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Abstract. In rough set theory, numerous studies have employed various neighborhood systems to develop
novel rough approximation models, aiming to enhance accuracy and preserve as many characteristics as
possible of the reference approximation space established by Pawlak. To contribute to this field, we intro-
duce new rough neighborhoods, referred to as overlapping subset rough neighborhoods. They are defined
under any arbitrary binary relation using subset relations between right and left neighborhoods, as well
as between minimal right and minimal left neighborhoods. We examine their fundamental properties
and identify the types of binary relations (i.e., serial, inverse serial, transitive, and quasi-order relations)
under which they satisfy specific interrelations between them, as well as their relationships to previously
established neighborhoods. We also successfully derive indicators based on the proposed neighborhoods
to determine whether a relation is symmetric or both symmetric and transitive. Furthermore, we explore
the relationships between the proposed neighborhoods as they transition between two generalized approx-
imation spaces, where the smaller relation is serial (inverse serial) and transitive. Next, we put forward
novel rough set models derived from the suggested neighborhoods and examine their core properties. We
demonstrate that these models retain most of the characterizations of Pawlak approximation space and
identify the binary relations under which they outperform previous models in minimizing uncertainty and
satisfy the monotonicity property. Additionally, we design an algorithm to compute the boundary area
and accuracy measures and provide a practical example related to book authorship to highlight the effec-
tiveness of the proposed technique in extracting information. Finally, we conduct a comparative analysis
that showcases the main advantages of our method while also referring to its limitations in comparison to
various prior approaches.
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1. Introduction

1.1. An overview of advances in classification with rough neighborhood systems
Uncertainty and vagueness are inherent aspects of the real world, often resulting in problems that lack

precise definitions. Conventional approaches frequently struggle to address these ambiguities effectively.
In response to this challenge, Pawlak [42, 43] founded the rough set theory as a robust mathematical
framework for handling imprecise information and facilitating knowledge extraction. This theory is built
upon the operators of upper and lower approximations, which distinguish between possible and confirmed
knowledge derived from data. Ten fundamental properties of each one of these operators have been
established, serving as a standard for comparing later models and as an indication of their reliability. These
operators are used to define positive, negative, and boundary regions and accuracy measures, which offer
valuable insights for decision-makers into the structure and completeness of the extracted information.

Over time, the reliance on equivalence relations has posed significant limitations in the practical appli-
cation of rough set theory, particularly as new challenges have emerged. To overcome these constraints,
researchers have sought to generalize and extend the framework, enhancing its applicability to a broader
range of scenarios. A breakthrough in this endeavor was achieved in 1996 by Yao [55], who introduced an
alternative approach to obtaining granules of computation corresponding to equivalence classes, known
as right neighborhoods and left neighborhoods. In this approach, these new types of neighborhoods serve
as fundamental building blocks for representing knowledge rather than equivalence classes. Unlike the
traditional rough set model of Pawlak, Yao’s method did not impose any conditions on the underlying
relations, paving the way for the development of rough neighborhood systems.

Despite these advancements, Yao identified that the approximation operators derived from these neigh-
borhoods failed to preserve fully some key properties of upper and lower approximation operators defined
within the Pawlak rough set model. As a result, some researchers introduced additional constraints on
binary relations to ensure consistency with Pawlak’s framework. To develop Yao’s contributions, fur-
ther rough set models have been proposed by incorporating diverse types of binary relations, including
quasi-order [44, 56], similarity [24], tolerance [51], and binary relations [29].

Later, various rough neighborhoods were proposed based on relationships between Yao’s neighbor-
hoods, such as intersection, union, containment, and equality. These rough neighborhoods were utilized to
develop multiple generalized rough set models, which were then applied to address practical issues across
various fields. Among them, minimal right and left neighborhoods were introduced by Abo-Tabl [1] as new
blocks for defining upper and lower approximations. Additionally, union and intersection neighborhoods
were proposed by Allam et al. [5, 6], which they subsequently used to explore rough approximation oper-
ators. Equality neighborhoods and their corresponding rough set models were introduced and studied by
Mareay [37], and later discussed by Atef et al. [19]. The concept of maximal right neighborhoods was de-
fined by Dai et al. [24] under a similarity relation, after which several types of maximal neighborhoods were
extensively investigated by Al-shami [9], who applied them to categorize patients infected with COVID-19.

Al-shami and colleagues investigated novel paradigms derived from new types of neighborhoods they
introduced, such as containment neighborhoods [8], subset neighborhoods [10], intersection neighborhoods
[12], and cardinality neighborhoods [14, 15]. Their study identified key characteristics and interrelationships
among these paradigms and demonstrated their potential applications in preventing the spread of COVID-
19 and alleviating pressure on healthcare facilities. In 2024, Demiralp [25] investigated novel insights
into rough set theory by studying Al-shami et al.’s neighborhoods [12] under the name of transitive
neighborhoods. Her approach involves using different types of intersection neighborhoods rather than
relying on the same types. Right afterwards, Al-shami and Mhemdi [16] adopted this approach to provide a
new version of containment neighborhoods, namely overlapping containment neighborhoods, and initiated
their generalized approximation spaces. They developed Demiralp’s framework by enhancing accuracy
measures and ensuring the retention of Pawlak approximation properties. Following this line of research,
Al-shami [7] refined the approach proposed in [16] by employing an equality relation instead of an inclusion
relation to achieve greater accuracy.

Abu-Donia [3] and Qian et al. [45, 46] proposed novel techniques for studying rough neighborhoods
and their corresponding rough set models by varying the number of given binary relations. Abu-Donia



T. M. Al-shami, M. AL Nuwairan / Filomat 39:27 (2025), 9415–9447 9417

explored new types of rough neighborhoods by defining Yao’s neighborhoods over the intersection of a finite
number of relations rather than a single relation. He applied this approach to introduce rough set models
and highlight their key characteristics. Qian et al. developed multi-granulation rough set paradigms
by utilizing multiple relations to compute their corresponding upper and lower approximations. The
aforementioned studies reflect an ongoing effort to advance rough set models and enhance their usage in
practical applications.

Since the rough set theory has drawn significant interest from researchers across various fields of
mathematics and computer science, it has led to the integration of abstract mathematical structures with
rough set theory, as well as the study of approximation operators and regions of uncertainty within these
frameworks. For instance, the close relationship between the closure operator in topological spaces and
upper rough approximation, as well as between the interior operator in topological spaces and lower rough
approximation, has been leveraged to develop new rough set models and offer new frameworks to deal
with incomplete knowleadage, as illustrated in [2, 11, 17, 20, 21, 26, 31, 36, 39, 41, 47, 52]. Additionally, some
researchers have combined rough neighborhoods with ideals, filters, and primal structures, as discussed in
[27, 30–33, 35].

1.2. Motivations of study

Although rough set models based on neighborhood systems have evolved rapidly and are well-
documented in the literature, several types of rough neighborhoods remain unexplored. Therefore, we
write this manuscript to introduce a novel framework of classifications induced from new rough neighbor-
hoods that does not rely on equivalence relations and is constructed using subset relations between right
and left neighborhoods, as well as between minimal right and minimal left neighborhoods. This approach
is independent of the subset neighborhood-based method [10, 41] and provides a robust framework for
addressing challenges that require the integration of left and right neighborhoods. The following three key
advantages of the proposed rough set paradigms:

• It is highly reliable, as it preserves most properties of the reference model introduced by Pawlak,
and in certain cases of ȷ, it retains all properties when specific conditions are imposed on the given
relation.

• It satisfies the monotonicity property when the smaller relation is serial (inverse serial) and transitive,
and the larger relation is an equivalence relation.

• It increases the amount of corroborated information derived from rough subsets while reducing
uncertainty in boundary regions, thereby enhancing the accuracy of information extracted from data
sets.

1.3. Manuscript organization

The structure of this manuscript is as follows. After this introduction, Section 2 provides essential defi-
nitions and properties of Pawlak approximation space along with recent generalizations of approximation
spaces necessary for understanding this work. In Section 3, we create a novel class of neighborhoods,
referred to as overlapping subset rough neighborhoods, which are formulated using the subset relation
between left and right neighborhoods as well as minimal left and minimal right neighborhoods. We explore
their fundamental characteristics, derive conditions on binary relations to establish explicit formulas for
their computation, and identify key equivalences among them. Section 4 is dedicated to developing new
rough set models inspired by the proposed rough neighborhoods and examining their core properties. In
Section 5, we present a practical example to demonstrate the superiority of the proposed approach com-
pared to previous models introduced in [9, 12, 24, 25, 54, 55] under specific types of binary relations. Section
6 provides a comparative analysis to highlight the effectiveness and validity of the proposed method, in-
cluding a discussion of its strengths and limitations. Finally, in Section 7, we summarize the key findings
and suggest directions for future research.
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2. Background on some types of rough neighborhoods and their generalized approximation spaces

This section provides a concise overview of the fundamental rough neighborhood types and their
associated rough set paradigms, and mentions the essential concepts related to them.

2.1. Pawlak approximation space

The first introduction of rough approximation spaces was proposed by Pawlak [42, 43], so we refer to
it as the Pawlak approximation space throughout this work. We start by recalling some types of binary
relations that we shall use to prove some results herein.

Definition 2.1. (see [8]) For a nonempty universal set U, we say Ω is a binary relation on U if Ω ⊆ U × U.
We consider (b, f) as an element of Ω if b and f are associated together with respect to Ω; i.e., (b, f) ∈ Ω.
Consider the following conditions imposed on a relations Ω on U:

(i) for each b ∈ Ω there is f ∈ Ω such that bΩf.

(ii) for each b ∈ Ω there is f ∈ Ω such that fΩb.

(iii) for each b ∈ U we have (b,b) ∈ Ω.

(iv) bΩf⇐⇒ fΩb.

(v) bΩf and fΩb =⇒ b = f.

(vi) bΩf whenever bΩk and kΩf.

(vii) Ω reflexive and transitive.

(viii) Ω is symmetric and quasi-order.

(ix) Ω is antisymmetric and quasi-order.

If a condition (i) (resp., (ii), (iii), (iv), (v), (vi), (vii), (viii), (ix)) is satisfied, thenΩ is said to be serial (resp.,
inverse serial, reflexive, symmetric, antisymmetric, transitive, quasi-order, equivalence, partial order).

The next definition shows how one can approximate a subset using other two sets defined by an
equivalence relation.

Definition 2.2. ([42, 43]) Let Ω be an equivalence relation on U and U/Ω be an equivalence classes of U
generated by Ω. Then, the lower approximation and upper approximation of a subset Y of U are given by:

Ω(Y) =
⋃
{G ∈ U/Ω : G ⊆ Y}.

Ω(Y) =
⋃
{G ∈ U/Ω : G

⋂
Y , ∅}, respectively.

Remark 2.3. From now on, we call the pair (U,Ω) Pawlak approximation space (P-approximation space,
in short) or Pawlak rough set model (P-rough set model, in short) if Ω is an equivalence relation on U.

The next proposition exhibits the essential properties of P-rough set model.
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Proposition 2.4. ([42, 43]) Let (U,Ω) be P-approximation space, Y,Z ⊆ U, and U/Ω be a equivalence classes of U.
The subsequent characterizations are fulfilled.

(LP1) Ω(Y) ⊆ Y (UP1) Y ⊆ Ω(Y)

(LP2) Ω(∅) = ∅ (UP2) Ω(∅) = ∅

(LP3) Ω(U) = U (UP3) Ω(U) = U

(LP4) I f Y ⊆ Z, then Ω(Y) ⊆ Ω(Z) (UP4) I f Y ⊆ Z, then Ω(Y) ⊆ Ω(Z)

(LP5) Ω(Y ∩ Z) = Ω(Y) ∩Ω(Z) (UP5) Ω(Y ∩ Z) ⊆ Ω(Y) ∩Ω(Z)

(LP6) Ω(Y) ∪Ω(Z) ⊆ Ω(Y ∪ Z) (UP6) Ω(Y ∪ Z) = Ω(Y) ∪Ω(Z)

(LP7) Ω(Yc) = (Ω(Y))c (UP7) Ω(Yc) = (Ω(Y))c

(LP8) Ω(Ω(Y)) = Ω(Y) (UP8) Ω(Ω(Y)) = Ω(Y)

(LP9) Ω((Ω(Y))c) = (Ω(Y))c (UP9) Ω((Ω(Y))c) = (Ω(Y))c

(LP10) Ω(Y) = Y,∀Y ∈ U/Ω (UP10) Ω(Y) = Y,∀Y ∈ U/Ω

Definition 2.5. A subset Y of P-approximation space (U,Ω) is named a definable (or exact) subset if its
upper approximation and lower approximation are equal; otherwise, it is called a rough set.

Numerically, rough sets can be characterized using the following measures derived from the lower and
upper approximations.

Definition 2.6. ([42, 43]) Let Y be a subset ofP-approximation space (U,Ω). Theξ-accuracy and ξ̂-roughness
measures of Y are respectively calculated by

ξ(Y) = |Ω(Y)|

|Ω(Y)|
, | Ω(Y) |, 0.

ξ̂(Y) = 1 − ξ(Y).

Easily one can remark that a subset Y is a definable (respectively, rough) set iff

ξ(Y) = 1 (respectively, ξ(Y) < 1).

2.2. Rough neighborhoods inspired by a binary relation and their rough set models

In this subsection, we present some generalizations of P-approximation space that are constructed
by replacing the equivalence relation with an arbitrary binary relation. On the one hand, this approach
expands the scope of rough set theory since many practical scenarios cannot be modeled by an equivalence
relation. On the other hand, rough set models initiated by this approach fail to fulfill some properties of
P-approximation space (display in Proposition 2.4). Thus, the ability of the proposed rough set models
induced by this approach to retain as many of these properties as possible is seen as an advantage of these
models.

Remark 2.7. From now on, we call the pair (U,Ω) generalized approximation space (G-approximation
space, in short) whenever Ω is not an equivalence relation on U.

We begin by presenting the Yao neighborhoods, which serve as the cornerstone for constructing all other
rough neighborhood systems and their corresponding approximation spaces.

Definition 2.8. ([54, 55]) Let (U,Ω) be a G-approximation space and ȷ ∈ {r, l, i,u}. For each b ∈ U, the
A ȷ-neighborhoods are given by the following formulas:
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(i) Ar(b) = {f ∈ U : b Ω f}.

(ii) Al(b) = {f ∈ U : f Ω b}.

(iii) Ai(b) = Ar(b)
⋂
Al(b).

(iv) Au(b) = Ar(b)
⋃
Al(b).

Then, some authors set up new formulas to generate rough neighborhoods as follows:

Definition 2.9. ([1, 5, 6]) Let (U,Ω) be a G-approximation space and ȷ ∈ {⟨r⟩, ⟨l⟩, ⟨i⟩, ⟨u⟩}. For each b ∈ U, the
A ȷ-neighborhoods are given by the following formulas:

(i)

A⟨r⟩(b) =


⋂

b∈Ar(f)
Ar(f) : ∃ Ar(f) involving b

∅ : Otherwise

(ii)

A⟨l⟩(b) =


⋂

b∈Al(f)
Al(f) : ∃ Al(f) involving b

∅ : Otherwise

(iii) A⟨i⟩(b) = A⟨r⟩(b)
⋂
A⟨l⟩(b).

(iv) A⟨u⟩(b) = A⟨r⟩(b)
⋃
A⟨l⟩(b).

Henceforth, we consider ȷ to belong to the set {r, l, i,u, ⟨r⟩, ⟨l⟩, ⟨i⟩, ⟨u⟩}, unless otherwise specified.
The next proposition demonstrates the necessary conditions for the correspondence between A ȷ-

neighborhoods introduced in Definition 2.8 and their analogous displayed in Definition 2.9.

Proposition 2.10. Let (U,Ω) be a G-approximation space such that Ω is a quasi-order. Then A ȷ = A⟨ ȷ⟩ for
ȷ ∈ {r, l, i,u}

Lemma 2.11. ([16]) In G-approximation spaces (U,Ω1) and (U,Ω2), if Ω1 ⊆ Ω2, then the next relationships are
fulfilled.

(i) A1ξ(b) ⊆ A2ξ(b) for each ȷ ∈ {r, l, i,u}.

(ii) A1ξ(b) ⊆ A2ξ(b) for each ȷ ∈ {⟨r⟩, ⟨l⟩, ⟨i⟩, ⟨u⟩} providing that Ω1 is reflexive and Ω2 is transitive.

Yao [54, 55] and other researchers and scholars [1, 5, 6] employed the aforesaid sorts of neighborhoods
to establish various G-approximation spaces and compared them with P-approximation space in terms of
approximation properties and accuracy values.

Definition 2.12. ([1, 5, 6, 54, 55]) In a G-approximation space (U,Ω), the upper and lower approximations
of a subset Y are calculated with respect toA ȷ-neighborhoods using the next formulas:

H
A ȷ (Y) = {b ∈ U : Aξ(b) ∩ Y , ∅}.

HA ȷ (Y) = {b ∈ U : Aξ(b) ⊆ Y},

Definition 2.13. ([1, 5, 6, 54, 55]) In a G-approximation space (U,Ω), the ξA ȷ -accuracy and ξ̂A ȷ -roughness
measures of a subset Y , ∅ are calculated with respect toA ȷ-neighborhoods using the next formulas:

ξA ȷ (Y) =
|HA ȷ (Y)∩Y|

|H
A ȷ (Y)∪Y|

, and
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ξ̂A ȷ (Y) = 1 − ξA ȷ (Y).

Definition 2.14. (see [24]) IfΩ1 ⊆ Ω2 whereΩ1 andΩ2 are relations on U, we say that the approximations,
defined by A ȷ-neighborhoods, have the property of monotonicity in accuracy (respectively, roughness) if
ξA1ξ (Y) ≥ ξA2ξ (Y) (respectively, ξ̂A1ξ (Y) ≤ ξ̂A2ξ (Y)) for each subset Y.

Recently, several types of neighborhood systems and their G-approximation spaces have been intro-
duced. Some of them are recalled in the following.

Definition 2.15. ([9, 24]) Let (U,Ω) be aG-approximation space. For each b ∈ U, theM ȷ-neighborhoods are
given by the following formulas:

(i) Mr(b) =
⋃

b∈Ar(f)
Ar(f).

(ii) Ml(b) =
⋃

b∈Al(f)
Al(f).

(iii) Mi(b) =Mr(b) ∩Ml(b).

(iv) Mu(b) =Mr(b) ∪Ml(b).

(v) M⟨r⟩(b) =
⋃

b∈A⟨r⟩(f)
A⟨r⟩(f).

(vi) M⟨l⟩(b) =
⋃

b∈A⟨l⟩(f)
A⟨l⟩(f).

(vii) M⟨i⟩(b) =M⟨r⟩(b) ∩M⟨l⟩(b).

(viii) M⟨u⟩(b) =M⟨r⟩(b) ∪M⟨l⟩(b).

Definition 2.16. ([8]) Let (U,Ω) be a G-approximation space. For each b ∈ U, the C ȷ-neighborhoods are
given by the following formulas:

(i) Cr(b) = {f ∈ U : Ar(f) ⊆ Ar(b)}.

(ii) Cl(b) = {f ∈ U : Al(f) ⊆ Al(b)}.

(iii) Ci(b) = Cr(b) ∩ Cl(b).

(iv) Cu(b) = Cr(b) ∪ Cl(b).

(v) C⟨r⟩(b) = {f ∈ U : A⟨r⟩(f) ⊆ A⟨r⟩(b)}.

(vi) C⟨l⟩(b) = {f ∈ U : A⟨l⟩(f) ⊆ A⟨l⟩(b)}.

(vii) C⟨i⟩(b) = C⟨r⟩(b) ∩ C⟨l⟩(b).

(viii) C⟨u⟩(b) = C⟨r⟩(b) ∪ C⟨l⟩(b).

Definition 2.17. ([10]) Let (U,Ω) be a G-approximation space. For each b ∈ U, the S ȷ-neighborhoods are
given by the following formulas:

(i) Sr(b) = {f ∈ U : Ar(b) ⊆ Ar(f)}.

(ii) Sl(b) = {f ∈ U : Al(b) ⊆ Al(f)}.

(iii) Si(b) = Sr(b) ∩ Sl(b).

(iv) Su(b) = Sr(b) ∪ Sl(b).
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(v) S⟨r⟩(b) = {f ∈ U : A⟨r⟩(b) ⊆ A⟨r⟩(f)}.

(vi) S⟨l⟩(b) = {f ∈ U : A⟨l⟩(b) ⊆ A⟨l⟩(f)}.

(vii) S⟨i⟩(b) = S⟨r⟩(b) ∩ S⟨l⟩(b).

(viii) S⟨u⟩(b) = S⟨r⟩(b) ∪ S⟨l⟩(b).

Definition 2.18. ([12]) Let (U,Ω) be a G-approximation space. For each b ∈ U, the E ȷ-neighborhoods are
given by the following formulas:

(i) Er(b) = {f ∈ U : Ar(f) ∩Ar(b) , ∅}.

(ii) El(b) = {f ∈ U : Al(f) ∩Al(b) , ∅}.

(iii) Ei(b) = Er(b) ∩ El(b).

(iv) Eu(b) = Er(b) ∪ El(b).

(v) E⟨r⟩(b) = {f ∈ U : A⟨r⟩(f) ∩A⟨r⟩(b) , ∅}.

(vi) E⟨l⟩(b) = {f ∈ U : A⟨l⟩(f) ∩A⟨l⟩(b) , ∅}.

(vii) E⟨i⟩(b) = E⟨r⟩(b) ∩ E⟨l⟩(b).

(viii) E⟨u⟩(b) = E⟨r⟩(b) ∪ E⟨l⟩(b).

Definition 2.19. ([8–10, 12, 24]) In a G-approximation space (U,Ω), the lower and upper approximations
of a subset Y are calculated with respect toM ȷ-neighborhoods, C ȷ-neighborhoods, S ȷ-neighborhoods, and
E ȷ-neighborhoods using the following formulas:

HM ȷ (Y) = {b ∈ U :Mξ(b) ⊆ Y} H
M ȷ (Y) = {b ∈ U :Mξ(b) ∩ Y , ∅}

HC ȷ (Y) = {b ∈ U : Cξ(b) ⊆ Y} H
C ȷ (Y) = {b ∈ U : Cξ(b) ∩ Y , ∅}

HS ȷ (Y) = {b ∈ U : Sξ(b) ⊆ Y} H
S ȷ (Y) = {b ∈ U : Sξ(b) ∩ Y , ∅}

HE ȷ (Y) = {b ∈ U : Eξ(b) ⊆ Y} H
E ȷ (Y) = {b ∈ U : Eξ(b) ∩ Y , ∅}

Definition 2.20. ([8–10, 12, 24]) In a G-approximation space (U,Ω), the ξ-accuracy and ξ̂-roughness of a
subset Y , ∅ are calculated with respect toM ȷ-neighborhoods, C ȷ-neighborhoods, S ȷ-neighborhoods, and
E ȷ-neighborhoods using the following formulas:

ξM ȷ (Y) =
| HM ȷ (Y) ∩ Y |

| HM ȷ (Y) ∪ Y |
ξ̂M ȷ (Y) = 1 − ξM ȷ (Y)

ξC ȷ (Y) =
| HC ȷ (Y) |

| HC ȷ (Y) |
ξ̂C ȷ (Y) = 1 − ξC ȷ (Y)

ξS ȷ (Y) =
| HS ȷ (Y) |

| HS ȷ (Y) |
ξ̂S ȷ (Y) = 1 − ξS ȷ (Y)

ξE ȷ (Y) =
| HE ȷ (Y) ∩ Y |

| HE ȷ (Y) ∪ Y |
ξ̂E ȷ (Y) = 1 − ξE ȷ (Y)

Definition 2.21. ([25]) Let (U,Ω) be a G-approximation space. For each b ∈ U, the Ẽ ȷ-neighborhoods are
given by the following formulas:

(i) Ẽr(b) = {f ∈ U : Al(f) ∩Ar(b) , ∅}.
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(ii) Ẽl(b) = {f ∈ U : Ar(f) ∩Al(b) , ∅}.

(iii) Ẽi(b) = Ẽr(b) ∩ Ẽl(b).

(iv) Ẽu(b) = Ẽr(b) ∪ Ẽl(b).

(v) Ẽ⟨r⟩(b) = {f ∈ U : A⟨l⟩(f) ∩A⟨r⟩(b) , ∅}.

(vi) Ẽ⟨l⟩(b) = {f ∈ U : A⟨r⟩(f) ∩A⟨l⟩(b) , ∅}.

(vii) Ẽ⟨i⟩(b) = Ẽ⟨r⟩(b) ∩ Ẽ⟨l⟩(b).

(viii) Ẽ⟨u⟩(b) = Ẽ⟨r⟩(b) ∪ Ẽ⟨l⟩(b).

Definition 2.22. ([16]) Let (U,Ω) be a G-approximation space. For each b ∈ U, the C̃ ȷ-neighborhoods are
given by the following formulas:

(i) C̃r(b) = {f ∈ U : Al(f) ⊆ Ar(b)}.

(ii) C̃l(b) = {f ∈ U : Ar(f) ⊆ Al(b)}.

(iii) C̃i(b) = C̃r(b) ∩ C̃l(b).

(iv) C̃u(b) = C̃r(b) ∪ C̃l(b).

(v) C̃⟨r⟩(b) = {f ∈ U : A⟨l⟩(f) ⊆ A⟨r⟩(b)}.

(vi) C̃⟨l⟩(b) = {f ∈ U : A⟨r⟩(f) ⊆ A⟨l⟩(b)}.

(vii) C̃⟨i⟩(b) = C̃⟨r⟩(b) ∩ C̃⟨l⟩(b).

(viii) C̃⟨u⟩(b) = C̃⟨r⟩(b) ∪ C̃⟨l⟩(b).

Definition 2.23. ([16, 25]) In a G-approximation space (U,Ω), the lower and upper approximations of
a subset Y are calculated with respect to Ẽ ȷ-neighborhoods and C̃ ȷ-neighborhoods using the following
formulas:

HẼ ȷ
(Y) =

 ⋃
Ẽ ȷ(b)⊆Y

Ẽσ(b)

 H
Ẽ ȷ (Y) =

 ⋂
Ẽ ȷ(b)∩Y,∅

Ẽ ȷ(b)

 ∪ Y

H
C̃ ȷ
= Y ∩ {b ∈ U : C̃ ȷ(b) ⊆ Y} H

C̃ ȷ (Y) = Y ∪ {b ∈ U : C̃ ȷ(b) ∩ Y , ∅}

Definition 2.24. ([16, 25]) In a G-approximation space (U,Ω), the ξ-accuracy and ξ̂-roughness of a subset
Y , ∅ are calculated with respect to Ẽ ȷ-neighborhoods and C̃ ȷ-neighborhoods using the following formulas:

ξẼ ȷ (Y) =
| HẼ ȷ

(Y) |

| H Ẽ ȷ (Y) |
ξ̂Ẽ ȷ (Y) = 1 − ξẼ ȷ (Y)

ξ
C̃ ȷ

(Y) =
| H

C̃ ȷ
(Y) |

| H C̃ ȷ (Y) |
ξ̂
C̃ ȷ

(Y) = 1 − ξ
C̃ ȷ

(Y)
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To maintain the systematic formulas used to describe the approximations and accuracy while facilitating
comparisons among the rough set models, we refine the definitions of lower and upper approximations, as
well as accuracy measures, established using Ẽ ȷ-neighborhoods, as follows.

Definition 2.25. In a G-approximation space (U,Ω), the lower approximation, upper approximation, and
ξ-accuracy of a subset Y , ∅ are calculated with respect to Ẽ ȷ-neighborhoods using the following formulas:

HẼ ȷ
(Y) = {b ∈ U : Ẽ ȷ(b) ⊆ Y},

H
Ẽ ȷ (Y) = {b ∈ U : Ẽ ȷ(b) ∩ Y , ∅}, and

ξẼ ȷ (Y) =
|O
Ẽ ȷ

(Y)∩Y|

|O
Ẽ ȷ

(Y)∪Y|
.

Proposition 2.26. ([16]) In a G-approximation space (U,Ω), IfΩ is inverse serial (resp., serial), then for each b ∈ U
we have C̃ ȷ(b) ⊆ Ẽ ȷ(b) for each ȷ ∈ {r, ⟨l⟩} (resp., C̃ ȷ(b) ⊆ Ẽ ȷ(b) for each ȷ ∈ {l, ⟨r⟩}).

3. Overlapping subset rough neighborhood systems

In this segment, we introduce a novel system of neighborhoods, called overlapping subset rough
neighborhoods, based on any binary relation. We explore their key features and provide illustrative
examples to clarify the derived implementations. We also extensively discuss the interrelations between
them and existing types, and identify the conditions under which certain equalities hold.

Definition 3.1. Let (U,Ω) be a G-approximation space. For each b ∈ U, the S̃ ȷ-neighborhoods are given by
the following formulas:

(i) S̃r(b) = {f ∈ U : Ar(b) ⊆ Al(f)}.

(ii) S̃l(b) = {f ∈ U : Al(b) ⊆ Ar(f)}.

(iii) S̃i(b) = S̃r(b) ∩ S̃l(b).

(iv) S̃u(b) = S̃r(b) ∪ S̃l(b).

(v) S̃⟨r⟩(b) = {f ∈ U : A⟨r⟩(b) ⊆ A⟨l⟩(f)}.

(vi) S̃⟨l⟩(b) = {f ∈ U : A⟨l⟩(b) ⊆ A⟨r⟩(f)}.

(vii) S̃⟨i⟩(b) = S̃⟨r⟩(b) ∩ S̃⟨l⟩(b).

(viii) S̃⟨u⟩(b) = S̃⟨r⟩(b) ∪ S̃⟨l⟩(b).

The notions of S̃ ȷ-neighborhoods andS ȷ-neighborhoods are unrelated in the general case. To demonstrate
this, we will compute both the S̃ ȷ-neighborhoods and S ȷ-neighborhoods for each b ∈ U in the subsequent
instance.

Example 3.2. Take Ω a binary relation on U = {b, f,h, k} defined as follows:

Ω = {(b,b), (b, f), (b,h), (b, k), (f,b), (h, f), (h, k)}.

For each element of U, we compute S̃ ȷ-neighborhoods and C ȷ-neighborhoods in Table 1 and Table 2,
respectively.



T. M. Al-shami, M. AL Nuwairan / Filomat 39:27 (2025), 9415–9447 9425

b f h k
Ar U {b} {f, k} ∅

Al {b, f} {b,h} {b} {b,h}
A⟨r⟩ {b} {f, k} U {f, k}
A⟨l⟩ {b} {b, f} {b,h} ∅

S̃r ∅ U ∅ U
S̃l {b} {b} {b, f} {b}
S̃i ∅ {b} ∅ {b}
S̃u {b} U {b, f} U
S̃⟨r⟩ {b, f,h} ∅ ∅ ∅

S̃⟨l⟩ {b,h} {h} {h} U
S̃⟨i⟩ {b,h} ∅ ∅ ∅

S̃⟨u⟩ {b, f,h} {h} {h} U

Table 1: TheA ȷ-neighborhoods and S̃ ȷ-neighborhoods of all elements in U

b f h k
Sr {b} {b, f} {b,h} U
Sl {b} {f, k} U {f, k}
Si {b} {f} {b,h} {f, k}
Su {b} {b, f, k} U U
S⟨r⟩ {b,h} {f,h, k} {h} {f,h, k}
S⟨l⟩ {b, f,h} {f} {h} U
S⟨i⟩ {b,h} {f} {h} {f,h, k}
S⟨u⟩ {b, f,h} {f,h, k} {h} U

Table 2: The S ȷ-neighborhoods of all elements in U

We now investigate the connections between S̃ ȷ-neighborhoods based on an arbitrary relation and
examine certain equalities that arise between them under particular types of binary relations.

Proposition 3.3. In a G-approximation space (U,Ω), we have the following inclusions relations for each b ∈ U.

(i) S̃i(b) ⊆ S̃r(b) ⊆ S̃u(b) and S̃i(b) ⊆ S̃l(b) ⊆ S̃u(b).

(ii) S̃⟨i⟩(b) ⊆ S̃⟨r⟩(b) ⊆ S̃⟨u⟩(b) and S̃⟨i⟩(b) ⊆ S̃⟨l⟩(b) ⊆ S̃⟨u⟩(b).

(iii) S̃i(b) ⊆ {f ∈ U : Ai(b) ⊆ Ai(f)}.

(iv) S̃⟨i⟩(b) ⊆ {f ∈ U : A⟨i⟩(b) ⊆ A⟨i⟩(f)}.

(v) IfA ȷ(b) = A ȷ(f), then S̃ ȷ(b) = S̃ ȷ(f) for each ȷ ∈ {r, ⟨r⟩, l, ⟨l⟩}.

(vi) IfA ȷ(b) = ∅, then S̃ ȷ(b) = U for each ȷ ∈ {r, ⟨r⟩, l, ⟨l⟩}.

Proof. The first two properties directly follow by Definition 3.1. To show (iii), assume that f ∈ S̃i(b). Then,
f ∈ S̃r(b) and f ∈ S̃l(b), soAr(b) ⊆ Al(f) andAl(b) ⊆ Ar(f). Accordingly, we obtainAr(b)∩Al(b) ⊆ Al(f)∩Ar(f),
soAi(b) ⊆ Ai(f). Hence, f ∈ {f ∈ U : Ai(b) ⊆ Ai(f)}.
As we do above, one can achieve (iv).
The proofs of (v) and (vi) are straightforward.
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By Table 1, we see that the inclusion relations of Proposition 3.3 cannot be replaced by equality relations.

Proposition 3.4. In a G-approximation space (U,Ω), if Ω is symmetric, then for each b ∈ U we have:

(i) b ∈ S̃ ȷ(b) for every ȷ.

(ii) S̃r(b) = S̃l(b) = S̃i(b) = S̃u(b) and S̃⟨r⟩(b) = S̃⟨l⟩(b) = S̃⟨i⟩(b) = S̃⟨u⟩(b).

Proof. We have Al(b) = Ar(b) and A⟨l⟩(b) = A⟨r⟩(b) for each b ∈ U whenever Ω is symmetric. So that,
b ∈ S̃ ȷ(b) for each ȷ. Furthermore, we obtain the two equalities stated in (ii).

By Table 1, we see that a symmetric relation condition imposed by Proposition 3.4 is indispensable.

Proposition 3.5. In a G-approximation space (U,Ω) we have S̃ ȷ(b) = S̃⟨ ȷ⟩(b) for each b ∈ U and ȷ ∈ {r, l, i,u}
whenever Ω is a quasi-order relation, i.e., reflexive and transitive.

Proof. It is a direct result of Proposition 2.10.

Proposition 3.6. In a G-approximation space (U,Ω), ifΩ is symmetric and transitive. Then, for each ȷ and b, f ∈ U
we have

S̃ ȷ(b) = S̃ ȷ(f) or S̃ ȷ(b) ∩ S̃ ȷ(f) ⊆ {h ∈ U : (h,h) ∈ Ω}.

Proof. Take ȷ = r. Suppose that S̃r(b) , S̃r(f). Without loss of generality, let us consider that there exists
k ∈ U such that k ∈ S̃r(b) and k < S̃r(f). Then,Ar(b) ⊆ Al(k) andAr(f) ⊈ Al(k). This adheres that

Ar(f) , ∅. (1)

Now, we prove that
S̃r(b) ∩ S̃r(f) ⊆ {h ∈ U : (h,h) ∈ Ω}.

if x ∈ S̃r(b) ∩ S̃r(f), then Ar(b) ⊆ Al(x) and Ar(f) ⊆ Al(x). By (1), it follows that Al(x) , ∅. This
yields that there is k such that (k, x) ∈ Ω. By symmetric and transitive of Ω, we get (x, x) ∈ Ω. Thus,
S̃r(b) ∩ S̃r(f) ⊆ {h ∈ U : (h,h) ∈ Ω}, which completes the proof.

The following example elucidates that the inclusion relation stated in Proposition 3.6 is proper.

Example 3.7. Let Ω = {(b,b), (f, f), (k, k), (f, k), (k, f)} be a binary relation on U = {b, f,h, k}. In Table 3, we
calculateA ȷ- and S̃ ȷ-neighborhoods for all elements in U.

b f h k
Ar = Al = Ai = Au {b} {f, k} ∅ {f, k}
S̃r = S̃l = S̃i = S̃u {b} {f, k} U {f, k}

Table 3: TheA ȷ- and S̃ ȷ-neighborhoods of all elements in U

It is clear thatΩ is symmetric and transitive. However, we note that S̃ ȷ(b) , S̃ ȷ(h) and S̃ ȷ(b)∩ S̃ ȷ(h) = {b}
is a proper subset of {b, f, k}.

The next two propositions explore some criteria for determining a type of the given binary relation. It
is worth noting that these results do not hold for rough neighborhoods defined over the same kinds of Yao
neighborhoods.

Proposition 3.8. Let (U,Ω) be a G-approximation space. Then, for each ȷ ∈ {r, l, i} we have

b ∈ S̃ ȷ(b) for each b ∈ U⇐⇒ Ω is a symmetric relation.
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Proof. When ȷ = r. Let the necessary condition be satisfied. Presume Ω in not symmetric. This implies
that there exist h, k ∈ U such that (h, k) ∈ Ω and (k,h) < Ω. Accordingly, we have k ∈ Ar(h) and k < Al(h).
Consequently,Ar(h) ⊈ Al(h), so h < S̃r(h). This is a contradiction with the necessary condition. Thus, Ω is
a symmetric relation. Conversely, item (i) of Proposition 3.4 proves the sufficient condition.

The next lemma will assist in clarifying the upcoming proposition and corollary.

Lemma 3.9. [16] In a G-approximation space (U,Ω), the next property is satisfied for each ȷ and each b, f ∈ U
whenever Ω is symmetric and transitive.

A ȷ(b) ∩A ȷ(f) = ∅ orA ȷ(b) = A ȷ(f).

Proposition 3.10. In a G-approximation space (U,Ω), the next property is satisfied for each ȷ:

Ω is symmetric and transitive if and only ifA ȷ(b) ⊆ S̃ ȷ(b) for each b ∈ U.

Proof. We prove the proposition when ȷ = r.
Necessity: Let f ∈ Ar(b). Then, (b, f), (f,b), (b,b), (f, f) ∈ Ω. By Lemma 3.9, we find thatAr(b) = Al(f). Thus,
f ∈ S̃r(b). Hence,A ȷ(b) ⊆ S̃ ȷ(b), as required.
Sufficiency: First, suppose that (b, f) ∈ Ω. Now, Ar(b) ⊆ S̃r(b). By our assumption, f ∈ S̃r(b), which means
that Ar(b) ⊆ Al(f). This leads to that (f, f) ∈ Ω. We also have by the given condition that Al(f) ⊆ S̃l(f).
Therefore, Al(f) ⊆ Ar(f). Again by our assumption, b ∈ Ar(f), so (f,b) ∈ Ω. Thus, Ω is symmetric.
Second, suppose that (b, f), (f,h) ∈ Ω. By the given conditions, we have Al(f) ⊆ S̃l(f). Then, b ∈ S̃l(f). This
automatically yields to Al(f) ⊆ Ar(b). As we prove that Ω is symmetric, then we obtain Ar(f) ⊆ Ar(b).
According to our assumption, h ∈ Ar(b), which yields that (b,h) ∈ Ω. Thus, Ω is transitive. Hence, we
complete the proof.

Corollary 3.11. In a G-approximation space (U,Ω), letA ȷ(b) ⊆ S̃ ȷ(b) hold for each b ∈ U and ȷ. Then:

(i) if Ω is serial (or inverse serial), then it is an equivalence relation.

(ii) if Ω is antisymmetric, then it is an diagonal relation, i.e. Ω = {(b,b) : b ∈ U}.

Lemma 3.12. In a G-approximation space (U,Ω), if Ω is symmetric and transitive, then allA ȷ are identical.

Proof. Since Ω is symmetric, we have Ar = Al = Ai = Au and A⟨r⟩ = A⟨l⟩ = A⟨i⟩ = A⟨u⟩. So we need to
prove thatAr = A⟨r⟩. To do suppose f ∈ Ar(b). Now, for each h ∈ U such that b ∈ Ar(h) we have (h,b) ∈ Ω.
Then, by assumption and transitive we obtain (h, f) ∈ Ω, which directly leads to that f ∈ Ar(h). Thus,
f ∈ A⟨r⟩(b), which proves thatAr(b) ⊆ A⟨r⟩(b). Conversely, suppose that f ∈ A⟨r⟩(b). Then, there exists h ∈ U
such that b, f ∈ Ar(h), so (h,b), (h, f) ∈ Ω. It yields by the given conditions that (f,b) ∈ Ω, which proves that
A⟨r⟩(b) ⊆ Ar(b), as required.

Corollary 3.13. In a G-approximation space (U,Ω), if Ω is symmetric and transitive, then all S̃ ȷ are identical.
Moreover, all types of rough neighbourhoods mentioned in Section 2 are identical.

In the subsequent discussions, we uncover the connections between the current types of neighborhoods
and the previous ones. Additionally, we elucidate some relationships that hold under certain types of
binary relations.

Proposition 3.14. In a G-approximation space (U,Ω), if Ω is symmetric and transitive, then for each ȷ we have

(i) S̃ ȷ(b) ⊆ C̃ ȷ(b) providing that (b,b) ∈ Ω, and

(ii) C̃ ȷ(b) ⊆ S̃ ȷ(b) providing that (b,b) < Ω.
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Proof. First of all, it follows from Corollary 3.13 that all S̃ ȷ are identical.
To prove (i), let f ∈ S̃ ȷ(b) such that (b,b) ∈ Ω. Then,A ȷ(b) ⊆ A ȷ(f) such thatA ȷ(b) , ∅. According to Lemma
3.9, it follows thatA ȷ(b) = A ȷ(f); thus, f ∈ C̃ ȷ(b).
To prove (ii), let f ∈ C̃ ȷ(b) such that (b,b) < Ω. Then,A ȷ(f) ⊆ A ȷ(b). Since Ω is symmetric and transitive, we
haveA ȷ(b) = ∅, soA ȷ(f) = ∅ as well. Thus, f ∈ S̃ ȷ(b).

We show by Example 3.15 that the converse of Proposition 3.14 fails.

Example 3.15. Let Ω = {(b,b), (f, f), (b, f), (f,b)} be a binary relation on U = {b, f,h}. In Table 4, we calculate
A ȷ-, S̃ ȷ-, and C̃ ȷ-neighborhoods for all elements in U.

b f h

A ȷ {b, f} {b, f} ∅

C̃ ȷ U U {h}

S̃ ȷ {b, f} {b, f} U

Table 4: TheA ȷ-, S̃ ȷ-, and C̃ ȷ-neighborhoods of all elements in U

Obviously, Ω is symmetric and transitive. It can be seen that S̃ ȷ(b) and S̃ ȷ(f) are proper subsets of C ȷ(b)
and S̃ ȷ(b), respectively, where (b,b), (f, f) ∈ Ω. On the other hand, C̃ ȷ(h) is a proper subset of S ȷ(h), where
(h,h) < Ω.

Proposition 3.16. In a G-approximation space (U,Ω), the following relationships are fulfilled for each b ∈ U.

(i) If Ω is symmetric, then S̃ ȷ(b) = S ȷ(b) for each ȷ.

(ii) If Ω is reflexive, then S̃ ȷ(b) ⊆ A ȷ(b) for each ȷ ∈ {r, l, i,u}.

(iii) If Ω is serial (or inverse serial) and symmetric, then S̃ ȷ(b) ⊆ A ȷ(b) for each ȷ.

(iv) If Ω is serial and transitive, then S̃r(b) ⊆ Ar(b).

(v) If Ω is inverse serial and transitive, then S̃l(b) ⊆ Al(b).

Proof. (i): Obvious.
(ii): When ȷ = r. Let f ∈ S̃r(b). Then,Ar(b) ⊆ Al(f). Since Ω is reflexive, we obtain b ∈ Al(f), which directly
means that f ∈ Ar(b). Hence, we prove the desired result.
(iii): When ȷ = ⟨r⟩. Let f ∈ S̃⟨r⟩(b). Then, A⟨r⟩(b) ⊆ A⟨l⟩(f). By symmetric of Ω, we have A⟨l⟩(b) ⊆ A⟨r⟩(f).
Since Ω is serial, we obtain b ∈ A⟨r⟩(f), as required.
(iv): Let f ∈ S̃r(b). Then, Ar(b) ⊆ Al(f). Since Ω is serial, there exists h ∈ Ar(b). Accordingly, we have
(b,h), (h, f) ∈ Ω. Since Ω is transitive, (b, f) ∈ Ω. Therefore, f ∈ Ar(b). Hence, S̃r(b) ⊆ Ar(b), as required.
(v): Following a similar technique of (iv), we obtain the proof.

Corollary 3.17. In a G-approximation space (U,Ω), the following relationships are fulfilled for each b ∈ U.

(i) If Ω is serial, inverse serial, and transitive, then S̃ ȷ(b) ⊆ A ȷ(b) for each ȷ ∈ {r, l, i,u}.

(ii) If Ω is a quasi-order, then S̃ ȷ(b) ⊆ A ȷ(b) for each ȷ.
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Proof. (i): Warranted by (iv) and (v) of Proposition 3.16.
(ii): By Proposition 2.10 and items (iv) and (v) of Proposition 3.16, we obtain S̃ ȷ(b) ⊆ A ȷ(b) for each ȷ.

Proposition 3.18. In a G-approximation space (U,Ω), the following relationships are fulfilled for each b ∈ U.

(i) If Ω is serial, then S̃ ȷ(b) ⊆ Ẽ ȷ(b) for each ȷ ∈ {r, ⟨l⟩}.

(ii) If Ω is inverse serial, then S̃ ȷ(b) ⊆ Ẽ ȷ(b) for each ȷ ∈ {l, ⟨r⟩}.

Proof. We show the first property, and one can prove the second one similarly.
When ȷ = r: Assume f ∈ S̃r(b). Then, Ar(b) ⊆ Al(f), so, by the serial condition, we find Ar(b) , ∅.
Consequentially, the intersection betweenAr(b) andAl(f) is nonempty. Hence, f ∈ Ẽr(b), which proves that
S̃r(b) ⊆ Ẽr(b).
When ȷ = ⟨l⟩. Assume f ∈ S̃⟨l⟩(b). Then, A⟨l⟩(b) ⊆ A⟨r⟩(f). By the serial condition, there is an element h
belongs to U such that b ∈ Al(h), which means thatA⟨l⟩(b) , ∅. Thus, the intersection betweenA⟨l⟩(b) and
A⟨r⟩(f) is nonempty. Hence, f ∈ Ẽ⟨l⟩(b), which proves that S̃l(b) ⊆ Ẽl(b).

Corollary 3.19. In a G-approximation space (U,Ω), ifΩ is inverse serial and serial (or reflexive), then S̃ ȷ(b)∪C̃ ȷ(b) ⊆
Ẽ ȷ(b) for each b ∈ U and ȷ.

Proof. For each b ∈ U and ȷ, it follows from Proposition 3.18 that S̃ ȷ(b) ⊆ Ẽ ȷ(b) and it follows from Proposition
2.26 that C̃ ȷ(b) ⊆ Ẽ ȷ(b). Hence, the proof is complete.

Corollary 3.20. In a G-approximation space (U,Ω), if Ω is serial (or inverse serial) and symmetric, then S̃ ȷ(b) ∪
C̃ ȷ(b) ⊆ E ȷ(b) for each b ∈ U and ȷ.

Proposition 3.21. In a G-approximation space (U,Ω), the following relationships are satisfied.

(i) If f belongs to S̃r(b), then S̃l(f) is a subset of Sr(b).

(ii) If f belongs to S̃⟨r⟩(b), then S̃⟨l⟩(f) is a subset of S⟨r⟩(b).

(iii) If f belongs to S̃l(b), then S̃r(f) is a subset of Sl(b).

(iv) If f belongs to S̃⟨l⟩(b), then S̃⟨r⟩(f) is a subset of S⟨l⟩(b).

Proof. We provide the proof for case (i), while the remaining cases can be established in a similar fashion.
Suppose that f ∈ S̃r(b). Then,Ar(b) ⊆ Al(f). Now, let h ∈ S̃l(f). Then,Al(f) ⊆ Ar(h). By these two inclusions,
we obtainAr(b) ⊆ Ar(h), which directly gives rise to that h ∈ Sr(b). Thus, we prove that S̃l(f) is a subset of
Sr(b).

Corollary 3.22. In a G-approximation space (U,Ω), if f ∈ S̃ ȷ(b), then for each ȷ ∈ {i, ⟨i⟩} we have S̃ ȷ(f) ⊆ S ȷ(b).

The following four results can be readily proven, so we omit their proofs.

Proposition 3.23. In a G-approximation space (U,Ω), the following relationships hold true.

(i) b ∈ S̃r(h) ∩ Cr(h)⇐⇒Ar(b) ⊆ Ar(h) ⊆ Al(b).

(ii) b ∈ S̃l(h) ∩ Cl(h)⇐⇒Al(b) ⊆ Al(h) ⊆ Ar(b).

(iii) b ∈ S̃⟨r⟩(h) ∩ C⟨r⟩(h)⇐⇒A⟨r⟩(b) ⊆ A⟨r⟩(h) ⊆ A⟨l⟩(b).
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(iv) b ∈ S̃⟨l⟩(h) ∩ C⟨l⟩(h)⇐⇒A⟨l⟩(b) ⊆ A⟨l⟩(h) ⊆ A⟨r⟩(b).

Corollary 3.24. In a G-approximation space (U,Ω), the following relationships hold true.

(i) b ∈ S̃i(h) ∩ Ci(h) =⇒Ai(b) = Ai(h) andAu(b) = Au(h).

(ii) b ∈ S̃⟨i⟩(h) ∩ C⟨i⟩(h) =⇒A⟨i⟩(b) = A⟨i⟩(h) andA⟨u⟩(b) = A⟨u⟩(h).

Proposition 3.25. In a G-approximation space (U,Ω), the following relationships hold true.

(i) b ∈ S̃r(h) ∩ Sr(h)⇐⇒Ar(h) ⊆ Ai(b).

(ii) b ∈ S̃l(h) ∩ Sl(h)⇐⇒Al(h) ⊆ Ai(b).

(iii) b ∈ S̃⟨r⟩(h) ∩ S⟨r⟩(h)⇐⇒A⟨r⟩(h) ⊆ A⟨i⟩(b).

(iv) b ∈ S̃⟨l⟩(h) ∩ S⟨l⟩(h)⇐⇒A⟨l⟩(h) ⊆ A⟨i⟩(b).

Corollary 3.26. In a G-approximation space (U,Ω), the following relationships hold true.

(i) b ∈ S̃i(h) ∩ Si(h) =⇒Au(h) ⊆ Ai(b).

(ii) b ∈ S̃⟨i⟩(h) ∩ S⟨i⟩(h) =⇒A⟨u⟩(h) ⊆ A⟨i⟩(b).

Remark 3.27. We highlight that the previously discussed types of neighborhoods, namely maximal neigh-
borhoods [9], containment and subset neighborhoods [8, 10], intersection neighborhoods [12], and equality
neighborhoods [19, 37], are equivalent to their corresponding Yao’s neighborhoods when the binary rela-
tion is an equivalence relation. This property also applies to the neighborhoods introduced in this work.
However, it does not hold for cardinality rough neighborhoods [14].

In what follows, we compare the proposed rough neighborhoods when induced by two binary relations.
This comparison will help us determine how the rough set models, introduced in the next section, behave
with respect to the monotonicity property.

Proposition 3.28. In G-approximation spaces (U,Ω1) and (U,Ω2), ifΩ1 ⊆ Ω2 such thatΩ1 is serial and transitive,
and Ω2 is symmetric and transitive, then S̃1r(b) ⊆ S̃2r(b).

Proof. Since Ω1 is serial and transitive, it follows from (iv) of Proposition 3.16 that

S̃1r(b) ⊆ A1r(b) (2)

It follows from Lemma 2.11 that

A1r(b) ⊆ A2r(b) (3)

Since Ω2 is symmetric and transitive, it follows from Proposition 3.10 that

A2r(b) ⊆ S̃2r(b) (4)

From (2) and (3), we get

S̃1r(b) ⊆ A2r(b) (5)

And from (4) and (5), we obtain S̃1r(b) ⊆ S̃2r(b), as required.

Following a similar approach of the proof of Proposition 3.28 and using (v) of Proposition 3.16 and
Corollary 3.17, one can prove the subsequent propositions.
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Proposition 3.29. In G-approximation spaces (U,Ω1) and (U,Ω2), if Ω1 ⊆ Ω2 such that Ω1 is inverse serial and
transitive, and Ω2 is symmetric and transitive, then S̃1l(b) ⊆ S̃2l(b).

Proposition 3.30. In G-approximation spaces (U,Ω1) and (U,Ω2), we have the following properties.

(i) If Ω1 ⊆ Ω2, Ω1 is serial, inverse serial and transitive, and Ω2 is symmetric and transitive, then S̃1 ȷ(b) ⊆ S̃2 ȷ(b)
for each ȷ ∈ {r, l, ⟨r⟩, ⟨l⟩}.

(ii) If Ω1 ⊆ Ω2, Ω1 is a quasi-order, and Ω2 is symmetric and transitive, then S̃1 ȷ(b) ⊆ S̃2 ȷ(b) for each ȷ.

We close this section by displaying some characterizations of overlapping containment rough neighbor-
hoods [16, Proposition 3.31 and Proposition 3.32] that are missing for overlapping subset rough neighbor-
hoods, as illustrated by Example 3.33 and Example 3.34.

Proposition 3.31. ([16]) In a G-approximation space (U,Ω), ifΩ is a partial order relation, then the next properties
hold.

(i) C̃r(b) ⊆ {b} or C̃l(b) ⊆ {b}.

(ii) C̃i(b) ⊆ {b}.

(iii) C̃u(b) = C̃r(b) or C̃u(b) = C̃l(b).

Proposition 3.32. ([16]) In a G-approximation space (U,Ω), if Ω is symmetric and transitive. Then, for each ȷ and
b, f ∈ U we have

C̃ ȷ(b) ∩ C̃ ȷ(f) = {h ∈ U : (h,h) < Ω} or C̃ ȷ(b) = C̃ ȷ(f).

Example 3.33. LetΩ = {(b,b), (f, f), (h,h), (b, f), (f,h), (b,h)} be a partial order relation on U = {b, f,h}. In Table
5, we calculateA ȷ-, S̃ ȷ-, and C̃ ȷ-neighborhoods for all elements in U.

b f h

Ar = A⟨r⟩ U {f,h} {h}

Al = A⟨l⟩ {b} {b, f} U

S̃r = S̃⟨r⟩ {h} {h} {h}

S̃l = S̃⟨l⟩ {b} {b} {b}

S̃i = S̃⟨i⟩ ∅ ∅ ∅

S̃u = S̃⟨u⟩ {b,h} {b,h} {b,h}

C̃r = C̃⟨r⟩ U ∅ ∅

C̃l = C̃⟨l⟩ ∅ ∅ U

C̃i = C̃⟨i⟩ ∅ ∅ ∅

C̃u = C̃⟨u⟩ U ∅ U

Table 5: TheA ȷ-, S̃ ȷ-, and C̃ ȷ-neighborhoods of all elements in U

Example 3.34. By Example 3.15, Ω is symmetric and transitive. However, we note that S̃ ȷ(f) , S̃ ȷ(h) and
S̃ ȷ(f) ∩ S̃ ȷ(h) = {b, f}, where (b,b), (f, f) ∈ Ω.
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4. Innovative rough set models based on S̃ ȷ-neighborhoods

In this section, we utilize rough neighborhoods, defined in the previous section, to introduce and analyze
novel rough approximations, referred to asO

S̃ ȷ
-lower andO

S̃ ȷ
-upper approximations. These approximations

are then used to define new set regions and establish accuracy measures. We demonstrate that the most
precise approximations and accuracy levels for a subset occur when ȷ ∈ {i, ⟨i⟩}. Additionally, we leverage
the equivalences proven in the previous section to clarify the conditions under which the proposed models
outperform existing ones. Finally, we structure an algorithm to verify whether a subset is S̃-definable.

Definition 4.1. In a G-approximation space (U,Ω), the upper and lower approximations of a subset Y,
denoted byO

S̃ ȷ
(Y) andO

S̃ ȷ
(Y), are calculated with respect to S̃ ȷ-neighborhoods using the following formulas:

O
S̃ ȷ

(Y) = Y ∪ {b ∈ U : S̃ ȷ(b) ∩ Y , ∅}, and

O
S̃ ȷ

(Y) = Y ∩ {b ∈ U : S̃ ȷ(b) ⊆ Y}, respectively.

Now, we introduce the next definitions to classify regions and measures for any subset Y of a G-
approximation space (U,Ω).

Definition 4.2. The next regions are defined for a subset Y of a G-approximation space (U,Ω) with respect
to S̃ ȷ-neighborhoods:

S̃ ȷ-boundary region: δ
S̃ ȷ

(Y) = O
S̃ ȷ

(Y) \ O
S̃ ȷ

(Y),

S̃ ȷ-positive region: P
S̃ ȷ

(Y) = O
S̃ ȷ

(Y), and

S̃ ȷ-negative region: N
S̃ ȷ

(Y) = U \ O
S̃ ȷ

(Y).

Definition 4.3. The next measures are defined for a subset Y of a G-approximation space (U,Ω) with respect
to S̃ ȷ-neighborhoods:

S̃ ȷ-accuracy measure: ξ
S̃ ȷ

(Y) =
|O
S̃ ȷ

(Y)|

|O
S̃ ȷ

(Y)|
, | O

S̃ ȷ
(Y) |, 0.

S̃ ȷ-roughness measure: ξ̂
S̃ ȷ

(Y) = 1 − ξ
S̃ ȷ

(Y).

Proposition 4.4. In a G-approximation space (U,Ω), if Ω is symmetric, then for each ȷ ∈ {r, l, i} we have:

(i) O
S̃ ȷ

(Y) = {b ∈ U : S̃ ȷ(b) ∩ Y , ∅}, and

(ii) O
S̃ ȷ

(Y) = {b ∈ U : S̃ ȷ(b) ⊆ Y}.

Proof. According to Proposition 3.8, we have b ∈ S̃ ȷ(b) for each b ∈ U and ȷ ∈ {r, l, i}, so if b ∈ Y, then
S̃ ȷ(b)∩Y , ∅. This means that Y ⊆ {b ∈ U : S̃ ȷ(b)∩Y , ∅}. Hence, O

S̃ ȷ
(Y) = Y ∪ {b ∈ U : S̃ ȷ(b)∩Y , ∅} = {b ∈

U : S̃ ȷ(b) ∩ Y , ∅}. In a similar way, it can be proved (ii).

In what follows, we explore the key characterizations ofO
S̃ ȷ

andO
S̃ ȷ

approximations. We identify which
of Pawlak’s properties they preserve.

Theorem 4.5. In a G-approximation space (U,Ω), let Y,Z ⊆ U. Then, the next results are fulfilled for each ȷ.
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(i) O
S̃ ȷ

(Y) ⊆ Y.

(ii) O
S̃ ȷ

(∅) = ∅.

(iii) O
S̃ ȷ

(U) = U.

(iv) If Y ⊆ Z, then O
S̃ ȷ

(Y) ⊆ O
S̃ ȷ

(Z).

(v) O
S̃ ȷ

(Y ∩ Z) = O
S̃ ȷ

(Y) ∩ O
S̃ ȷ

(Z).

(vi) O
S̃ ȷ

(Yc) = (O
S̃ ȷ

(Y))c.

Proof. The proofs of (i) and (ii) follows directly by noting that O
S̃ ȷ

(Y) = Y ∩ {b ∈ U : S̃ ȷ(b) ⊆ Y} ⊆ Y.

(iii): For every b ∈ U we have S̃ ȷ(b) ⊆ U, so we conclude that O
S̃ ȷ

(U) = U.

(iv): If Y ⊆ Z, then O
S̃ ȷ

(Y) = Y ∩ {b ∈ U : S̃ ȷ(b) ⊆ Y} ⊆ Z ∩ {b ∈ U : S̃ ȷ(b) ⊆ Z} = O
S̃ ȷ

(Z).
(v): Follows from (iv) that O

S̃ ȷ
(Y ∩ Z) ⊆ O

S̃ ȷ
(Y) ∩ O

S̃ ȷ
(Z). Conversely, assume that b ∈ O

S̃ ȷ
(Y) ∩ O

S̃ ȷ
(Z).

Accordingly, it follows b ∈ O
S̃ ȷ

(Y) and b ∈ O
S̃ ȷ

(Z). Now, b ∈ Y, S̃ ȷ(b) ⊆ Y and b ∈ Z, S̃ ȷ(b) ⊆ Z. Thus,

b ∈ Y∩Z and S̃ ȷ(b) ⊆ Y∩Z, which leads to that b ∈ O
S̃ ȷ

(Y∩Z). This proves thatO
S̃ ȷ

(Y)∩O
S̃ ȷ

(Z) ⊆ O
S̃ ȷ

(Y∩G).

(vi): b ∈ O
S̃ ȷ

(Yc)⇐⇒ b ∈ Yc and S̃ ȷ(b) ⊆ Yc

⇐⇒ b < Y and S̃ ȷ(b) ∩ Y = ∅
⇐⇒ b < O

S̃ ȷ
(Y)

⇐⇒ b ∈ (O
S̃ ȷ

(Y))c.

Corollary 4.6. In a G-approximation space (U,Ω), let Y,Z ⊆ U. Then, the next results are fulfilled for each ȷ.

(i) O
S̃ ȷ

(Y) ∪ O
S̃ ȷ

(Z) ⊆ O
S̃ ȷ

(Y ∪ Z)

(ii) O
S̃ ȷ

(O
S̃ ȷ

(Y)) ⊆ O
S̃ ȷ

(Y).

Theorem 4.7. In a G-approximation space (U,Ω), let Y,Z ⊆ U. Then, the next results are fulfilled for each ȷ.

(i) Y ⊆ O
S̃ ȷ

(Y).

(ii) O
S̃ ȷ

(∅) = ∅.

(iii) O
S̃ ȷ

(U) = U.

(iv) If Y ⊆ Z, then O
S̃ ȷ

(Y) ⊆ O
S̃ ȷ

(Z).

(v) O
S̃ ȷ

(Y ∪ Z) = O
S̃ ȷ

(Y) ∪ O
S̃ ȷ

(Z).

(vi) O
S̃ ȷ

(Yc) = (O
S̃ ȷ

(Y))c.

Proof. We leave the proof for the reader as it closely resembles the one used in Theorem 4.5.

Corollary 4.8. In a G-approximation space (U,Ω), let Y,Z ⊆ U. Then, the next results are fulfilled for each ȷ.

(i) O
S̃ ȷ

(Y ∩ Z) ⊆ O
S̃ ȷ

(Y) ∩ O
S̃ ȷ

(Z).
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(ii) O
S̃ ȷ

(Y) ⊆ O
S̃ ȷ

(O
S̃ ȷ

(Y)).

The example that follows clarifies that the converses of items (i) and (iv) in Theorems 4.5 and 4.7, as well
as Corollaries 4.6 and 4.8, do not hold.

Example 4.9. In a G-approximation space (U,Ω) displayed in Example 3.2, let Y = {b} and Z = {f}. Then,

(i) O
S̃l

(Z) = ∅ ⊂ Z and Y ⊂ O
S̃l

(Y) = U.

(ii) O
S̃l

(Y) = Y and O
S̃l

(Z) = ∅. Now, O
S̃l

(Y ∪ Z) = {b, f} but O
S̃l

(Y) ∪ O
S̃l

(Z) = {b}.

(iii) O
S̃l

(Y) = U and O
S̃l

(Z) = {f,h}. Now, O
S̃l

(Y ∩ Z) = ∅ but O
S̃l

(Y) ∩ O
S̃l

(Z) = {f,h}. Also, O
S̃l

(Z) ⊆ O
S̃l

(Y) in
spite that Z is not a subset of Y.

Proposition 4.10. In a G-approximation space (U,Ω), the next results are fulfilled for every subset Y of U and each
ȷ.

(i) O
S̃u

(Y) ⊆ O
S̃r

(Y) ∩ O
S̃l

(Y) ⊆ O
S̃r

(Y) ∪ O
S̃l

(Y) ⊆ O
S̃i

(Y).

(ii) O
S̃i

(Y) ⊆ O
S̃r

(Y) ∩ O
S̃l

(Y) ⊆ O
S̃r

(Y) ∪ O
S̃l

(Y) ⊆ O
S̃u

(Y).

(iii) O
S̃⟨u⟩

(Y) ⊆ O
S̃⟨r⟩

(Y) ∩ O
S̃⟨l⟩

(Y) ⊆ O
S̃⟨r⟩

(Y) ∪ O
S̃⟨l⟩

(Y) ⊆ O
S̃⟨i⟩

(Y).

(iv) O
S̃⟨i⟩

(Y) ⊆ O
S̃⟨r⟩

(Y) ∩ O
S̃⟨l⟩

(Y) ⊆ O
S̃⟨r⟩

(Y) ∪ O
S̃⟨l⟩

(Y) ⊆ O
S̃⟨u⟩

(Y).

Proof. According to Definition 4.1 and by (i) and (ii) of Proposition 3.3, the proof follows.

Corollary 4.11. In a G-approximation space (U,Ω), the next results are fulfilled for every subset Y of U and each ȷ.

(i) ξ
S̃u

(Y) ≤ ξ
S̃r

(Y) ≤ ξ
S̃i

(Y).

(ii) ξ
S̃u

(Y) ≤ ξ
S̃l

(Y) ≤ ξ
S̃i

(Y).

(iii) ξ
S̃⟨u⟩

(Y) ≤ ξ
S̃⟨r⟩

(Y) ≤ ξ
S̃⟨i⟩

(Y).

(iv) ξ
S̃⟨u⟩

(Y) ≤ ξ
S̃⟨l⟩

(Y) ≤ ξ
S̃⟨i⟩

(Y).

Proof. (i): Given that O
S̃u

(Y) ⊆ O
S̃r

(Y) ⊆ O
S̃i

(Y), we get

| O
S̃u

(Y) |≤| O
S̃r

(Y) |≤| O
S̃i

(Y) | (6)

Considering O
S̃i

(Y) ⊆ O
S̃r

(Y) ⊆ O
S̃u

(Y), | O
S̃i

(Y) |≤| O
S̃r

(Y) |≤| O
S̃u

(Y) |. Given the assumption that Y is

nonempty, it follows that | O
S̃ ȷ

(Y) |> 0 for all ȷ. Therefore,

1

| O
S̃u

(Y) |
≤

1

| O
S̃r

(Y) |
≤

1

| O
S̃i

(Y) |
. (7)

Based on (6) and (7), we obtain that

| O
S̃u

(Y) |

| O
S̃u

(Y) |
≤

| O
S̃r

(Y) |

| O
S̃r

(Y) |
≤

| O
S̃i

(Y) |

| O
S̃i

(Y) |

Hence, we finish the proof.
The remaining items can be proven by utilizing a similar approach.
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Corollary 4.12. In a G-approximation space (U,Ω), the next results are fulfilled for every subset Y of U and each ȷ.

(i) δ
S̃u

(Y) ⊆ δ
S̃r

(Y) ⊆ δ
S̃i

(Y).

(ii) δ
S̃u

(Y) ⊆ δ
S̃l

(Y) ⊆ δ
S̃i

(Y).

(iii) δ
S̃⟨u⟩

(Y) ⊆ δ
S̃⟨r⟩

(Y) ⊆ δ
S̃⟨i⟩

(Y).

(iv) δ
S̃⟨u⟩

(Y) ⊆ δ
S̃⟨l⟩

(Y) ⊆ δ
S̃⟨i⟩

(Y).

To illustrate the invalidity of the converse statements in Proposition 4.10 and Corollary 10, we consider
Example 3.2 and calculate the approximation operators and accuracy measures for all sets, as exhibited in
Table 6 and Table 7.

Proposition 4.13. In a G-approximation space (U,Ω), if Ω is symmetric and transitive, then all types of O
S̃ ȷ

-
approximations (resp., O

S̃ ȷ
-approximations, ξ

S̃ ȷ
-accuracy) are equal.

Proof. Warranted by Corollary 3.13.

Proposition 4.14. In a G-approximation space (U,Ω), let Y ⊆ U. Then, ξ
S̃ ȷ

(U) = 1 and 0 ≤ ξ
S̃ ȷ

(Y) ≤ 1 for each ȷ.

Proof. Straightforward.

Definition 4.15. In a G-approximation space (U,Ω), a set Y is called S̃ ȷ-rough if ξ
S̃ ȷ

(Y) < 1. If ξ
S̃ ȷ

(Y) = 1,

then we name Y an S̃ ȷ-definable set.

We now design Algorithm 1 to demonstrate the process of determining whether a given set is S̃ ȷ-rough
or S̃ ȷ-definable in the case of ȷ = r.

Ultimately, we examine the conditions necessary for the present rough set paradigms to satisfy the
monotonicity property.

Proposition 4.16. In G-approximation spaces (U,Ω1) and (U,Ω2), ifΩ1 ⊆ Ω2 such thatΩ1 is serial (resp., inverse
serial) and transitive, and Ω2 is symmetric and transitive, then for each subset Y of U we have

(i) ξ
S̃2r

(Y) ≤ ξ
S̃1r

(Y) (resp., ξ
S̃2l

(Y) ≤ ξ
S̃1l

(Y)).

(ii) ξ̂
S̃1r

(Y) ≤ ξ̂
S̃2r

(Y) (resp., ξ̂
S̃1r

(Y) ≤ ξ̂
S̃2r

(Y)).

Proof. According to Proposition 3.28 we obtain that S̃1r(b) ⊆ S̃2r(b). This yields that, for a set Y, we get

O
S̃1r

(Y) ⊆ O
S̃2r

(Y) and O
S̃2r

(Y) ⊆ O
S̃1r

(Y). Thus, ξ
S̃2r

(Y) =
|O
S̃2r

(Y)|

|O
S̃2r

(Y)|
≤
|O
S̃1r

(Y)|

|O
S̃1r

(Y)|
= ξ

S̃1 ȷ
(Y), which confirms the

validity of (i). By Proposition 3.29, one can following a similar approach to verify the result in the case of
an inverse serial relation.
Since ξ

S̃2 ȷ
(Y) ≤ ξ

S̃1 ȷ
(Y)⇐⇒ 1 − ξ

S̃1 ȷ
(Y) ≤ 1 − ξ

S̃2 ȷ
(Y), it follows from (i) above the proof of (ii).

Corollary 4.17. Under the conditions stated in Proposition 4.16, the rough set models suggested in this work satisfy
the monotonicity property in the cases of ȷ ∈ {r, l}.

Proposition 4.18. In G-approximation spaces (U,Ω1) and (U,Ω2), ifΩ1 is serial, inverse serial and transitive, and
Ω2 is symmetric and transitive, then for each subset Y of U we have

(i) ξ
S̃2 ȷ

(Y) ≤ ξ
S̃1 ȷ

(Y) for each ȷ ∈ {r, l, ⟨r⟩, ⟨l⟩}.

(ii) ξ̂
S̃1 ȷ

(Y) ≤ ξ̂
S̃2 ȷ

(Y) for each ȷ ∈ {r, l, ⟨r⟩, ⟨l⟩}.
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Input : The entire set U represents the sample we want to study.
Output: Determine the classification of each set: S̃r-rough or S̃r-definable.

1 Define a binary relation Ω describes the relationship between the elements of U;
2 for every b ∈ U do
3 CalculateAr(b) = {f ∈ U : (b, f) ∈ Ω};
4 CalculateAl(b) = {f ∈ U : (f,b) ∈ Ω
5 end
6 for every b ∈ U do
7 Calculate S̃r(b) = {f ∈ U : Ar(b) ⊆ Al(f)}
8 end
9 for every proper set Y , ∅ in U do

10 Calculate S̃r-lower approximation: O
S̃r

(Y) = Y ∩ {b ∈ U : S̃ ȷ(b) ⊆ Y};

11 Calculate S̃r-upper approximation: O
S̃r

(Y) = Y ∪ {b ∈ U : S̃ ȷ(b) ∩ Y , ∅};

12 Calculate S̃r-accuracy: ξ
S̃r

(Y) =
|O
S̃ ȷ

(Y)|

|O
S̃ ȷ

(Y)|
;

13 if ξ
S̃r

(Y) = 1 then
14 return a set Y is S̃r-definable
15 else
16 a set Y is S̃r-rough
17 end
18 end

Algorithm 1: Identifying whether a set is S̃r-rough or S̃r-definable

Proof. According to (i) of Proposition 3.30, this proposition can be proved using a technique similar to that
of Proposition 4.16.

Corollary 4.19. Under the conditions stated in Proposition 4.18, the rough set models suggested in this work satisfy
the monotonicity property in the cases of ȷ ∈ {r, l, ⟨r⟩, ⟨l⟩}.

Proposition 4.20. In G-approximation spaces (U,Ω1) and (U,Ω2), if Ω1 is quasi-order and Ω2 is symmetric and
transitive, then for each ȷ and each subset Y of U we have

(i) ξ
S̃2 ȷ

(Y) ≤ ξ
S̃1 ȷ

(Y).

(ii) ξ̂
S̃1 ȷ

(Y) ≤ ξ̂
S̃2 ȷ

(Y).

Proof. According to (ii) of Proposition 3.30, this proposition can be proved using a technique similar to that
of Proposition 4.16.

Corollary 4.21. Under the conditions stated in Proposition 4.20, the rough set models suggested in this work satisfy
the monotonicity property for each ȷ.

Remark 4.22. We draw the reader’s attention to the fact that S̃1 ȷ(b) and S̃2 ȷ(b), derived from the G-
approximation spaces (U,Ω1) and (U,Ω2), are generally independent for all (or some) b ∈ U and each
ȷ. In other words, overlapping subset neighborhoods do not preserve the property of monotonicity. How-
ever, they satisfy the monotonicity property under specific conditions imposed on the binary relations Ω1
and Ω2, as established in Proposition 4.16, Proposition 4.18, and Proposition 4.20.



T. M. Al-shami, M. AL Nuwairan / Filomat 39:27 (2025), 9415–9447 9438

5. Computing the accuracy and uncertainty of knowledge derived from information systems

5.1. Problem statement and algorithm

Let us assume that U is a set of objects under study, each element characterized by some criteria. We
systematically arrange these objects and their corresponding criteria in an information table. The analyst or
decision-maker responsible for extracting insights from this table will calculate the confirmed and possible
knowledge for the desired data subsets using both the current and some previously established types of
neighborhoods.

Following this approach, we calculate the approximation operators and accuracy measures for subsets
using the steps outlined below:

Step 1: Structure the information system by organizing objects along with their associated attributes (criteria).
Step 2: Define the relation that links objects based on their criteria values.
Step 3: Determine whether the defined relation satisfies specific properties such as reflexivity, serial, inverse

serial, symmetry, or transitivity. Identifying the given relation helps streamline certain complex
calculations in the subsequent steps.

Step 4: Calculate theA ȷ-neighborhoods, representing the fundamental granular computing framework.

Step 5: Calculate the S̃ ȷ-neighborhoods, along with other types of neighborhoods if different rough set models
are to be examined.

Step 6: For selected subsets of objects, calculate the S̃ ȷ-lower and S̃ ȷ-upper approximation operators, along
with their counterparts derived from the rough set models under investigation.

Step 7: Find the S̃ ȷ-boundary regions and the S̃ ȷ-accuracy for these subsets.

5.2. Numerical example

We adopt an empirical example to apply the proposed rough neighborhoods in describing a practical
scenario and demonstrating how extracted information can be classified. To this end, suppose there is a set
U of published books written by a set of authors, denoted by Y, and categorized into a set of topics, denoted
by Z. Let us consider these sets are:
U = {b1,b2,b3,b4,b5,b6,b7},
Y = {Tareq = x1,Yang = x2,Muneerah = x3,Lashin = x4, Ibrahim = x5,Faiz = x6,Rizwan = x7, Skowron =
x8,Liang = x9}, and
Z = {y1, y2, y3, y4, y5, y6}, where these topics are: fuzzy sets, artificial intelligence, rough sets, multi-criteria
decision-making, soft sets, and graph theory.
Consider the mappings F1 : U→ 2Y and F2 : U→ 2Z, where F1(b) represents the authors who participated
in writing the book b, and F2(b) represents the topic(s) of the book b. The representation of these mappings
is displayed in Table 8.

Books b1 b2 b3 b4 b5 b6 b7

Authors {x3, x5} {x1, x7, x8, x9} {x3, x4, x5} {x1, x9} {x2, x3, x7} {x2, x7} {x3, x5}

Topics {y1, y4, y6} {y5} {y1, y2, y4} {y2, y4} {y3} {y3, y5} {y4, y6}

Table 8: Information system of the proposed example

Suppose the system administrators suggested the following binary relations:

(br,bs) ∈ Ω⇐⇒ F1(br) ⊆ F1(bs) or |F2(br) ∩ F2(bs)| ≥ 2
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Accordingly, we have Ω = {(b1,b1), (b2,b2), (b3,b3),(b4,b4), (b5,b5), (b6,b6),(b7,b7), (b1,b3),(b3,b1),
(b1,b7), (b7,b1), (b3,b4), (b4,b3), (b4,b2), (b6,b5), (b7,b3)}. To conduct the comparisons demonstrating the
superiority of the proposed rough set models, we first calculate the granule blocks (which include some
existing rough neighborhoods and the proposed one) of the models being compared, as given in Table 9.

b1 b2 b3 b4 b5 b6 b7

Ar {b1,b3,b7} {b2} {b1,b3,b4} {b2,b3,b4} {b5} {b5,b6} {b1,b3,b7}

Al {b1,b3,b7} {b2,b4} {b1,b3,b4,b7} {b3,b4} {b5,b6} {b6} {b1,b7}

A⟨r⟩ {b1,b3} {b2} {b3} {b3,b4} {b5} {b5,b6} {b1,b3,b7}

A⟨l⟩ {b1,b7} {b2,b4} {b3} {b4} {b5,b6} {b6} {b1,b7}

S̃r {b1,b3} {b2} {b3} ∅ {b5} {b5} {b1,b3}

S̃l {b1,b7} {b4} ∅ {b3,b4} {b6} {b6} {b1,b7}

S̃⟨r⟩ ∅ {b2} {b3} {b3,b4} {b5} {b5} ∅

S̃⟨l⟩ {b7} ∅ {b1,b3,b4,b7} {b4} {b6} {b6} {b7}

C̃r {b1,b7} ∅ {b4} {b2,b4} ∅ {b5,b6} {b1,b7}

C̃l {b1,b7} {b2} {b1,b3,b7} ∅ {b5,b6} ∅ ∅

C̃⟨r⟩ {b3} ∅ {b3} {b3,b4} ∅ {b5,b6} {b1,b3,b7}

C̃⟨l⟩ ∅ {b2} {b3} ∅ {b5,b6} ∅ ∅

Ẽl {b1,b3,b4,b7} {b2,b3,b4} U \ {b2,b5,b6} {b1,b3,b4,b7} {b5,b6} {b5,b6} {b1,b3,b7}

Ẽr {b1,b3,b4,b7} {b2} U \ {b5,b6} {b1,b2,b3,b4} {b5} {b5,b6} {b1,b3,b4,b7}

Ẽ⟨l⟩ {b1,b7} {b2,b4} {b1,b3,b4,b7} {b4} {b5,b6} {b6} {b1,b7}

Table 9: A ȷ-, S̃ ȷ-, C̃ ȷ-, E ȷ-, and Ẽ ȷ-neighborhoods of all members in U

Now, we calculate the approximation operators and accuracy measures for some subsets via the pro-
posed rough set models and some of the previous ones. To do this, we choose three subsets of U as
following: M = {b1,b2,b3,b6}, T = {b2,b3,b4,b5}, and Q = {b1,b2,b3}. The information that can be extracted
from these subsets is presented as follows:

(i) By using the proposed rough set model in the case of ȷ = r and its counterpart generated by Ar-
neighborhood:

HNr (M) = {b2} H
Nr (M) = U \ {b5} δNr (M) = U \ {b2,b5}, and ξNr (M) = 1/6

O
S̃r

(M) = {b1,b2,b3} O
S̃r

(M) = U \ {b4,b5} δ
S̃r

(M) = {b6,b7}, and ξ
S̃r

(M) = 3/5

(ii) By using the proposed rough set model in the case of ȷ = l and its counterpart generated by El-
neighborhood:

HẼl
(T) = {b2} H

Ẽl (T) = U δẼl
(T) = U \ {b2}, and ξẼl

(T) = 1/7

O
S̃l

(T) = {b2,b3,b5} O
S̃l

(T) = {b2,b3,b4,b5} δ
S̃l

(T) = {b4}, and ξ
S̃l

(T) = 3/4

(iii) By using the proposed rough set model in the case of ȷ = ⟨l⟩ and its counterpart generated by C̃⟨l⟩-
neighborhood:

H
C̃⟨l⟩

(M) =M H
C̃⟨l⟩ (M) = U \ {b4,b7} δ

C̃⟨l⟩
(M) = {b5}, and ξ

C̃⟨l⟩
(M) = 4/5

O
S̃⟨l⟩

(M) = {b2,b6} O
S̃⟨l⟩

(M) = U \ {b4,b7} δ
S̃⟨l⟩

(M) = {b1,b3,b5}, and ξ
S̃⟨l⟩

(M) = 2/5.
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(iv) By using the proposed rough set model in the case of ȷ = r and its counterpart generated by C̃r-
neighborhood:

H
C̃r

(Q) = {b2} H
C̃r (Q) = {b1,b2,b3,b4,b7} δ

C̃r
(Q) = {b1,b3,b4,b7}, and ξ

C̃r
(Q) = 1/5

O
S̃r

(Q) = Q O
S̃r

(Q) = {b1,b2,b3,b7} δ
S̃r

(Q) = {b7}, and ξ
S̃r

(Q) = 3/4

Based on the above computations, we conclude the following facts. First, the traditional rough set model
fails to represent this information system since the proposed relationΩ is neither symmetric nor transitive.
Second, it follows from (i) and (ii) that the proposed rough set models enhance the accuracy measures
compared to the rough set models induced byA ȷ-neighborhoods and Ẽ ȷ-neighborhoods. This improvement
occurs since our models expand the lower approximation and reduce the upper approximation, directly
leading to a smaller boundary region. These outcomes support the validity of the results obtained in (ii)
of Proposition 3.16 and Proposition 3.18. Finally, one can observe from (iii) and (iv) the independence of
our models from their counterparts induced by C̃ ȷ-neighborhoods, even when the given binary relation is
reflexive.

6. Comparative analysis and discussion

We allocate this part to perform a comparative analysis incorporating both quantitative and qualitative
factors to highlight the effectiveness and superiority of the proposed approach over existing ones. Addi-
tionally, we provide a detailed investigation of its advantages and limitations. The step-by-step comparison
process is presented below.

6.1. Quantitative comparison
In this subsection, we will demonstrate some results that confirm the superiority of the proposed

approach in this manuscript over some existing techniques under some conditions imposed on the binary
relations. We will base our demonstration of these comparisons on the results we proved in Section 3 and
our method of defining the current rough set models introduced in Section 4.

We illustrate under which types of binary relations the present rough set models outperform their
counterparts established byA ȷ-neighborhoods, C̃ ȷ-neighborhoods, Ẽ ȷ-neighborhoods.

Proposition 6.1. In a G-approximation space (U,Ω), the following relationships are warranted when Ω is a serial
and symmetric relation, or an inverse serial and symmetric relation.

(i) HA ȷ (Y) ⊆ O
S̃ ȷ

(Y) for each Y ⊆ U and each ȷ.

(ii) O
S̃ ȷ

(Y) ⊆ HA ȷ (Y) for each Y ⊆ U and each ȷ.

Proof. In all given casesΩ is symmetric, so it follows from Proposition 4.4 thatO
S̃ ȷ

(Y) = {b ∈ U : S̃ ȷ(b)∩Y , ∅}

and O
S̃ ȷ

(Y) = {b ∈ U : S̃ ȷ(b) ⊆ Y}. Now, it follows from (iii) of Proposition 3.16 that S̃ ȷ(b) ⊆ A ȷ(b) for each
b ∈ U and each ȷ when Ω is a serial and symmetric relation or an inverse serial and symmetric relation.
Accordingly, we derive that {b ∈ U : A ȷ(b) ⊆ Y} ⊆ {b ∈ U : S̃ ȷ(b) ⊆ Y} and {b ∈ U : S̃ ȷ(b) ∩ Y , ∅} ⊆ {b ∈ U :
A ȷ(b) ∩ Y , ∅}; hence, we demonstrate the desired relationships.

Corollary 6.2. In a G-approximation space (U,Ω), if Ω is a serial and symmetric relation, or an inverse serial and
symmetric relation, then ξ

S̃ ȷ
(Y) ≥ ξA ȷ (Y) for each Y ⊆ U and each ȷ.

Proposition 6.3. In a G-approximation space (U,Ω), if Ω is a reflexive relation, or a serial and transitive relation,
or an inverse serial and transitive relation, or a quasi-order relation, then ξ

S̃ ȷ
(Y) ≥ ξA ȷ (Y) for each Y ⊆ U and each ȷ.
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Proof. For each b ∈ U we have the following cases:

(i) if Ω is a reflexive relation, then by (ii) of Proposition 3.16 we obtain S̃ ȷ(b) ⊆ A ȷ(b) for each ȷ.

(ii) if Ω is a serial (or inverse serial) and transitive relation, then by (iv) and (v) of Proposition 3.16 we
obtain S̃ ȷ(b) ⊆ A ȷ(b) for each ȷ.

(iii) if Ω is a quasi-order relation, then by (ii) of Corollary 3.17 we obtain S̃ ȷ(b) ⊆ A ȷ(b) for each ȷ.

According to the above cases, for any Y ⊆ U and each ȷ we derive that HA ȷ (Y) ∩ Y ⊆ O
S̃ ȷ

(Y) and

O
S̃ ȷ

(Y) ⊆ HA ȷ (Y) ∪ Y. Consequentially, ξ
S̃ ȷ

(Y) =
|O
S̃ ȷ

(Y)|

|O
S̃ ȷ

(Y)|
≥
|HA ȷ (Y)∩Y|

|H
A ȷ (Y)∪(Y)|

= ξA ȷ (Y), as required.

Proposition 6.4. In a G-approximation space (U,Ω), the following relationships are satisfied for each Y ⊆ U.

(i) if Ω is a serial and symmetric relation, thenHẼ ȷ (Y) ⊆ O
S̃ ȷ

(Y) and O
S̃ ȷ

(Y) ⊆ H Ẽ ȷ (Y) for each ȷ ∈ {r, ⟨l⟩}.

(ii) ifΩ is an inverse serial and symmetric relation, thenHẼ ȷ (Y) ⊆ O
S̃ ȷ

(Y) andO
S̃ ȷ

(Y) ⊆ H Ẽ ȷ (Y) for each ȷ ∈ {l, ⟨r⟩}.

Proof. The proof is achieved by using the relationships proved in Proposition 3.18 and following a similar
technique in the proof of Proposition 6.1.

Corollary 6.5. In a G-approximation space (U,Ω), the following relationships are satisfied for each Y ⊆ U.

(i) if Ω is a serial relation, then ξ
S̃ ȷ

(Y) ≥ ξẼ ȷ (Y) for each ȷ ∈ {r, ⟨l⟩}.

(ii) if Ω is an inverse serial relation, then ξ
S̃ ȷ

(Y) ≥ ξẼ ȷ (Y) for each ȷ ∈ {l, ⟨r⟩}.

The calculations of upper and lower approximations, along with accuracy measures for sets in the
practical example of Subsection 5.2 and the previous examples in Section 3, indicate that the converse of
the aforementioned results does not always hold. This highlights that the proposed approach broadens the
scope of confirmed knowledge while minimizing uncertainty, ultimately leading to higher accuracy values
and more precise decision-making. In general, our approach enriches the area of generalized rough set
models and offers more efficient measures compared to certain previous methods under specific types of
binary relations.

6.2. Qualitative comparison

In this subsection, we present a comprehensive comparative analysis of our approach against several
existing methods, focusing on their adherence to the properties ofP-approximation space. This comparison
encompasses techniques based on A ȷ-neighborhoods [54, 55], E ȷ-neighborhoods [12], C ȷ-neighborhoods
[8], maximal neighborhoods [9, 24], and S ȷ-neighborhoods [10].

In Table 10, we reveal how the upper and lower approximations behave with respect to the properties
of P-approximation space; we use the symbols ♦ and ♢ to indicate whether a property is satisfied or
not, respectively. As shown in Table 10, the proposed rough set models retain the most properties of
P-approximation space. Furthermore, they outperform rough set models based onA ȷ-neighborhoods, E ȷ-
neighborhoods, and maximal neighborhoods in terms of preserving these properties, while demonstrating
similar behavior to rough set models derived from C ȷ-neighborhoods and S ȷ-neighborhoods.
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Pawlak’s properties
approach inspired by
A ȷ-neighborhood [54, 55]

approach inspired by
C ȷ-neighborhood [8]

approach inspired by
S ȷ-neighborhood [10]

approach inspired by
maximal neighborhood [9, 24]

approach inspired by
E ȷ-neighborhood [12] Our approach

(LP1) ♢ ♦ ♦ ♢ ♢ ♦

(LP2) ♢ ♦ ♦ ♢ ♢ ♦

(LP3) ♦ ♦ ♦ ♦ ♦ ♦

(LP4) ♦ ♦ ♦ ♦ ♦ ♦

(LP5) ♦ ♦ ♦ ♦ ♦ ♦

(LP6) ♦ ♦ ♦ ♦ ♦ ♦

(LP7) ♦ ♦ ♦ ♦ ♦ ♦

(LP8) ♢ ♢ ♢ ♢ ♢ ♢

(LP9) ♢ ♢ ♢ ♢ ♢ ♢

(UP1) ♢ ♦ ♦ ♢ ♢ ♦

(UP2) ♦ ♦ ♦ ♦ ♦ ♦

(UP3) ♢ ♦ ♦ ♢ ♢ ♦

(UP4) ♦ ♦ ♦ ♦ ♦ ♦

(UP5) ♦ ♦ ♦ ♦ ♦ ♦

(UP6) ♦ ♦ ♦ ♦ ♦ ♦

(UP7) ♦ ♦ ♦ ♦ ♦ ♦

(UP8) ♢ ♢ ♢ ♢ ♢ ♢

(UP9) ♢ ♢ ♢ ♢ ♢ ♢

Table 10: Comparison of various methods regarding the properties of P-approximation space

Table 10 displays a comparative analysis between our proposed method and several existing approaches
in the literature, focusing on their ability to preserve the properties of lower and upper approximations
inspired by P-approximation space, as outlined in Proposition 2.4. The results we proved in this work
indicate that the proposed approach successfully maintains the first seven properties of lower and upper
approximations within the P-approximation space.

Moreover, it demonstrates superior performance compared to methods based on maximal neighbor-
hoods [9, 24], A ȷ-neighborhoods [54, 55], and E ȷ-neighborhoods [12] in retaining the first three properties
of lower and upper approximations of P-approximation space. These properties are expressed by the
following relation:

O
S̃ ȷ

(Y) ⊆ Y ⊆ O
S̃ ȷ

(Y) for each ȷ.

To show that these properties are missing in the framework generated byA ȷ-neighborhoods, we consider
a G-approximation space presented in Example 3.2. If Y = {b, k}, thenHAr (Y) = {f, k} andHAr (Y) = {b, f,h}.
Hence,HAr (Y) is not a subset of Y and Y is not a subset ofHAr (Y).

Thus, based on the aforesaid discussion, the results obtained using our method are highly reliable.
In addition, the properties LP8 andUP8 of P-approximation space are also considered as criteria for

comparing our models with the introduced rough set models. On the one hand, we demonstrated in Section
4 that O

S̃ ȷ
(O
S̃ ȷ

(Y)) is a proper subset of O
S̃ ȷ

(Y) and O
S̃ ȷ

(Y) is a proper subset of O
S̃ ȷ

(O
S̃ ȷ

(Y)), which indicates
that the proposed rough set models meet one direction of theLP8 andUP8 properties ofP-approximation
space.

On the other hand, the behavior of rough set models derived fromA ȷ-neighborhoods, maximal neigh-
borhoods, E ȷ-neighborhoods, and C ȷ-neighborhoods with respect to these properties is as follows:

(i) These properties are completely missing within the frameworks derived fromA ȷ-neighborhoods, max-
imal neighborhoods E ȷ-neighborhoods. To show that they are incomparable in the case of A ȷ-
neighborhoods, we consider a G-approximation space presented in Example 3.2. If Y = {b,h} and
Z = {h, k}, then

HAr (Y) = {f, k} andHAr (HAr (Y)) = {h, k} and

H
Ar (Z) = {b,h} andHAr (HAr (Z)) = {b, f} and .

Accordingly, HAr (Y) is not a subset of HAr (HAr (Y)) and HAl (HAl (Y)) is not a subset of HAr (Y), as
well asHAr (Z) is not a subset ofHAr (HAr (Z)) andHAl (HAl (Z)) is not a subset ofHAr (Z).
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(ii) These properties are satisfied within the frameworks derived fromS ȷ-neighborhoods andC ȷ-neighborhoods
satisfy these properties when ȷ ∈ {r, l, i, ⟨r⟩, ⟨l⟩, ⟨i⟩}. That is, for each ȷ ∈ {r, l, i, ⟨r⟩, ⟨l⟩, ⟨i⟩}we have

HC ȷ (HC ȷ (Y)) = HC ȷ (Y) andHC ȷ (HC ȷ (Y)) = HC ȷ (Y)

HS ȷ (HS ȷ (Y)) = HS ȷ (Y) andHS ȷ (HS ȷ (Y)) = HS ȷ (Y),
which represents an advantage of these rough set models in the determined cases of ȷ.

6.3. Advantages
The key benefits of the proposed approach are highlighted as follows:

(i) The neighborhood systems and rough set paradigms introduced in this work provide an innovative
framework for modeling empirical scenarios that necessitate two types ofA ȷ-neighborhoods related
by a subset relation. This framework holds potential for applications by integrating with graph
theory to specify the major symptoms in diseases, analyze electrical models, and classify individuals
on social media.

(ii) In contrast to many existing models in the literature, which often rely on predefined relations such as
equivalence [42, 43] and similarity [1, 24, 50] to define rough set frameworks, the approach presented
here does not impose such constraints. Instead, the proposed rough set paradigms are introduced
without requiring any specific conditions on the binary relations used to construct S̃ ȷ-neighborhoods
and their approximation operators. This flexibility allows for their application across a broad spectrum
of real-world scenarios.

(iii) As illustrated, the first seven properties of lower and upper approximations within theP-approximation
space hold in the proposed rough set models, whereas the eighth and ninth properties are only partially
satisfied. Thus, most of the lower and upper approximation properties within the P-approximation
space, which are partially or entirely lost in certain earlier rough set models, such as those discussed
in [9, 12, 24, 54, 55], are preserved in the proposed models, as detailed in Subsection 6.2.

(iv) In comparison to previous models, such as those in [9, 24, 25, 54, 55], our approach reduces uncer-
tainty and enhances the accuracy of validated knowledge derived from the analyzed information
systems. This advantage is achieved under specific types of binary relations. Through this content,
we demonstrate that the proposed rough set models surpass their counterparts established by:

1) A ȷ-neighborhoods for each case of ȷ under any one of the following binary relations:
• symmetric and transitive relations,
• serial and symmetric relations,
• inverse serial and symmetric relations, and
• quasi-order relations.

2) A ȷ-neighborhoods for each case of ȷ ∈ {r, l, i,u} under a reflexive relation
3) Ar-neighborhoods (resp., Al-neighborhoods) under a serial and transitive (resp., inverse serial

and transitive) relation.

4) C̃ ȷ-neighborhoods for the elements that are irreflexive; that is, elements with (b,b) < Ω.

5) Ẽr-neighborhoods and Ẽ⟨l⟩ under a serial relation, as well as Ẽl-neighborhoods and Ẽ⟨r⟩ under an
inverse serial relation.

6) Ẽ ȷ-neighborhoods for all cases of ȷ under a serial and inverse serial relation or a reflexive relation.

(v) The proposed model upholds the monotonicity property when the smaller relation is serial and transi-
tive, while the larger relation is symmetric and transitive. This implies that as the relation expands, the
accuracy measure decreases. This characteristic, established under these specific types of relations,
allows for the comparison of accuracy values between two rough set models, established in this study,
based on the accuracy of one.
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6.4. Limitations

(i) Some S̃ ȷ-neighborhoods are empty for certain elements when the binary relation is not serial or inverse
serial. This is an undesirable characteristic for approximating subsets using classical formulas, as it
results in lower approximations of some sets not being contained within those sets, and some sets not
being contained within their upper approximations.

(ii) Rough set models induced by C ȷ-neighborhoods and S ȷ-neighborhoods fully adhere to the LP8 and
UP8 properties of P-approximation space for each ȷ ∈ {r, l, i, ⟨r⟩, ⟨l⟩, ⟨i⟩}, which makes them superior
to the proposed models, as the latter only partially meet these properties for each ȷ.

(iii) The execution time of Algorithm 1 is longer compared to its counterpart algorithm for classification
based on subset neighborhoods. This difference arises because the counterpart algorithm restricts
numerical computations to a single type ofA ȷ-neighborhoods instead of two. Thus, when classifying
subsets using subset neighborhoods, either step 3 or step 4 of Algorithm 1 is omitted.

(iv) Rough set models described by overlapping equality rough neighborhoods [7] produce higher accuracy
measures than their counterparts proposed herein.

7. Concluding remarks and future research plans

One of the most powerful techniques for extracting information from incomplete systems is the rough
set theory, which has been extended in various ways, including through neighborhood systems defined
over non-equivalence relations. Many existing contributions inspired by this approach enhance rough set
models and broaden their applicability in practical situations.

In this work, we introduce a novel neighborhood system called overlapping subset rough neighbor-
hoods, denoted by S̃-neighborhoods, and utilize it to construct G-approximation spaces. This approach
fundamentally differs from all previous methods, as its definition relies on two different kinds of A ȷ-
neighborhoods under a subset relation. In contrast, earlier approaches relied on a single kind of A ȷ-
neighborhoods related to each other by some relations, such as equality [19, 37], inclusion [8], subset [10],
and intersection [12]. As a result, the proposed approach fills a gap in addressing classification problems
across various disciplines that require the integration of two different kinds ofA ȷ-neighborhoods.

Throughout this study, we have explored the fundamental properties of S̃-neighborhoods and exam-
ined their relationships with both each other and preceding models, using elucidative examples. In this
context, we have investigated the conditions under which certain identities hold and demonstrated unique
properties, such as:

• all S̃ ȷ are equivalent under a symmetric and transitive relation.

• S̃ ȷ(b) ⊆ C ȷ(b) for each (b,b) < Ω.

• S̃ ȷ(b) ⊆ A ȷ(b) for each ȷ ∈ {r, l, i,u} under a reflexive relation, and this relation holds true for each ȷ
under serial (or inverse serial) and symmetric relations.

• S̃ ȷ(b) ⊆ Ẽ ȷ(b) for each ȷ ∈ {r, ⟨l⟩} under a serial relation.

• S̃ ȷ(b) ⊆ Ẽ ȷ(b) for each ȷ ∈ {l, ⟨r⟩} under an inverse serial relation.

Furthermore, we derived criteria for identifying specific types of binary relations, as follows:

For each ȷ ∈ {r, l, i} and each b ∈ U we have : b ∈ S̃ ȷ(b)⇐⇒ Ω is a symmetric relation.

For each ȷ and each b ∈ U we have : A ȷ(b) ⊆ S̃ ȷ(b)⇐⇒ Ω is a symmetric and transitive relation.
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We then defined upper and lower approximations by using S̃-neighborhoods. To eliminate illogical
or undefined cases caused by previous formulas for calculating accuracy measures, we modified the
classical methods by redefining these approximations through their intersection and union with the sets
under consideration and proved that the proposed formulas are equivalent with the classical ones of
calculating when the relation is symmetric. We have elucidated that the proposed rough set models are
characterized by satisfying the monotonicity property under certain kinds of binary relations and retaining
all the properties of Pawlak approximation spaces, except for the properties LP8 and UP8, which are
only partially preserved. Furthermore, we constructed a practical example to highlight the superiority
of the proposed approach over some existing rough set models like [9, 12, 24, 25, 54, 55], and presented
its main advantages through a comparative analysis. Specifically, we showed that our approach operates
without the strict requirement of an equivalence relation and surpasses several existing rough set models
in computing accuracy measures under specific types of binary relations.

Our future research aims to explore the following key areas:

• Integrating S̃ ȷ-neighborhoods with ideal, filter, and primal structures to develop a fresh framework
with the following upper and lower approximations

O
S̃ ȷ

(Y) = Y ∪ {b ∈ U : S̃ ȷ(b) ∩ Y < I}, and

O
S̃ ȷ

(Y) = Y ∩ {b ∈ U : S̃ ȷ(b) \ Y ∈ I},

respectively, where I refers to ideal, or filter, or primal structures defined over the universe U.

This integration will provides additional desirable properties, particularly in minimizing the upper
approximation and maximizing the lower approximation.

• Establishing a topological framework for the proposed rough set paradigms by structuring them
according to one of the following formulation:

The collection {Y ⊆ U : S̃ ȷ(b) ⊆ Y,∀b ∈ Y} forms a topology on U.

The collection {̃S ȷ(b) : ∀b ∈ Y} forms a subbase for topology on U.

These topological simulations will be particularly beneficial for researchers specializing in topological
spaces and their generalizations, as well as those in algebraic structures, as they prefer utilizing
topological and algebraic techniques due to the ease of deriving approximation operators from closure
and interior operators.

• Extending the proposed approach to different mathematical frameworks, including soft set theory
[38, 49] and fuzzy set theory [28, 53], to develop its applicability to transect with complicated situations.
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