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Abstract. This paper deals with the study of characterizations of a normal curve in 3-dimensional Euclidean
space and presents a sufficient condition for the invariance of a normal curve on regular surfaces under
isometric transformations using the Darboux frame {T1,P1,U1}. Furthermore, we compute the deviations
of the position vector of the normal curve on regular surfaces along the unit tangent vector T1, the unit
normal U1 perpendicular to the oriented surface, and the cross product of U1 and T1 due to isometric
transformations.

1. Introduction

Differential geometry is a branch of mathematics that plays an important role in the study of curves
and surfaces. When studying curves in three dimensional Euclidean space E3, a connection can be es-
tablished between every point on the curve and a moving set of three perpendicular axes known as the
Serret-Frenet frame, represented as {T1,N1,B1}. This frame consists of the tangent vector T1, the binormal
B1, and the principal normal N1. At each point on the curve, this frame generates three perpendicular
planes, namely, the rectifying plane, the normal plane, and the osculating plane. These three planes are
formed by using the vectors {B1,T1}, {N1,B1}, and {T1,N1}, respectively. The curves that lie within these
planes are known as rectifying curves, normal curves, and osculating curves, respectively. The importance
of these concepts in the field of differential geometry of curves and surfaces is thoroughly explained in [1–4].

In E3, a lot of research has been conducted on characterizing curves by constraining their position
vectors within specific planes associated with surfaces. For example, Chen [5] introduced the concept of
a rectifying curve, as a spatial curve whose position vector consistently stays within its corresponding
rectifying plane. Furthermore, Chen [6], and Chen and Dillen [7] conducted a thorough investigation of
rectifying curves, exploring their dynamic behaviour and examining various attributes associated with
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these curves. They further studied a rectifying curve as an extremal curve by analyzing the dilation of unit
speed parameterized curve on the unit sphere S2 in E3. Ilarslan and Nesovic [8, 9] introduced the concept
of timelike and null normal and rectifying curves in Minkowski 3-space.

Camci et al. [10] investigated the characterizations of a surface curve by restricting its position vector
to three perpendicular planes on the surface and established the existence of such a curve. Motivated by
Chen [5], Ilarslan and Nesovic [11, 12] researched rectifying curves and osculating curves, and investigated
their characterizations in E3. Likewise, Deshmukh et al. [13] studied the characterizations of rectifying
curves through centrodes of unit speed curves in Euclidean spaces. For recent work related to these types of
curves, where the position vectors are restricted to the normal, rectifying and osculating planes on surfaces
under isometric and conformal transformations, we can refer to [14, 15, 17, 18].

The investigation of osculating curves, normal curves, and rectifying curves within E3 has been studied
by various researchers [11, 16, 17]. The authors of [11], investigated some specific characteristics of oscu-
lating curves within E3 and defined osculating curves in E4. In E4, they defined the position vector for
osculating curves which are consistently confined to their corresponding osculating plane, satisfying the
equation β(r) = µ1T1 +µ2N1 +µ3B2, where µ1, µ2, and µ3 are smooth functions. Lone [16] investigated some
geometric properties of normal curves that are invariant under conformal transformations using the Frenet
frame. Shaikh et al. [17] investigated a sufficient condition for normal curves on isometric smooth surfaces
with the help of the Frenet frame.

Furthermore, the authors in [12] introduced a novel method for defining rectifying curves in E4. They
characterized rectifying curves through a profound geometric property; the position vector of the curve
always resides in the orthogonal complement N⊥1 of its principal normal vector field N1. This approach
enhances our comprehension of rectifying curves by situating them in a higher-dimensional space and
underscoring their intrinsic relationship with the orthogonal aspects of their principal normal vectors.

The work presented in [14–19] primarily focuses on normal, rectifying, and osculating curves on smooth
immersed surfaces. The researchers conducted an in-depth analysis to understand the conditions under
which such curves maintain their original characteristics when the surface undergoes isometric changes.
The Frenet frame serves as the analytical framework for this investigation. On a related note, when ex-
amining a space curve lying on a regular surface within three-dimensional space, a dynamic orthonormal
frame known as the Darboux frame {T1,P1,U1} naturally emerges at each point along the curve. In this
frame, T1 represents the unit tangent vector at a specific point on the curve, U1 stands for the unit surface
normal, and P1 is the result of the cross product between U1 and T1. This Darboux frame provides valuable
insights into the geometric properties of the curve in relation to the underlying surface.

The authors of [8, 10] used the Darboux frame to determine the position vector of a curve with unit
speed parameterization in E3. This position vector consistently lies within the planes defined by {T1,U1},
{T1,P1}, and {P1,U1}. To gain deeper insights, let’s explore the concept of a normal curve lying on a regular
surface within E3 with the help of the Darboux frame rather than the Frenet frame.

The motivation for the study and its findings are quite interesting because the study integrates the char-
acteristics of normal curves on regular immersed surfaces under isometry using the Darboux frame instead
of the Frenet frame. The main objective of this study is to obtain sufficient conditions for the normal curve to
remain unchanged by using the Darboux frame. By employing these obtained conditions, we compute the
deviations of the position vector of the normal curve along the unit tangent vector T1, the unit normal U1 ori-
ented perpendicular to the surface, and P1 (the cross product of U1 and T1) due to isometric transformations.

This paper is structured as follows. In section 2, we discuss some fundamental concepts and definitions
related to normal curves, the Frenet frame and the Darboux frame. In Section 3, we obtain sufficient
conditions for the invariance of a normal curve under isometric transformations. Section 4 provides the
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conclusion and outlines the future scope of this study.

2. Preliminaries

In this section, we present preliminary concepts, definitions and notations used in this sequel.
Consider two regular surfaces, M and M̃, immersed in E3. Let β : I → E3 be a unit-speed parameterized
curve, where I = (a, b) ⊂ R, having at least fourth order continuous derivatives. The tangent vector T1
can be expressed as T1(r) = β′(r) for each r ∈ I, where β′ represents the derivative of β with respect to the
arc length parameter r. The principal normal vector to the curve β is denoted by N1. Consequently, the
binormal vector B1 is derived as the cross product of T1 and N1, i.e., B1 = T1 ×N1. In [1, 5], the Serret-Frenet
equations can be written as follows

T′1(r) = κ1(r)N1(r),
N′1(r) = −κ1(r)T1(r) + τ1(r)B1(r),
B′1(r) = −τ1(r)N1(r),

where, κ1 and τ1 represent the curvature function and torsion function of the curve β, respectively. These
functions satisfy the following conditions

T1(r) = β′(r), N1(r) =
T′1(r)
κ1(r) , B1(r) = T1(r) ×N1(r).

Starting from any point β(r) along the curve β, the plane formed by {T1,N1} is known as the osculating
plane, and the plane spanned by {T1,B1} is called the rectifying plane. Similarly, the plane spanned by
{N1,B1} is referred to as the normal plane [6, 7]. In the analysis of a curve’s position vector, which distin-
guishes between different types of curves [3, 8, 9], a curve is categorized as a normal curve if its position
vector lies within the normal plane. Similarly, a curve is referred to as a rectifying curve if its position vector
lies within the rectifying plane. Furthermore, when a curve’s position vector is situated in the osculating
plane, it is identified as an osculating curve.

Let M be a regular surface immersed in E3, with σ : V ⊂ R2
→ M representing the coordinate map.

Suppose β : I → M ∈ R3 is a parameterized curve situated within the range of the surface patch σ of M.
Then we can write β(r) as

β(r) = σ(x(r), y(r)), ∀r ∈ I. (1)

When the curve β(r) lies on the surface M, a unique moving orthonormal frame, referred to as the Darboux
frame {T1,P1,U1}, can be associated with every point along the curve β(r). It’s important to note that the
unit tangent vector T1 remains consistent in both the Darboux frame and the Frenet frame, and the vectors
N1,B1,P1,U1 all lie within the same plane. As a result, the relationship between these frames is described
by the following equationT1

P1
U1

 =
1 0 0
0 cosα sinα
0 − sinα cosα


T1
N1
B1

 , (2)

where α represents the angle between the vectors N1 and P1.

Since β(r) is a unit-speed parameterized curve on the surface M, we can conclude that β′′ is perpendicular
to β, forming a linear combination involving U1 and P1, where “′” denotes the derivative with respect to
the arc parameter r. Thus, we can express this as

β′′(r) = kn(r)U1(r) + k1(r)P1(r). (3)
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Here, kn and k1 represent the normal curvature and geodesic curvature of β. Since we know that both
vectors U1 and P1 are perpendicular, from equation (3) we can derive the following :

kn(r) = β′′(r) ·U1(r) and k1(r) = β′′(r) · P1(r). (4)

Also, Frenet equation and (4), together yields

kn(r) = κ1(r)N1(r) ·U1(r) and k1(r) = κ1(r)N1(r) · P1(r), (5)

which implies that

kn(r) = κ1(r)sinα and k1(r) = κ1(r)cosα. (6)

Consequently, the curve β is a geodesic if and only if the curvature k1 is zero, and similarly, β is an asymptotic
curve if and only if the curvature kn is zero.

Taking the derivative of equation (1) with respect to r, we obtain

T1(r) = β′(r) = x′σx + y′σy, (7)

where x′ = dx
dr , y′ = dy

dr and β′ = dβ
dr .

Now, the normal U1 to the surface M is defined as follows

U1(r) =
σx × σy

||σx × σy||
=
σx × σy
√

EG − F2
, (8)

where E, F and G are the coefficients of the first fundamental form of M. It is given that P1 = U1 × T1, by
using equations (7) and (8), and after simplification, we obtain

P1(r) =
1

√

EG − F2

(
Ex′σy + F(y′σy − x′σx) − Gy′σx

)
. (9)

Definition 2.1. If M and M̃ are regular surfaces immersed in E3, then a diffeomorphism J : M → M̃ is called an
isometry if it preserves the lengths of curves.

Definition 2.2. The quadratic form that represents the first fundamental form of a regular immersed surface M at a
point q is denoted as Jq : Tq(M)→ R, and can be written as

Jq(β′(r)) = ⟨β′(r), β′(r)⟩ = Ex′2 + 2Fx′y′ + Gy′2.

where ′ represents the derivative with respect to the arc length parameter.

Let R ⊂ M be a neighborhood of a point q ∈ M and S ⊂ M̃ be a neighborhood of the point Jq ∈ M̃ such that
Jq : R→ S is an isometry. Then the mapping Jq : R→ M̃ is called a local isometry at q. The surfaces M and
M̃ are said to be locally isometric if there exists an isometry at each point of M and Jq is said to be global
isometry if it is local isometry at every point of M.

We note that under isometry between two surfaces, geodesics remains invariant. If E, F, G and Ẽ, F̃, G̃ are
the coefficients of first fundamental form of M and M̃ respectively, then M and M̃ are isometric iff

Ẽ = E, F̃ = F and G̃ = G. (10)
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3. Normal Curves in the Context of the Darboux Frame

This section involves the study of normal curves on a regular surface using the Darboux frame. A curve
β(r) on a regular surface M in E3 is classified as a normal curve when its position vector consistently lies
within the normal plane. Consequently, the position vector of β can be expressed as follows

β(r) = µ1(r)N1(r) + µ2(r)B1(r), (11)

where µ1(r) and µ2(r) are smooth functions. Using equation (2) in (11), we get

β(r) = µ1(r)P1(r)cosα − µ1(r)U1(r)sinα + µ2(r)P1(r)sinα + µ2(r)U1(r)cosα. (12)

Thus, in view of equations (6), (8), (9) and (12), we obtain

β(r) =

{
µ1(r)

k1(r)
k1(r)

+ µ2(r)
kn(r)
k1(r)

}
P1(r) +

{
µ2(r)

k1(r)
k1(r)

− µ1(r)
kn(r)
k1(r)

}
U1(r),

=

{
µ1(r)

k1(r)
k1(r)

+ µ2(r)
kn(r)
k1(r)

}
·

1
√

EG − F2

(
Ex′σy + F(y′σy − x′σx) − Gy′σx

)
+

{
µ2(r)

k1(r)
k1(r)

− µ1(r)
kn(r)
k1(r)

}
σx × σy
√

EG − F2
. (13)

This equation represents the fundamental basis of the definition of a normal curve on a regular surface, one
that does not fall into the category of being either a geodesic or an asymptotic curve on the surface. Here,
we consider two distinct cases, as follows:
Case 1: When the normal curve on the regular surface takes the form of a geodesic curve (i.e., k1(r) = 0),
the angle becomes π/2. Additionally, when kn(r) = κ1(r), the equation for normal curves can be written as

β(r) =
µ2(r)
√

EG − F2

(
Ex′σy + F(y′σy − x′σx) − Gy′σx

)
− µ1(r)

σx × σy
√

EG − F2
. (14)

Case 2: When the normal curve on the regular surface takes the form of an asymptotic curve (i.e., kn(r) = 0),
the angle becomes 0. Furthermore, when k1(r) = κ1(r), the equation for normal curves takes the following
form:

β(r) =
µ1(r)
√

EG − F2

(
Ex′σy + F(y′σy − x′σx) − Gy′σx

)
+ µ2(r)

σx × σy
√

EG − F2
. (15)

Theorem 3.1. Let M and M̃ be two regular surfaces and J : M→ M̃ be an isometry. If β(r) is a normal curve on M
such that kn , 0, then β̃ = J ◦ β is a normal curve on M̃, provided any one of the following conditions are hold:

(i) β̃ represents a geodesic curve on M̃ and β̃(r) = J∗(β(r)),
(ii) β̃ represents an asymptotic curve on M̃ and

β̃(r) = J∗(β(r)) −
µ2(r)kn(r)
κ1(r)

P̃1(r) +
µ1(r)kn(r)
κ1(r)

Ũ1(r),

(iii) β̃ neither represents a geodesic curve nor an asymptotic curve on M̃ and β̃(r) = J∗(β(r)).

Proof. It is given that J : M → M̃ is an isometry, and β(r) represents a normal curve on M such that kn , 0.
Assume that condition (i) holds. Then by definition of geodesic curve, we have k̃1(r) = 0, and β̃(r) = J∗(β(r)).
Now, we can write

β̃(r) = J∗(β(r)),

=

{
µ1(r)

k1(r)
k1(r)

+ µ2(r)
kn(r)
k1(r)

}
1

√

EG − F2

(
Ex′ J∗σy + F(y′ J∗σy − x′ J∗σx) − Gy′ J∗σx

)
+

{
µ2(r)

k1(r)
k1(r)

− µ1(r)
kn(r)
k1(r)

}
(J∗U1(r)). (16)
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Now, from equation (10) and (16), we find that

β̃(r) =

µ̃1(r)
k̃1(r)

k̃1(r)
+ µ̃2(r)

k̃n(r)
k̃1(r)

 1
√

ẼG̃ − F̃2

(
Ẽx′σ̃y + F̃(y′σ̃y − x′σ̃x) − G̃y′σ̃x

)
+

µ̃2(r)
k̃1(r)

k̃1(r)
− µ̃1(r)

k̃n(r)
k̃1(r)

 (Ũ1(r)), (17)

where µ̃1(r) k̃1(r)
k̃1(r)
= µ1(r) k1(r)

k1(r) , µ̃2(r) k̃n(r)
k̃1(r)
= µ2(r) kn(r)

k1(r) , µ̃2(r) k̃1(r)
k̃1(r)
= µ2(r) k1(r)

k1(r) and µ̃1(r) k̃n(r)
k̃1(r)
= µ1(r) kn(r)

k1(r) .

Since k̃1(r) = 0 and k̃n(r) = k̃1(r), from equation (17), we get

β̃(r) =
µ̃2(r)
√

ẼG̃ − F̃2

(
Ẽx′σ̃y + F̃(y′σ̃y − x′σ̃x) − G̃y′σ̃x

)
− µ̃1(r)(Ũ1(r)). (18)

This equation defines a normal curve on the surface M̃ that exhibits geodesic behaviour on the same surface.
Assume that condition (ii) holds. Then k̃n(r) = 0 and β̃(r) = J∗(β(r)) − µ2(r)kn(r)

κ1(r) P̃1(r) + µ1(r)kn(r)
κ1(r) Ũ1(r).

Now

β̃(r) = J∗(β(r)) −
µ2(r)kn(r)
κ1(r)

P̃1(r) +
µ1(r)kn(r)
κ1(r)

Ũ1(r),

=

{
µ1(r)

k1(r)
k1(r)

+ µ2(r)
kn(r)
k1(r)

}
1

√

EG − F2

(
Ex′ J∗σy + F(y′ J∗σy − x′ J∗σx) − Gy′ J∗σx

)
+

{
µ2(r)

k1(r)
k1(r)

− µ1(r)
kn(r)
k1(r)

}
(J∗U1(r)) −

µ2(r)kn(r)
κ1(r)

P̃1(r) +
µ1(r)kn(r)
κ1(r)

Ũ1(r). (19)

Again, from equation (10) and (19), we find that

β̃(r) =

{
µ1(r)

k1(r)
k1(r)

+ µ2(r)
kn(r)
k1(r)

}
1

√

ẼG̃ − F̃2

(
Ẽx′σ̃y + F̃(y′σ̃y − x′σ̃x) − G̃y′σ̃x

)
+

{
µ2(r)

k1(r)
k1(r)

− µ1(r)
kn(r)
k1(r)

}
(Ũ1(r)) −

µ2(r)kn(r)
κ1(r)

P̃1(r) +
µ1(r)kn(r)
κ1(r)

Ũ1(r),

=

µ̃1(r)
k̃1(r)

k̃1(r)
+ µ̃2(r)

k̃n(r)
k̃1(r)

 1
√

ẼG̃ − F̃2

(
Ẽx′σ̃y + F̃(y′σ̃y − x′σ̃x) − G̃y′σ̃x

)
+µ̃2(r)

k̃1(r)

k̃1(r)
(Ũ1(r)) −

µ̃2(r)k̃n(r)
κ̃1(r)

P̃1(r), (20)

where µ̃1(r) k̃1(r)
k̃1(r)
= µ1(r) k1(r)

k1(r) , µ̃2(r) k̃n(r)
k̃1(r)
= µ2(r) kn(r)

k1(r) and µ̃2(r) k̃1(r)
k̃1(r)
= µ2(r) k1(r)

k1(r) .

Since k̃n(r) = 0 and k̃1(r) = k̃1(r), from equation (20), we get

β̃(r) =
µ̃1(r)
√

ẼG̃ − F̃2

(
Ẽx′σ̃y + F̃(y′σ̃y − x′σ̃x) − G̃y′σ̃x

)
+ µ̃2(r)(Ũ1(r)).

This is the required equation of a normal curve on the surface M̃, which is an asymptotic curve on that
surface.
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Next, assume that condition (iii) holds. Then k̃n(r) , 0, k̃1(r) , 0 and β̃(r) = J∗(β(r)).
Now we can write

β̃(r) = J∗(β(r)),

=

{
µ1(r)

k1(r)
k1(r)

+ µ2(r)
kn(r)
k1(r)

}
1

√

EG − F2

(
Ex′ J∗σy + F(y′ J∗σy − x′ J∗σx) − Gy′ J∗σx

)
+

{
µ2(r)

k1(r)
k1(r)

− µ1(r)
kn(r)
k1(r)

}
(J∗U1(r)). (21)

Now, from equation (10) and (21), we obtain

β̃(r) =

{
µ1(r)

k1(r)
k1(r)

+ µ2(r)
kn(r)
k1(r)

}
1

√

ẼG̃ − F̃2

(
Ẽx′σ̃y + F̃(y′σ̃y − x′σ̃x) − G̃y′σ̃x

)
+

{
µ2(r)

k1(r)
k1(r)

− µ1(r)
kn(r)
k1(r)

}
(Ũ1(r)),

=

µ̃1(r)
k̃1(r)

k̃1(r)
+ µ̃2(r)

k̃n(r)
k̃1(r)

 1
√

ẼG̃ − F̃2

(
Ẽx′σ̃y + F̃(y′σ̃y − x′σ̃x) − G̃y′σ̃x

)
+

µ̃2(r)
k̃1(r)

k̃1(r)
− µ̃1(r)

k̃n(r)
k̃1(r)

 (Ũ1(r)) (22)

where µ̃1(r) k̃1(r)
k̃1(r)
= µ1(r) k1(r)

k1(r) , µ̃2(r) k̃n(r)
k̃1(r)
= µ2(r) kn(r)

k1(r) , µ̃2(r) k̃1(r)
k̃1(r)
= µ2(r) k1(r)

k1(r) and µ̃1(r) k̃n(r)
k̃1(r)
= µ1(r) kn(r)

k1(r) .

This equation represents the essential form of a normal curve on the surface M̃, which is neither an
asymptotic nor a geodesic curve on that surface.

Theorem 3.2. Let M and M̃ be two regular surfaces and J : M→ M̃ be an isometry. If β(r) is a normal curve on M
such that kn = 0, then β̃ = J ◦ β is also a normal curve on M̃, provided any one of the following conditions are hold:

(i) β̃ does not represent an asymptotic curve on the surface M̃ and

β̃(r) = J∗(β(r)) +
µ2(r)kn(r)
κ1(r)

P̃1(r) −
µ1(r)kn(r)
κ1(r)

Ũ1(r),

(ii) β̃ represents asymptotic curve on the surface M̃ and β̃(r) = J∗(β(r)).

Proof. The proof of this result follows from that of Theorem 3.1 by setting kn = 0.

Theorem 3.3. Let M and M̃ be two regular surfaces immersed in E3 and J : M→ M̃ be an isometry. If β(r) and β̃(r)
are respectively normal curves on M and M̃, such that kn , 0, and T1(r) = aσx + bσy represents any tangent vector
at the point β(r) on the surface M, then the following holds:

(i) If the surface M̃ has a geodesic curve β̃, then β̃(r) · T̃1(r) = β(r) · T1(r).
(ii) If the surface M̃ has an asymptotic curve β̃, then

β̃(r) · T̃1(r) − β(r) · T1(r) =
√

EG − F2(bx′ − ay′)
{
µ1(r) −

µ1(r)k1(r)
k1(r)

−
µ2(r)kn(r)

k1(r)

}
.

(iii) If the curve β̃ is neither an asymptotic nor a geodesic curve on the surface M̃, then

β̃(r) · T̃1(r) = β(r) · T1(r).
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Proof. Let β and β̃ be the normal curves on the surface M and M̃ respectively, with kn , 0, and J represents
an isometry between M and M̃. Also, T1(r) = aσx + bσy represents any tangent vector at the point β(r) on
the surface M. Then

β̃(r) · T̃1(r) − β(r) · T1(r) = β̃(r) · (aσ̃x + bσ̃y) − β(r) · (aσx + bσy),
= a(β̃(r) · σ̃x − β(r) · σx) + b(β̃(r) · σ̃y − β(r) · σy). (23)

Now

β(r) · σx =

{
µ1(r)

k1(r)
k1(r)

+ µ2(r)
kn(r)
k1(r)

}
1

√

EG − F2

(
Ex′σy + F(y′σy − x′σx) − Gy′σx

)
· σx

+

{
µ2(r)

k1(r)
k1(r)

− µ1(r)
kn(r)
k1(r)

}
σx × σy
√

EG − F2
· σx,

=

{
µ1(r)

k1(r)
k1(r)

+ µ2(r)
kn(r)
k1(r)

}
y′(F2

− EG)
√

EG − F2
,

= −y′
{
µ1(r)

k1(r)
k1(r)

+ µ2(r)
kn(r)
k1(r)

}
√

EG − F2. (24)

Similarly, we can obtain

β(r) · σy = x′
{
µ1(r)

k1(r)
k1(r)

+ µ2(r)
kn(r)
k1(r)

}
√

EG − F2. (25)

For (i), if β̃ is a geodesic curve on the surface M̃, then k̃1 = 0, and hence from equation (10) and (14), we get

β̃(r) · σ̃x = −y′µ̃2(r)
√

EG − F2. (26)

Similarly, we can obtain

β̃(r) · σ̃y = x′µ̃2(r)
√

EG − F2. (27)

Again, by applying the condition of geodesic and then by virtue of equation (24) and (26), we get

β̃(r) · σ̃x − β(r) · σx = y′(µ2(r) − µ̃2(r))
√

EG − F2. (28)

Similarly, (25) and (27) together yields

β̃(r) · σ̃y − β(r) · σy = x′(µ̃2(r) − µ2(r))
√

EG − F2. (29)

Using equation (28) and (29) in (23), we obtain

β̃(r) · T̃1(r) − β(r) · T1(r) = (µ2(r) − µ̃2(r))
√

EG − F2(ay′ − bx′).

Since β(r) and β̃(r) are normal curves on the surface M and M̃ respectively, so µ2(r) = µ̃2(r), and hence
β̃(r) · T̃1(r) = β(r) · T1(r). This proves (i).
Moving on to point (ii), let’s assume that β̃ represents an asymptotic curve on the surface M̃. Then k̃n = 0
and k̃1(r) = κ̃1(r). Thus (10) and (15) respectively entails

β̃(r) · σ̃x = −y′µ̃1(r)
√

ẼG̃ − F̃2,

= −y′µ1(r)
√

EG − F2 (30)

and

β̃(r) · σ̃y = x′µ1(r)
√

EG − F2. (31)
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In view of (24) and (30) we have

β̃(r) · σ̃x − β(r) · σx = −y′(
√

EG − F2)
{
µ1(r) − µ1(r)

k1(r)
k1(r)

− µ2(r)
kn(r)
k1(r)

}
. (32)

Similarly, from (25) and (31) we get

β̃(r) · σ̃y − β(r) · σy = x′(
√

EG − F2)
{
µ1(r) − µ1(r)

k1(r)
k1(r)

− µ2(r)
kn(r)
k1(r)

}
. (33)

Also (23) entails

β̃(r) · T̃1(r) − β(r) · T1(r) = a(β̃(r) · σ̃x − β(r) · σx) + b(β̃(r) · σ̃y − β(r) · σy),

=
√

EG − F2(bx′ − ay′)
{
µ1(r) −

µ1(r)k1(r)
k1(r)

−
µ2(r)kn(r)

k1(r)

}
.

This proves (ii).
Moving on to point (iii), let’s assume that β̃ is neither an asymptotic curve nor a geodesic curve on the
surface M̃. Then from (10) and (13), we get

β̃(r) · σ̃x = −y′
µ̃1(r)

k̃1(r)

k̃1(r)
+ µ̃2(r)

k̃n(r)
k̃1(r)

 √EG − F2

and

β̃(r) · σ̃y = x′
µ̃1(r)

k̃1(r)

k̃1(r)
+ µ̃2(r)

k̃n(r)
k̃1(r)

 √EG − F2.

By virtue of (24) and (25), we obtain

β̃(r) · σ̃x − β(r) · σx = y′(
√

EG − F2)


µ1(r)

k1(r)
k1(r)

− µ̃1(r)
k̃1(r)

k̃1(r)

 + (
µ2(r)

kn(r)
k1(r)

− µ̃2(r)
k̃n(r)
k̃1(r)

) ,
and

β̃(r) · σ̃y − β(r) · σy = x′(
√

EG − F2)


µ̃1(r)

k̃1(r)

k̃1(r)
− µ1(r)

k1(r)
k1(r)

 + (
µ̃2(r)

k̃n(r)
k̃1(r)

− µ2(r)
kn(r)
k1(r)

) .
Substituting these values in (23), we have

β̃(r) · T̃1(r) − β(r) · T1(r) =


µ1(r)

k1(r)
k1(r)

− µ̃1(r)
k̃1(r)

k̃1(r)

 + (
µ2(r)

kn(r)
k1(r)

− µ̃2(r)
k̃n(r)
k̃1(r)

)
(
√

EG − F2)(ay′ − bx′).

Since β(r) and β̃(r) are normal curves on the surfaces M and M̃, respectively, so we have µ1(r) k1(r)
k1(r) = µ̃1(r) k̃1(r)

k̃1(r)
,

and µ2(r) kn(r)
k1(r) = µ̃2(r) k̃n(r)

k̃1(r)
. Thus, β̃(r) · T̃1(r) = β(r) · T1(r). This proves (iii).

Theorem 3.4. Let M and M̃ be two regular surfaces immersed in E3 and J : M→ M̃ be an isometry. If β(r) and β̃(r)
are normal curves on M and M̃, such that kn = 0, and T1(r) = aσx + bσy represents any tangent vector at the point
β(r) on the surface M, then the following holds;

(i) If the surface M̃ has an asymptotic curve β̃, then β̃(r) · T̃1(r) = β(r) · T1(r).
(ii) If the surface M̃ has not an asymptotic curve β̃, then

β̃(r) · T̃1(r) − β(r) · T1(r) =
√

EG − F2(bx′ − ay′)
{
µ̃2(r)

k̃n(r)
k̃1(r)

}
.
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Proof. The proof of this theorem follows from that of Theorem 3.3 by setting kn = 0.

Theorem 3.5. Let M and M̃ be two regular surfaces immersed in E3 and J : M→ M̃ be an isometry. If β(r) and β̃(r)
are normal curves on M and M̃ respectively such that kn , 0 and P1 = U1 × T1, where T1(r) = aσx + bσy represents
any tangent vector at the point β(r) on the surface M, then the following holds:

(i) If the surface M̃ has a geodesic curve β̃, then β̃(r) · P̃1(r) = β(r) · P1(r).
(ii) If the surface M̃ has an asymptotic curve β̃, then

β̃(r) · P̃1(r) − β(r) · P1(r) =
{
µ1(r) −

µ1(r)k1(r)
k1(r)

−
µ2(r)kn(r)

k1(r)

} (
a(x′E + y′F) + b(x′F + y′G)

)
.

(iii) If the curve β̃ is neither an asymptotic nor a geodesic curve on the surface M̃, then

β̃(r) · P̃1(r) = β(r) · P1(r).

Proof. Letβ and β̃be the normal curves on the surfaces M and M̃, with kn , 0, and an isometric transformation
J from M to M̃. We know that P1 = U1 × T1, where T1(r) = aσx + bσy represents any tangent vector at the
point β(r) on the surface M. Then, by using (8), we have

β(r) · P1(r) = β(r) · (U1(r) × T1(r)) = β(r) ·
{

(
σx × σy
√

EG − F2
) × (aσx + bσy)

}
,

=
1

√

EG − F2

{
(aE + bF)β(r) · σy − (aF + bG)β(r) · σx

}
. (34)

Similarly, by using (10), we obtain

β̃(r) · P̃1(r) =
1

√

EG − F2

{
(aE + bF)β̃(r) · σ̃y − (aF + bG)β̃(r) · σ̃x

}
. (35)

Now

β̃(r) · P̃1(r) − β(r) · P1(r) =
1

√

EG − F2

{
(aE + bF)(β̃(r) · σ̃y − β(r) · σy)

−(aF + bG)(β̃(r) · σ̃x − β(r) · σx)
}
. (36)

For (i), if β̃ is a geodesic curve on the surface M̃, then by using (28) and (29) in (36), we obtain

β̃(r) · P̃1(r) − β(r) · P1(r) =
1

√

EG − F2

{
(aE + bF)(x′(µ̃2(r) − µ2(r))

√

EG − F2)

−(aF + bG)(y′(µ2(r) − µ̃2(r))
√

EG − F2)
}
,

= (µ̃2(r) − µ2(r))(a(x′E + y′F) + b(x′F + y′G)).

Since β(r) and β̃(r) are normal curves on the surfaces M and M̃ respectively, so µ2(r) = µ̃2(r), and hence
β̃(r) · P̃1(r) = β(r) · P1(r). This proves (i).
To prove (ii), let’s assume that β̃ represents an asymptotic curve on the surface M̃. Then, by using (32) and
(33) in (36), we obtain

β̃(r) · P̃1(r) − β(r) · P1(r) =
1

√

EG − F2

[
(aE + bF)x′(

√

EG − F2)
{
µ1(r) − µ1(r)

k1(r)
k1(r)

− µ2(r)
kn(r)
k1(r)

}
+(aF + bG)y′(

√

EG − F2)
{
µ1(r) − µ1(r)

k1(r)
k1(r)

− µ2(r)
kn(r)
k1(r)

} ]
,

=

{
µ1(r) − µ1(r)

k1(r)
k1(r)

− µ2(r)
kn(r)
k1(r)

} (
a(x′E + y′F) + b(x′F + y′G)

)
.



A. A. Shaikh et al. / Filomat 39:27 (2025), 9745–9757 9755

This proves (ii).
For (iii), suppose β̃ is neither an asymptotic curve nor a geodesic curve on the surface M̃. Then (36) yields

β̃(r) · P̃1(r) − β(r) · P1(r) =
1

√

EG − F2

[
(aE + bF)

{
x′(
√

EG − F2)
{
(µ̃1(r)

k̃1(r)

k̃1(r)
− µ1(r)

k1(r)
k1(r)

)

+(µ̃2(r)
k̃n(r)
k̃1(r)

− µ2(r)
kn(r)
k1(r)

)
}}
− (aF + bG)

{
y′(
√

EG − F2)

{
(µ1(r)

k1(r)
k1(r)

− µ̃1(r)
k̃1(r)

k̃1(r)
) + (µ2(r)

kn(r)
k1(r)

− µ̃2(r)
k̃n(r)
k̃1(r)

)
}}]
,

=

(µ1(r)
k1(r)
k1(r)

− µ̃1(r)
k̃1(r)

k̃1(r)
) + (µ2(r)

kn(r)
k1(r)

− µ̃2(r)
k̃n(r)
k̃1(r)

)

(
(aE + bF)x′ − (aF + bG)y′

)
.

Since β(r) and β̃(r) are normal curves on the surface M and M̃ respectively, so µ1(r) k1(r)
k1(r) = µ̃1(r) k̃1(r)

k̃1(r)
, and

µ2(r) kn(r)
k1(r) = µ̃2(r) k̃n(r)

k̃1(r)
. Therefore β̃(r) · P̃1(r) = β(r) · P1(r). This proves (iii).

Theorem 3.6. Let M and M̃ be two regular surfaces immersed in E3 and J : M→ M̃ be an isometry. If β(r) and β̃(r)
are normal curves on M and M̃ respectively such that kn = 0 and P1 = U1 × T1, where T1(r) = aσx + bσy represents
any tangent vector at the point β(r) on the surface M, then the following holds:

(i) If the surface M̃ has an asymptotic curve β̃, then β̃(r) · P̃1(r) = β(r) · P1(r).
(ii) If the surface M̃ has not an asymptotic curve β̃, then

β̃(r) · P̃1(r) − β(r) · P1(r) =
(
(aE + bF)x′ − (aF + bG)y′

) {
µ̃2(r)

k̃n(r)
k̃1(r)

}
.

Proof. The proof of this result follows from that of Theorem 3.5 by setting kn = 0.

Theorem 3.7. Let M and M̃ be two regular surfaces immersed in E3 and J : M→ M̃ be an isometry. If β(r) and β̃(r)
are normal curves on M and M̃ respectively, then β̃(r) · Ũ1(r) = β(r) ·U1(r).

Proof. Let β and β̃ be the normal curves on the surfaces M and M̃ respectively and J denotes an isometric
transformation between M and M̃. Now, using (8) and (13), we get

β(r) ·U1(r) = β(r) ·
σx × σy
√

EG − F2
=

{
µ2(r)

k1(r)
k1(r)

− µ1(r)
kn(r)
k1(r)

}
, (37)

and

β̃(r) · Ũ1(r) =

µ̃2(r)
k̃1(r)

k̃1(r)
− µ̃1(r)

k̃n(r)
k̃1(r)

 . (38)

Again in view of (37) and (38), we obtain

β̃(r) · Ũ1(r) − β(r) ·U1(r) =

µ̃2(r)
k̃1(r)
κ̃1(r)

− µ2(r)
k1(r)
k1(r)

 −
{
µ̃1(r)

k̃n(r)
κ̃1(r)

− µ1(r)
kn(r)
k1(r)

}
. (39)

Thus, if k1 = 0 in (39), then β̃(r) · Ũ1(r) = β(r) ·U1(r). Further, for k1 , 0, since β(r) and β̃(r) are normal curves

on the surfaces M and M̃ respectively, so µ1(r) kn(r)
k1(r) = µ̃1(r) k̃n(r)

k̃1(r)
, and µ2(r) k1(r)

k1(r) = µ̃2(r) k̃1(r)
k̃1(r)

, and hence from
(39), we get

β̃(r) · Ũ1(r) = β(r) ·U1(r).

This completes the proof.
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4. Conclusion

In this paper, we investigated the requirements for the invariance of a normal curve on regular surfaces
under isometric transformations using the Darboux frame instead of the Frenet frame. We found that the
components of the position vector of a normal curve β(r) along various directions remain unchanged under
isometric transformations, provided either the conditions of being geodesic or asymptotic are satisfied.
These directions include the tangent vector T1, the unit normal U1 and P1 = U1 × T1.

In future research, one could introduce the concepts of Darboux rectifying and Darboux normal curves
under conformal and isometric transformations on smooth surfaces in E3 using the Darboux frame. Fur-
thermore, these findings can also be extended to E4 by introducing the concepts of the Darboux frame and
the Frenet frame.
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