o @4(11 m))
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QEN@) (01,03) QE1-w) (01, 04) Q1-8’ (@) (02, 03) Qa-&rad-wy (02, 04)

- c(ates) e(otor) et(e2+03) et(2+es)
X\p(és)(af) (Ql: 03) p(E)A-w) (01’ 04) p(1-& (@) (QZ, 03) p(1-&°(1-w) (QZr 04)
ea(é71+@3) ea(01+04) ea(@+@3) ea(@Z+@4)
_ (Q\Ij)(‘gs)(“ﬁ) (01, 0) (Q\Ij)(és)(l—w)s (01, 04)
et(aves) et(o+es)
QW) (g3, 03) QW) (g, 04)
e£¥(02+@3) etk(gz+()4)

Therefore QW is geometrically exponentially s—convex function in the second sense on the co-ordinates on
A O

3. Conclusion

In this study, we propose and formalize the notion of geometrically-exponentially s-convex functions
in the second sense defined on the coordinates of a domain. We then proceed to derive a Hadamard-type
integral inequality that is particularly suited for this new class of functions. The inequality we establish not
only generalizes existing results in the literature concerning convex and s-convex functions, but also enriches
the theoretical structure surrounding geometrically-exponentially s-convexity in the second sense on the
co-ordinates. Furthermore, our findings contribute to a deeper understanding of the integral behaviors and
properties of such functions, potentially opening new avenues for applications in mathematical analysis
and related fields.
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