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Abstract. This article presents the Kantorovich formulation of (A, 7)-Bernstein operators related by Bézier
basis functions using the features of shifted knots. We derive these operators’ convergence and other
associated approximation features. We use the modulus of continuity to discuss the degree of convergence
of our operators. Furthermore, we derive the approximation in Lipschitz spaces and provide several
fundamental direct theorems. The Voronovskaja type asymptotic formulas and some graphical examples
are also presented.

1. Introduction and preliminaries

The series of positive linear operators implied by {B}.>1 was initially created by one of the world’s
most renowned mathematicians, S. N. Bernstein, who also provided the simplest and most elegant proof
of one of the most well-known Weierstrass approximation theorems. The class of all continuous functions
on [0, 1] can be uniformly approximated by a function known as the famous Bernstein polynomial, which

is defined in [5]. This was demonstrated in Bernstein’s work for every g € C[0, 1]. Thus, for any 0 € [0, 1],
the well-known Bernstein polynomial can be defined as follows:

Butgd) =Y 9( L)),

i=0
where the Bernstein polynomials of degree at most m are defined as by, ;(0) and m € IN (positive integers),

by,i(®) = (”;)61'(1 -y (i=0,1,---,m;6 €[0,1])
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and
by,i(0) =0 (<0 or i>m).

Cai and colleagues (2010) introduced new Bézier bases with shape parameter A € [-1,1], which they
called the A-Bernstein operators.

Bua(9;0) = Z ( )m]m, (1)

j=0

where Ye et al. [38] defined the Bernstein polynomial b, j(0) in terms of the new Bernstein basis function
Em,j(/\,‘ y) as follows:

Em,O(A; 6) m 0(6) m+ 1 m+1 1(6)

] “2j+1 m—2j-1 ,

B j(153) = by () + /\( b ) - bm+1,]-+1(6)), forl<j<m-1
] A

bm,m()\; 6) m 111(6) P 1 b+ m(é)

Because of the approximation process, researchers have obtained the Bernstein-type Stancu polynomials
using shifted knots [12], g-Phillips operators [1], Bernstein-Kantorovich-Stancu shifted knots operators [2],
Stancu variant of Bernstein-Kantorovich operators [21], a new family of Bernstein-Kantorovich operators
[22], Bézier bases’ g-Bernstein shifted operators [24], Bernstein operators based on Bézier bases [35], Bézier
bases with Schurer polynomials [26], etc. M. Ayman-Mursaleen et al. employ Bézier bases to create the
shifted knots type Bernstein operators in terms of the Bézier bases function (see [3]):

O m+ 2 01,9 i
B“m ( ) b“’.“ ; (_)/ 2
7:0) =~ Zo’" (1;0)9(~ @
where Bézier bases b”1 #2 and Bernstein basis function b‘o1 %2 are defined as:
EWW’Z A:8) = b@l/sﬂz 5 /\ 91,92
m,O(’)_ m,O()_ m+1,1 0),

- 2j+1 2'
B (1;0) = () + (—mm2 o) - T bf;i"fiﬂ(é)) forl<j<m-1
B (4:0) = b @) - b7 ),
j m-j
b2 (5) = (",Z)(é— o1 ) (’””"1 —6) . 3)
mJ j m+gy) \m+ g
Several fundamental features of g-integers and their properties are readily obtained (see to [15, 16]). For

instance, for every g € (0,1), and 0 < p < v, the binomial coefficient for g-integers is provided by f/l =

q

[#] For any p, v € IN, the g-binomial polynomial is given by (1 + 6)“ Y= (1+0)(1+ g0d) - - (1+g+7v710),

v L
and if p = v = 0, then (1 + 6)‘,; =1, Using the g-analogue, Lupas [20] introduced the first Bernstein
polynomials, calculating various approximation properties and shape-preserving properties. According to
Phillips [32] in 1997, the classical-Bernstein polynomials in another g-analogue are defined as follows:

m—j-1
Bg(g;0) = Z[ ]6’1_[(1 7'0) ([[]]]q) 0 €0,1].

j=0
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M. Mursaleen et al. revealed the g-analogue of Lupas Bernstein operators with shifted knots (see [24])

by:

m

(),1]O

B (f0,0) = | oo (), @
q

where, X = _ y — [m];+91 and Z [ml,

[m]g+¢p2” [m]q+X72 [m]g+¢2*
Using shifted knots defined as follows, the Bernstein basis function bfll;.m is obtained (see [12, 24]):

e =| " | 6" - 0jw-or, ®
q
The equality (5) can be also written as:
m—j-1
%f@m=['héx>[1w 70 (6)

The Bézier bases function 5217’2 (3;4,A) by utilizing the Bernstein basis function b)""**(5; q) is defined as (see
[6, 38]):

bR (0, ) = B (@) -

by (339),

[ ] + 1 m+
- , [m]; = 2[]]
91,9 . —_ P8 . q q p L9
bﬁj%64LA)—b¢j%aq)+A(——T;E;:T—— b (84)

—2g[i
_%bgfl’zﬁl(é; q)), forl<j<m-1
q

b?’l /2 (6 q, /\) b%’l /92 (6 q) b!ﬂl 2 (6, q)

[ ]q+1 m+1,m

Most recently, by using Bézier base functions, the g-analogue of the shifted knots type of Bernstein operators
is defined as follows (see [25]):

1 m
u@l (’2 6 b(ﬂl /2 6, ,A ( ) 7
(f;3,9) = @%;m,< o, 7)
From [25], we can see that the lemma is:
Lemma 1.1.
HZT;\()Z (11 0, Q) = 1
o 1 1 AQ@-X)[m+1]
U9, 9, = —=0-X o n—-X)"
I R R o N e {@y-e-x"}

L1 2AE-X) 1,
@y [m]; -

N 1 A
(2)7 qlmlg(lm]; + 1)

~ G- )()3”1 —[m+1],(6-X) { Dy —0@-X)" }]

L@ -e-x -0 {@) - e- X
[[m]q

Uzg”“—ficv—¢%)
w=0
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N 1 A
(2D)g [mly([m]; - 1)

—%[m +1,0-0{ @) -0-X"

|20l + 11,0 - X2 { (@ - 0 - 2|

m

{ @yt - [[@ -0 -@-0;" )|

w=0

1 AO-X)[m+1]
Q) [mly(lmly - 1)
1 —2A(00-X)[m+1],

N o [[ni]q {@y-0-x7)

q
g+ ©@-0{ (@) - ©-X""|

U‘{)l Wz(tz 6 q)

m,A

zy @i+ oe-x0{ @ -0-x )]

(Z)

+m = 11,0 - 02{ @5 - 0 - X2 ]
N 1 A
)7 qbmly(ml, + 1)

[m+1], " m
- [m]q ©-0{@y-6-0"]

|1+ 11, 0 - X2 { @ - -2}

@ - [ - - - xp |

w=0

1)[q[m 1glm + 11, (0 - /\’){(Z)m2 ©- /\’)mz}

" qtm], {
1
(Z)'" [m]q([m
A =q)lm+1],

©- 2@y - -}

[m+1] . )
+ zﬂm]qq ©-20{@y-6-v;|
qz%m]q{ @5 - H) (Y - 4°8) - (0 - X);" }]

F. Ozger et al. constructed the various approximating operators and obtained the convergence proper-
ties. For instance, we see the Combining the Volterra integral equations [28], Class of Szdsz-Mirakjan-
Kantorovich operators [29], and Generalized Weighted Statistical Convergence [30]. Additionally, we used
shape-preserving qualities and other relevant convergence results: Bézier-Baskakov-Beta [17], Volterra inte-
gral equations [8], modified Bernstein-Schurer operators [23], (a, A, s)-Bernstein Basis [18], Szdsz—Kantorovich
Operators [33], A- Szdsz— Operators [34], shape properties of Kantorovich [36], and Bézier-Baskakov-Jain
type operators [37].

2. Operators and basic formula

The purpose of this section is to use the Bézier bases function to give an extension of the operators (7)
for integrable functions on R = [0, 1]. We utilize the shifted knots and Bézier bases function to generalize
the operators (7) in the Kantorovich sense. The Lebesgue integrable functions can be approximated using
the Kantorovich modifications of sequences of linear positive operators. The fundamental idea behind
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Kantorovich modifications is to replace the sample values f (#) with the mean values of f in the intervals
[mL-;—l’ 7%11] To learn more about Kantorovich operators, readers can consult additional publications [21, 22].
We take X <8 < Y for all 0 < g1 < ¢,. Moreover, for all 1 < p < oo, we suppose T 9192 = [X, Y]. Thus, in
terms of Bézier bases function E@”m (0;4,A). We define the Kantorovich variant of g- Bernstein shifted knots
operators. Suppose 8K} Therefore, we take 8K 1 L,R — L,(J5”) and for all f € L, R, we define

operators as follows:

[]*Uq

BK(f0,9) = ]q Zb“ 7209, 107 f fbdt, ®)

[m+1]q

where m € IN (the set of positive integers) and CR (the set of all continuous functions defined on R) are
represented.

This paper is generally structured as follows: We study the moments and central moments of our new
operators, (8). We give a convergence theorem for Lipschitz continuous functions, evaluate the Korovkin’s
approximation theorem, prove the local approximation theorem, and study an asymptotic formula for
Voronovskaja.

Lemma 2.1. For f(t) = 1,t,12, we can see

L BKIP(8,q) = U016, = 1;
[m]q [1]q
1/ eﬂz 91/ !02 -
2 BP0 = U G0+
[mI2 2q+1 [mly, . [1]
3. BK(E0,0) = —— U9 (1250, a0 (16,q) 4 ———
ma (£50,0) [+ 1 " (#:0.9)+ Bl, fms 1R (:3.9)+ (31,0 + 12

where operators U are defined by Lemma 1.1.

Proof. To prove our equality, we take into account the Lemma (1.1) and use the equality [j + 1], = 4/ + [jl;
and [j + 1]; = 1 +g[jl;- Thus, by applying the famous g-Jackson integral, we conclude that

[j+1lq [j+11q [jlq

[m+1]q [m+1]q , [m+1]q
Pt = Pdgt — tdt
Il 0 0 q

[m+1],7
[] + 1]q - [] + 1]{1 m U []]q - []]q v m
(1_q)[m+1]ﬂmz'=o([m+1] ) "= _q)[m+l]qm2=0([m+1]q)q

(1-9)
1+ m]q))“rl

(07 17 = 1) Y g0

m=0
Therefore easy to conclude that
g N
Lty ["’”]q for y =0;
[m+1]g L
Uil tydqt - (m+1] ) ([]]q [2]'1) for y=1; )

[m+1]q

Gl (B B ) e y=2

From the Lemma (1.1) and equality (9), it is easy to get

BK?(1;0,q) = by (8:9, g7

q]
[m + 1],

=0
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- e
= 1
[m+1] j 1
7(991 2 t:9, — ‘7 bm 2 d;a,A 7 9 ( )
(t5,4) @r Z CT ) s+

Dy o (L i, ..

= i ]Uflf([ml & ) i+ 1, i (90

B [m ]q o 1,

= [m+1] «w’(té )+—][m+1]q'

Bq(‘&’l WZ(tZ 6 q)

[m+ ]q 91,92 qj 12 q+1 1
Zb (s qlA)qJ([erl]q)S([]]q B U+ []q)

_ [m]é le,m[[]] -5, ] 2g+1 [m], Um,m([]] -5, )

[m+112 "4 {[m]2’ (Bl [m+112 "4 \[mly’

[l]q 71 0o
31,0 + 12 Wi L:o.0)

_ [Wl]g FT01,92 (42 2‘7""1 [m]q (19192 [1]
- [m+1]§,umﬂ (Fi0.0)+ [31; [m+1]2 U™ (50,0) + [3],[m + 112

O

Lemma 2.2. Take t — 0 = t5. Operators (8) have the following equalities:
[m] [1]q
= U2 (£6,q) + ———— —
RS R TES R
= WhI2(A; g, 8) (suppose).
[mly 11
— u@w?z tZ,. 6, I 2
[m+1], ™ ( q) i [31g [m + 117 "
2+1 [mly _ [ml
Bly [m+11 [m +1],

= ™ ();4,8) (suppose).

1. 8K (t5;0,)

2. BK ()% 8,9)

501 @2 (i’ 6 q)

3. Some approximation results for operators B?(f::;‘m(t; 0,q)

For the operators B?(f:,fz (t;0,9), we get numerous global and local approximation theorems by (8). First,
we use the Ditzian-Totik uniform modulus of smoothness to define the uniform convergence property for
our operators, which allows us to obtain the local and global approximations. Next, we build a number
of elementary theorems based on the maximal approximation property of Lipschitz type and Peetre’s K-
functional property. For a continuous function g in CR on R, we can replace it with a real-valued function

with the norm || g [lcx = supys.x |g(6)'.

Theorem 3.1. ([11,19]) The formula lim K, (t°;y) = 0°, will be satisfied for any C[u, v] by any sequence of positive
m—oo
linear operators K,, acting uniformly on [u,v] for all p = 0,1,2. The operators lim K,,(g) = g are then uniformly

convergent for any g € Clu, v] for every compact subset of [u, v].
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Theorem 3.2. Assumingq = q,, to beany real number that satisfies 0 < q,, < 1, we obtain lim,,—,c B‘K@1 2(g;0,q) =

g(0) for all g € CR, converges uniformly on R; in particular, the set of all continuous functions on R i is represented
by CR.

Proof. Lemma 2.1 makes it clear that lim,;—« B?(f: A"’Z(tP ;0,) =07 (p =0,1,2) will be obtained. According

to the Bohman-Korovkin-Popoviciu theorem, the operators BK"*(g; 8, q) are uniformly convergent to set
g € CR. We complete the necessary proof of the theorem. [

Theorem 3.3. [13, 14] For each operator acting from CR to CR, {Py,} 1. For every g € CR, let limyy,—,o0 [|Py(£°) —
Ofller =0, p=0,1,2. This will yield

Lim IPy(g) = gllew =0
Theorem 3.4. Take operators BK f:f;’z which acts CR to CR and satisfy the property limy, e |BK f:ll/fz(tp ;0,9) —

0°llcw = 0. Additionally, consider the sequences of positive numbers q = gy, such that q,, € (0,1). For any g € CR,
we then obtain

lim || 8K (9:0,4) = 7 llex=0.
Proof. Considering Theorem 3.3 and Korovkin’s theorem, we can readily demonstrate that

Lim [BK(t;6,4) = 8llcx =0, p=0,1,2.

According to Lemma 2.1, easily obtained |BK?'\*(1;6,9) - lllex = sup |BK}'*(1;0,4) = 1| = 0. Forp = 1,
3R ’

it is evident

IBKT(56,q) — Sllew = sup|BKT(:0,q) -

0eR
= sup W5 (A;4,0).
deR
We obtain IIB‘KE’;XOZ(E 8,9) - Ollcx — 0 since m — oo implies that [mL]] -0, [?,;]LT:‘;Z 1. Likewise, for p = 2,

we observe

“87(@31 592(t2 3, q) 62”(:% sup 87(211’;‘502([,2; 0, ’1) - 62

0eR
= sup @} (A;q,0).
oeR

Accordingly, IBK)*(t;0,9) — 8*llcx — 0 as m — oo is obtained. We obtained our proof from these
findings. O

We show some results on global approximations using the Ditzian-Totik uniform modulus of smoothness.
We discuss the basic property of the uniform modulus of smoothness for first and second orders, which is

@) (9,6):= sup  sup {lg(d+Py(d) — g@O)};
0<|BI<o 8,0+By(0)eR

@)(g,0):= sup  sup {lg(d+ By(d)) —29(3) + g(d — By B))I}.
0<|BI<6 8,0+By(d)eR
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Assume ¥(0) = [(0 — u)(v — 0)]'/? and the step-weight function y on [u,v]. If 8 € [u,v], then (see [10]).
Assuming that AC” is the set of all absolutely continuous functions, Peetre’s K-functional property can be
expressed as follows:

Ky(9,0) = inf {llg = llew +0lp"Cllew s C € 10,11}

For every 6 > 0, Z%(y) ={Ce CR: (' e CR, y?C” e CR}and C>R = {C e CR : U, " € CR}.
Remark 3.5. ([9]) One has for every absolute positive constant M
Mw)(g, Vo) < K}(g,6) < M~'@}(g, V). (10)

Theorem 3.6. For any g € CR and m € R, let y(3) (y # 0) be any step-weight function such that y* is concave.
Then, operators BKY""* fulfill that

[q)wml’*’z(i\;q,é)+‘I’?3£”"2(/\;q,6)]”2) ( \I’,@f‘”(i\;q,é))
2/©) Ve )

where 0 < g < 1 is the number and W5'"*(A;q,8) = B‘K::fz (ts;0,9), and D% (A;q,0) = B?(f;fz ((t())z; 3, q).

BEE (3;8,9) - 9O < M w (g,

Proof. Taking into account an auxiliary operator
Q= (9;8,q) = BK (9:8,9) + 900) — 9(Wi™(A;9,8) +9), (11)
Lemma 2.1 makes it easy to obtain the following relations given g € CR and m € R.
Qy7(1;0,9) =1 and er’f/'fz (£0,9) =9,

Q‘J/’l 2 (t 6 q)
For B € R, let & = o + (1 — P)t. Given that y? is concave on R and that 2(8) > py?(0) + (1 — )y*(t)

|t Blo — ] I£s|
< < . 12
7©) = 0@+ A= ppA0 = 0 (12
The following identities are obtained:
QP (9:0,9) = g©) < Q)7 (g = 56, 9)| + 1€2)7(C; 6,9) = LO)I + 19(3) — LO)|
< 4llg — Cllcron + 1€25,4*(C; 8, 9) = CO)!. (13)

Utilizing Taylor’s series, we can determine that

4

GO -cO) < B

&}
I 001000
o]

g ;6,11)

4

+ QP2 (t:0,q)

m,A

t
01,9 |t6| 2
< | ZC”II\BW“’“(I 50,0)+ 2T
y CR m,A 5 )/2(6) q q y CR
QL 650,) d,0
x QP (£;9, ‘ ’
I 0009 325
< YOI e BKE ()% 0, 9)
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+y 2 (@)W (A;4,0)ly°C licx - (14)

Using the relations (10), (13), and (14) with Peetre’s K-functional properties, it is simple to obtain

Q%2(g;8,9) — g(d)

m,A

< 4llg = Uleoy + 7 2@ llex (@5 (4;4,8) + W3 (4;.9,9))

1 [DP2(A;q,0) + W2 (A; g, 6))
2 7(0) '

Therefore, it is clear from the order one uniform smoothness characteristic that

<M (ug(g,

W) g, 6)
7(0)

Consequently, we ultimately obtain the inequality

¥ 0ia )

- 9(6)’ < a)’{(gf 0

(w2 30,0)+8) - 9) = s

IBK (9;0,9) — 90| < 1Q8"7(9; 0,9) = 9(O)] + ‘9 W14, 0) +0) 9(6>’

D (A;q,0) + W (A; 9,0 W2 (A;q,0
SM%@]Jm (1:4,9) Ba9) oy, T 0.0

2 ® - u)(v-93) ! 7(0)
It completes Theorem 3.6’s desired proof. [J

Theorem 3.7. Assuming the real number 0 < q < 1, then for any f € CR and & € ‘R, we obtain the inequality:

IBICY (£58,9) = FO < DR (4;:9,0) IF (O] + 2@ "2 (A; 9, )] (£, PR (4;9,0) )
Proof. We are aware of the relationship.
t
£0 = F©)+ 1Ot + [ (7= F Oz (15)

aslong as t,0 € R. Applying 8K to equality (15) yields

¢
B‘Kf:fz(f(t) - f(0);0,9) = f’(6)B’Kfl‘f2(t5,6 q)+ B’K@‘ ’”92 L(f’(z) - f/(0))d,z; 6,q).

One has for each f € CR and 8 € R

F() - FO)l (1+@) W(f,6), 6>0.

Given the inequality above, we have

< (i + “E)arr ).

fuwfme

Thus, simple to get
71,2 1,62 /(£ 1 71,92 01,2
BKV(f:8,9) = FO) < If @) IBK, 2 (ts; 0, )l +wi(f,6){ B ((ts)50,9) + BK W (Itsl; 0, q)}

The result of the Cauchy-Schwarz inequality is
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B ts];8,9) < B (1;8,) 2 BK (10)58,9)F = BKG (60)58,9)7
Thus, we have

|B7((')1 22(£,8,9) - fF@) < f' (6)87(01 m((té)z 0,9)

{5 BIIT@R:0,0) + BI (050,010, 0),

The desired results are obtained by using j = \/B(Kf]l/’fz((ta)z; 4,q9). O

We then utilize the Lipschitz-type maximum function to estimate the local direct approximation, which
we remember from [31].

I ex)
(B10% + P20 + 1)2

This is where M > 0 and 51 > 0, B2 > 0, k € (0, 1] be any constants (see [31]).

Lipu(x) = {g € CR : |g(t) - 9(3)| < M

Theorem 3.8. Forall x € (0,1] and 0 < g < 1, if g € Lipm(x), we get

[P} (A g, 8)I

91,92
|B(]( (9/6 ‘7) 9(6)| = (ﬁ 52 +ﬁ26)“ :

Proof. Take any «x € (0, 1] and take g € Lipp(x). Initially, we wish to demonstrate that our result holds true
for x = 1. For each g € Lipp(1), we therefore have

IBK,3* (9:6,9) — 9@)] < IBK 7 (lg(t) — 9(3)]; 8, 9)| + 9(8) IBK (1,6, 9) —

1 1,92
(Z)q ;bfﬁz 09, A)‘g(t) - g(é)'

1 i bm'-m(é'q/ Mlts|
(Z) ﬁ162 + ‘326 + i’)Z '

j=0

By using
(B10” + 20 + )71 < (8107 + p20) 2 (B1 20,2 > 0)

and we observe through the Cauchy-Schwarz inequality

m

91,92 (X,
2 L ol

= M(B18” + B20) 1 2IBKY", " (t; 0, 9)|
< M(15° + 20)” 1/237(*”1 *”2(|t6| 3,9)

IBK2 (9;8,9) — g(x)| < M(B10* + Bo0) V> —

m,A

< M(BKD2((t)%0,9)" (B10 + $20) 12,

Therefore, for ¥ = 1, our result is correct. Additionally, the required assertion is also satisfied for x € (0, 1]
by applying the monotonicity property to operators B’Kﬁ‘fz (g;0,9) and introducing the Holder’s property.

Bq(’m 92 ,6, _ 6 < bfm 92 6 ’/\’ £ — 6‘
" (7:0,0) - 90) <z>q L") (39, 1)|g(t) - 9(0)
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2=k

2

QZWEZW”%6%Mpw—g©w (85 (1:0,))

LI B @, M) |2
= M( 2y B10% + B0 +t )
= {(Z Zb:zljm(é 9.4 ( ) }E(ﬁl62 +B20+1)72
< MBS+ B20) 2 [BKE ((t)%3,9)]°
_ [}, 72(A; q,0)]*
B (B10% + B20)<

O

4. Voronovskaja type asymptotic formula

We study the quantitative Voronovskaja-type approximation theorem and derive the Voronovskaja-type
approximation properties for our novel operators B?(f;fz, based on the paper [4, 27]. This is made possible
by using the definition of the modulus of smoothness that was covered in the previous section. This
smoothness modulus can be explained as

o+ 57)-do- 57

pE(0)
o+ 5 € ‘R}

wz(C,6) := sup {

0<|pl<o

C € C[0,1] and E(0) = (8 — 8%)!/? are used here, along with the associated Peetre’s K-functional, which is
provided by:

Ks(C,j)= inf {Ilf = Cll+IZFIl: f' € CR,j >0},
fEa)E‘R
where wgR = {f: f/ € AC'R, ||[Ef’|| < oo} and AC*R denote fully absolutely continuous functions on the
intervals [4,b] € R. There is a positive constant M such that

Theorem 4.1. Forall {, U, " € CR, it verify that

6&91&72 6) +

< MHZ(é) :(C", %)I

where C > 0is a constant, 8 € R and Wy (A;q,08) = BK,'\* (t5;0,9), and 5} (0) = BK, ((té)z; 9, q).

BK, (50,q) — L) — ¢, () (9) - ¢”(0)

2

Proof. Assuming C € CR, we analyze the following outcomes from the Taylor series expansion:

t
0~ 0) - O = [ <O - 00,
]
then it is easy to get

)~ 0) ~ ()T ®) ~ Xt +1) < j\bﬂw%w C/(O)1d,0. (16)
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Consequently, (16) provides us with
C”(é)

‘B{}(‘Kgl 2 (Cl 3, q) C(0) — B pz(té; 0, Q)C’(é)

m,A

f i@l - 6] -c”
o]

Based on the right part of equality (17), we can estimate the following:

(87(591 2 (t6)2 5, q)+87(pl &92(1 5, q))'

<o

;0,4) (17)

<2IC” = fllts)* + 21EFIET @)lo, (18)

t
j; |t —611C"(0) - C"(0)l 40

where C € wgR. Assume there is a positive constant M such that

M
2[m];

BEO P ((65)%0,9) < 5——E20)  and  BKIV(t)*0,9) < =—5EX0). (19)

M
2[m],
By using the Cauchy-Schwarz inequality, we may ascertain that

C”(é)(

‘B(](&Uw’z (€5, q) - {(0) - C'(é)B(](p]'m (t5;0,9) —

m,A m,A

B (050,0) + BKY(10,9)

m,A m,A

< 2IIC" — AIBK ()50, 9) + 21EQ@) fIIET @)BKT > (Its; 0, 9)

= o, LENOIC - fll+ 2SO I OUBKL (100, )1 B (10)50,0))

YA
[m],

By taking the infimum over all f € wzR, we may ascertain that.

<M

(e = £l + tml; PIEQ@)£11.

(B (0,0 - 0) — Wi (134, 91 0) - i O 11 o) < DE (e, ——),
m,A m 2 —[ ]q = M

which brings the proof. [

Theorem 4.2. Considering any C € Cg[0, 1], we get

’01 WZ( )

lim [m]q[ BK* (C6,9) = L) = Wi (A;9,0)C(0) ~ C”(é)}

Proof. The following can be written using Taylor’s series expansion if C € CgR:

C(t) = C(0) + (ts)C'(0) + %(fa)ZC"(é) + (ta)* Qo(t)- (20)

Additionally, t — disequal to Qs(t) — 0, where Qs(t) € CR and defined for the Peano form of remainder.
The equality (20) can be easily seen by using the operators 8K f:ll,fz(.; 9,9).

C//(é)

BE (6:0,9) - () = COBI (10, + =~ BE L (0)%58,9) + BIC T (£)°Qo(8);0,9).

Cauchy-Schwarz inequality gives us

BE* (15 Qo(1;0,0) < \JBICTQ2(0):8,9) [ BELY* (t6)430,). @)
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Here, we can plainly see that ¢ — 1 and lime 8K} *(Q5(1); 8, 9) =
Wlli_f&[m]q{gwpl 2 ((ts)°Qa(1); 0,9)} =

Thus, we have

O grcrrto:0,0

Lim [m]y{ {BK*(G0,9) - LO)) = lim [m]q{i’ﬁ(”’1 P2 (158, 9)C'(3) +
+ BKY((£)°Qa(1); O, q)}.

O

5. Graphical examples
In this section, we will present numerical examples using MATLAB, accompanied by illustrative graphics.

Example 5.1. The formula g(d) = (8 — 3)(0 — %) can be examined for x1 = 3, x» = 4, s € {11,25,91}, and A = 2.5.
The convergence of the operator towards g(0) is shown in Figure 1 (here, we denote s = m, x1 = 91, X2 = 92).

35 ' ' ' | /
—— FOr 5=11 )
For s=25 7
3r For s=91 7 /
........ function /

0.5 ] ] ] ]
0 0.5 1 1.5 2 2.5

y(for A=25x1=3,x2=4)

Figure 1: Convergence of the operator towards g(d) = (0 — %)(6 -£

Example 5.2. Suppose that g(0) = 8% + %, s € {18,34,80}, and x1 = 4, xo = 5.5and A = 0.7. The operator’s
convergence to the function g(0) is shown in Figure 2 (here, we denote s = m, x1 = 91, X2 = 92).
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30 T T T T
s 01 =18
For s=34
For s=80 R
25 B --------function ‘0:_

0 L L L L
0 1 2 3 4 5

y (for A\=0.7, x1 =4, x2=5.5)

Figure 2: Operator’s convergence with respect to the function g(3) = 2 + 2

These examples demonstrate how the operators” approximation of the function improves when we take
larger values of m.

Example 5.3. Consider the function f(0) = 0% evaluated at & = 1. We use the Kantorovich form of g-Bernstein
shifted knots operators BKY"* defined in (2.1) of the paper with parameters A = 0, 91 = 0,9, = 0, and g, = 1 - .
The approximation is given by:

[m]; (6 1 )2(2q+1)[m1q(6_ 1 )+ 1
[

m+ 12\ Imly) Bllm+ 11, " )" [Bl0m + 11

By (f:0,9) = [

where we take 0 = 1, [m]; = 11__";, [2];=1+gq= —% and [3], = —%+ # The absolute error is |1—B7(2f0 ;L9

Table 1: Approximation of f(1) = 1 by 8K 3;?0 (f;1,9)
m gup=1-21 [m], B‘KS;?O (f;1,9) Absolute Error

1 0.0000 1.0000 1.0000 0.0000
5 0.4000 1.4000 0.5063 0.2937
10 0.7000 2.3516 0.7613 0.1377
15 0.8000 5.6532 0.8695 0.0605
20 0.9500 11.8303 0.9886 0.0414

50 0.9900 35.8916 0.9992 0.0017
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Observations:

6.

o Asm increases, 4, — 1 and [m]; — oo.

o The approximation B(K%)O (f;1,9) converges to f(1) = 1.

o The absolute error decreases monotonically, confirming theoretical convergence.

Conclusion & Observation

Our new operators (8) are the Kantorovich form of operators [25], as we explicitly conclude in this

paper. According to [3], our operators B‘Kf;fz (f;0,9) have approximation properties to the operators(2) for

g = 1in the equality (8).Our operators B’Kfjl’fz (f; 0, 9) reduced to the approximation results of operators(6)
defined by Cai et al. [7] for g = 1 and g1 = g = 0 in the equality (8). Consequently, we can characterize our
operators (8) as unique instances of traditional Bernstein-operators [5], Lupas g-Bernstein-operators [20],
A-Bernstein operators [7], (A, 4)-Bernstein operators [6] and (A, g)-Bernstein operators with Bézier basis [3].
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