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Abstract. We explore the geometry of the Generalized Robertson-Walker (GRW) spacetime under the
assumption that its fiber is a statistical manifold. This approach allows us to endow a statistical structure
on the GRW spacetime. Later, we derive necessary and sufficient conditions for the existence of a statistical
Ricci soliton on the statistical spacelike hypersurface of a GRW spacetime. We explore the condition for a
GRW spacetime to have an almost Ricci soliton structure, when the fiber of the GRW spacetime constitutes
a statistical Ricci soliton. Furthermore, we examine the case where both the fiber and the GRW spacetime

are Ricci solitons, and we establish the necessary and sufficient conditions for the statistical spacelike
hypersurface to exhibit a Ricci soliton structure.

1. Introduction

In the context of information geometry, Amari [4] introduced an interesting class of manifolds named
statistical manifolds. The study of the statistical manifolds has emerged as a significant tool in modern
differential geometry to understand complex geometric structures infused with statistical properties. These
manifolds, characterized by the interplay between a Riemannian metric and an affine connection, provide
deep insight into various domains such as information geometry [3, 4], neural networks [2], null geometry
[16], and many others. It is known that the conjugate symmetric statistical structures are significant in
the geometry of statistical structures as affine spheres in the geometry of affine hypersurfaces. Therefore,
Opozda [20] generalized some important results about complete affine spheres to the statistical structures
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on a manifold. In [21], Opozda studied the completeness of affine connections on the statistical manifolds
or on affine hypersurfaces.

Let © be an open subset of R" and © be a sample space with parameters C = (C},...,"). Then, the set
of probability density functions

5=1{p(x;0): fp(x; Q)dx =1,p(x;C) > 0,{ € L c R"}
(C]

is called a statistical model. On the statistical model 5, a semi-definite Fisher information matrix g(C) = [gi]-(C)]
is given by

9ij(0) = f@ dilcdilep(x; Q)dx = E,[d:tditc],

d
where € = £(x : () = logp(x;C), d;i = 8_(:7 and E,[f] is the expectation of f with respect to p(x; ). Then,
the statistical model $ equipped with the semi-definite Fisher information matrices is called a statistical
manifold. Furthermore, in the context of differential geometry, the statistical manifolds [4] are inspired

from the statistical model, where the density function, the Fisher information matrix, the dual connections
VD and VU are replaced by an arbitrary Riemannian manifold M, the Riemannian metric g of M, the

dual connections V and V, respectively. Since the geometry of statistical manifolds includes the dual
connections, analogous to the conjugate connections of the affine geometry, then the geometry of statistical
manifolds is closely related to affine differential geometry. Moreover, the geometry of statistical manifolds
has potential applications in the various fields of science and engineering.

On the other hand, in our attempt to expand our knowledge of the interplay between geometry and
physics, the study of spacetime manifolds has emerged as a pivotal area of research. Among the various
models that have been developed, the Generalized Robertson-Walker (GRW) spacetime [1] has gained
significant attention due to its versatility and relevance in cosmological contexts. The GRW spacetime also
serves as a natural generalization of the classical Robertson-Walker model, extending its applicability in
both mathematics and physics. Moreover, the GRW spacetimes include Minkowski spacetime, de Sitter
spacetime, Friedmann cosmological models, and static Einstein spacetime [23]. Recently, Singh et al. [25]
used the natural correspondence between totally umbilical null hypersurfaces of the GRW spacetimes and
twisted decomposition of the fibres, to study the rigged scalar curvature of totally umbilical null graphs of
the GRW spacetimes.

Ricci solitons, on the other hand, play a critical role in the study of geometric flows, particularly of the
Ricci flow. The Ricci solitons generalize the concept of Einstein metrics and serve as self-similar solutions
to the Ricci flow, making them essential in understanding the evolution of geometric structures over time,
see [15]. The concept of Ricci solitons gained significant importance and popularity following Perelman’s
use of them to resolve the long-standing Poincaré conjecture. Since then, Ricci solitons have become a
prominent area of research, valued for their geometric significance and broader applications in theoretical
physics. Barros et al. [5] investigated the immersions of Ricci solitons into Riemannian manifolds, showing
that when a shrinking Ricci soliton is immersed in a space form with constant mean curvature, it becomes
a Gaussian soliton. In [6], Blaga and Chen provided necessary and sufficient conditions for some particular
couples (g,V) of semi-Riemannian metrics and affine connections to be statistical structures if one has
gradient almost Einstein, almost Ricci, almost Yamabe solitons, or a more general type of solitons on the
manifold.

We present below few important known results.

In [17], the authors showed that a Ricci simple manifold with vanishing divergence of the conformal
curvature tensor admits a proper concircular vector field and it is necessarily a GRW spacetime. They also
proved that a stiff matter perfect fluid spacetime or a mass-less scalar field with time-like gradient and with
divergence-free Weyl tensor are GRW spacetimes.

In [10], De et al. examined gradient type Ricci solitons and (m, 7)—quasi Einstein solitons in GRW
spacetimes. Besides, it was demonstrated that in this scenario the GRW spacetime presents the Robertson-
Walker spacetime and the perfect fluid spacetime presents the phantom era. Consequently, it was proved
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that if a GRW spacetime permits a gradient 7—Einstein solitons, then it also represents a perfect fluid
spacetime under certain condition.

In [24], Ricci-Yamabe solitons and gradient Ricci—Yamabe solitons in GRW spacetimes were investigated.
The authors proved that if a GRW spacetime admits a Ricci-Yamabe soliton, then it becomes a perfect fluid
spacetime and the divergence of the Weyl tensor vanishes.

In [11], GRW spacetimes were investigated in light of perfect fluid spacetimes. It was established that a
perfect fluid spacetime with nonvanishing vorticity whose associated scalars are constant along the velocity
vector field becomes a GRW spacetime. Among others, it was also shown that a Ricci parallel perfect fluid
spacetime is either a GRW spacetime or a static spacetime. Also, it was proved that in a conformally
semisymmetric GRW spacetime of dimension 4, the scalar curvature vanishes and the spacetime is locally
isometric to the Minkowski spacetime, provided the electric part of the Weyl tensor vanishes.

In [12], U.C. De and E. Farrell proved that a Ricci symmetric spacetime is a perfect fluid spacetime if
and only if it is a GRW spacetime. Consequently, they established that under certain constraints on the
associated scalar, such a spacetime turns into a static spacetime. Also, it was proved that a semi-symmetric
as well as pseudo-Ricci symmetric GRW spacetime is a perfect fluid spacetime. The conformally flat GRW
spacetime as a solution of f(R*)—gravity theory was examined and the physical relevance was described.

In [18], the authors proved that a perfect fluid spacetime of dimension n > 4 with irrotational velocity
vector field and null divergence of the Weyl tensor is a GRW spacetime with an Einstein fiber. First condition
is verified whenever pressure and energy density are related by an equation of state. The contraction of the
Weyl tensor with the velocity vector field is zero. Conversely, a GRW spacetime with null divergence of the
Weyl tensor is a perfect fluid spacetime.

In this paper, we explore an approach by considering the fiber of the GRW spacetime as a statistical man-
ifold. This approach allows us to endow a statistical structure on the GRW spacetime, thereby broadening
the scope of its geometric and physical interpretation. The fusion of statistical manifolds with the GRW
spacetime opens up new ways for analyzing the complicated relationships between curvature, entropy,
and information geometry in the context of cosmological models. Our study proceeds by investigating
the geometry of spacelike hypersurfaces of the GRW spacetime and examine the Ricci soliton structures
on the spacelike hypersurfaces of the GRW spacetime. By analyzing the Ricci soliton in the setting of a
statistical structure, we uncover new insights into the behavior of these solitons in the GRW spacetimes.
In particular, we derive the necessary and sufficient conditions for the existence of a statistical Ricci soliton
on the statistical spacelike hypersurface of the GRW spacetime. When the fiber of the GRW spacetime con-
stitutes a statistical Ricci soliton, we obtain the necessary and sufficient conditions for the GRW spacetime
to constitute an almost Ricci soliton. Additionally, when both the fiber and the GRW spacetime constitute
Ricci solitons, we derive the necessary and sufficient conditions for the statistical spacelike hypersurface to
exhibit a Ricci soliton structure.

2. Statistical Manifolds

Let (M, g) be an (1 + 2)—dimensional semi-Riemannian manifold equipped with a semi-Riemannian
metric g of constant index g, and let V be a torsion free affine connection on M. A pair (V, g) is referred to
as a statistical structure on M if the Codazzi equation

Vug)(V, W) = (Vvg)(U, W) )

holds for any vector fields U, V, W € [(TM). In this case, the triplet M, g, V) is referred to be an indefinite

statistical manifold. A torsion free affine connection V' on M is called the dual connection of V with respect to
g if it satisfies

Ug(V, W) = gVuV, W) + 3(V, VW), )

for any vector fields U, VW € [(TM). If the pair v, g) constitutes a statistical structure on the semi-
Riemannian manifold M, then the pair (7, g) also forms a statistical structure on M. Furthermore (7)* =V.
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Therefore, we denote an indefinite statistical manifold also as (]\_/I, g, v, 7). It is easy to verify the following
identity

Vug)(V, W) + (Vug)(V, W) = 0,
for any vector fields U, V, W € [(TM).

—7 _ 7 1= — - 7
Let V' be the Levi-Civita connection of g. Then v = E(V + V), and from (1) it is evident that (M, g, V")

always forms a statistical manifold, and furthermore (ﬁy)* =V

Let (ﬁ, g) be a statistical structure on M. Furuhata [14] defined a difference tensor field K e F(TI\_/I(M))
on M as

KU V) = VyV - VoV,
which satisfies the following identities

K(U,V) =KV, W), FEKU,V), W) =7V, KU W), (3)
for any U, V,We [(TM). Conversely, for a semi-Riemannian metric g, if K e F(TA_/I(LZ)) satisfies (3), then the
pair V= v+ X, g) forms a statistical structure. Furthermore

K= -¥=3(V-7)

We denote the curvature tensor fields of V and V' by R and R, respectively. The statistical curvature
tensor field S of the statistical structure (V, ) is defined by

S(U V)W = %(E(u, V)W +R (U, V)W), (4)

forany U, VW € F(TM). It is easy to verify that
7(5(U, V)W, 2) = ~g(W,5(U, V)Z)

and
S(U, V)W + S(V, W)U + S(W, L)V =0,

hold forany U, V,W,Z € [(TM).
Consider an orthonormal basis {ej, ..., e,12} for T,M at a point p € M. Now, for a 2—dimensional non-
degenerate plane I spanned by {e;, ¢;} in T,,M, the statistical sectional curvature of the plane I1 is denoted

by K, and is defined as
§ ?(E(ei/ E]’)e]’, ei)
I

 glei, e)glej, i) — glei )

A statistical manifold (]\_/I, g, v, V) is said to have constant statistical sectional curvature ¢ € R if ¢ is
constant for all points p and planes I'l. Moreover, the statistical sectional curvature of a statistical manifold

(M, g, v, 7) is constant ¢ [13] if and only if
S, V)W = cfg(v, wu - g, wyv},

for any U, V, W € T[(TM).
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3. Spacelike Hypersurfaces of GRW spacetimes

An (n + 2)—dimensional Generalized Robertson-Walker (GRW) spacetime can be described as a warped

product manifold denoted as M = I X, F. In this construction, the base is represented by an open interval
I of the real line IR, the fiber F is an (1 + 1)—dimensional Riemannian manifold with the metric gr, and the
warping function ¢ is a smooth, positive function defined on I. The GRW spacetime itself is a Lorentzian
manifold equipped with a Lorentzian metric denoted by g, which can be expressed as

g = —dt* + *(t)gr. (5)

Here, t serves as a natural parameter on the real line R. Let 7i; and 7t denote the natural projections
of I X F onto I and F, respectively. Define £(I) and £(F) as the sets of horizontal and vertical lifts of vector

fields on I and F to I X F, respectively. Let d; € £(I) be the horizontal lift of the standard vector field % on .

For any vector field U tangent to M, we have the following unique orthogonal decomposition
U = gudy + U", ©6)
where ¢y = —g(U, d;) and UF is the lift of the projection of U onto the fiber F.

In this article, we consistently employ an overline to signify the lifting of vector fields and functions
from F to M, without making a distinction between objects in I and their corresponding lifts.

Let V’ be the Levi-Civita connection of the GRW spacetime M = I X, F and V¥ be the Levi-Civita
connection of the fiber (F, gr). The following lemma from [19] is well known regarding this Levi-Civita
connection of the GRW spacetime M.

Lemma 3.1. Let V' be the Levi-Civita connection of the GRW spacetime M = I X, F. Then, for the vector fields X, Y
in L(F), we have

(i) V5,0, =0,
(ii) V35X = Vidy = (Ing)'X,
(iii) Horizontal component of ?ZY =g9(X, Y)(In o) d;,
(iv) Vertical component of §ZY is the lift of the Levi-Civita connection VY on the fiber F.
Let the fiber (F, VF = V¥ + KT, V', gr) be a statistical manifold. Define K € T(TM) by
KU, vh) = KF(UF, vh), K@, U = KU, dy) =0, K (3, 9r) = v, )
where UF, VF € I(TF), v is a smooth function defined on I. Set V = §y +K. Using (6) and (7), we derive
G WU, V), W) = Zgr(K (U, VE), W) = voudvepw, (8)

forany U, V,W € [(TM). Since K* satisfies the identities in (3), therefore from (8), it is easy to verify that K
also satisfies the identities in (3) and, consequently, (V, 7) is a statistical structure on the GRW spacetime M.
LetV bea dual connection of the statistical connection V with respecttog. Then (A_/I =1Ix,Fyg, v=v +%, 7)
is an indefinite statistical manifold, where % holds the identities in (7).
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Example 3.2. Consider the upper half-space model of hyperbolic space F = {(x,y,z) € R : z > 0} with the

Riemannian metric
_ 1, 2 2
gr = —Zz(dx +dy” +dz )

By straightforward calculations, we obtain
Vior=1as,  VZay=0 Vo= 19
Bxx_zz’ w?Y =Y w92 = Zx’
1 1
gF _ gF _ = gF —
Vayﬁx =0, \Y% &y&y = Z&z, \% ay&z Z&y,
Vx = —2ay, Vidy=—say, Vidz=-1
2.9% = ZJC, %Y = Zy’ 9% = ZZ'

For the Riemannian metric gr of (F, gr), we define the difference tensor field K* € T(TF) on F by

K (@x,00) = oz, KOx,dy) =0, KF(@x,00) = Lox,
K@y, dx) =0,  K'(dy,dy) = %‘92, KF(y, dz) = %ay,
K (92,0%) = ~0x, KF(22,0y) = 29y, K'(92,00) = 20z,
It is straightforward to verify that the difference tensor field KT satisfies the following identities
KU, V) = KEVEUD),  gr(KEUE, VE), W) = ge(VF, KE(UT, WD), ©)
for any U, VE, WE € T(TF). Thus, (VF = V9 + K, g) is a statistical structure on (F, gr) and it is given by
Vi ox = %82, VEdy=0,  V59z=0,

2
F 9. _ F 5, _ F 5, _
Vay8x =0, V9y8y = Z&z, \Y% ayaz =0,
1
Vf;z&x =0, V§Z8y =0, ng&z = ;az.

Using V*F = V9 — K, the dual statistical connection V*F of VE with respect to g is given by

2
«F _ «F _ +F —
V5.0x =0, Vi5.0y =0, V.0z = —EQx,
2
*F _ +F _ *F _
Vayax =0, Vay(?y =0, Vay()z =--dy,

2 2
+F _ +F _ +F _
V3, 0x = —E3x, V3. 0y = —28]/, V3, 0z = —282.

Z

Thus, (F, gr, VF = V9 + KT, V*F) is a statistical manifold.

Let M = I Xcosht F be a warped product manifold, where the base I is an open interval of the real line R, the fiber
(F, gr) is a Riemannian manifold, and the warping function cosht is defined on I. Let the warped product manifold

M = I Xeosnt F be endowed with metric tensor g which is given by

g= —dr + (cosh t)zgp, (10)
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where t serves as a natural parameter on the base I. Let V'’ denote the Levi-Civita connection of the warped product
manifold (M = I Xcosht F, g) with respect to the metric g. Then, by straightforward calculations, we obtain

sinh t =7 sinht =7 sinht

V9ot=0, Vidx= SEx, Vady=2tloy, Vaoz= o,

V) ot = Zi)r;?liﬁx, ¥ ox = w&t + 1az, T ay=0, Vidz-= —%8;@
V5,0t = (S;r;};li y, Vo,dx=0, Vidy= —Smh ZOShtat ; %82, V5,02 = —%8%
Viot= S5, Viox=-lox, Vidy=-ldy Vaoe=TIONG 15

For the Lorentzian metric g of the warped product manifold (M = I Xosh F, §), we define the difference tensor
field K € T(TM) on M by

KU, VF) = KEUF, VF), K (9, UF) = KU, ;) = 0, K(d:,9r) = vy, (11)

where UF, VF € T(TF) and v is a smooth function defined on 1. For any vector field U € T(TM), we can decompose
U = UF + ¢pyat, where oy = —g(U, dt). Utilizing (10) and (11), we obtain

G, V), W) = (cosh t)?gr(KF(UF, VF), W) = vpudvopw,

forany U, V,W € [(TM). Since KT satisfies the identities in (9), K also satisfies the identities in (9) and consequently
V= VvV + K, g) is a statistical structure on (M, 7). Therefore

= = sinh t = sinht = sinht
Vv = \Y = \V/ = vV —
20t = Vo, 20X coshtax' Y = - 8y, 0z = oshta ,
Vot = SOty G, gy = Sinhfcoshty, 2&2, Vody =0, Vydz=0,
cosht z2 z
= sinh t = = sinh f cosh t 2 =
Voot = “osh? y, Vodx=0, Vy,dy= 2—281‘ + 282, Vay0z =0,
= inh t = = = inh t cosh t 1
Vadt = S22 02 Vidx =0, Vydy=0, Vadz= 0514 29z,
cosh t z2 z

The dual statistical connection V. of V with respect to g is given by

sinh ¢ = sinh ¢ — sinh ¢
htax' Vady = cosht %Y, Vadz= osh t

Jz,

V0t = —vot, Vydx =

— sinh t — sinh f cosh t — — 2
V0t = coshtax V0% = Tat, V, 0y =0, V,0z= —E8x,
— sinh ¢ — — sinh f cosh t — 2
ngat = @(9% Vay&x = O, Vayay = T&t, Vay&Z = —E&y,
_— sinh ¢ — 2 - 2 — sinh f cosh ¢
V328t = maz, Vaz(%c = —Zax, Vaz3y = —58]/, Vaz8z = Z—B - —8

Thus, (M =1 Xcosht F, ?,ﬁ =V + ‘]_(, 7) is an indefinite statistical manifold.

Next, by applying (6), (7) and Lemma 3.1, we have following observations.



A. P. Singh et al. / Filomat 39:27 (2025), 9759-9784 9766

Lemma 3.3. Let (M =X, Eg,V = v+ K, V') be an indefinite statistical manifold such that the fiber (F, gr) of the
GRW spacetime M has the statistical structure (gp, VF = V9 + KF,V*F). Then

VuV = VEVF 4 %y(uF, vha, + %(¢qu + yl) + (Ulev) + vudy)o: (12)
and
Vv =VEVE 4 %y(uF, Vha, + %(¢qu + oyUF) + (Uv) ~ vouev o, (13)

forany U,V € T(TM). In particular

j;,(?t =vd,, /
Virdy = VyUF = %UF, (14)
Vi VE = VEVE 4 %y(lf ,VH)o;
and
V,,0: = —vd;,
Vrdr = Vo Uf = %UF, (15)

Vo VF = VEVF & %y(uF, V)a,.

Remark 3.4. From this point forward, we will refer to “an indefinite statistical manifold (M = I X, EgV =
V' + K, V') where the fiber (F, gr) of the GRW spacetime M has the statistical structure (VF = V9 + KF,V*E, gp)”
simply as “a GRW spacetime (M = I X, F, 7,V = V4K, V') endowed with a statistical structure”.

We denote the curvature tensor fields of V, V, VF and V*F by R, R, RF and R, respectively. Then, using
Lemma 3.3, we have following results which will be used later.

Lemma 3.5. Let (]\_/I =Ix,F g7,§ =V + %, 7) be a GRW spacetime endowed with a statistical structure. Then

/7’

E(LIPI VF)&t = O/ E(LIP/ at)at = UF/

/7 + ,V /_
%g(upl VhHo,,

ve' o
0

RUF, 0)VF = -

— ’\2

R(UT, VHYWF = RE(UF, VE)WT + (%) (FovF, whut - gt whvr)

and
VQI + Q,, UF,
0

RUF,vHa, =0, R (U909 = -

WW@WEH&EQWKWM,

— /\2
R(UF, VHWF = RF(UF, vEYWF + (%) (FvF, whut - gut, whvr),

for any U, V, W € T(TM).
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We denote by S the statistical curvature tensor field of a GRW spacetime (M = I X EgV = vV + K, V)
endowed with a statistical structure. Consequently, from Lemma 3.5, we obtain the following results.

Lemma 3.6. Let (]\_/I =Ix,F g7,§ = ?y + %, 7) be a GRW spacetime endowed with a statistical structure. Then
g(‘9t/ al‘)at = 0/ g(81‘1 at)up = 0/ g(LIFI VP)8L‘ = 0/
E(UF, at)at = —Q—UF,
Ql/
o’ _

S(UE, 9V = —?g(UF, vHa,,

S(UE, VEYWE = sEUE, VEYWE + (%)z(y(vF, whut - g, whvr),

for any U, V, W € T(TM), where S is the statistical curvature tensor field of the statistical structure (V¥, gr).

Furthermore, using Lemma 3.6, we get

SUVW = SEUF, VEWF + (%)Z(y(vF, whut - gt whvr)

7/

¢
0
+%(¢U¢WVF ~ pvpwllF).

+=(g(vF, Wheu - guf, Whgy )

From (6), we know
(U, V) = —pudy +gU", V"), (16)
forany U,V € [(TM); therefore we further have

suvw = s, VF)WF+(%)2(§(VW)U—§(LLW)V)

N2 _ p
+(Q)TQQ{(<PV¢WU - <PU¢WV)

+(3(U, W)y = F(V, W)du)ai}- (17)
Let the statistical manifold (F, VI = V¥ + KT, V*F, gr) be of constant statistical curvature c. Then
SEUF, VAW = c{gr(VF, WHUT = gr(UF, WH)VF}, (18)
Using (5) and (16) in (18), we obtain
{(Fv, Wyt - G Wyv) + (dvopwl — pudwV)

<
e
+(FW W)py = 3(V, W)pu)s}. (19)

Hence, from (17) and (19), we derive the following result for later uses.

st vhHwt =

Theorem 3.7. Let (M =1x,F3,V = v+ K,V') bea GRW spacetime endowed with a statistical structure. If the
statistical manifold (F, g, VE = V9 + KF, V) is of constant statistical curvature c, then
— C+(/)2_ _ (1)2_ np
SUYW = =G0 WU - FUWY) + = (oronl - gugw)
+(3U, W)y = F(V, W)pu s}, (20)

for any U, V, W € T(TM).




A. P. Singh et al. / Filomat 39:27 (2025), 9759-9784 9768

Let ﬁs denote the statistical Ricci tensor of a GRW spacetime (Z\_/I =1x, F,?,? =V 4 7_(, 7) endowed
with a statistical structure, defined by the statistical curvature tensor field S. Consider an orthonormal
frame of fields {ey, . . ., €411, 9} on M. Then for any U,V € F(TZ\_/I), we have

n+1
Ric’ (U, V) = Z 7(S(e;, DV, &) — G(S(01, L)V, 9)). 1)

i=1

Since {e1,...,ens1,0:} is an orthonormal frame of fields on M, therefore from (5), {oe1, ..., 0en41} is an or-
thonormal frame of fields on the fiber F. Hence by straightforward calculations, utilizing (17) and (21), we
obtain the following result.

Theorem 3.8. Let (M =1x,F3,V = v+ K,V') bea GRW spacetime endowed with a statistical structure. Then
—‘g
Ric (U, V) = Ric"(U", VF) + n( @) (FW V) + puev) + —(g(u V) = nouc), (22)

for any U,V € T(TM), where RicF(UF, VF) denotes the statistical Ricci tensor of the fiber F.
Moreover, if the statistical manifold (E, gr, VE = Vo + KF, V) is of constant statistical curvature c, then

o)\ o

R (U V) = n(— )30V + ) + S (500 V) = ), @)

for any U,V € T(TM).
LetIT = span{U, V} be a non-degenerate plane spanned by orthonormal vector fields U, V € [(TM). Then
using (17), the statistical sectional curvature K3;(U, V) of the plane ITis given by
— /\2
Kn(Uv) = g W vOVE U+ (2 ) [ Wi, v) - 5, vy)

N2 _ /!
N > Y (AT ) - dupvFU, V) ~ (G, VIy — TV, Vbu)pu)-

This further implies

_ 2 _
UV = g @, v +(4) O g o), 4)

On the other hand, using (5) and (16), we derive
gr(ST(UE, VE)VE, UF)
gF(uF/ UF)gF(VF/ VF) - gP(uF/ VF)Z
) F(ST(UF, VEYVT, UF)
¢z _ _ 2
(5 W) + ¢33V, V) + 62) - (U V) + bughy)
B zy(sF(uF, VF)VF, uF)
B 1+ +¢?
for any orthonormal vector fields U, V. Hence, substituting (25) in (24), we obtain
(1+ 97+ %) .
s K
—%(qbﬁ + 0}).

Consequently from the previous expression, we have the following result.

KHWU, vF) =

, (25)

Kuv) = FUE, v+ (% )(1+¢u+¢v>
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Theorem 3.9. Let (]\_/I =Ix,F §,§ =V + 7_(, 7) be a GRW spacetime endowed with a statistical structure. Let
the statistical manifold (F, gp, VE = V9 + KT, V) be of constant statistical curvature c. Then

KS(UL V) = a + B} + B3),

where

° (Q’)Z and B = —C . <Q’)2 L
7 .

Let M be an (11 +1)—dimensional manifold. An immersion : : M — M, where M is the GRW spacetime, is
said to be spacelike if the Lorentzian metric g given in (5) induces, via ¢, a Riemannian metric g on M. In this
case, M is called a spacelike hypersurface of M. Since for the GRW spacetime M, the coordinate vector field
d; is globally defined and timelike, then M is time-orientable. Therefore, for any spacelike hypersurface M
of M, there exists a unique unitary timelike normal vector field N globally defined on M with the same
time-orientation as d;, i.e., g(N,d;) < 0. Utilizing the reverse Cauchy-Schwarz inequality [19], we have
g(N,ds) = —cosh ¢ < —1, and the equality holds at a point p € M if and only if N' = d;, where ¢ represents
the hyperbolic angle between N and 9.

In the GRW spacetime there exists a distinguished family of spacelike hypersurfaces, known as its
spacelike slices. A spacelike slice in the GRW spacetime M = I X, F corresponds to a spacelike hypersurface
defined by a constant value of t. Consequently, a spacelike slice is given by 7, (to) = {to} X,(,) F, for tg € I.

(26)

A spacelike hypersurface in M is a spacelike slice if and only if the hyperbolic angle ¢ is identically zero.

Assume that (M, g) is a spacelike hypersurface of a GRW spacetime (M = I x, F, 3,V = vV + K, V)
endowed with a statistical structure. Then, the local Gauss-Weingarten formulas on TM are

VxY = VxY +B(X, V)N, VxN = -AxX +1(X)N, (27)

ViY = ViY + B(X, V)N, VyN = —A X+ T (XN, (28)

for any X,Y € T(TM). Here, V and V* denote the induced connections of V and V' on the spacelike
hypersurface (M, g), respectively. Obviously, (M, g,V, V*) forms a statistical manifold, with V* being the
dual connection of V with respect to the induced metric g from g. The shape operators Ay and A}, on TM
are associated with the normal vector field N, while 7 and 7* are 1-forms defined on TM.

The normal vector field A is a unitary timelike vector field and then the local second fundamental

forms B and B* on TM are expressed as B(X,Y) = —y@XY, N) and B*(X,Y) = —g?ﬁ;Y, N), respectively. By
differentiating (N, N) along X, we have Xg(N, N) = EWXN ,N)+g(N, ﬁ(N ). Since N is a unitary timelike
vector field, by applying equations (27) and (28), it yields

T=-7". (29)
In a similar manner, applying (2), we obtain

B(X/ Y) = _g(A*NX/ Y)/ B*(X/ Y) = _g(ANX/ Y)r (30)

for any X, Y € I'(TM).

Let (M, g,V, V*) be a statistical spacelike hypersurface of a GRW spacetime (M = I x,F g, V=V4+%, V)
endowed with a statistical structure. The spacelike hypersurface M is said to be totally umbilical with respect
to V (or V) if the condition B = H® g (or B* = H* ® g) is satisfied. Additionally, M is described as totally
geodesic with respect to V (or V) if its local second fundamental form B (or B*) associated with V (or 7)
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vanishes identically. The vector fields IH and H* are referred to as the mean curvature vector fields on M and
are defined respectively by

n+1 n+1

1 * 1 * .
L Bee)and B = 2o B B (31)

Tn+1

where {eq, ..., e,41} is an orthonormal frame on M. B
Let (M, g, V, V*) be a statistical spacelike hypersurface of a GRW spacetime (Z\_/I =1x,Fy, V=v+ %, 7)
endowed with a statistical structure. Let R and R* denote the curvature tensors of the induced connections
V and V* on M, respectively. By applying equations (27), (28), and (4), and performing straightforward
calculations, we obtain the following significant expression
27(S(X, V)Z,W) = 29(S(X,Y)Z W)+ B(Y, Z)B*(X, W) — B(X, Z)B*(Y, W)
+B'(Y, 2)B(X, W) - B (X, Z)B(Y, W), (32)
for any X, Y, Z, W € I'(TM), where S denotes the statistical curvature tensor field on the statistical spacelike
hypersurface M. Let Ric® denote the induced statistical Ricci tensor of the statistical spacelike hypersurface

M of the GRW spacetime (Z\_/I =1Ix,Fyg, v=v +%, 7) endowed with a statistical structure. Let {ey, ..., e,:1}
be an orthonormal frame on M. Then

n+1

RicS(X, Y) = Z 9(S(ei, X)Y, e:),

i=1

for any X, Y € I'(TM). Since N is a globally defined, unique unitary timelike normal vector field on M, by
applying (32), we obtain

n+l

RicS(X,Y) = ()56l X)Y,e) = GEN, XY, N)) + GEN, X)Y, N)
i=1
1 n+1
_E Z (B(X, Y)B*(Ei, e,-) - B(Ei, Y)B*(X, E,‘) + B*(X, Y)B(Ei, E,‘)
i=1

~B'(e;, )B(X, &)).
Further, utilizing (30) and (31), it leads to
Ric5(X,Y) = R_icg(X, Y) + 5(SIN, X)Y, N) + %(g(ANX,A"NY) + g(ANY, Ay X)
—(n + 1)(HB'(X,Y) + H'B(X, ))), (33)
forany X, Y € I’(]:M)

Let Q° and @S denote self-adjoint operators on M and M, respectively. They are defined by Ric%(X,Y) =
g(Qf;X, Y) for any X,Y € I'(TM), and R_ics(ll, V)= y(@SU, V)forany U,V € I(TM). In particular, we denote
ﬁS(X, Y)= g(@slM X,Y). Then using (30) in (33), we obtain the following result.

Theorem 3.10. Let (M, g,V, V") be a statistical spacelike hypersurface of a GRW spacetime (M = I x, F,§,V =
§§ + %, 7) endowed with a statistical structure. Then

QX = @luX—SN, N + %((AN 0 Aj)X + (Ay 0 AN)X)

1 * *
5+ )(HANX + H'A} X), (34)

for any vector field X € T(TM), where Ay and A}, are the corresponding shape operators.
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_g JE— —— —f — —x
Let Q" and QF denote the statistical scalar curvatures of the GRW spacetime (M = [ x,F g,V = v’ +K,V)
endowed with a statistical structure and its statistical spacelike hypersurface (M, g,V, V*), respectively.

Therefore
n+1

Q° =) Ric*(es e,
i=1

and by using (33), we get
n+1 _3 _3 _3 n+1 _
Q5 = Z Ric (e, e;) — Ric (N, N) + Ric (N, N) + Z F(SN, e)ei, N)
=1 i=1
1 n+1
+5 ) (20(Ane;, Aye)) = (n + D(HB (e;, ) + H'B(es 7).

5

I
—_

This further gives
_3 _ 3 n+1
QF =00 +2Ric (N, N)+ Y g(Anei, Aye) = (n+ 1PHH',
i=1
Using (30), it is straightforward to verify that g(Ane;, Ajei) = g(A*NANei, e) = g(ANAjVei,ei). Conse-
quently, the above expression simplifies to

Q5 =@ +2Ric (N, N) + A o Alyll - (n + 12HI,

n+1

where [[Ay 0 A} [l = Z g(ANAYe;, e)).
i=1

4. Ricci Solitons on Spacelike Hypersurfaces

A natural generalization of an Einstein metric is a Ricci soliton [15]. On a Riemannian manifold (M, 7),
a — =y . —
a Ricci soliton [9] is a stationary solution of the Ricci flow equation T g(t) = —2Ric(t), given by g(t) = x(t);

with 7(0) = 7, where Ric(t) is the Ricci tensor of the evolving metric 7(t), 7; represents diffeomorphisms of
M, and x(t) is the scaling function. Perelman used the concept of Ricci solitons to solve the long-awaited
Poincaré conjecture, which was posed in 1904. Since then, the notion of Ricci solitons has become a topic
of interest for mathematicians and physicists. A complete Riemannian manifold (M, g) is considered a
Ricci soliton if there exists a vector field & € F(TZ\_/I), referred to as the potential vector field, satisfying the
following relation

Ric + %ﬂgy = Ag,

where £:7 denotes the Lie derivative of § along &, Ric is the Ricci tensor of M and A is constant. The Ricci

soliton is denoted by (M, 7,&,A). A Ricci soliton is classified as shrinking, steady, or expanding if A is
positive, zero, or negative, respectively. A Ricci soliton is trivial if £ is zero or Killing, which implies that
the metric is Einstein. The concept of a Ricci soliton is further generalized to an almost Ricci soliton [22],
where the condition of A being constant is relaxed.

Lemma 4.1. Let (Z\_/I =Ix,F §,§ = §y + %, V) be a GRW spacetime endowed with a statistical structure. Then
EWDULY) = PEwrgr)UF, V) = (Uw))pv - (V(dw))du
+200 pwyr(U", VF), (35)
for any vector fields U, V, W € T(TM).
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Proof. It is known that (Ewg)(U, V) = gﬁﬂw, V) +g(U, ?{ZW), for any vector fields U, V, W € [(TM). Since
v = %(6 +V)and using the Codazzi equation, it implies that

_ 1, = = 1/ =+ =
(EwU, V) = 5(5(TuW, V) +FU Ty W) + 5(7(Tu W, V) + 5(U VW)
= F(VuW, V) + UV, W). (36)
Utilizing (12) and (13), we obtain the required relation (35). O
Chen [7] provided a useful characterization theorem, stating that a Lorentzian manifold M of dimension

n > 3 is a local GRW spacetime M = I X, F if and only if it possesses a timelike concircular vector field.
Chen demonstrated that the vector field C = od; satisfies this requirement.

Let (M =1x,F, 7,V = v+ %,V') be a GRW spacetime endowed with a statistical structure. Utilizing
equations (6), (14), and (15), we have
Vul = ¢'U +vpuCand V,,C = o' U — vy, (37)
for any vector field U € T (TM). ~
Let (M, g, V, V*) be a statistical spacelike hypersurface of a GRW spacetime (M = I X, F,7, V=V+%, V)
endowed with a statistical structure. Then, the closed conformal timelike vector field C can be expressed
as C = (T + ON, where 0 = —g(C, N) < 0 is the support function on M and {7 is the tangential component
of C. In this context, O is given by 68 = pcosh¢. Similarly, the vector field dt can also be represented as
ot = ()T + cosh N, where (9t)T denotes the tangential component of 9t and N' = N + cosh dt. One has
GN,N) = 3(0t,dt) = =1, gINF, NF) = (01T, (9t)T) = sinh? ¢.
Remark 4.2. Utilizing (35), we have
EPWU, V) = —(U(¢0))pv — (Vo) )pu + 200 pegr(UF, V),
for any vector fields U, V € T(TM). It is known that ¢c = —g(C, dt) = o, therefore using (16), it follows that
(Eg)(U, V) =2¢'g(U, V). (38)
Hence, C is a conformal vector field on M with conformal factor ¢'.
Next, from (27), we have
VxC = VxC" +BX, N + (XON + 0(-AnX + T(X)N),

for any vector field X € I'(TM).
By comparing the tangential and normal components of the expression and using equations (30) and
(37), we derive

VxC" — 0ANX —vpx (T = ¢'X,
and

g(A3 T, X) — (X0) — 01(X) +vOdx = 0, (39)
respectively. Similarly

Vil = 0A X +vpx (T = ¢'X
and

g(ANCT, X) = (X0) - 07" (X) — vOpx = 0. (40)

By adding equations (39) and (40), and using (29), we obtain 2(X6) = g(AxCT, X) +§(A3\,CT, X). Consequently,
the following result arises immediately.
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Proposition 4.3. Let (M, g,V, V") be a statistical spacelike hypersurface of a GRW spacetime (M = I x,, Eg,V =
V4%, 7) endowed with a statistical structure. Then, the support function 6 on M is constant function if and only
if AN = =A1 .

Using (2), we have (£(g)(X,Y) = §(§XC, Y) +9(X, VYC) for any X,Y € I[(TM). Since C = T + ON, and
applying equations (27) and (28), we also obtain
EDXY) =5(VxC", Y) = 0g(ANX, Y) + G(X, VC) = 0(X, Ay Y)
=(Ecrg)(X,Y) + 0(B(X,Y) + B(X, Y))
=(Ec)(X, Y) +20B7(X,Y),

where BY(X, Y) denotes the local second fundamental form on TM with respect to the Levi-Civita connection

Vv’ on M. Hence using (38), we further obtain
(o)X, Y) = 2(¢'9(X, V) - 6B7(X, Y)), (41)
for any vector fields X, Y € I'(TM). Consequently, we have the following result immediately.

Proposition 4.4. Let (M, g,V, V*) be a statistical spacelike hypersurface of a GRW spacetime (]\_/I =1x, E§,§ =
v+ X, 7) endowed with a statistical structure. Then:

(i) The vector field CT on M is conformal if and only if M is totally umbilical with respect to the Levi-Civita

"
connection V"

(ii) Let the vector field (T on M be either conformal or Killing. Then M is totally umbilical with respect to V if and
only if it is totally umbilical with respect to V.

Theorem 4.5. Let (M, g,V,V*) be a statistical spacelike hypersurface of a GRW spacetime (Z\_/I =1x,F ﬁ,? =

v+ %,V) endowed with a statistical structure. Then, the quadruple (M, g, CT, A) is a statistical Ricci soliton if and

only if
1 1
S _ s _ " «
Q —n+1Q 26(]H+II—I +An + A,

with Q°, Q°, H, H*, Ay and A%, defined before.

Proof. Assume that (M, g, CT, ) is a statistical Ricci soliton, satisfying the equation

Ric*(X,Y) + %(ﬁa DX Y)=A9(X,Y), (42)
for any vector fields X, Y € I'(TM). Utilizing (41), we derive the expression

Ric*(X,Y) = (A — 0)g9(X, Y) + OBY(X, Y).
This further implies

Q°X=(A-0)X - %Q(A NX + A X), (43)
where Q° is the self-adjoint Ricci operator on M which is defined by Ric*(X, Y) = g(Q°X, Y).

Let {ey, ..., e4+1} be an orthonormal frame on M. By contracting equation (42) with this frame, it follows
that

Q5 +dio((T) = (n + DA. (44)
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On the other hand, by contracting equation (41) with this frame, we obtain
. T ’ 1 *
dio(C") = (n + 1)(¢’ - SO +H )).

From (44) and (45), it follows that

;7 _ 1 S_l *
A—g —n+1(Q 2(n+1)9(]I—I+]I—I)).

Hence, from (43) and (46), the proof is completed. [

9774

(45)

(46)

Theorem 4.6. Let (M, g,V, V") be a statistical spacelike hypersurface of a GRW spacetime (M = I X, F g,V =

e V') endowed with a statistical structure. Let the statistical manifold (F, gr, VE = V7 + KF,VF) be of
constant statistical curvature c. If the quadruple (M, g, CT, ) is a statistical Ricci soliton, then the statistical scalar

curvature Q° of the statistical spacelike hypersurface M is of the form

2

Q° = n(n + o+ p((n — 1) sinh® g + (n + 1)(% — 1)) +lAn 0 Ayl - (n + 1)*HET,

where a and f are given in equation (26).

(47)

Proof. Let tlle quadruple (M, g,CT, A) be a statistical Ricci soliton. Then, utilizing (34) and (43), the Ricci

operator @S on M is given by
_g ) 1 * * /
QX = SN, XN — E((AN 0 AN)X + (Al 0 AN)X) + (A= ¢)X
1 - 1 .
—5(n+ D(HANX + H'Ay X) - SOANX + A, X),

for any vector field X € I'(TM). This further implies that

@g(x, Y) = GSN,X)N,Y) - %(g((A N O ANX,Y) + g((Ay 0 An)X, Y))

—%(n + D(Hg(AnX, Y) + H'g(Ay X, Y)) + (A = )g(X, Y)

1
~50(9(ANX V) + 943X, V),

(48)

for any vector field X,Y € I'(TM). Since the statistical manifold (F, g, VF = V% + KT, V*F) is of constant

statistical curvature c, using (20) and (26), we have
_ 2
SN, XN = aX + ﬁ(gcpr - (g) X = gxat).
Hence, using (23) and (49) in (48), we obtain

2
(2 =PI V) 4 nfxdy = F= 9N+ dx) + (L= )XV

2 (AN 0 A% 1) + (43, 0 ANX, V)

_%(n + D(Hg(ANX, V) + Hg(A X, V)

—%G(g(A NXY) + g(AGX,Y)).

(49)
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Let {ey, ..., en+1} be an orthonormal frame on M. On contracting the above expression with this frame, we
derive

(nar=p)(n +1) + npsinh® g = p( - i—j(n +1) +sinh® @) + (A - ¢')(n + 1)

—[|Ax 0 Al + (n + 1’ HH" + %(n +1)O(H + HY),

n+1

where Z (i)f, = g((&t)T, (@1)7) = sinh? @. Finally, using (46) in the last expression, we get the desired
i=1

result. [

Remark 4.7. In the context of Theorem 4.6, consider that the statistical spacelike hypersurface (M, g,V, V") of the
GRW spacetime (M =Ix,F y,ﬁ =V + %, 7) endowed with a statistical structure is a spacelike slice. In this
case, the hyperbolic angle @ is identically zero, which implies ot = N and 0 = pcosh ¢ = o. Additionally, applying
assertion (ii) of Lemma 3.1 and noting that %(XF ,0t) = 0, we obtain Vg N = %XF . Further, using the Gauss

formula, it follows that Ay X' = —%XF . Similarly, A} X" = —%XF and, consequently, we have

n+l

/(2
IAn o Al = ) glAner Aye) = () (n-+1)
i=1

/

Additionally, we also have H = H' = £ Let %' denote the statistical scalar curvature of the spacelike slice. Then,

by applying all these results in (47), we obtain

Qi = p(n + 1)%.
0

Theorem 4.8. Let (]\_/I =Ix%x,F gﬁ -V 4 7_(, 7) be a GRW spacetime endowed with a statistical structure. Let
the quadruple (F, gr, WE, AF) be a statistical Ricci soliton. Then, (M, g9, W, A) is a statistical almost Ricci soliton if and
only if

_ 2 2 7/ 1
EPUV) = 1= (1= 0+ D Joudy - T ((Uowov + (Vow)ou),

for any U, V, W € T(TM).

Proof. Let the quadruple (F, gr, WE, AF) be a statistical Ricci soliton. Then, for any U, V,W € F(TZ\_/I), we have
Rict(U*, vF) + %(EWFgF)(uF, vh = Afgp(ut, vh). (50)

By using (22) and (35) in (50), we derive

¢

0

#3(1= DUV + S gt v

R+ 560 V) = (S G0V +6uer) + S50 V) - ngugy)

—21@2((U<q>w>)q>v + (Viem)pu)
+AFgp(Ut, VF). (51)
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Further, utilizing (5) and (16) in (51), we obtain

— g F ’ /7 /
Ric (U V) + 3G V) = (f; (@) + L Zowawy)
/\F N 77 /
+(? + Tl(%) — n% + %(PW)(PU(PV
—Zigz((u@w))(?v + (Viem)pu)
2 _
4L 2@21)<£w§)<u, V).

This can be written as

REWY)+ JEDUY) = TG V) +(T- 0+ D ouou

—2102((um>w>)¢v + (Viem)pu)

2 _ 1)
7 00} 2)
_ /\F Q/ 2 0// Q/
where A = 7z + n(E) + o + Egbw Thus, the proof follows from (52). O

A Riemannian manifold (M, 7) is said to be a quasi-Yamabe soliton [8] if it admits a vector field & such that
1. = =_
FEeg=Q-Ng+pp oy,

for some constant A and some function u, where v is the dual 1-form of £ and Q is the scalar curvature of

M.
Since C = odt, it follows that f = 0. Assume that the quadruple (F, gr, Cf, AF) is a statistical trivial Ricci
soliton, it implies that Ricf (UF, VF) = AFgp(UF, VF). Substituting this into (22), we obtain

e AR o AE g
Ric (V)= (= +n(=) + =g V) + (= +n(=) —n— ,
(&) + L+ (s o n( 2 -nLyouor
for any U, V € T(TM). Further, using the previous expression with (38), we obtain
Ric (U,V) + %(Ec?)(U, V) = Ag(U, V) + é(ﬁ -0 —-(n+ 1)%)w(U)a)(V), (53)
where
— AF Ql 2 QN
A=—+ / +nl—) +— 54
7o) ©4)

and w is the dual 1-form of C. Hence, we obtain the following result.

Theorem 4.9. Let (M = I X, F, 7,V = vV + K, V') be a GRW spacetime endowed with a statistical structure. Let

the quadruple (F, g, CF, AF) be a statistical trivial Ricci soliton. Then, (]\_/I, 7, C,;\\) is a statistical quasi almost Ricci
soliton.

The following example supports the claim made in the previous theorem.
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Example 4.10. Let F = {(x,y,z,u) € R* : (x, y,z,u) # (0,0,0,0)} be a Riemannian manifold equipped with a

Riemannian metric 1 .
_ 2 2 2 2
gr = Z—2<dx +dz )+ ;(dy +du )

Let V9¥ denote the Levi-Civita connection of (F, gr) with respect to the metric gr. Then, by straightforward calculations,

we obtain , ,
gF 5. _ gr 5. _ 9r 5, _ gr 5, _
Vaiﬁx = E&’z, V(;;&y =0, Vaf(az = —Eax, V(;;&u =0,

1 1
g g g g
Vafj&x 0, V;yay = —du, Va};&z =0, V;yau =—-=-dy,

1 1
I )y — E 3y — I 3oy — I3y, —
Va;c?x = —Z&x, V(;Z&y =0, Va;(?z = —Eaz, va;au =0,
1 1
I Iy — I 5y = I 5y — 9 5y, —
V5,0x =0, Vidy= —;8% V5,02=0, V3 du= —;91/!.
For the Riemannian metric gr of (F, g), we define the difference tensor field Kt € T(TF) on F by

KE(9x,dx) = —éaz, KF0x,dy) =0, K(9x,dz) = —§8x, KE(dx,0u) =0,

’](F((?y, dx) =0, ‘](F((?y, dy) = —%Qu, ‘KF((?y, 0dz) =0, 7<F(8y, du) = —%By,
KE(dz,0x) = —%8x, KF(9z,dy) =0, KF(dz,dz) = %82’, KE(dz,0u) =0,

KF(Qu,dx) =0, K (u,dy) = —%8% KEQu,dz) =0, KE(Ju,du) = %811.

It is then easy to verify that the difference tensor field K satisfies the identities in (3). Thus, (VF = VI + KT, gr) is
a statistical structure on (F, gr), and given by

vgxax =0, vgxay =0, Vgxé?z = —§8x, V§x8u =0,
V5,0x=0, Vi dy=0, V5 0z=0, V,ou= —%3% 5)
Vi ox = —gax, VEdy=0, Vidz=0, Vou=0,
VEox=0, V,dy= —§8y, VEdz=0, Viou=0.

Utilizing V*F = V9 — KT, the dual statistical connection V*F of VF with respect to g is given by

2
V;i&x = Z&z, V;i&y =0, ng(&z =0, V;iau =0,
2
VEox=0, Vidy==0du, Vioz=0, Viou=0,
Iy Iy u dy 5 Iy (56)

Viox=0, Vidy=0, Vidz= -9z, Viou =0,
2

\7:;1;8x =0, V;iz?y =0, V;iﬁz =0, fo;&u = —;3u.

Thus, (F, g, VE = VI + KE,V*F) is a statistical manifold.

Let M =1 Xexpt F be a warped product manifold, where the base I is an open interval of the real line R, the fiber
(F, gr) is a Riemannian manifold, and the warping function exp t is defined on I. Let the warped product manifold

M=1 Xexpt F be equipped with metric tensor g given by

g= —dr + (exp t)zgp,
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where t serves as a natural parameter on the base I. Let v’ denote the Levi-Civita connection of the warped product
manifold (M = I Xexpt F, ) with respect to the metric g. Then, by straightforward calculations, we obtain

V9ot =0, Vidx=0dx, Vody=dy, Vidz=0z Vydu=au,

exp 2t

—7 7 —7 1 7
V9.0t = dx, Vodx = -az +——0t, Vydy=0, Vioz= ~~ox, V5.0u =0,

- — _z 2t —7 =7
ngat = 8]/, ngax = O, nggy = %81,1 + eXLIIDZ 8t, ngaz = O, ngau = —%8%

exp 2t

—7 —7 1 —7 —7 1 —7
Vo0t =dz, Viox= =, V5.0y=0, Vidz= ~Zdz+ —5 0L, Vo.0u =0,

exp 2t
S—ot.

—7 = _= 1 = -
Voot =du, Vidx=0, V3dy= —;8]/, V5,02 =0, Vgu&u = _ﬂ&u +

For the Lorentzian metric § of the warped product manifold (M = I Xexpt F, ), we define the difference tensor field
K € I(TM) on M by

KU, V) = KU, V), K9, U) = KUF,91) = 0, K(0,, ) = v,
where U, VE € T(TF), v is a smooth function defined on I. This gives
FKU, V), W) = (exp 12 gp(KF(UF, V), W) = voudvew,

forany U V,W € T(TM). Since KT satisfies the identities in (3), XK also satisfies the identities in (3), consequently
V= v+ %, 7) is a statistical structure on (M, 7). Hence
g 9

Vot = vot, Vyox =0x, %tay =dy, Vydz =9z, Vyou =ou,

exp 2t

Vot = dx, Vjyox = ot, Vydy=0, Vyodz= —gax, Vyou =0,

exp 2t — — 2
p dt, Vu,0z=0, Vy,du= —EBy,

%y&t = 8y, ﬁ;yé’x =0, Vayay =

_ — — — 2t —
Voot = 02, Vox = —Eax, Vody =0, Vjdz= ex; o, Vadu=0,

ot.

_ _ _ _ _ 2t
Voudt = du, Vpdx =0, Vady= —%8]/, Voudz =0, Vpdu= -2

The dual statistical connection V. of V with respect to g is given by

Vo0t = —vdt, Vydx=0x, Vyudy=3dy, V,dz=0dz Vaydu=du,

— — 2 exp 2t — — —
Viudt=0x, Vyox= -0z + ;;Zat, Vo dy=0, Vydz=0, Vydu=0,

pZt

— — — 2 — —
Voot =9y, Vy,0x=0, V,dy= ;8u —5—t, V,,0z=0, V,du=0,

— — — — Zt f—
Vo0t =0z, Vydx=0, Vydy=0, Vdz= —Eaz € ; o, Voou=0,

ot.

— — — — — 2 exp 2t
Vadt=0u, Vp0x=0, Vpdy=0, Vp02=0, Vyou=-=ou+ b
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Thus, (]\_/I =1 Xexpt F, §,§ = ?y + %, 7) is an indefinite statistical manifold.
Next, for the statistical manifold (F, gr, VE = V9 + KT, V*F), denote the curvature tensor fields of VF and V*F by
RF and R, respectively. Utilizing (55) and (56), we obtain

6 6
F _ F _
R"(dx,0z)dz = —Z—zc?x, RY(dy, du)du = —;ay
and ; ;
R*(9x,9z)dx = 2—232, R* 9y, du)dy = ;8%

and all other components of the curvature tensor fields RF and R*F vanish identically. We denote by S the statistical
curvature tensor field of (F,gg,VE = V% + KF, V). Consider {e; = zdx,es = udy,es = zdz,es = udu} an
orthonormal frame on the statistical manifold (F, g, VE = V97 + KF, V). Using the previous expressions, we get

Sf(er, e3)es = —3e1,  SF(ea, ea)es = —3es,

St(er, e3)er = 3es,  S'(ea, ex)er = 3e,

and all other components of the statistical curvature tensor field St vanish identically. Let Rict(UF, VF) denote the
statistical Ricci tensor of the statistical manifold (F, gr, VF = V% + KT, V*F). Then, we derive

RicF(el,el) = RicF(ez,ez) = RiCF(€3,€3) = RicF(e4,e4) =-3.

Since C = got, it follows that CF = 0. Thus, the fiber (F, gr, Ct, AY) is a statistical trivial Ricci soliton with AF = —3.
Since {e1, ez, e3,eq} is an orthonormal frame of fields on the fiber (F, g, VF = V% + KT, V), it implies that

{0t,E1 = %el,Ez = %ez, E; = ge3, E, = 564} is an orthonormal frame of fields on the warped product manifold

M=1 Xexpt EgV = v+ K, V). It is known that Ewg)(U V) = §(§ZW, V) + g, §§VW), for any vector fields
U, V, W € T(TM). By straightforward calculations, we obtain

(E7)0t, 1) = —2expt, (EG)E;, E) =2expti=1,...,4.

Let Ric denote the statistical Ricci tensor of the warped product manifold (M = I Xexpt F, 7,V = v+ K,V). By
applying (22), we get

—5 —5 .
Ric (dt,0t) = -4, Ric (E;, E) = _exp % +4, i=1,...,4.
Hence
Ric (9t of) + %(ﬁcy)(at, o) = —4 —expt (57)
and
ﬁg(E- E)+ 1(£ 9)(E; E)) = — 3 i itexpt (58)
ir L 5 14/ irki) = exp2t Pt

-~ 3
fori=1,...,4. By utilizing (54), we have A = 4 + expt — m. Moreover, it is easy to verify that

Ag(ot, at) + é(x —d —(n+ 1)%)w(3t)w(at) = —4—expt (59)

and

’’

— 1 3
AG(E, E)) + E(X -+ 1)%)w(Ei)w(Ei) =4rept- o (60)
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Thus, from (57), (58), (59) and (60), it follows that the orthonormal frame of fields {Jt, E1 = %el,Ez = %ez, E; =

%63, Ey= %&1} on M satisfy the expression in (53). Consequently, we find that if the fiber (F, gg, C, AF) is a statistically

trivial Ricci soliton, then (A_/I, g, C,;\\) is a statistical quasi almost Ricci soliton.

Lemma 4.11. Let (]\_/I =1x, F,g?,? = §§ + 7_(, 7) be a GRW spacetime endowed with a statistical structure. Then
EvPUL V) = (Ewrg)(UT, VT = BU, WHn(V) = B(VE, WHn(U)
~((U(nW)))nvy + (V(nm))n(W)) + nz(Va W, V)
+n(W)(BUT, VT) + B*(UT, V7)) + n(V)F(V W, L)
—T(UNW)N(V) + T(VHn(W)n(U)
+2(N - (W) )n(n(v), (61)
for any vector fields U, V, W € T(TM). In particular,
EPUYV) = (Erg)U", V) +gcosho(BUT, V") +B'(U", V"))
=20 (V). (62)

Proof. Since M is a spacelike hypersurface of M and A is a unique unitary timelike normal vector field

globally defined on M, for any U € T(TM), we can write U = UT + n(U)N, where U” is the tangential
component of U and n(U) = —g(U, N). Then, utilizing the local Gauss-Weingarten formulas on TM, we
have

VuW = VW +BUT, WHN + (U(n(W))IN = n(MANUT + n(W)r(UTN
+n(U)(VAWT +n(WVAN)
and
VoW = Vi, W+ B(VT, WON + (V(n(W))N = n(W)A VT + n(W)T (V)N
+(V)(VyWT + W)V N).
Using above expressions in (36), we derive
EwRU V) = Ewrg)U", V") = BUT, Whn(v) - B(VT, W)
~((u(nwW)))nv) + (V(n(m)) Jn(w))
+n(W)(BW, V") + B'(U", V1))
+NU(N -G, V) = W',V V)
(VN - g W) -5 xU, W)
—t(UNW(V) + n(UnW)(N -GN, V) = GV V, N))
+r(VInWn() + n(MnW)(N - gUN) = GENU, N)).

This expression leads to the final result. [
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Since for any U € [(TM), we can write U = U" + n(U)N, then by applying the local Gauss-Weingarten
formulas on TM, we derive

Rle, UNN = —~(VeAn)U) + (VirAn)(e) — T(UT)Aye; + Tle)AnU"
—(Blei, AnUT) = BUT, Ae;) — 2d7(e;, UN)N,
where {e1, ..., 41} is an orthonormal frame of fields on M and
(Ve An)(UT) = Vo (AUT) = Ap(VeUT). (63)
The preceding expression yields
JRe, UNN,e) = —g((VaAn)U), &) + g((VurAn (e, )
+7(UD)B*(e;,¢;) — T(e;)B* (U7, €;).
Furthermore, by applying (4), we obtain
255, UNN,e) = —g((VeAn)UT), &)+ g((VurAn) (e, ei)
—g((ViAp UMY, &) + 9((Vir A )(ei), )
+7(UT)(B' (e ) - Blei 1)
—t(e)(B' (U, e) - BQU, e:)). (64)

As noted in [26], the covariant derivative of the second fundamental form is equivalently defined as
(VxA)IN,Y) = Vx(ANY) — AvinY = An(VxY) for any vector fields X and Y tangent to M and any vector
field N normal to M. We denote

Ly

n+

trace(AnU") = ) g((Ve AN, UT), &)

= -
1l
I

9(VeANUT) = Ay pUT = Ay (V. UT), €1).

—_

Further, using (30) and (63), we obtain

n+1

trace(AyUT) = Z {((VeAn)UT), ) + T(e)B'(UT, 1)}, (65)

i=1
Similarly, by using (29), we obtain

n+l1

trace(Ay UT) = ) {g((ViAn)UD), &) - T(e)BUT, e)}. (66)
i=1

We also denote
n+1

trace(VyrAy) = Z g((VuTA)(N, e), 6:‘)/
i=1

and then by using (30) and (63), we obtain

n+l

trace(VirAx) = Y {((VurAw)(e, &) + T(UT)B (e, €0)). (67)

i=1
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Similarly
n+1
trace(Vy Ay) = Y (o((VirAj)(e, ) = (UT)Ber ). (68)
i=1
We know that

— n+1
Ric (", N) = Y 5(S(e;, UIN, &) =GN, UTIN, N)
i=1
n+1
= ) G(S(ei, U")N, e). (69)

i=1

Thus, by applying the expressions from equations (64)—(68) in (69), we arrive at the following result.
Lemma 4.12. Let (]\_/I =1IXx, 1—",;7,? = v? + %, 7) be a GRW spacetime endowed with a statistical structure. Then

—S 1
RicS(UT, N) = 5 (tmce(VurA N) + trace(ViAy) — tmce(A N UT)

—tmce(AjV UT)), (70)
for any vector field U tangent to M.

Let (M, g, V, V") be a statistical spacelike hypersurface of a GRW spacetime (A_/I =1x,FEy, V=v+ %, 7)
endowed with a statistical structure. Then, for any vector fields U and V tangent to ]\_/I, we have

Ric (U V) = Ric (UT,V7)+n(V)Ric (U, N) + n(DRic (V7, )

(V)RS (N, N). (71)

Using (33) and (70) in (71), we derive

Ric(UV) = RicSUT, VT -GEWN, UV, N) - %(g((A*N o AU, VT)

+9((An © AYUT, V1) + (n+ H(HB WU, V") + H'BU, V7))

1 * *
+§17(V)(tmce(VurA N) + trace(ViAy) — tmce(A NUT)
* 1 * *
—tmce(A N UT)) + En(U)(tmce(VVrA N) + trace(Vi: A})
—trace( An V™) - trace( Ay V7)) + n(Wn(V)Rie (N, N). 72)

Hence, by applying (61) and (72), we derive the following result.

Theorem 4.13. Let (M, g,V, V") be a statistical spacelike hypersurface of a GRW spacetime (M = I X, F, 7,V =
v+ %, V) endowed with a statistical structure. Let the quadruple (M, g, W, ;\) be a statistical Ricci soliton. Then,
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the quadruple (M, g, W', A) is a statistical Ricci soliton if and only if
(1+ (N - (W) + 2Rie” N, N))(n(v) = 3N, UMYV, )
+%<g((A*N o ANUT, VT) + g((Ax 0 Ap)UT, V)
+1((n + 1)H - n(W))B*(U’, V') + ((n + 1)H' - n(W))BU", V")
——n(V)(tmce(VuTAN) + trace(V p Ay) — trace(ANUT) - trace(A"NUT))
—En(ll)(tmce(VVTAN) + trace(Vi,: Aly) — trace(ANVT) - trace(A*NVT))
+§(B*<VT, WT) + V(W) = G N W, V) = (V)W) (L)
+2 (BT, W) + UGn(W) ~ 5T W, D) + U )nW))n(v),

for any vector fields U, V, W tangent to M.

By applying the expressions from (61) and (72) to (52), we obtain the following result.

9783

Theorem 4.14. Let (M, g,V,V*) be a statistical spacelike hypersurface of a GRW spacetime (M = I X, F, 7,V =
v+ %, 7) endowed with a statistical structure. Let the quadruple (F, gp, WE, AF) be a statistical Ricci soliton. Then,

the quadruple (M, g, W", ) is a statistical Ricci soliton if and only if

2
<£ng>(uT,vT>=129 (-0 )¢u¢v+ 7 (UGwoy + Viowen)

(n+ 1)gH - n(W))B'U", V") g

((n+ D = nW))BUT, V)

;_\
’%

02
0

25(S(N, UNVT, N) + g((Ay 0 AU, V) + g(An 0 A)U", VT))

—_ I

BT, WT) + V(W) = VAW, V) = 2(VI (W) (L)

’%
—_

=

BUT, W) + U(n(W)) = F(V W, L) + 7(UT)n(W))n(V)

H

0

trace(VyrAn) + trace(Vi: Ay) — tmce(A NUT) - tmce(A*NUT))r](V)

,_\

—(
(
—l
¢ (trace(VyrAn) + trace(Viy, Ayy) — trace( An V") — trace( A VT) (L)
—l
=
_

+RICIN, N) + —(N (W) Jnn(v),

for any vector fields U, V, W tangent to M.

Let the quadruple (F, gr, Cf, AT) be a statistical trivial Ricci soliton. Then, Rict (UF, VF) =

any vector fields U and V tangent to M. Using (22) and (38), we obtain
—S 1 . _
Ric (U V) + 5 EDU,YV) = (g, vT) = nWn(v))

+(A* =+ 1)%”)¢uqbv,

Afgp(UF, VF) for
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AF /2 /7
where A* = — + n(%) + E + ¢'. Thus, using (62) and (72) in the previous expression, we arrive at the

following result.

Theorem 4.15. Let (I\_/I =1Ix,Fyg, v=v +%, 7) be a GRW spacetime endowed with a statistical structure. Let the
quadruple (F, gr, CF, AF) be a statistical trivial Ricci soliton. Then, (M, g, CT, A*) is a statistical almost Ricci soliton if
and only if

GV, UNHVT,N) + %(g((A*N o AU, VT) + g((An 0 Ay)U", V)
+%<(n +1)H' - gcoshp)BU", V) + %((n +1)H - gcosh g )B(U", V")
—%n(V)(tmce(VurA N) + trace(Vy A} ) = trace( AN UT) = trace( Ay UT))
—%n(U)(tmce(VVTAN) + trace(V,: Aly) — tmce(ANVT) - tmce(AijT))
(RN =+ A V) + (1 = 04 D Jguy =,

for any vector fields U and V tangent to M.
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