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Abstract. We explore the geometry of the Generalized Robertson-Walker (GRW) spacetime under the
assumption that its fiber is a statistical manifold. This approach allows us to endow a statistical structure
on the GRW spacetime. Later, we derive necessary and sufficient conditions for the existence of a statistical
Ricci soliton on the statistical spacelike hypersurface of a GRW spacetime. We explore the condition for a
GRW spacetime to have an almost Ricci soliton structure, when the fiber of the GRW spacetime constitutes
a statistical Ricci soliton. Furthermore, we examine the case where both the fiber and the GRW spacetime
are Ricci solitons, and we establish the necessary and sufficient conditions for the statistical spacelike
hypersurface to exhibit a Ricci soliton structure.

1. Introduction

In the context of information geometry, Amari [4] introduced an interesting class of manifolds named
statistical manifolds. The study of the statistical manifolds has emerged as a significant tool in modern
differential geometry to understand complex geometric structures infused with statistical properties. These
manifolds, characterized by the interplay between a Riemannian metric and an affine connection, provide
deep insight into various domains such as information geometry [3, 4], neural networks [2], null geometry
[16], and many others. It is known that the conjugate symmetric statistical structures are significant in
the geometry of statistical structures as affine spheres in the geometry of affine hypersurfaces. Therefore,
Opozda [20] generalized some important results about complete affine spheres to the statistical structures
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on a manifold. In [21], Opozda studied the completeness of affine connections on the statistical manifolds
or on affine hypersurfaces.

Let Σ be an open subset of Rn and Θ be a sample space with parameters ζ = (ζ1, . . . , ζn). Then, the set
of probability density functions

S = {p(x; ζ) :
∫
Θ

p(x; ζ)dx = 1, p(x; ζ) > 0, ζ ∈ Σ ⊂ Rn
}

is called a statistical model. On the statistical model S, a semi-definite Fisher information matrix 1(ζ) = [1i j(ζ)]
is given by

1i j(ζ) =
∫
Θ

∂iℓζ∂ jℓζp(x; ζ)dx = Ep[∂iℓζ∂ jℓζ],

where ℓζ = ℓ(x : ζ) = log p(x; ζ), ∂i =
∂

∂ζi and Ep[ f ] is the expectation of f with respect to p(x; ζ). Then,

the statistical model S equipped with the semi-definite Fisher information matrices is called a statistical
manifold. Furthermore, in the context of differential geometry, the statistical manifolds [4] are inspired
from the statistical model, where the density function, the Fisher information matrix, the dual connections
∇

(−1) and ∇(1) are replaced by an arbitrary Riemannian manifold M, the Riemannian metric 1 of M, the
dual connections ∇ and ∇

∗

, respectively. Since the geometry of statistical manifolds includes the dual
connections, analogous to the conjugate connections of the affine geometry, then the geometry of statistical
manifolds is closely related to affine differential geometry. Moreover, the geometry of statistical manifolds
has potential applications in the various fields of science and engineering.

On the other hand, in our attempt to expand our knowledge of the interplay between geometry and
physics, the study of spacetime manifolds has emerged as a pivotal area of research. Among the various
models that have been developed, the Generalized Robertson-Walker (GRW) spacetime [1] has gained
significant attention due to its versatility and relevance in cosmological contexts. The GRW spacetime also
serves as a natural generalization of the classical Robertson-Walker model, extending its applicability in
both mathematics and physics. Moreover, the GRW spacetimes include Minkowski spacetime, de Sitter
spacetime, Friedmann cosmological models, and static Einstein spacetime [23]. Recently, Singh et al. [25]
used the natural correspondence between totally umbilical null hypersurfaces of the GRW spacetimes and
twisted decomposition of the fibres, to study the rigged scalar curvature of totally umbilical null graphs of
the GRW spacetimes.

Ricci solitons, on the other hand, play a critical role in the study of geometric flows, particularly of the
Ricci flow. The Ricci solitons generalize the concept of Einstein metrics and serve as self-similar solutions
to the Ricci flow, making them essential in understanding the evolution of geometric structures over time,
see [15]. The concept of Ricci solitons gained significant importance and popularity following Perelman’s
use of them to resolve the long-standing Poincaré conjecture. Since then, Ricci solitons have become a
prominent area of research, valued for their geometric significance and broader applications in theoretical
physics. Barros et al. [5] investigated the immersions of Ricci solitons into Riemannian manifolds, showing
that when a shrinking Ricci soliton is immersed in a space form with constant mean curvature, it becomes
a Gaussian soliton. In [6], Blaga and Chen provided necessary and sufficient conditions for some particular
couples (1,∇) of semi-Riemannian metrics and affine connections to be statistical structures if one has
gradient almost Einstein, almost Ricci, almost Yamabe solitons, or a more general type of solitons on the
manifold.

We present below few important known results.
In [17], the authors showed that a Ricci simple manifold with vanishing divergence of the conformal

curvature tensor admits a proper concircular vector field and it is necessarily a GRW spacetime. They also
proved that a stiffmatter perfect fluid spacetime or a mass-less scalar field with time-like gradient and with
divergence-free Weyl tensor are GRW spacetimes.

In [10], De et al. examined gradient type Ricci solitons and (m, τ)−quasi Einstein solitons in GRW
spacetimes. Besides, it was demonstrated that in this scenario the GRW spacetime presents the Robertson-
Walker spacetime and the perfect fluid spacetime presents the phantom era. Consequently, it was proved
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that if a GRW spacetime permits a gradient τ−Einstein solitons, then it also represents a perfect fluid
spacetime under certain condition.

In [24], Ricci–Yamabe solitons and gradient Ricci–Yamabe solitons in GRW spacetimes were investigated.
The authors proved that if a GRW spacetime admits a Ricci-Yamabe soliton, then it becomes a perfect fluid
spacetime and the divergence of the Weyl tensor vanishes.

In [11], GRW spacetimes were investigated in light of perfect fluid spacetimes. It was established that a
perfect fluid spacetime with nonvanishing vorticity whose associated scalars are constant along the velocity
vector field becomes a GRW spacetime. Among others, it was also shown that a Ricci parallel perfect fluid
spacetime is either a GRW spacetime or a static spacetime. Also, it was proved that in a conformally
semisymmetric GRW spacetime of dimension 4, the scalar curvature vanishes and the spacetime is locally
isometric to the Minkowski spacetime, provided the electric part of the Weyl tensor vanishes.

In [12], U.C. De and F. Farrell proved that a Ricci symmetric spacetime is a perfect fluid spacetime if
and only if it is a GRW spacetime. Consequently, they established that under certain constraints on the
associated scalar, such a spacetime turns into a static spacetime. Also, it was proved that a semi-symmetric
as well as pseudo-Ricci symmetric GRW spacetime is a perfect fluid spacetime. The conformally flat GRW
spacetime as a solution of f (R⋆)−gravity theory was examined and the physical relevance was described.

In [18], the authors proved that a perfect fluid spacetime of dimension n ≥ 4 with irrotational velocity
vector field and null divergence of the Weyl tensor is a GRW spacetime with an Einstein fiber. First condition
is verified whenever pressure and energy density are related by an equation of state. The contraction of the
Weyl tensor with the velocity vector field is zero. Conversely, a GRW spacetime with null divergence of the
Weyl tensor is a perfect fluid spacetime.

In this paper, we explore an approach by considering the fiber of the GRW spacetime as a statistical man-
ifold. This approach allows us to endow a statistical structure on the GRW spacetime, thereby broadening
the scope of its geometric and physical interpretation. The fusion of statistical manifolds with the GRW
spacetime opens up new ways for analyzing the complicated relationships between curvature, entropy,
and information geometry in the context of cosmological models. Our study proceeds by investigating
the geometry of spacelike hypersurfaces of the GRW spacetime and examine the Ricci soliton structures
on the spacelike hypersurfaces of the GRW spacetime. By analyzing the Ricci soliton in the setting of a
statistical structure, we uncover new insights into the behavior of these solitons in the GRW spacetimes.
In particular, we derive the necessary and sufficient conditions for the existence of a statistical Ricci soliton
on the statistical spacelike hypersurface of the GRW spacetime. When the fiber of the GRW spacetime con-
stitutes a statistical Ricci soliton, we obtain the necessary and sufficient conditions for the GRW spacetime
to constitute an almost Ricci soliton. Additionally, when both the fiber and the GRW spacetime constitute
Ricci solitons, we derive the necessary and sufficient conditions for the statistical spacelike hypersurface to
exhibit a Ricci soliton structure.

2. Statistical Manifolds

Let (M, 1) be an (n + 2)−dimensional semi-Riemannian manifold equipped with a semi-Riemannian
metric 1 of constant index q, and let ∇ be a torsion free affine connection on M. A pair (∇, 1) is referred to
as a statistical structure on M if the Codazzi equation

(∇U1)(V,W) = (∇V1)(U,W) (1)

holds for any vector fields U,V,W ∈ Γ(TM). In this case, the triplet (M, 1,∇) is referred to be an indefinite
statistical manifold. A torsion free affine connection ∇

∗

on M is called the dual connection of ∇with respect to
1 if it satisfies

U1(V,W) = 1(∇UV,W) + 1(V,∇
∗

UW), (2)

for any vector fields U,V,W ∈ Γ(TM). If the pair (∇, 1) constitutes a statistical structure on the semi-
Riemannian manifold M, then the pair (∇

∗

, 1) also forms a statistical structure on M. Furthermore (∇
∗

)∗ = ∇.
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Therefore, we denote an indefinite statistical manifold also as (M, 1,∇,∇
∗

). It is easy to verify the following
identity

(∇U1)(V,W) + (∇
∗

U1)(V,W) = 0,

for any vector fields U,V,W ∈ Γ(TM).

Let ∇
1

be the Levi-Civita connection of 1. Then ∇
1
=

1
2

(∇ + ∇
∗

), and from (1) it is evident that (M, 1,∇
1
)

always forms a statistical manifold, and furthermore (∇
1
)∗ = ∇

1
.

Let (∇, 1) be a statistical structure on M. Furuhata [14] defined a difference tensor field K ∈ Γ(TM
(1,2)

)
on M as

K (U,V) = ∇UV − ∇
1

UV,

which satisfies the following identities

K (U,V) = K (V,U), 1(K (U,V),W) = 1(V,K (U,W)), (3)

for any U,V,W ∈ Γ(TM). Conversely, for a semi-Riemannian metric 1, ifK ∈ Γ(TM
(1,2)

) satisfies (3), then the

pair (∇ = ∇
1
+K , 1) forms a statistical structure. Furthermore

K = ∇
1
− ∇

∗

=
1
2

(
∇ − ∇

∗
)
.

We denote the curvature tensor fields of ∇ and ∇
∗

by R and R
∗

, respectively. The statistical curvature
tensor field S of the statistical structure (∇, 1) is defined by

S(U,V)W =
1
2

(
R(U,V)W + R

∗

(U,V)W
)
, (4)

for any U,V,W ∈ Γ(TM). It is easy to verify that

1(S(U,V)W,Z) = −1(W,S(U,V)Z)

and

S(U,V)W + S(V,W)U + S(W,U)V = 0,

hold for any U,V,W,Z ∈ Γ(TM).
Consider an orthonormal basis {e1, . . . , en+2} for TpM at a point p ∈ M. Now, for a 2−dimensional non-

degenerate plane Π spanned by {ei, e j} in TpM, the statistical sectional curvature of the plane Π is denoted
by KS

Π
and is defined as

KS
Π =

1(S(ei, e j)e j, ei)

1(ei, ei)1(e j, e j) − 1(ei, e j)2 .

A statistical manifold (M, 1,∇,∇
∗

) is said to have constant statistical sectional curvature c ∈ R if c is
constant for all points p and planes Π. Moreover, the statistical sectional curvature of a statistical manifold
(M, 1,∇,∇

∗

) is constant c [13] if and only if

S(U,V)W = c
{
1(V,W)U − 1(U,W)V

}
,

for any U,V,W ∈ Γ(TM).
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3. Spacelike Hypersurfaces of GRW spacetimes

An (n+ 2)−dimensional Generalized Robertson-Walker (GRW) spacetime can be described as a warped
product manifold denoted as M = I ×ϱ F. In this construction, the base is represented by an open interval
I of the real line R, the fiber F is an (n + 1)−dimensional Riemannian manifold with the metric 1F, and the
warping function ϱ is a smooth, positive function defined on I. The GRW spacetime itself is a Lorentzian
manifold equipped with a Lorentzian metric denoted by 1, which can be expressed as

1 = −dt2 + ϱ2(t)1F. (5)

Here, t serves as a natural parameter on the real line R. Let πI and πF denote the natural projections
of I × F onto I and F, respectively. Define L(I) and L(F) as the sets of horizontal and vertical lifts of vector

fields on I and F to I × F, respectively. Let ∂t ∈ L(I) be the horizontal lift of the standard vector field
d
dt

on I.

For any vector field U tangent to M, we have the following unique orthogonal decomposition

U = ϕU∂t +UF, (6)

where ϕU = −1(U, ∂t) and UF is the lift of the projection of U onto the fiber F.
In this article, we consistently employ an overline to signify the lifting of vector fields and functions

from F to M, without making a distinction between objects in I and their corresponding lifts.

Let ∇
1

be the Levi-Civita connection of the GRW spacetime M = I ×ϱ F and ∇1F be the Levi-Civita
connection of the fiber (F, 1F). The following lemma from [19] is well known regarding this Levi-Civita
connection of the GRW spacetime M.

Lemma 3.1. Let ∇
1

be the Levi-Civita connection of the GRW spacetime M = I ×ϱ F. Then, for the vector fields X,Y
in L(F), we have

(i) ∇
1

∂t
∂t = 0,

(ii) ∇
1

∂t
X = ∇

1

X∂t = (ln ϱ)′X,

(iii) Horizontal component of ∇
1

XY = 1(X,Y)(ln ϱ)′∂t,

(iv) Vertical component of ∇
1

XY is the lift of the Levi-Civita connection ∇1F

X Y on the fiber F.

Let the fiber (F,∇F = ∇1F +KF,∇∗F, 1F) be a statistical manifold. DefineK ∈ Γ(TM) by

K (UF,VF) = KF(UF,VF), K (∂t,UF) = K (UF, ∂t) = 0, K (∂t, ∂t) = ν∂t, (7)

where UF,VF
∈ Γ(TF), ν is a smooth function defined on I. Set ∇ = ∇

1
+K . Using (6) and (7), we derive

1(K (U,V),W) = ϱ21F(KF(UF,VF),WF) − νϕUϕVϕW , (8)

for any U,V,W ∈ Γ(TM). SinceKF satisfies the identities in (3), therefore from (8), it is easy to verify thatK
also satisfies the identities in (3) and, consequently, (∇, 1) is a statistical structure on the GRW spacetime M.

Let∇
∗

be a dual connection of the statistical connection∇with respect to 1. Then (M = I×ϱF, 1,∇ = ∇
1
+K ,∇

∗

)
is an indefinite statistical manifold, whereK holds the identities in (7).
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Example 3.2. Consider the upper half-space model of hyperbolic space F = {(x, y, z) ∈ R3 : z > 0} with the
Riemannian metric

1F =
1
z2

(
dx2 + dy2 + dz2

)
.

By straightforward calculations, we obtain

∇
1F

∂x∂x =
1
z
∂z, ∇

1F

∂x∂y = 0, ∇
1F

∂x∂z = −
1
z
∂x,

∇
1F

∂y∂x = 0, ∇
1F

∂y∂y =
1
z
∂z, ∇

1F

∂y∂z = −
1
z
∂y,

∇
1F

∂z∂x = −
1
z
∂x, ∇1F

∂z∂y = −
1
z
∂y, ∇1F

∂z∂z = −
1
z
∂z.

For the Riemannian metric 1F of (F, 1F), we define the difference tensor fieldKF
∈ Γ(TF) on F by

K
F(∂x, ∂x) =

1
z
∂z, KF(∂x, ∂y) = 0, K

F(∂x, ∂z) =
1
z
∂x,

K
F(∂y, ∂x) = 0, K

F(∂y, ∂y) =
1
z
∂z, KF(∂y, ∂z) =

1
z
∂y,

K
F(∂z, ∂x) =

1
z
∂x, KF(∂z, ∂y) =

1
z
∂y, KF(∂z, ∂z) =

2
z
∂z.

It is straightforward to verify that the difference tensor fieldKF satisfies the following identities

K
F(UF,VF) = KF(VF,UF), 1F(KF(UF,VF),WF) = 1F(VF,KF(UF,WF)), (9)

for any UF,VF,WF
∈ Γ(TF). Thus, (∇F = ∇1F +KF, 1F) is a statistical structure on (F, 1F) and it is given by

∇
F
∂x∂x =

2
z
∂z, ∇F

∂x∂y = 0, ∇
F
∂x∂z = 0,

∇
F
∂y∂x = 0, ∇

F
∂y∂y =

2
z
∂z, ∇F

∂y∂z = 0,

∇
F
∂z∂x = 0, ∇

F
∂z∂y = 0, ∇

F
∂z∂z =

1
z
∂z.

Using ∇∗F = ∇1F −K
F, the dual statistical connection ∇∗F of ∇F with respect to 1F is given by

∇
∗F
∂x∂x = 0, ∇

∗F
∂x∂y = 0, ∇

∗F
∂x∂z = −

2
z
∂x,

∇
∗F
∂y∂x = 0, ∇

∗F
∂y∂y = 0, ∇

∗F
∂y∂z = −

2
z
∂y,

∇
∗F
∂z∂x = −

2
z
∂x, ∇∗F∂z∂y = −

2
z
∂y, ∇∗F∂z∂z = −

3
z
∂z.

Thus, (F, 1F,∇F = ∇1F +KF,∇∗F) is a statistical manifold.

Let M = I ×cosh t F be a warped product manifold, where the base I is an open interval of the real line R, the fiber
(F, 1F) is a Riemannian manifold, and the warping function cosh t is defined on I. Let the warped product manifold
M = I ×cosh t F be endowed with metric tensor 1 which is given by

1 = −dt2 + (cosh t)21F, (10)
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where t serves as a natural parameter on the base I. Let ∇
1

denote the Levi-Civita connection of the warped product
manifold (M = I ×cosh t F, 1) with respect to the metric 1. Then, by straightforward calculations, we obtain

∇
1

∂t∂t = 0, ∇
1

∂t∂x =
sinh t
cosh t

∂x, ∇
1

∂t∂y =
sinh t
cosh t

∂y, ∇
1

∂t∂z =
sinh t
cosh t

∂z,

∇
1

∂x∂t =
sinh t
cosh t

∂x, ∇
1

∂x∂x =
sinh t cosh t

z2 ∂t +
1
z
∂z, ∇

1

∂x∂y = 0, ∇
1

∂x∂z = −
1
z
∂x,

∇
1

∂y∂t =
sinh t
cosh t

∂y, ∇
1

∂y∂x = 0, ∇
1

∂y∂y =
sinh t cosh t

z2 ∂t +
1
z
∂z, ∇

1

∂y∂z = −
1
z
∂y,

∇
1

∂z∂t =
sinh t
cosh t

∂z, ∇
1

∂z∂x = −
1
z
∂x, ∇

1

∂z∂y = −
1
z
∂y, ∇

1

∂z∂z =
sinh t cosh t

z2 ∂t −
1
z
∂z.

For the Lorentzian metric 1 of the warped product manifold (M = I ×cosh t F, 1), we define the difference tensor
fieldK ∈ Γ(TM) on M by

K (UF,VF) = KF(UF,VF), K (∂t,UF) = K (UF, ∂t) = 0, K (∂t, ∂t) = ν∂t, (11)

where UF,VF
∈ Γ(TF) and ν is a smooth function defined on I. For any vector field U ∈ Γ(TM), we can decompose

U = UF + ϕU∂t, where ϕU = −1(U, ∂t). Utilizing (10) and (11), we obtain

1(K (U,V),W) = (cosh t)21F(KF(UF,VF),WF) − νϕUϕVϕW ,

for any U,V,W ∈ Γ(TM). SinceKF satisfies the identities in (9),K also satisfies the identities in (9) and consequently

(∇ = ∇
1
+K , 1) is a statistical structure on (M, 1). Therefore

∇∂t∂t = ν∂t, ∇∂t∂x =
sinh t
cosh t

∂x, ∇∂t∂y =
sinh t
cosh t

∂y, ∇∂t∂z =
sinh t
cosh t

∂z,

∇∂x∂t =
sinh t
cosh t

∂x, ∇∂x∂x =
sinh t cosh t

z2 ∂t +
2
z
∂z, ∇∂x∂y = 0, ∇∂x∂z = 0,

∇∂y∂t =
sinh t
cosh t

∂y, ∇∂y∂x = 0, ∇∂y∂y =
sinh t cosh t

z2 ∂t +
2
z
∂z, ∇∂y∂z = 0,

∇∂z∂t =
sinh t
cosh t

∂z, ∇∂z∂x = 0, ∇∂z∂y = 0, ∇∂z∂z =
sinh t cosh t

z2 ∂t +
1
z
∂z.

The dual statistical connection ∇
∗

of ∇ with respect to 1 is given by

∇
∗

∂t∂t = −ν∂t, ∇
∗

∂t∂x =
sinh t
cosh t

∂x, ∇
∗

∂t∂y =
sinh t
cosh t

∂y, ∇
∗

∂t∂z =
sinh t
cosh t

∂z,

∇
∗

∂x∂t =
sinh t
cosh t

∂x, ∇
∗

∂x∂x =
sinh t cosh t

z2 ∂t, ∇
∗

∂x∂y = 0, ∇
∗

∂x∂z = −
2
z
∂x,

∇
∗

∂y∂t =
sinh t
cosh t

∂y, ∇
∗

∂y∂x = 0, ∇
∗

∂y∂y =
sinh t cosh t

z2 ∂t, ∇
∗

∂y∂z = −
2
z
∂y,

∇
∗

∂z∂t =
sinh t
cosh t

∂z, ∇
∗

∂z∂x = −
2
z
∂x, ∇

∗

∂z∂y = −
2
z
∂y, ∇

∗

∂z∂z =
sinh t cosh t

z2 ∂t −
3
z
∂z.

Thus, (M = I ×cosh t F, 1,∇ = ∇
1
+K ,∇

∗

) is an indefinite statistical manifold.

Next, by applying (6), (7) and Lemma 3.1, we have following observations.
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Lemma 3.3. Let (M = I ×ϱ F, 1,∇ = ∇
1
+K ,∇

∗

) be an indefinite statistical manifold such that the fiber (F, 1F) of the
GRW spacetime M has the statistical structure (1F,∇F = ∇1F +KF,∇∗F). Then

∇UV = ∇F
UF VF +

ϱ′

ϱ
1(UF,VF)∂t +

ϱ′

ϱ
(ϕUVF + ϕVUF) +

(
U(ϕV) + νϕUϕV

)
∂t (12)

and

∇
∗

UV = ∇∗FUF VF +
ϱ′

ϱ
1(UF,VF)∂t +

ϱ′

ϱ
(ϕUVF + ϕVUF) +

(
U(ϕV) − νϕUϕV

)
∂t, (13)

for any U,V ∈ Γ(TM). In particular

∇∂t∂t = ν∂t,

∇UF∂t = ∇∂t U
F =

ϱ′

ϱ
UF,

∇UF VF = ∇F
UF VF +

ϱ′

ϱ
1(UF,VF)∂t

(14)

and

∇
∗

∂t
∂t = −ν∂t,

∇
∗

UF∂t = ∇
∗

∂t
UF =

ϱ′

ϱ
UF,

∇
∗

UF VF = ∇∗FUF VF +
ϱ′

ϱ
1(UF,VF)∂t.

(15)

Remark 3.4. From this point forward, we will refer to “an indefinite statistical manifold (M = I ×ϱ F, 1,∇ =

∇
1
+K ,∇

∗

) where the fiber (F, 1F) of the GRW spacetime M has the statistical structure (∇F = ∇1F +KF,∇∗F, 1F)”

simply as “a GRW spacetime (M = I ×ϱ F, 1,∇ = ∇
1
+K ,∇

∗

) endowed with a statistical structure”.

We denote the curvature tensor fields of ∇, ∇
∗

, ∇F and ∇∗F by R, R
∗

, RF and R∗F, respectively. Then, using
Lemma 3.3, we have following results which will be used later.

Lemma 3.5. Let (M = I ×ϱ F, 1,∇ = ∇
1
+K ,∇

∗

) be a GRW spacetime endowed with a statistical structure. Then

R(UF,VF)∂t = 0, R(UF, ∂t)∂t =
νϱ′ − ϱ′′

ϱ
UF,

R(UF, ∂t)VF = −
ϱ′′ + νϱ′

ϱ
1(UF,VF)∂t,

R(UF,VF)WF = RF(UF,VF)WF +
(ϱ′
ϱ

)2(
1(VF,WF)UF

− 1(UF,WF)VF
)

and

R
∗

(UF,VF)∂t = 0, R
∗

(UF, ∂t)∂t = −
νϱ′ + ϱ′′

ϱ
UF,

R
∗

(UF, ∂t)VF = −
ϱ′′ − νϱ′

ϱ
1(UF,VF)∂t,

R
∗

(UF,VF)WF = R∗F(UF,VF)WF +
(ϱ′
ϱ

)2(
1(VF,WF)UF

− 1(UF,WF)VF
)
,

for any U,V,W ∈ Γ(TM).
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We denote by S the statistical curvature tensor field of a GRW spacetime (M = I ×ϱ F, 1,∇ = ∇
1
+K ,∇

∗

)
endowed with a statistical structure. Consequently, from Lemma 3.5, we obtain the following results.

Lemma 3.6. Let (M = I ×ϱ F, 1,∇ = ∇
1
+K ,∇

∗

) be a GRW spacetime endowed with a statistical structure. Then

S(∂t, ∂t)∂t = 0, S(∂t, ∂t)UF = 0, S(UF,VF)∂t = 0,

S(UF, ∂t)∂t = −
ϱ′′

ϱ
UF,

S(UF, ∂t)VF = −
ϱ′′

ϱ
1(UF,VF)∂t,

S(UF,VF)WF = SF(UF,VF)WF +
(ϱ′
ϱ

)2(
1(VF,WF)UF

− 1(UF,WF)VF
)
,

for any U,V,W ∈ Γ(TM), where SF is the statistical curvature tensor field of the statistical structure (∇F, 1F).

Furthermore, using Lemma 3.6, we get

S(U,V)W = SF(UF,VF)WF +
(ϱ′
ϱ

)2(
1(VF,WF)UF

− 1(UF,WF)VF
)

+
ϱ′′

ϱ

(
1(VF,WF)ϕU − 1(UF,WF)ϕV

)
∂t

+
ϱ′′

ϱ

(
ϕUϕWVF

− ϕVϕWUF
)
.

From (6), we know

1(U,V) = −ϕUϕV + 1(UF,VF), (16)

for any U,V ∈ Γ(TM); therefore we further have

S(U,V)W = SF(UF,VF)WF +
(ϱ′
ϱ

)2(
1(V,W)U − 1(U,W)V

)
+

(ϱ′)2
− ϱϱ′′

ϱ2

{(
ϕVϕWU − ϕUϕWV

)
+
(
1(U,W)ϕV − 1(V,W)ϕU

)
∂t

}
. (17)

Let the statistical manifold (F,∇F = ∇1F +KF,∇∗F, 1F) be of constant statistical curvature c. Then

SF(UF,VF)WF = c
{
1F(VF,WF)UF

− 1F(UF,WF)VF
}
. (18)

Using (5) and (16) in (18), we obtain

SF(UF,VF)WF =
c
ϱ2

{(
1(V,W)U − 1(U,W)V

)
+
(
ϕVϕWU − ϕUϕWV

)
+
(
1(U,W)ϕV − 1(V,W)ϕU

)
∂t

}
. (19)

Hence, from (17) and (19), we derive the following result for later uses.

Theorem 3.7. Let (M = I ×ϱ F, 1,∇ = ∇
1
+K ,∇

∗

) be a GRW spacetime endowed with a statistical structure. If the
statistical manifold (F, 1F,∇F = ∇1F +KF,∇∗F) is of constant statistical curvature c, then

S(U,V)W =
c + (ϱ′)2

ϱ2

(
1(V,W)U − 1(U,W)V

)
+

(ϱ′)2
− ϱϱ′′ + c
ϱ2

{(
ϕVϕWU − ϕUϕWV

)
+
(
1(U,W)ϕV − 1(V,W)ϕU

)
∂t

}
, (20)

for any U,V,W ∈ Γ(TM).
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Let Ric
S

denote the statistical Ricci tensor of a GRW spacetime (M = I ×ϱ F, 1,∇ = ∇
1
+K ,∇

∗

) endowed
with a statistical structure, defined by the statistical curvature tensor field S. Consider an orthonormal
frame of fields {e1, . . . , en+1, ∂t} on M. Then for any U,V ∈ Γ(TM), we have

Ric
S
(U,V) =

n+1∑
i=1

1(S(ei,U)V, ei) − 1(S(∂t,U)V, ∂t). (21)

Since {e1, . . . , en+1, ∂t} is an orthonormal frame of fields on M, therefore from (5), {ϱe1, . . . , ϱen+1} is an or-
thonormal frame of fields on the fiber F. Hence by straightforward calculations, utilizing (17) and (21), we
obtain the following result.

Theorem 3.8. Let (M = I ×ϱ F, 1,∇ = ∇
1
+K ,∇

∗

) be a GRW spacetime endowed with a statistical structure. Then

Ric
S
(U,V) = RicF(UF,VF) + n

(ϱ′
ϱ

)2(
1(U,V) + ϕUϕV

)
+
ϱ′′

ϱ

(
1(U,V) − nϕUϕV

)
, (22)

for any U,V ∈ Γ(TM), where RicF(UF,VF) denotes the statistical Ricci tensor of the fiber F.
Moreover, if the statistical manifold (F, 1F,∇F = ∇1F +KF,∇∗F) is of constant statistical curvature c, then

Ric
S
(U,V) = n

(c + (ϱ′)2
ϱ2

)(
1(U,V) + ϕUϕV

)
+
ϱ′′

ϱ

(
1(U,V) − nϕUϕV

)
, (23)

for any U,V ∈ Γ(TM).

LetΠ = span{U,V} be a non-degenerate plane spanned by orthonormal vector fields U,V ∈ Γ(TM). Then
using (17), the statistical sectional curvature KS

Π
(U,V) of the plane Π is given by

KS
Π(U,V) = 1(SF(UF,VF)VF,UF) +

(ϱ′
ϱ

)2(
1(U,U)1(V,V) − 1(U,V)2

)
+

(ϱ′)2
− ϱϱ′′

ϱ2

{(
ϕ2

V1(U,U) − ϕUϕV1(U,V)
)
−

(
1(U,V)ϕV − 1(V,V)ϕU

)
ϕU

}
.

This further implies

KS
Π(U,V) = 1(SF(UF,VF)VF,UF) +

(ϱ′
ϱ

)2
+

(ϱ′)2
− ϱϱ′′

ϱ2 (ϕ2
U + ϕ

2
V). (24)

On the other hand, using (5) and (16), we derive

KF
Π(UF,VF) =

1F(SF(UF,VF)VF,UF)
1F(UF,UF)1F(VF,VF) − 1F(UF,VF)2

= ϱ2 1(SF(UF,VF)VF,UF)(
1(U,U) + ϕ2

U

)(
1(V,V) + ϕ2

V

)
−

(
1(U,V) + ϕUϕV

)2
= ϱ2 1(S

F(UF,VF)VF,UF)
1 + ϕ2

U + ϕ
2
V

, (25)

for any orthonormal vector fields U,V. Hence, substituting (25) in (24), we obtain

KS
Π(U,V) =

(1 + ϕ2
U + ϕ

2
V)

ϱ2 KF
Π(UF,VF) +

(ϱ′
ϱ

)2
(1 + ϕ2

U + ϕ
2
V)

−
ϱ′′

ϱ
(ϕ2

U + ϕ
2
V).

Consequently from the previous expression, we have the following result.
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Theorem 3.9. Let (M = I ×ϱ F, 1,∇ = ∇
1
+K ,∇

∗

) be a GRW spacetime endowed with a statistical structure. Let
the statistical manifold (F, 1F,∇F = ∇1F +KF,∇∗F) be of constant statistical curvature c. Then

KS
Π(U,V) = α + β(ϕ2

U + ϕ
2
V),

where

α =
c +
(
ϱ′
)2

ϱ2 and β =
c +
(
ϱ′
)2
− ϱϱ′′

ϱ2 . (26)

Let M be an (n+1)−dimensional manifold. An immersion ι : M→M, where M is the GRW spacetime, is
said to be spacelike if the Lorentzian metric 1 given in (5) induces, via ι, a Riemannian metric 1 on M. In this
case, M is called a spacelike hypersurface of M. Since for the GRW spacetime M, the coordinate vector field
∂t is globally defined and timelike, then M is time-orientable. Therefore, for any spacelike hypersurface M
of M, there exists a unique unitary timelike normal vector field N globally defined on M with the same
time-orientation as ∂t, i.e., 1(N , ∂t) < 0. Utilizing the reverse Cauchy-Schwarz inequality [19], we have
1(N , ∂t) = − coshφ ≤ −1, and the equality holds at a point p ∈ M if and only if N = ∂t, where φ represents
the hyperbolic angle betweenN and ∂t.

In the GRW spacetime there exists a distinguished family of spacelike hypersurfaces, known as its
spacelike slices. A spacelike slice in the GRW spacetime M = I ×ϱ F corresponds to a spacelike hypersurface
defined by a constant value of t. Consequently, a spacelike slice is given by π−1

I (t0) = {t0} ×ϱ(t0) F, for t0 ∈ I.
A spacelike hypersurface in M is a spacelike slice if and only if the hyperbolic angle φ is identically zero.

Assume that (M, 1) is a spacelike hypersurface of a GRW spacetime (M = I ×ϱ F, 1,∇ = ∇
1
+ K ,∇

∗

)
endowed with a statistical structure. Then, the local Gauss-Weingarten formulas on TM are

∇XY = ∇XY + B(X,Y)N , ∇XN = −ANX + τ(X)N , (27)

∇
∗

XY = ∇∗XY + B∗(X,Y)N , ∇
∗

XN = −A∗
N

X + τ∗(X)N , (28)

for any X,Y ∈ Γ(TM). Here, ∇ and ∇∗ denote the induced connections of ∇ and ∇
∗

on the spacelike
hypersurface (M, 1), respectively. Obviously, (M, 1,∇,∇∗) forms a statistical manifold, with ∇∗ being the
dual connection of ∇ with respect to the induced metric 1 from 1. The shape operators AN and A∗

N
on TM

are associated with the normal vector fieldN , while τ and τ∗ are 1−forms defined on TM.
The normal vector field N is a unitary timelike vector field and then the local second fundamental

forms B and B∗ on TM are expressed as B(X,Y) = −1(∇XY,N) and B∗(X,Y) = −1(∇
∗

XY,N), respectively. By
differentiating 1(N ,N) along X, we have X1(N ,N) = 1(∇XN ,N)+1(N ,∇

∗

XN). SinceN is a unitary timelike
vector field, by applying equations (27) and (28), it yields

τ = −τ∗. (29)

In a similar manner, applying (2), we obtain

B(X,Y) = −1(A∗
N

X,Y), B∗(X,Y) = −1(ANX,Y), (30)

for any X,Y ∈ Γ(TM).

Let (M, 1,∇,∇∗) be a statistical spacelike hypersurface of a GRW spacetime (M = I×ϱ F, 1,∇ = ∇
1
+K ,∇

∗

)
endowed with a statistical structure. The spacelike hypersurface M is said to be totally umbilical with respect
to ∇ (or ∇

∗

) if the condition B = H ⊗ 1 (or B∗ = H∗ ⊗ 1) is satisfied. Additionally, M is described as totally
geodesic with respect to ∇ (or ∇

∗

) if its local second fundamental form B (or B∗) associated with ∇ (or ∇
∗

)
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vanishes identically. The vector fieldsH andH∗ are referred to as the mean curvature vector fields on M and
are defined respectively by

H =
1

n + 1

n+1∑
i=1

B(ei, ei) andH∗ =
1

n + 1

n+1∑
i=1

B∗(ei, ei), (31)

where {e1, . . . , en+1} is an orthonormal frame on M.

Let (M, 1,∇,∇∗) be a statistical spacelike hypersurface of a GRW spacetime (M = I×ϱ F, 1,∇ = ∇
1
+K ,∇

∗

)
endowed with a statistical structure. Let R and R∗ denote the curvature tensors of the induced connections
∇ and ∇∗ on M, respectively. By applying equations (27), (28), and (4), and performing straightforward
calculations, we obtain the following significant expression

21(S(X,Y)Z,W) = 21(S(X,Y)Z,W) + B(Y,Z)B∗(X,W) − B(X,Z)B∗(Y,W)
+B∗(Y,Z)B(X,W) − B∗(X,Z)B(Y,W), (32)

for any X,Y,Z,W ∈ Γ(TM), where S denotes the statistical curvature tensor field on the statistical spacelike
hypersurface M. Let RicS denote the induced statistical Ricci tensor of the statistical spacelike hypersurface

M of the GRW spacetime (M = I×ϱ F, 1,∇ = ∇
1
+K ,∇

∗

) endowed with a statistical structure. Let {e1, . . . , en+1}

be an orthonormal frame on M. Then

RicS(X,Y) =
n+1∑
i=1

1(S(ei,X)Y, ei),

for any X,Y ∈ Γ(TM). Since N is a globally defined, unique unitary timelike normal vector field on M, by
applying (32), we obtain

RicS(X,Y) =
( n+1∑

i=1

1(S(ei,X)Y, ei) − 1(S(N ,X)Y,N)
)
+ 1(S(N ,X)Y,N)

−
1
2

n+1∑
i=1

(
B(X,Y)B∗(ei, ei) − B(ei,Y)B∗(X, ei) + B∗(X,Y)B(ei, ei)

−B∗(ei,Y)B(X, ei)
)
.

Further, utilizing (30) and (31), it leads to

RicS(X,Y) = Ric
S
(X,Y) + 1(S(N ,X)Y,N) +

1
2

(
1(ANX,A∗

N
Y) + 1(ANY,A∗

N
X)

−(n + 1)
(
HB∗(X,Y) +H∗B(X,Y)

))
, (33)

for any X,Y ∈ Γ(TM).

Let QS and Q
S

denote self-adjoint operators on M and M, respectively. They are defined by RicS(X,Y) =

1(QSX,Y) for any X,Y ∈ Γ(TM), and Ric
S
(U,V) = 1(Q

S
U,V) for any U,V ∈ Γ(TM). In particular, we denote

Ric
S
(X,Y) = 1(Q

S
|M X,Y). Then using (30) in (33), we obtain the following result.

Theorem 3.10. Let (M, 1,∇,∇∗) be a statistical spacelike hypersurface of a GRW spacetime (M = I ×ϱ F, 1,∇ =

∇
1
+K ,∇

∗

) endowed with a statistical structure. Then

QSX = Q
S
|M X − S(N ,X)N +

1
2

(
(AN ◦ A∗

N
)X + (A∗

N
◦ AN )X

)
+

1
2

(n + 1)
(
HANX +H∗A∗

N
X
)
, (34)

for any vector field X ∈ Γ(TM), where AN and A∗N are the corresponding shape operators.
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LetΩ
S

andΩS denote the statistical scalar curvatures of the GRW spacetime (M = I×ϱF, 1,∇ = ∇
1
+K ,∇

∗

)
endowed with a statistical structure and its statistical spacelike hypersurface (M, 1,∇,∇∗), respectively.
Therefore

ΩS =

n+1∑
i=1

RicS(ei, ei),

and by using (33), we get

ΩS =

n+1∑
i=1

Ric
S
(ei, ei) − Ric

S
(N ,N) + Ric

S
(N ,N) +

n+1∑
i=1

1(S(N , ei)ei,N)

+
1
2

n+1∑
i=1

(
21(ANei,A∗Nei) − (n + 1)

(
HB∗(ei, ei) +H∗B(ei, ei)

))
.

This further gives

ΩS = Ω
S
+ 2Ric

S
(N ,N) +

n+1∑
i=1

1(ANei,A∗Nei) − (n + 1)2HH∗.

Using (30), it is straightforward to verify that 1(ANei,A∗Nei) = 1(A∗NANei, ei) = 1(ANA∗
N

ei, ei). Conse-
quently, the above expression simplifies to

ΩS = Ω
S
+ 2Ric

S
(N ,N) + ∥AN ◦ A∗

N
∥ − (n + 1)2HH∗,

where ∥AN ◦ A∗
N
∥ =

n+1∑
i=1

1(ANA∗
N

ei, ei).

4. Ricci Solitons on Spacelike Hypersurfaces

A natural generalization of an Einstein metric is a Ricci soliton [15]. On a Riemannian manifold (M, 1),

a Ricci soliton [9] is a stationary solution of the Ricci flow equation
∂
∂t
1(t) = −2Ric(t), given by 1(t) = χ(t)π∗t

with 1(0) = 1, where Ric(t) is the Ricci tensor of the evolving metric 1(t), πt represents diffeomorphisms of
M, and χ(t) is the scaling function. Perelman used the concept of Ricci solitons to solve the long-awaited
Poincaré conjecture, which was posed in 1904. Since then, the notion of Ricci solitons has become a topic
of interest for mathematicians and physicists. A complete Riemannian manifold (M, 1) is considered a
Ricci soliton if there exists a vector field ξ ∈ Γ(TM), referred to as the potential vector field, satisfying the
following relation

Ric +
1
2

£ξ1 = λ1,

where £ξ1 denotes the Lie derivative of 1 along ξ, Ric is the Ricci tensor of M and λ is constant. The Ricci
soliton is denoted by (M, 1, ξ, λ). A Ricci soliton is classified as shrinking, steady, or expanding if λ is
positive, zero, or negative, respectively. A Ricci soliton is trivial if ξ is zero or Killing, which implies that
the metric is Einstein. The concept of a Ricci soliton is further generalized to an almost Ricci soliton [22],
where the condition of λ being constant is relaxed.

Lemma 4.1. Let (M = I ×ϱ F, 1,∇ = ∇
1
+K ,∇

∗

) be a GRW spacetime endowed with a statistical structure. Then

(£W1)(U,V) = ϱ2(£WF1F)(UF,VF) −
(
U(ϕW)

)
ϕV −

(
V(ϕW)

)
ϕU

+2ϱϱ′ϕW1F(UF,VF), (35)

for any vector fields U,V,W ∈ Γ(TM).
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Proof. It is known that (£W1)(U,V) = 1(∇
1

UW,V) + 1(U,∇
1

VW), for any vector fields U,V,W ∈ Γ(TM). Since

∇
1
=

1
2

(∇ + ∇
∗

) and using the Codazzi equation, it implies that

(£W1)(U,V) =
1
2

(
1(∇UW,V) + 1(U,∇VW)

)
+

1
2

(
1(∇

∗

UW,V) + 1(U,∇
∗

VW)
)

= 1(∇UW,V) + 1(U,∇
∗

VW). (36)

Utilizing (12) and (13), we obtain the required relation (35).

Chen [7] provided a useful characterization theorem, stating that a Lorentzian manifold M of dimension
n ≥ 3 is a local GRW spacetime M = I ×ϱ F if and only if it possesses a timelike concircular vector field.
Chen demonstrated that the vector field ζ = ϱ∂t satisfies this requirement.

Let (M = I ×ϱ F, 1,∇ = ∇
1
+K ,∇

∗

) be a GRW spacetime endowed with a statistical structure. Utilizing
equations (6), (14), and (15), we have

∇Uζ = ϱ
′U + νϕUζ and ∇

∗

Uζ = ϱ
′U − νϕUζ, (37)

for any vector field U ∈ Γ(TM).

Let (M, 1,∇,∇∗) be a statistical spacelike hypersurface of a GRW spacetime (M = I×ϱ F, 1,∇ = ∇
1
+K ,∇

∗

)
endowed with a statistical structure. Then, the closed conformal timelike vector field ζ can be expressed
as ζ = ζT + θN , where θ = −1(ζ,N) < 0 is the support function on M and ζT is the tangential component
of ζ. In this context, θ is given by θ = ϱ coshφ. Similarly, the vector field ∂t can also be represented as
∂t = (∂t)T + coshφN , where (∂t)T denotes the tangential component of ∂t andN = NF + coshφ∂t. One has
1(N ,N) = 1(∂t, ∂t) = −1, 1(NF,NF) = 1((∂t)T, (∂t)T) = sinh2 φ.

Remark 4.2. Utilizing (35), we have

(£ζ1)(U,V) = −
(
U(ϕζ)

)
ϕV −

(
V(ϕζ)

)
ϕU + 2ϱϱ′ϕζ1F(UF,VF),

for any vector fields U,V ∈ Γ(TM). It is known that ϕζ = −1(ζ, ∂t) = ϱ, therefore using (16), it follows that

(£ζ1)(U,V) = 2ϱ′1(U,V). (38)

Hence, ζ is a conformal vector field on M with conformal factor ϱ′.

Next, from (27), we have

∇Xζ = ∇Xζ
T + B(X, ζT)N + (Xθ)N + θ(−ANX + τ(X)N),

for any vector field X ∈ Γ(TM).
By comparing the tangential and normal components of the expression and using equations (30) and

(37), we derive

∇Xζ
T
− θANX − νϕXζ

T = ϱ′X,

and

1(A∗
N
ζT,X) − (Xθ) − θτ(X) + νθϕX = 0, (39)

respectively. Similarly

∇
∗

Xζ
T
− θA∗

N
X + νϕXζ

T = ϱ′X

and

1(ANζT,X) − (Xθ) − θτ∗(X) − νθϕX = 0. (40)

By adding equations (39) and (40), and using (29), we obtain 2(Xθ) = 1(ANζT,X)+1(A∗
N
ζT,X). Consequently,

the following result arises immediately.
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Proposition 4.3. Let (M, 1,∇,∇∗) be a statistical spacelike hypersurface of a GRW spacetime (M = I ×ϱ F, 1,∇ =

∇
1
+K ,∇

∗

) endowed with a statistical structure. Then, the support function θ on M is constant function if and only
if ANζT = −A∗

N
ζT.

Using (2), we have (£ζ1)(X,Y) = 1(∇Xζ,Y) + 1(X,∇
∗

Yζ) for any X,Y ∈ Γ(TM). Since ζ = ζT + θN , and
applying equations (27) and (28), we also obtain

(£ζ1)(X,Y) =1(∇Xζ
T,Y) − θ1(ANX,Y) + 1(X,∇∗Yζ

T) − θ1(X,A∗
N

Y)
=(£ζT1)(X,Y) + θ(B(X,Y) + B∗(X,Y))

=(£ζT1)(X,Y) + 2θB1(X,Y),

where B1(X,Y) denotes the local second fundamental form on TM with respect to the Levi-Civita connection

∇
1

on M. Hence using (38), we further obtain

(£ζT1)(X,Y) = 2
(
ϱ′1(X,Y) − θB1(X,Y)

)
, (41)

for any vector fields X,Y ∈ Γ(TM). Consequently, we have the following result immediately.

Proposition 4.4. Let (M, 1,∇,∇∗) be a statistical spacelike hypersurface of a GRW spacetime (M = I ×ϱ F, 1,∇ =

∇
1
+K ,∇

∗

) endowed with a statistical structure. Then:

(i) The vector field ζT on M is conformal if and only if M is totally umbilical with respect to the Levi-Civita

connection ∇
1
.

(ii) Let the vector field ζT on M be either conformal or Killing. Then M is totally umbilical with respect to ∇ if and
only if it is totally umbilical with respect to ∇

∗

.

Theorem 4.5. Let (M, 1,∇,∇∗) be a statistical spacelike hypersurface of a GRW spacetime (M = I ×ϱ F, 1,∇ =

∇
1
+K ,∇

∗

) endowed with a statistical structure. Then, the quadruple (M, 1, ζT, λ) is a statistical Ricci soliton if and
only if

QS =
1

n + 1
ΩS
−

1
2
θ
(
H +H∗ + AN + A∗

N
),

with QS, ΩS,H,H∗, AN and A∗
N

, defined before.

Proof. Assume that (M, 1, ζT, λ) is a statistical Ricci soliton, satisfying the equation

RicS(X,Y) +
1
2

(£ζT1)(X,Y) = λ1(X,Y), (42)

for any vector fields X,Y ∈ Γ(TM). Utilizing (41), we derive the expression

RicS(X,Y) = (λ − ϱ′)1(X,Y) + θB1(X,Y).

This further implies

QSX = (λ − ϱ′)X −
1
2
θ(ANX + A∗

N
X), (43)

where QS is the self-adjoint Ricci operator on M which is defined by RicS(X,Y) = 1(QSX,Y).
Let {e1, . . . , en+1} be an orthonormal frame on M. By contracting equation (42) with this frame, it follows

that

ΩS + div(ζT) = (n + 1)λ. (44)
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On the other hand, by contracting equation (41) with this frame, we obtain

div(ζT) = (n + 1)
(
ϱ′ −

1
2
θ(H +H∗)

)
. (45)

From (44) and (45), it follows that

λ − ϱ′ =
1

n + 1

(
ΩS
−

1
2

(n + 1)θ(H +H∗)
)
. (46)

Hence, from (43) and (46), the proof is completed.

Theorem 4.6. Let (M, 1,∇,∇∗) be a statistical spacelike hypersurface of a GRW spacetime (M = I ×ϱ F, 1,∇ =

∇
1
+ K ,∇

∗

) endowed with a statistical structure. Let the statistical manifold (F, 1F,∇F = ∇1F + KF,∇∗F) be of
constant statistical curvature c. If the quadruple (M, 1, ζT, λ) is a statistical Ricci soliton, then the statistical scalar
curvature ΩS of the statistical spacelike hypersurface M is of the form

ΩS = n(n + 1)α + β
(
(n − 1) sinh2 φ + (n + 1)

(θ2

ϱ2 − 1
))
+ ∥AN ◦ A∗

N
∥ − (n + 1)2HH∗, (47)

where α and β are given in equation (26).

Proof. Let the quadruple (M, 1, ζT, λ) be a statistical Ricci soliton. Then, utilizing (34) and (43), the Ricci

operator Q
S

on M is given by

Q
S
|M X = S(N ,X)N −

1
2

(
(AN ◦ A∗

N
)X + (A∗

N
◦ AN )X

)
+ (λ − ϱ′)X

−
1
2

(n + 1)
(
HANX +H∗A∗

N
X
)
−

1
2
θ(ANX + A∗

N
X),

for any vector field X ∈ Γ(TM). This further implies that

Ric
S
(X,Y) = 1(S(N ,X)N ,Y) −

1
2

(
1((AN ◦ A∗

N
)X,Y) + 1((A∗

N
◦ AN )X,Y)

)
−

1
2

(n + 1)
(
H1(ANX,Y) +H∗1(A∗

N
X,Y)

)
+ (λ − ϱ′)1(X,Y)

−
1
2
θ
(
1(ANX,Y) + 1(A∗

N
X,Y)

)
, (48)

for any vector field X,Y ∈ Γ(TM). Since the statistical manifold (F, 1F,∇F = ∇1F + KF,∇∗F) is of constant
statistical curvature c, using (20) and (26), we have

S(N ,X)N = αX + β
(θ
ϱ
ϕXN −

(θ
ϱ

)2
X − ϕX∂t

)
. (49)

Hence, using (23) and (49) in (48), we obtain

(nα − β)1(X,Y) + nβϕXϕY = β
(
−
θ2

ϱ2 1(X,Y) + ϕXϕY

)
+ (λ − ϱ′)1(X,Y)

−
1
2

(
1((AN ◦ A∗

N
)X,Y) + 1((A∗

N
◦ AN )X,Y)

)
−

1
2

(n + 1)
(
H1(ANX,Y) +H∗1(A∗

N
X,Y)

)
−

1
2
θ
(
1(ANX,Y) + 1(A∗

N
X,Y)

)
.
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Let {e1, . . . , en+1} be an orthonormal frame on M. On contracting the above expression with this frame, we
derive

(nα − β)(n + 1) + nβ sinh2 φ = β
(
−
θ2

ϱ2 (n + 1) + sinh2 φ
)
+ (λ − ϱ′)(n + 1)

−∥AN ◦ A∗
N
∥ + (n + 1)2HH∗ +

1
2

(n + 1)θ(H +H∗),

where
n+1∑
i=1

ϕ2
ei
= 1((∂t)T, (∂t)T) = sinh2 φ. Finally, using (46) in the last expression, we get the desired

result.

Remark 4.7. In the context of Theorem 4.6, consider that the statistical spacelike hypersurface (M, 1,∇,∇∗) of the

GRW spacetime (M = I ×ϱ F, 1,∇ = ∇
1
+ K ,∇

∗

) endowed with a statistical structure is a spacelike slice. In this
case, the hyperbolic angle φ is identically zero, which implies ∂t = N and θ = ϱ coshφ = ϱ. Additionally, applying

assertion (ii) of Lemma 3.1 and noting that K (XF, ∂t) = 0, we obtain ∇XFN =
ϱ′

ϱ
XF. Further, using the Gauss

formula, it follows that ANXF = −
ϱ′

ϱ
XF. Similarly, A∗

N
XF = −

ϱ′

ϱ
XF and, consequently, we have

∥AN ◦ A∗
N
∥ =

n+1∑
i=1

1(ANei,A∗Nei) =
(ϱ′
ϱ

)2
(n + 1).

Additionally, we also haveH =H∗ =
ϱ′

ϱ
. LetΩslice denote the statistical scalar curvature of the spacelike slice. Then,

by applying all these results in (47), we obtain

Ωslice = n(n + 1)
c
ϱ2 .

Theorem 4.8. Let (M = I ×ϱ F, 1,∇ = ∇
1
+K ,∇

∗

) be a GRW spacetime endowed with a statistical structure. Let
the quadruple (F, 1F,WF, λF) be a statistical Ricci soliton. Then, (M, 1,W, λ) is a statistical almost Ricci soliton if and
only if

(£W1)(U,V) =
2ϱ2

1 − ϱ2

(
λ − (n + 1)

ϱ′′

ϱ

)
ϕUϕV −

1
1 − ϱ2

((
U(ϕW)

)
ϕV +

(
V(ϕW)

)
ϕU

)
,

for any U,V,W ∈ Γ(TM).

Proof. Let the quadruple (F, 1F,WF, λF) be a statistical Ricci soliton. Then, for any U,V,W ∈ Γ(TM), we have

RicF(UF,VF) +
1
2

(£WF1F)(UF,VF) = λF1F(UF,VF). (50)

By using (22) and (35) in (50), we derive

Ric
S
(U,V) +

1
2

(£W1)(U,V) = n
(ϱ′
ϱ

)2(
1(U,V) + ϕUϕV

)
+
ϱ′′

ϱ

(
1(U,V) − nϕUϕV

)
+

1
2

(
1 −

1
ϱ2

)
(£W1)(U,V) +

ϱ′

ϱ
ϕW1F(UF,VF)

−
1

2ϱ2

((
U(ϕW)

)
ϕV +

(
V(ϕW)

)
ϕU

)
+λF1F(UF,VF). (51)
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Further, utilizing (5) and (16) in (51), we obtain

Ric
S
(U,V) +

1
2

(£W1)(U,V) =
(λF

ϱ2 + n
(ϱ′
ϱ

)2
+
ϱ′′

ϱ
+
ϱ′

ϱ3ϕW

)
1(U,V)

+
(λF

ϱ2 + n
(ϱ′
ϱ

)2
− n

ϱ′′

ϱ
+
ϱ′

ϱ3ϕW

)
ϕUϕV

−
1

2ϱ2

((
U(ϕW)

)
ϕV +

(
V(ϕW)

)
ϕU

)
+

(ϱ2
− 1)

2ϱ2 (£W1)(U,V).

This can be written as

Ric
S
(U,V) +

1
2

(£W1)(U,V) = λ1(U,V) +
(
λ − (n + 1)

ϱ′′

ϱ

)
ϕUϕV

−
1

2ϱ2

((
U(ϕW)

)
ϕV +

(
V(ϕW)

)
ϕU

)
+

(ϱ2
− 1)

2ϱ2 (£W1)(U,V), (52)

where λ =
λF

ϱ2 + n
(ϱ′
ϱ

)2
+
ϱ′′

ϱ
+
ϱ′

ϱ3ϕW . Thus, the proof follows from (52).

A Riemannian manifold (M, 1) is said to be a quasi-Yamabe soliton [8] if it admits a vector field ξ such that

1
2

£ξ1 = (Ω − λ)1 + µψ ⊗ ψ,

for some constant λ and some function µ, where ψ is the dual 1−form of ξ and Ω is the scalar curvature of
M.

Since ζ = ϱ∂t, it follows that ζF = 0. Assume that the quadruple (F, 1F, ζF, λF) is a statistical trivial Ricci
soliton, it implies that RicF(UF,VF) = λF1F(UF,VF). Substituting this into (22), we obtain

Ric
S
(U,V) =

(λF

ϱ2 + n
(ϱ′
ϱ

)2
+
ϱ′′

ϱ

)
1(U,V) +

(λF

ϱ2 + n
(ϱ′
ϱ

)2
− n

ϱ′′

ϱ

)
ϕUϕV,

for any U,V ∈ Γ(TM). Further, using the previous expression with (38), we obtain

Ric
S
(U,V) +

1
2

(£ζ1)(U,V) = λ̂1(U,V) +
1
ϱ2

(̂
λ − ϱ′ − (n + 1)

ϱ′′

ϱ

)
ω(U)ω(V), (53)

where

λ̂ =
λF

ϱ2 + ϱ
′ + n
(ϱ′
ϱ

)2
+
ϱ′′

ϱ
(54)

and ω is the dual 1−form of ζ. Hence, we obtain the following result.

Theorem 4.9. Let (M = I ×ϱ F, 1,∇ = ∇
1
+K ,∇

∗

) be a GRW spacetime endowed with a statistical structure. Let
the quadruple (F, 1F, ζF, λF) be a statistical trivial Ricci soliton. Then, (M, 1, ζ, λ̂) is a statistical quasi almost Ricci
soliton.

The following example supports the claim made in the previous theorem.
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Example 4.10. Let F = {(x, y, z,u) ∈ R4 : (x, y, z,u) , (0, 0, 0, 0)} be a Riemannian manifold equipped with a
Riemannian metric

1F =
1
z2

(
dx2 + dz2

)
+

1
u2

(
dy2 + du2

)
.

Let∇1F denote the Levi-Civita connection of (F, 1F) with respect to the metric 1F. Then, by straightforward calculations,
we obtain

∇
1F

∂x∂x =
1
z
∂z, ∇1F

∂x∂y = 0, ∇1F

∂x∂z = −
1
z
∂x, ∇1F

∂x∂u = 0,

∇
1F

∂y∂x = 0, ∇1F

∂y∂y =
1
u
∂u, ∇1F

∂y∂z = 0, ∇1F

∂y∂u = −
1
u
∂y,

∇
1F

∂z∂x = −
1
z
∂x, ∇1F

∂z∂y = 0, ∇1F

∂z∂z = −
1
z
∂z, ∇1F

∂z∂u = 0,

∇
1F

∂u∂x = 0, ∇1F

∂u∂y = −
1
u
∂y, ∇1F

∂u∂z = 0, ∇1F

∂u∂u = −
1
u
∂u.

For the Riemannian metric 1F of (F, 1F), we define the difference tensor fieldKF
∈ Γ(TF) on F by

K
F(∂x, ∂x) = −

1
z
∂z, KF(∂x, ∂y) = 0, KF(∂x, ∂z) = −

1
z
∂x, KF(∂x, ∂u) = 0,

K
F(∂y, ∂x) = 0, KF(∂y, ∂y) = −

1
u
∂u, KF(∂y, ∂z) = 0, KF(∂y, ∂u) = −

1
u
∂y,

K
F(∂z, ∂x) = −

1
z
∂x, KF(∂z, ∂y) = 0, KF(∂z, ∂z) =

1
z
∂z, KF(∂z, ∂u) = 0,

K
F(∂u, ∂x) = 0, KF(∂u, ∂y) = −

1
u
∂y, KF(∂u, ∂z) = 0, KF(∂u, ∂u) =

1
u
∂u.

It is then easy to verify that the difference tensor field KF satisfies the identities in (3). Thus, (∇F = ∇1F +KF, 1F) is
a statistical structure on (F, 1F), and given by

∇
F
∂x∂x = 0, ∇F

∂x∂y = 0, ∇F
∂x∂z = −

2
z
∂x, ∇F

∂x∂u = 0,

∇
F
∂y∂x = 0, ∇F

∂y∂y = 0, ∇F
∂y∂z = 0, ∇F

∂y∂u = −
2
u
∂y,

∇
F
∂z∂x = −

2
z
∂x, ∇F

∂z∂y = 0, ∇F
∂z∂z = 0, ∇F

∂z∂u = 0,

∇
F
∂u∂x = 0, ∇F

∂u∂y = −
2
u
∂y, ∇F

∂u∂z = 0, ∇F
∂u∂u = 0.

(55)

Utilizing ∇∗F = ∇1F −K
F, the dual statistical connection ∇∗F of ∇F with respect to 1F is given by

∇
∗F
∂x∂x =

2
z
∂z, ∇∗F∂x∂y = 0, ∇∗F∂x∂z = 0, ∇∗F∂x∂u = 0,

∇
∗F
∂y∂x = 0, ∇∗F∂y∂y =

2
u
∂u, ∇∗F∂y∂z = 0, ∇∗F∂y∂u = 0,

∇
∗F
∂z∂x = 0, ∇∗F∂z∂y = 0, ∇∗F∂z∂z = −

2
z
∂z, ∇∗F∂z∂u = 0,

∇
∗F
∂u∂x = 0, ∇∗F∂u∂y = 0, ∇∗F∂u∂z = 0, ∇∗F∂u∂u = −

2
u
∂u.

(56)

Thus, (F, 1F,∇F = ∇1F +KF,∇∗F) is a statistical manifold.
Let M = I ×exp t F be a warped product manifold, where the base I is an open interval of the real line R, the fiber

(F, 1F) is a Riemannian manifold, and the warping function exp t is defined on I. Let the warped product manifold
M = I ×exp t F be equipped with metric tensor 1 given by

1 = −dt2 + (exp t)21F,
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where t serves as a natural parameter on the base I. Let ∇
1

denote the Levi-Civita connection of the warped product
manifold (M = I ×exp t F, 1) with respect to the metric 1. Then, by straightforward calculations, we obtain

∇
1

∂t∂t = 0, ∇
1

∂t∂x = ∂x, ∇
1

∂t∂y = ∂y, ∇
1

∂t∂z = ∂z, ∇
1

∂t∂u = ∂u,

∇
1

∂x∂t = ∂x, ∇
1

∂x∂x =
1
z
∂z +

exp 2t
z2 ∂t, ∇

1

∂x∂y = 0, ∇
1

∂x∂z = −
1
z
∂x, ∇

1

∂x∂u = 0,

∇
1

∂y∂t = ∂y, ∇
1

∂y∂x = 0, ∇
1

∂y∂y =
1
u
∂u +

exp 2t
u2 ∂t, ∇

1

∂y∂z = 0, ∇
1

∂y∂u = −
1
u
∂y,

∇
1

∂z∂t = ∂z, ∇
1

∂z∂x = −
1
z
∂x, ∇

1

∂z∂y = 0, ∇
1

∂z∂z = −
1
z
∂z +

exp 2t
z2 ∂t, ∇

1

∂z∂u = 0,

∇
1

∂u∂t = ∂u, ∇
1

∂u∂x = 0, ∇
1

∂u∂y = −
1
u
∂y, ∇

1

∂u∂z = 0, ∇
1

∂u∂u = −
1
u
∂u +

exp 2t
u2 ∂t.

For the Lorentzian metric 1 of the warped product manifold (M = I ×exp t F, 1), we define the difference tensor field
K ∈ Γ(TM) on M by

K (UF,VF) = KF(UF,VF), K (∂t,UF) = K (UF, ∂t) = 0, K (∂t, ∂t) = ν∂t,

where UF,VF
∈ Γ(TF), ν is a smooth function defined on I. This gives

1(K (U,V),W) = (exp t)21F(KF(UF,VF),WF) − νϕUϕVϕW ,

for any U,V,W ∈ Γ(TM). Since KF satisfies the identities in (3), K also satisfies the identities in (3), consequently

(∇ = ∇
1
+K , 1) is a statistical structure on (M, 1). Hence

∇∂t∂t = ν∂t, ∇∂t∂x = ∂x, ∇∂t∂y = ∂y, ∇∂t∂z = ∂z, ∇∂t∂u = ∂u,

∇∂x∂t = ∂x, ∇∂x∂x =
exp 2t

z2 ∂t, ∇∂x∂y = 0, ∇∂x∂z = −
2
z
∂x, ∇∂x∂u = 0,

∇∂y∂t = ∂y, ∇∂y∂x = 0, ∇∂y∂y =
exp 2t

u2 ∂t, ∇∂y∂z = 0, ∇∂y∂u = −
2
u
∂y,

∇∂z∂t = ∂z, ∇∂z∂x = −
2
z
∂x, ∇∂z∂y = 0, ∇∂z∂z =

exp 2t
z2 ∂t, ∇∂z∂u = 0,

∇∂u∂t = ∂u, ∇∂u∂x = 0, ∇∂u∂y = −
2
u
∂y, ∇∂u∂z = 0, ∇∂u∂u =

exp 2t
u2 ∂t.

The dual statistical connection ∇
∗

of ∇ with respect to 1 is given by

∇
∗

∂t∂t = −ν∂t, ∇
∗

∂t∂x = ∂x, ∇
∗

∂t∂y = ∂y, ∇
∗

∂t∂z = ∂z, ∇
∗

∂t∂u = ∂u,

∇
∗

∂x∂t = ∂x, ∇
∗

∂x∂x =
2
z
∂z +

exp 2t
z2 ∂t, ∇

∗

∂x∂y = 0, ∇
∗

∂x∂z = 0, ∇
∗

∂x∂u = 0,

∇
∗

∂y∂t = ∂y, ∇
∗

∂y∂x = 0, ∇
∗

∂y∂y =
2
u
∂u +

exp 2t
u2 ∂t, ∇

∗

∂y∂z = 0, ∇
∗

∂y∂u = 0,

∇
∗

∂z∂t = ∂z, ∇
∗

∂z∂x = 0, ∇
∗

∂z∂y = 0, ∇
∗

∂z∂z = −
2
z
∂z +

exp 2t
z2 ∂t, ∇

∗

∂z∂u = 0,

∇
∗

∂u∂t = ∂u, ∇
∗

∂u∂x = 0, ∇
∗

∂u∂y = 0, ∇
∗

∂u∂z = 0, ∇
∗

∂u∂u = −
2
u
∂u +

exp 2t
u2 ∂t.
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Thus, (M = I ×exp t F, 1,∇ = ∇
1
+K ,∇

∗

) is an indefinite statistical manifold.
Next, for the statistical manifold (F, 1F,∇F = ∇1F +KF,∇∗F), denote the curvature tensor fields of ∇F and ∇∗F by

RF and R∗F, respectively. Utilizing (55) and (56), we obtain

RF(∂x, ∂z)∂z = −
6
z2 ∂x, RF(∂y, ∂u)∂u = −

6
u2 ∂y

and
R∗F(∂x, ∂z)∂x =

6
z2 ∂z, R∗F(∂y, ∂u)∂y =

6
u2 ∂u,

and all other components of the curvature tensor fields RF and R∗F vanish identically. We denote by SF the statistical
curvature tensor field of (F, 1F,∇F = ∇1F + KF,∇∗F). Consider {e1 = z∂x, e2 = u∂y, e3 = z∂z, e4 = u∂u} an
orthonormal frame on the statistical manifold (F, 1F,∇F = ∇1F +KF,∇∗F). Using the previous expressions, we get

SF(e1, e3)e3 = −3e1, SF(e2, e4)e4 = −3e2,

SF(e1, e3)e1 = 3e3, SF(e2, e4)e2 = 3e4,

and all other components of the statistical curvature tensor field SF vanish identically. Let RicF(UF,VF) denote the
statistical Ricci tensor of the statistical manifold (F, 1F,∇F = ∇1F +KF,∇∗F). Then, we derive

RicF(e1, e1) = RicF(e2, e2) = RicF(e3, e3) = RicF(e4, e4) = −3.

Since ζ = ϱ∂t, it follows that ζF = 0. Thus, the fiber (F, 1F, ζF, λF) is a statistical trivial Ricci soliton with λF = −3.
Since {e1, e2, e3, e4} is an orthonormal frame of fields on the fiber (F, 1F,∇F = ∇1F + KF,∇∗F), it implies that

{∂t,E1 =
1
ϱ

e1,E2 =
1
ϱ

e2,E3 =
1
ϱ

e3,E4 =
1
ϱ

e4} is an orthonormal frame of fields on the warped product manifold

(M = I ×exp t F, 1,∇ = ∇
1
+K ,∇

∗

). It is known that (£W1)(U,V) = 1(∇
1

UW,V) + 1(U,∇
1

VW), for any vector fields
U,V,W ∈ Γ(TM). By straightforward calculations, we obtain

(£ζ1)(∂t, ∂t) = −2 exp t, (£ζ1)(Ei,Ei) = 2 exp t, i = 1, . . . , 4.

Let Ric
S

denote the statistical Ricci tensor of the warped product manifold (M = I ×exp t F, 1,∇ = ∇
1
+K ,∇

∗

). By
applying (22), we get

Ric
S
(∂t, ∂t) = −4, Ric

S
(Ei,Ei) = −

3
exp 2t

+ 4, i = 1, . . . , 4.

Hence

Ric
S
(∂t, ∂t) +

1
2

(£ζ1)(∂t, ∂t) = −4 − exp t (57)

and

Ric
S
(Ei,Ei) +

1
2

(£ζ1)(Ei,Ei) = −
3

exp 2t
+ 4 + exp t, (58)

for i = 1, . . . , 4. By utilizing (54), we have λ̂ = 4 + exp t −
3

exp 2t
. Moreover, it is easy to verify that

λ̂1(∂t, ∂t) +
1
ϱ2

(̂
λ − ϱ′ − (n + 1)

ϱ′′

ϱ

)
ω(∂t)ω(∂t) = −4 − exp t (59)

and

λ̂1(Ei,Ei) +
1
ϱ2

(̂
λ − ϱ′ − (n + 1)

ϱ′′

ϱ

)
ω(Ei)ω(Ei) = 4 + exp t −

3
exp 2t

. (60)
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Thus, from (57), (58), (59) and (60), it follows that the orthonormal frame of fields {∂t,E1 =
1
ϱ

e1,E2 =
1
ϱ

e2,E3 =

1
ϱ

e3,E4 =
1
ϱ

e4} on M satisfy the expression in (53). Consequently, we find that if the fiber (F, 1F, ζF, λF) is a statistically

trivial Ricci soliton, then (M, 1, ζ, λ̂) is a statistical quasi almost Ricci soliton.

Lemma 4.11. Let (M = I ×ϱ F, 1,∇ = ∇
1
+K ,∇

∗

) be a GRW spacetime endowed with a statistical structure. Then

(£W1)(U,V) = (£WT1)(UT,VT) − B(UT,WT)η(V) − B∗(VT,WT)η(U)

−

((
U
(
η(W)

))
η(V) +

(
V
(
η(W)

))
η(U)
)
+ η(U)1(∇NW,V)

+η(W)
(
B(UT,VT) + B∗(UT,VT)

)
+ η(V)1(∇

∗

NW,U)

−τ(UT)η(W)η(V) + τ(VT)η(W)η(U)

+2
(
N · η(W)

)
η(U)η(V), (61)

for any vector fields U,V,W ∈ Γ(TM). In particular,

(£ζ1)(U,V) = (£ζT1)(UT,VT) + ϱ coshφ
(
B(UT,VT) + B∗(UT,VT)

)
−2ϱ′η(U)η(V). (62)

Proof. Since M is a spacelike hypersurface of M and N is a unique unitary timelike normal vector field
globally defined on M, for any U ∈ Γ(TM), we can write U = UT + η(U)N , where UT is the tangential
component of U and η(U) = −1(U,N). Then, utilizing the local Gauss-Weingarten formulas on TM, we
have

∇UW = ∇UT WT + B(UT,WT)N +
(
U
(
η(W)

))
N − η(W)ANUT + η(W)τ(UT)N

+η(U)
(
∇NWT + η(W)∇NN

)
and

∇
∗

VW = ∇
∗

VT WT + B∗(VT,WT)N +
(
V
(
η(W)

))
N − η(W)A∗

N
VT + η(W)τ∗(VT)N

+η(V)
(
∇
∗

NWT + η(W)∇
∗

NN

)
.

Using above expressions in (36), we derive

(£W1)(U,V) = (£WT1)(UT,VT) − B(UT,WT)η(V) − B∗(VT,WT)η(U)

−

((
U
(
η(W)

))
η(V) +

(
V
(
η(W)

))
η(U)
)

+η(W)
(
B(UT,VT) + B∗(UT,VT)

)
+η(U)

(
N · 1(WT,V) − 1(WT,∇

∗

NV)
)

+η(V)
(
N · 1(U,WT) − 1(∇NU,WT)

)
−τ(UT)η(W)η(V) + η(U)η(W)

(
N · 1(N ,V) − 1(∇

∗

NV,N)
)

+τ(VT)η(W)η(U) + η(V)η(W)
(
N · 1(U,N) − 1(∇NU,N)

)
.

This expression leads to the final result.
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Since for any U ∈ Γ(TM), we can write U = UT + η(U)N , then by applying the local Gauss-Weingarten
formulas on TM, we derive

R(ei,UT)N = −

(
∇ei AN

)
(UT) +

(
∇UT AN

)
(ei) − τ(UT)ANei + τ(ei)ANUT

−

(
B(ei,ANUT) − B(UT,ANei) − 2dτ(ei,UT)

)
N ,

where {e1, . . . , en+1} is an orthonormal frame of fields on M and(
∇ei AN

)
(UT) = ∇ei

(
ANUT

)
− AN

(
∇ei U

T
)
. (63)

The preceding expression yields

1(R(ei,UT)N , ei) = −1
((
∇ei AN

)
(UT), ei

)
+ 1
((
∇UT AN

)
(ei), ei

)
+τ(UT)B∗(ei, ei) − τ(ei)B∗(UT, ei).

Furthermore, by applying (4), we obtain

21(S(ei,UT)N , ei) = −1
((
∇ei AN

)
(UT), ei

)
+ 1
((
∇UT AN

)
(ei), ei

)
−1
((
∇
∗

ei
A∗
N

)
(UT), ei

)
+ 1
((
∇
∗

UT A∗
N

)
(ei), ei

)
+τ(UT)

(
B∗(ei, ei) − B(ei, ei)

)
−τ(ei)

(
B∗(UT, ei) − B(UT, ei)

)
. (64)

As noted in [26], the covariant derivative of the second fundamental form is equivalently defined as
(∇XA)(N ,Y) = ∇X(ANY) − A∇⊥XNY − AN (∇XY) for any vector fields X and Y tangent to M and any vector
fieldN normal to M. We denote

trace
(
ANUT

)
=

n+1∑
i=1

1
(
(∇ei A)(N ,UT), ei

)
=

n+1∑
i=1

1
(
∇ei (ANUT) − A∇⊥ei

NUT
− AN (∇ei U

T), ei

)
.

Further, using (30) and (63), we obtain

trace
(
ANUT

)
=

n+1∑
i=1

{
1
((
∇ei AN

)
(UT), ei

)
+ τ(ei)B∗(UT, ei)

}
. (65)

Similarly, by using (29), we obtain

trace
(
A∗
N

UT
)
=

n+1∑
i=1

{
1
((
∇
∗

ei
A∗
N

)
(UT), ei

)
− τ(ei)B(UT, ei)

}
. (66)

We also denote

trace(∇UT AN ) =
n+1∑
i=1

1
(
(∇UT A)(N , ei), ei

)
,

and then by using (30) and (63), we obtain

trace(∇UT AN ) =
n+1∑
i=1

{
1
(
(∇UT AN )(ei), ei

)
+ τ(UT)B∗(ei, ei)

}
. (67)
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Similarly

trace(∇∗UT A∗
N

) =
n+1∑
i=1

{
1
(
(∇∗UT A∗

N
)(ei), ei

)
− τ(UT)B(ei, ei)

}
. (68)

We know that

Ric
S
(UT,N) =

n+1∑
i=1

1(S(ei,UT)N , ei) − 1(S(N ,UT)N ,N)

=

n+1∑
i=1

1(S(ei,UT)N , ei). (69)

Thus, by applying the expressions from equations (64)–(68) in (69), we arrive at the following result.

Lemma 4.12. Let (M = I ×ϱ F, 1,∇ = ∇
1
+K ,∇

∗

) be a GRW spacetime endowed with a statistical structure. Then

Ric
S
(UT,N) =

1
2

(
trace(∇UT AN ) + trace(∇∗UT A∗

N
) − trace

(
ANUT

)
−trace

(
A∗
N

UT
))
, (70)

for any vector field U tangent to M.

Let (M, 1,∇,∇∗) be a statistical spacelike hypersurface of a GRW spacetime (M = I×ϱ F, 1,∇ = ∇
1
+K ,∇

∗

)
endowed with a statistical structure. Then, for any vector fields U and V tangent to M, we have

Ric
S
(U,V) = Ric

S
(UT,VT) + η(V)Ric

S
(UT,N) + η(U)Ric

S
(VT,N)

+η(U)η(V)Ric
S
(N ,N). (71)

Using (33) and (70) in (71), we derive

Ric
S
(U,V) = RicS(UT,VT) − 1(S(N ,UT)VT,N) −

1
2

(
1((A∗

N
◦ AN )UT,VT)

+1((AN ◦ A∗
N

)UT,VT) + (n + 1)
(
HB∗(UT,VT) +H∗B(UT,VT)

))
+

1
2
η(V)
(
trace(∇UT AN ) + trace(∇∗UT A∗

N
) − trace

(
ANUT

)
−trace

(
A∗
N

UT
))
+

1
2
η(U)
(
trace(∇VT AN ) + trace(∇∗VT A∗

N
)

−trace
(
ANVT

)
− trace

(
A∗
N

VT
))
+ η(U)η(V)Ric

S
(N ,N). (72)

Hence, by applying (61) and (72), we derive the following result.

Theorem 4.13. Let (M, 1,∇,∇∗) be a statistical spacelike hypersurface of a GRW spacetime (M = I ×ϱ F, 1,∇ =

∇
1
+K ,∇

∗

) endowed with a statistical structure. Let the quadruple (M, 1,W, λ̃) be a statistical Ricci soliton. Then,
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the quadruple (M, 1,WT, λ̃) is a statistical Ricci soliton if and only if(
λ̃ +
(
N · η(W)

)
+ 2Ric

S
(N ,N)

)
η(U)η(V) = 1(S(N ,UT)VT,N)

+
1
2

(
1((A∗

N
◦ AN )UT,VT) + 1((AN ◦ A∗

N
)UT,VT)

)
+

1
2

(
(n + 1)H − η(W)

)
B∗(UT,VT) +

1
2

(
(n + 1)H∗ − η(W)

)
B(UT,VT)

−
1
2
η(V)
(
trace(∇UT AN ) + trace(∇∗UT A∗

N
) − trace

(
ANUT

)
− trace

(
A∗
N

UT
))

−
1
2
η(U)
(
trace(∇VT AN ) + trace(∇∗VT A∗

N
) − trace

(
ANVT

)
− trace

(
A∗
N

VT
))

+
1
2

(
B∗(VT,WT) + V(η(W)) − 1(∇NW,V) − τ(VT)η(W)

)
η(U)

+
1
2

(
B(UT,WT) +U(η(W)) − 1(∇

∗

NW,U) + τ(UT)η(W)
)
η(V),

for any vector fields U,V,W tangent to M.

By applying the expressions from (61) and (72) to (52), we obtain the following result.

Theorem 4.14. Let (M, 1,∇,∇∗) be a statistical spacelike hypersurface of a GRW spacetime (M = I ×ϱ F, 1,∇ =

∇
1
+K ,∇

∗

) endowed with a statistical structure. Let the quadruple (F, 1F,WF, λF) be a statistical Ricci soliton. Then,
the quadruple (M, 1,WT, λ) is a statistical Ricci soliton if and only if

(£WT1)(UT,VT) =
2ϱ2

1 − ϱ2

(
λ − (n + 1)

ϱ′′

ϱ

)
ϕUϕV +

1
ϱ2 − 1

(
U(ϕW)ϕV + V(ϕW)ϕU

)
+

1
1 − ϱ2

(
(n + 1)ϱ2H − η(W)

)
B∗(UT,VT) +

1
1 − ϱ2

(
(n + 1)ϱ2H∗ − η(W)

)
B(UT,VT)

+
ϱ2

1 − ϱ2

(
21(S(N ,UT)VT,N) + 1((A∗

N
◦ AN )UT,VT) + 1((AN ◦ A∗

N
)UT,VT)

)
+

1
1 − ϱ2

(
B∗(VT,WT) + V(η(W)) − 1(∇NW,V) − τ(VT)η(W)

)
η(U)

+
ϱ2

ϱ2 − 1

(
trace(∇VT AN ) + trace(∇∗VT A∗

N
) − trace

(
ANVT

)
− trace

(
A∗
N

VT
))
η(U)

+
1

1 − ϱ2

(
B(UT,WT) +U(η(W)) − 1(∇

∗

NW,U) + τ(UT)η(W)
)
η(V)

+
ϱ2

ϱ2 − 1

(
trace(∇UT AN ) + trace(∇∗UT A∗

N
) − trace

(
ANUT

)
− trace

(
A∗
N

UT
))
η(V)

+
2ϱ2

ϱ2 − 1

(
λ + Ric

S
(N ,N) +

1
ϱ2

(
N · η(W)

))
η(U)η(V),

for any vector fields U,V,W tangent to M.

Let the quadruple (F, 1F, ζF, λF) be a statistical trivial Ricci soliton. Then, RicF(UF,VF) = λF1F(UF,VF) for
any vector fields U and V tangent to M. Using (22) and (38), we obtain

Ric
S
(U,V) +

1
2

(£ζ1)(U,V) = λ⋆
(
1(UT,VT) − η(U)η(V)

)
+
(
λ⋆ − (n + 1)

ϱ′′

ϱ

)
ϕUϕV,



A. P. Singh et al. / Filomat 39:27 (2025), 9759–9784 9784

where λ⋆ =
λF

ϱ2 + n
(ϱ′
ϱ

)2
+
ϱ′′

ϱ
+ ϱ′. Thus, using (62) and (72) in the previous expression, we arrive at the

following result.

Theorem 4.15. Let (M = I×ϱF, 1,∇ = ∇
1
+K ,∇

∗

) be a GRW spacetime endowed with a statistical structure. Let the
quadruple (F, 1F, ζF, λF) be a statistical trivial Ricci soliton. Then, (M, 1, ζT, λ⋆) is a statistical almost Ricci soliton if
and only if

1(S(N ,UT)VT,N) +
1
2

(
1((A∗

N
◦ AN )UT,VT) + 1((AN ◦ A∗

N
)UT,VT)

)
+

1
2

(
(n + 1)H∗ − ϱ coshφ

)
B(UT,VT) +

1
2

(
(n + 1)H − ϱ coshφ

)
B∗(UT,VT)

−
1
2
η(V)
(
trace(∇UT AN ) + trace(∇∗UT A∗

N
) − trace

(
ANUT

)
− trace

(
A∗
N

UT
))

−
1
2
η(U)
(
trace(∇VT AN ) + trace(∇∗VT A∗

N
) − trace

(
ANVT

)
− trace

(
A∗
N

VT
))

−

(
Ric

S
(N ,N) − ϱ′ + λ⋆

)
η(U)η(V) +

(
λ⋆ − (n + 1)

ϱ′′

ϱ

)
ϕUϕV = 0,

for any vector fields U and V tangent to M.
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