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Abstract. This paper introduces a novel extension of hypersoft sets, termed binary hypersoft sets (Bn-
HySSs), representing an advanced generalization of binary soft sets over two universal sets and a parameter
set. It presents fundamental operations of BnHySSs such as subset, superset, equality, complement, null and
absolute sets, extended union/intersection, union, intersection, difference, AND, and OR operations. We
also examine foundational properties and provide a comparative analysis of BnHySSs, HySSs, and BnSSs.
Building on this foundation, we introduce the notion of binary hypersoft topology and its corresponding
subspace concept. Further, we explore topological notions within this framework, including limit points,
neighborhoods, closure, interior, and boundary in the context of BnHySSs.

1. Introduction

In the realm of mathematical modeling and decision-making, dealing with uncertainty, vagueness, and
incomplete information is a common challenge. Traditional mathematical tools like classical set theory,
fuzzy set theory, and rough set theory have been employed to address these issues. However, in 1999,
Molodtsov [22] introduced a new approach called Soft Set Theory, which provides a more general and
flexible framework for handling uncertainty. Soft set theory is based on the concept of parameterization.
Unlike classical sets that focus on object membership, soft sets associate parameters with subsets of a
universe, allowing for a more nuanced representation of data. This parameterized structure makes soft sets
particularly useful in fields such as decision-making, data analysis, engineering, medical diagnosis, and
social sciences.

In [23], Molodtsov et al. effectively used soft sets in fields including probability, theory of measure-
ment, Riemann integration, Perron integration, operations research, theories of games, and smoothness of
functions. In 2005, Pie and Miao [30] enhanced the outcomes of Maji et al. [20]. Lately, in 2011 Shabir
and Naz [38] started delving into the realm of soft topological spaces, alongside other academics, such as
Aygunoglu, [11], Ahmad [4], Maji [21], Hussain [17] continued work on soft topology. Some theoretical
studies on the theory of soft sets can be found in [5–8, 15, 19] in more details.
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Building upon Molodtsov’s foundational work on soft sets, researchers have proposed various exten-
sions to enhance the theory’s applicability and structural richness. One such extension is the concept of
binary soft sets, introduced to address problems involving binary relations under uncertainty. In 2016,
Acik1̈oz and TaŞ [3], presented a novel framework that integrates binary relations into the structure of soft
sets called binary soft set (BnSS) theory on two initial universal sets and examined a few features, allowing
for a more expressive representation of relational data. This approach not only generalizes classical soft
set theory but also opens new avenues for research in relational decision-making and other applied dis-
ciplines. In 2017, Benchalli, Patil, Dodamani, and Pradeepkumar [12] introduced binary soft topological
spaces and binary soft operators. Later on, Hussain [16] investigated further properties of binary soft
topological spaces. Many researchers have worked on binary soft sets to explore their structure, properties,
and applications such as [13, 14, 29, 37].

In the evolving landscape of mathematical tools used to handle uncertainty, ambiguity, and vagueness,
Hypersoft Set Theory has emerged as a novel and promising approach. Introduced as an extension of
soft set theory, hypersoft sets provide a more refined structure to model complex decision-making prob-
lems where multi-parameter and multi-subparameter relationships are involved. Unlike classical soft sets,
which associate a single set of parameters with approximate values, hypersoft sets allow for a multi-layered
parameterization, enabling a more detailed and flexible representation of data. This enhanced granularity
makes hypersoft set theory particularly suitable for real-world applications in fields such as medical diag-
nosis, engineering, data analysis, and artificial intelligence, where nuanced and hierarchical data structures
often arise. By accommodating sub-parameter values within the decision-making process, hypersoft sets
overcome limitations of existing frameworks like fuzzy sets, rough sets, and intuitionistic fuzzy sets, of-
fering a more adaptable and comprehensive mathematical foundation for dealing with indeterminate and
imprecise information.

Smarandache [39] explored the fundamental concepts of hypersoft set (HySS) theory, reviews its al-
gebraic structure, and discusses its advantages over traditional soft computing methods. Furthermore,
potential applications and future research directions are outlined, emphasizing the theory’s significance
in contemporary data science and intelligent systems. This approach is better suited for decision-making
problems and is more flexible than soft sets. Smarandache also introduced fuzzy HySSs, intuitionistic
fuzzy HySSs, neutrosophic HySSs, and plithogenic HySSs as extensions of the HySSs. Based on the HySSs
and their extension, many researchers have developed various operators, properties, and applications
[1, 9, 25, 26, 34, 35]. In 2022, Musa and Asaad [24] presented the concept of bipolar HySS which is a
novel extension of HySS. They explored bipolar HyS topological space [27]. Recentrly, Musa, Mohammed
and Asaad [28] introduced N-hypersoft sets which is an enriched and versatile extension of HyS sets.
Many researchers have worked on the development and application of hypersoft set theory to enhance its
mathematical foundation and practical utility such as [2, 10, 18, 31–33, 36]

The structure of the paper is as follows: Section 2 provides a brief overview of HySS, HyST, BnSS and
BnST and some relevant properties. In Section 3, we define a novel extension of hypersoft sets called
the binary hypersoft sets (BnHySSs) which is an advanced generalization of binary soft sets over two
universal sets and a parameter set. Later, we present some operations on binary hypersoft sets such as
BnHyS subset, BnHyS superset, BnHyS equality, BnHyS complement, BnHyS null, BnHyS absolute, BnHyS
extended union, BnHyS extended intersection, BnHyS union, intersection, BnHyS difference, BnHyS AND
and BnHyS OR. Furthermore, we explore some of their basic properties. Also, we compare among BnHySSs,
HySSs and BnSSs. Additionally, in Section 4, we introduce the concept of binary hypersoft topology and
we present the concept of binary hypersoft subspace. In Section 5, we investigate binary hypersoft limit
points, binary hypersoft neighborhood, binary hypersoft closure, binary hypersoft interior and binary
hypersoft boundary. Finally, Section 6 concludes with a summary of findings and potential avenues for
future research.

2. Preliminaries

This section explores the foundational principles and operations associated with soft sets and their
extension such as hypersoft sets and binary soft sets.
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2.1. Hypersoft sets and hypersoft topology
This section introduces the core concepts and results related to hypersoft sets and hypersoft topology.

Hypersoft sets, an advanced generalization of soft sets, introduce enhanced parameterization for handling
complex data. Key relationships such as hypersoft subset and hypersoft equal are defined to facilitate
comparisons between hypersoft sets. Operations like hypersoft union, hypersoft ], hypersoft complement,
and hypersoft difference are presented to demonstrate their utility in managing hypersoft structures. Addi-
tionally, logical operators, including hypersoft AND and hypersoft OR, are analyzed for their applications
in decision-making and problem-solving processes.

Let
∐

be an initial universe set and the non empty set ₤̧ be an entire set of parameters. The power set
of
∐

can be represented as β(
∐

), and let ∅ , πi, ϑi ⊆ ₤̧with i = 1, 2, ...,n.

Definition 2.1. [22] Let π ⊆ ₤̧. A pair (η, π) is referred to as a soft set over
∐

, where the mapping η is
provided by η : π −→ β(

∐
). Stated differently, a parameterized family of subsets of the universe

∐
is

referred to as a soft set over
∐

. One way to think of η(ϱ) is as the set of e-approximate members of the soft
set for a given ϱ ∈ π.

Definition 2.2. [39] It is possible to identify a hypersoft set (HySS) by the pair (η, π1 ×π2 × . . .×πn), where:

η : π1 × π2 × . . . × πn −→ β(
∐

).

In order to keep things simple, we write π for π1 × π2 × . . . × πn and ϱ for an element of the set π. We also
suppose that none of the set πi is empty for each i.

Definition 2.3. [34] It is said (η, π) is a hypersoft (HyS) subset of (µ, ϑ) if π ⊆ ϑ, where ϑ = ϑ1 ×ϑ2 × . . .×ϑn,
and η(ϱ) ⊆ µ(ϱ) for each ϱ ∈ π. We write (η, π) ⊆̃ (µ, ϑ).
An HySS (η, π) is claimed to be an HyS superset of (µ, ϑ), if (µ, ϑ) is an HyS subset of (η, π). We write (η, π)
⊇̃ (µ, ϑ).

Definition 2.4. [34] Two HySSs (η, π) and (µ, ϑ) are claimed to be an HyS equal if (η, π) is an HyS subset of
(µ, ϑ) and (µ, ϑ) is an HyS subset of (η, π).

Definition 2.5. [35] Let (η, π) and (µ, ϑ) be two HySSs over
∐

. Then the HyS extended union of (η, π) and
(µ, ϑ) is symbolized by (℧, Ḑ) = (η, π)∪̃E(µ, ϑ) with Ḑ = Ḑ1×Ḑ2× ...×Ḑn where Ḑi = πi∪ϑi with i = 1, 2, ...,n,
and ℧ can be characterized by

℧(ϱ) =


η(ϱ) i fϱ ∈ π − ϑ
µ(ϱ) i fϱ ∈ ϑ − π
η(ϱ) ∪ µ(ϱ) i fϱ ∈ π ∩ ϑ , ∅

where ϱ = (Ḑ1, Ḑ2, ..., Ḑn) ∈ Ḑ.

Remark 2.6. [35] It should be noted that when two HySSs are united, the set of parameters is a Cartesian
product of the sets of parameters; when two soft sets are united, the set of parameters is simply the union
of the sets of parameters.

Definition 2.7. [35] Let (η, π) and (µ, ϑ) be two HySSs over
∐

. Then the HyS extended intersection of (η, π)
and (µ, ϑ) is symbolized by (℧, Ḑ) = (η, π)∩̃E(µ, ϑ) with Ḑ = Ḑ1 × Ḑ2 × ... × Ḑn where Ḑi = πi ∪ ϑi with
i = 1, 2, ...,n, and ℧ can be characterized by

℧(ϱ) =


η(ϱ) i fϱ ∈ π − ϑ
µ(ϱ) i fϱ ∈ ϑ − π
η(ϱ) ∩ µ(ϱ) i fϱ ∈ π ∩ ϑ , ∅

where ϱ = (Ḑ1, Ḑ2, ..., Ḑn) ∈ Ḑ.



Z. A.Omar, B. A. Asaad / Filomat 39:27 (2025), 9449–9472 9452

Definition 2.8. [35] Let (η, π) and (µ, ϑ) be two HySSs over
∐

. Then the HyS union of (η, π) and (µ, ϑ) is
symbolized by (℧, Ḑ)=(η, π)∪̃(µ, ϑ) with Ḑ = Ḑ1 × Ḑ2 × ... × Ḑn where Ḑi = πi ∩ ϑi , ∅ with i = 1, 2, ...,n,
and ℧ can be characterized by

℧(ϱ) = η(π) ∪ µ(ϑ)

where ϱ = (Ḑ1, Ḑ2, ..., Ḑn) ∈ Ḑ. If, for some i, Ḑi is an empty set, then (η, π)∪̃(µ, ϑ) is defined to be a null
HySS.

Definition 2.9. [35] Let (η, π) and (µ, ϑ) be two HySSs over
∐

. Then the HyS intersection of (η, π) and (µ, ϑ)
is symbolized by (℧, Ḑ)=(η, π)∩̃(µ, ϑ) with Ḑ = Ḑ1 × Ḑ2 × ... × Ḑn where Ḑi = πi ∩ ϑi , ∅ with i = 1, 2, ...,n,
and ℧ can be characterized by

℧(ϱ) = η(π) ∩ µ(ϑ)

where ϱ = (Ḑ1, Ḑ2, ..., Ḑn) ∈ Ḑ. If, for some i, Ḑi is an empty set, then (η, π)∩̃(µ, ϑ) is defined to be a null
HySS.

Definition 2.10. [35] Let (η, π) and (µ, ϑ) be two HySSs over
∐

. Then the HyS difference of (η, π) and (µ, ϑ)
is symbolized by (℧, Ḑ)=(η, π)̃\(µ, ϑ) with Ḑ = Ḑ1 × Ḑ2 × ... × Ḑn where Ḑi = πi ∩ ϑi , ∅ with i = 1, 2, ...,n,
and ℧ can be characterized by

℧(ϱ) = η(π) \ µ(ϑ)

where ϱ = (Ḑ1, Ḑ2, ..., Ḑn) ∈ Ḑ.

Definition 2.11. [34] The HyS complement of an HySS (η, π), symbolized by (η, π)c, can be characterized
by (ηc, π) where ηc : π −→ β(

∐
) is a mapping given by ηc(ϱ) =

∐
\η(ϱ) for each ϱ ∈ π.

Definition 2.12. [35] It is said an HySS (η, π) a null HySS, symbolized by (∅̃, π), if η(ϱ) = ∅ for each ϱ ∈ π.

Definition 2.13. [35] It is said an HySS (η, π) an absolute HySS, symbolized by (
∐̃
, π), if η(ϱ) =

∐
for each

ϱ ∈ π.

Definition 2.14. [26] Let (η, π) be an HySS over
∐

and u ∈
∐

. Then u ∈ (η, π) if u ∈ η(ϱ) for each ϱ ∈ π.
Keep in mind that for every u ∈

∐
, u < (η, π), if u < η(ϱ) for some ϱ ∈ π.

Definition 2.15. [26] Let τH be the collection of HySSs over
∐

, then τH is claimed to be a hypersoft topology
(HyST) on

∐
if:

1. (∅̃, π),(
∐̃
, π) belongs to τH .

2. The HyS intersection of any two HySSs in τH belongs to τH .
3. The HyS union of any number of HySSs in τH belongs to τH .

Then (
∐̃
, τH , ₤̧) is known as hypersoft topological space (HySTS). The members of τH are claimed to be

HyS open sets in
∐

. An HySS (η, π) over
∐

is claimed to be an HyS closed set in
∐

, if its HyS complement
(η, π)c belongs to τH .

Definition 2.16. [26] Let (
∐̃
, τH ,₤̧) be an HySTS over

∐
, andV be a non empty subset of

∐
. Then

τHV = {(ηV, π) | (η, π) ∈ τH }

is claimed to be relative HyST onV and (V,τHV,₤̧) is known as an HyS subspace of (
∐̃
, τH ,₤̧).

It is simple to confirm that τHV is an HyST onV.
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Definition 2.17. [26] Let (
∐̃
, τH ,₤̧) be an HySTS over

∐
and let (η, π) be an HySS over

∐
. A point u ∈

∐
is

called a hypersoft limit point of (η, π) if (η, π) ∩̃ (µ, ϑ) \{u} , ∅̃ for every HyS open set (µ, ϑ) containing u.
The set of all hypersoft limit points of (η, π) is called the hypersoft derived set of (η, π) and is denoted by
(η, π)d.

Proposition 2.18. [26] Let (
∐̃
, τH ,₤̧) be an HySTS over

∐
and let (η, π) and (µ, ϑ) be two HySSs over

∐
. Then

1. (η, π) ⊆̃ (µ, ϑ) implies (η, π)d
⊆̃ (µ, ϑ)d.

2. ((η, π) ∩̃ (µ, ϑ))d
⊆̃ (η, π)d

∩̃ (µ, ϑ)d.
3. ((η, π) ∪̃ (µ, ϑ))d = (η, π)d

∪̃ (µ, ϑ)d.

Definition 2.19. [26] Let (
∐̃
, τH ,₤̧) be an HySTS over

∐
and u ∈

∐
. Then an HySS (η, π) over

∐
is claimed

to be an HyS neighborhood of u if there exists an HyS open set (µ, π) such that u ∈ (µ, π) ⊆ (η, π)

Definition 2.20. [26] Let (
∐̃
, τH ,₤̧) be an HySTS and (η, π) be an HySS over

∐
. The HyS intersection of all

HyS closed supersets of (η, π) is known as the HyS closure of (η, π) and is symbolized by Cl(η, π).
In other words, Cl(η, π) = ∩̃{(µ, π) | (µ, π)c

∈ τH , (η, π) ⊆ (µ, π)}.
That is, Cl(η, π) is the smallest HyS closed set containing (η, π).

Definition 2.21. [26] Let (
∐
, τH , ₤̧) be an HySTS and (η, π) be an HySS over

∐
. Then HyS interior of HySS

(η, π) over
∐

is symbolized by Int(η, π) and is described as the HyS union of all HyS open sets contained in
(η, π).
In other words, Int(η, π) = ∪̃{(µ, π)} | (µ, π) ∈ τH , (µ, π)⊆̃(η, π)}.
That is, Int(η, π) is the largest HyS open set contained in (η, π).

Definition 2.22. [26] Let (
∐̃
, τH ,₤̧) be an HySTS over

∐
, then HyS boundary of HySS (η, π) over

∐
is

symbolized by b(η, π) and is described as

b(η, π) = Cl(η, π) ∩̃ Cl(η, π)c.

2.2. Binary soft sets and binary soft topology

Let
∐

1,
∐

2 be two initial universe sets and the non empty set ₤̧ be an entire set of parameters. Let
β(
∐

1), β(
∐

2) indicate the power set of
∐

1,
∐

2, respectively. Also, let ∅ , π, ϑ ⊆ ₤̧.

Definition 2.23. [3] A pair (η, π) is claimed to be a binary soft set (BnSS) over
∐

1,
∐

2, where η is described
as below:

η : π −→ β(
∐

1) × β(
∐

2),

where η(ϱ) = (X,Y) for each ϱ ∈ π such that X ⊆
∐

1,Y ⊆
∐

2.

Definition 2.24. [3] Let (η, π) and (µ, ϑ) be two BnSSs over the common
∐

1,
∐

2. (η, π) is known as a binary
soft (BnS) subset of (µ, ϑ) if

1. π ⊆ ϑ.
2. X1 ⊆ X2 ⊆

∐
1 andY1 ⊆ Y2 ⊆

∐
2 such that η(ϱ) = (X1,Y1), µ(ϱ) = (X2,Y2) for each ϱ ∈ π .

We indicate it (η, π) ⊆̃ (µ, π), briefly.
(η, π) is known as a BnS super set of (µ, ϑ) if (µ, ϑ) is a BnS subset of (η, π). We write (η, π) ⊇̃(µ, ϑ).

Definition 2.25. [3] Let (η, π), (µ, ϑ) be two BnSSs over
∐

1,
∐

2. (η, π) is known as a BnS equal of (µ, ϑ) if
(η, π) is a BnS subset of (µ, ϑ) and (µ, ϑ) is a BnS subset of (η, π). We indicate it (η, π)=(µ, ϑ).



Z. A.Omar, B. A. Asaad / Filomat 39:27 (2025), 9449–9472 9454

Definition 2.26. [3] The BnS complement of a BnSS (η, π) is symbolized by (η, π)c and is defined (η, π)c =
(ηc, π), whereηc : π −→ β(

∐
1)×β(

∐
2), is a mapping given byηc(ϱ) = (

∐
1 −X,

∐
2 −Y) such thatη(ϱ) = (X,Y).

Clearly, ((η, π)c)c = (η, π).

Definition 2.27. [3] A BnSS (η, π) over
∐

1,
∐

2 is known as a null binary soft set symbolized by ∅̃ if
η(ϱ) = (∅,∅) for each ϱ ∈ π.

Definition 2.28. [3] A BnSS (η, π) over
∐

1,
∐

2 is known as an absolute binary soft set symbolized by
∐̃

if
η(ϱ) = (

∐
1,
∐

2) for each ϱ ∈ π.

Definition 2.29. [3] The extended union of two BnSSs (η, π) and (µ, ϑ) over
∐

1,
∐

2 is the BnSS (℧, µ), where
Ḑ = π ∪ ϑ, and for each ϱ ∈ Ḑ,

℧(ϱ) =


(X1,Y1) i f ϱ ∈ π − ϑ

(X2,Y2) i f ϱ ∈ ϑ − π

(X1 ∪ X2,Y1 ∪Y2) i f ϱ ∈ π ∩ ϑ , ∅

such that η(ϱ) = (X1,Y1) for each ϱ ∈ π and µ(ϱ) = (X2,Y2) for each ϱ ∈ ϑ. We indicate it (η, π) ∪̃E (µ, ϑ) =
(℧, Ḑ).

Definition 2.30. [3] The extended intersection of two BnSSs (η, π) and (µ, ϑ) over
∐

1,
∐

2 is the BnSS (℧, Ḑ),
where Ḑ = π ∪ ϑ, and for each ϱ ∈ Ḑ,

℧(ϱ) =


(X1,Y1) i f ϱ ∈ π − ϑ

(X2,Y2) i f ϱ ∈ ϑ − π

(X1 ∩ X2,Y1 ∩Y2) i f ϱ ∈ π ∩ ϑ , ∅

such that η(ϱ) = (X1,Y1) for each ϱ ∈ π and µ(ϱ) = (X2,Y2) for each ϱ ∈ ϑ. We indicate it (η, π) ∩̃E (µ, ϑ) =
(℧, Ḑ).

Definition 2.31. [3] The BnS union of two BnSSs (η, π) and (µ, ϑ) over
∐

1,
∐

2 is the BnSS (℧, Ḑ) =
(η, π) ∪̃ (µ, ϑ), where Ḑ = π ∩ ϑ , ∅, and℧(ϱ) = (X1 ∪X2,Y1 ∪Y2) for each ϱ ∈ Ḑ such that η(ϱ) = (X1,Y1)
for each ϱ ∈ π and µ(ϱ) = (X2,Y2) for each ϱ ∈ ϑ.

Definition 2.32. [3] The BnS intersection of two BnSSs (η, π) and (µ, ϑ) over
∐

1,
∐

2 is the BnSS (℧, Ḑ) =
(η, π) ∩̃ (µ, ϑ), where Ḑ = π ∩ ϑ , ∅, and℧(ϱ) = (X1 ∩X2,Y1 ∩Y2) for each ϱ ∈ Ḑ such that η(ϱ) = (X1,Y1)
for each ϱ ∈ π and µ(ϱ) = (X2,Y2) for each ϱ ∈ ϑ.

Definition 2.33. [16] The BnSS (η, ₤̧) is known as a BnS point over
∐

1,
∐

2, symbolized by ϱη, if for the
element ϱ ∈ ₤̧, η(ϱ) , (∅,∅) and η(ϱ′) = (∅,∅), for each ϱ′ ∈ ₤̧−{ϱ}.

Definition 2.34. [12] Let τB be the collection of BnSSs over
∐

1,
∐

2, then τB is claimed to be a binary soft
topology (BnST) on

∐
1,
∐

2 if

1. ∅̃,
∐̃
∈ τB.

2. The BnS intersection of two BnSSs in τB is belong to τB.
3. The BnS union of any number of BnSSs in τB is belong to τB.

Then (
∐

1,
∐

2, τB, ₤̧) is known as a binary soft topological space (BnSTS) over
∐

1,
∐

2. The members of
τB are claimed to be BnS open sets in

∐
1,
∐

2.
A BnSS (η, π) over

∐
1,
∐

2 is claimed to be a BnS closed set in
∐

1,
∐

2, if its BnS complement (η, π)c belongs
to τB.
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Definition 2.35. [16] Let (
∐

1,
∐

2, τB, ₤̧) be a BnSTS over the common universe sets
∐

1,
∐

2 andV1,V2 be
non empty subsets of

∐
1,
∐

2. Then τ(V1,V2) = {((V1,V2)η,₤̧) | (η, π) ∈ τB} is claimed to be the BnS relative
topology overV1,V2 and (V1,V2, τ(V1,V2), ₤̧) is known as a BnS subspace of (

∐
1,
∐

2, τB, ₤̧). We can readily
confirm that τ(V1,V2) is in fact a BnST overV1,V2.

Definition 2.36. [16] A binary soft set (η, π) in a BnSTS (
∐

1,
∐

2, τB, ₤̧) is known as a BnS neighborhood of
the BnS point ϱη over

∐
1,
∐

2, if there exists a BnS open set (µ, π) such that ϱη ∈ (µ, π) ⊆ (η, π).
The BnS neighborhood system of BnS point ϱη, symbolized byNτ(ϱη), is the family of all its BnS neighbor-
hoods.

Definition 2.37. [16] A BnSS (η, π) in a BnSTS (
∐

1,
∐

2, τB, ₤̧) is known as a BnS neighborhood of the BnS
set (℧, π), if there exists a BnS open set (µ, π) such that (µ, π) ⊆ (℧, π) ⊆ (η, π).

Definition 2.38. [12] Let (
∐

1,
∐

2, τB, ₤̧) be a BnSTS over
∐

1,
∐

2 and (η, π) be the BnSS over
∐

1,
∐

2. Then
the BnS closure of (η, π) symbolized by Cl(η, π) is the BnS intersection of all BnS closed sets containing (η, π).
In other words, Cl(η, π) = ∩̃{(µ, π) | (µ, π)c

∈ τB, (η, π) ⊆̃ (µ, π)}.
Thus, Cl(η, π) is the smallest BnS closed sets over

∐
1,
∐

2 which contains (η, π).

Definition 2.39. [12] Let (
∐

1,
∐

2, τB, ₤̧) be a BnSTS over
∐

1,
∐

2 and (η, π) be the BnSS over
∐

1,
∐

2. Then
the BnS interior of BnSS (η, π) over

∐
1,
∐

2 is symbolized by Int(η, π) and is described as the BnS union of
all BnS open sets contained in (η, π).
In other words, Int(η, π) = ∪̃{(µ, π) | (µ, π) ∈ τB, (µ, π) ⊆̃ (η, π)}.
Thus, Int(η, π) is the largest BnS open set contained in (η, π).

3. Binary hypersoft sets

In this section, we define a novel extension of hypersoft sets called the binary hypersoft sets (BnHySSs)
which is an advanced generalization of binary soft sets over two universal sets and a parameter set. Later,
we present some operations on binary hypersoft sets such as subset, superset, equality, complement, null,
absolute, extended union, extended intersection, union, intersection, difference, AND and OR. Moreover,
we investigate some of their basic properties.

Let
∐

1,
∐

2 be two non empty initial universe sets and the non empty set ₤̧ be an entire set of parameters.
Let β(

∐
1), β(
∐

2) indicate the power set of
∐

1,
∐

2, respectively. Also, let ∅ , πi, ϑi ⊆ ₤̧ with i = 1, 2, ...,n.
To make things simpler, we write the symbol π for π1 × π2 × · · · × πn and ϱ for an element of the set π. We
also suppose that none of the set πi is empty for each i.

Definition 3.1. A pair (η, π) is claimed to be a BnHySS over
∐

1,
∐

2, where η is described as below:

η : π1 × π2 × ... × πn −→ β(
∐

1) × β(
∐

2),

where η(ϱ) = (X,Y) for each ϱ ∈ π1 × π2 × ... × πn such that X ⊆
∐

1 andY ⊆
∐

2.

Example 3.2. Let’s say Mr. X wishes to purchase a tablet and a phone from a mobile market. The collection
of discourse consists of six different kinds of mobiles (options)

∐
1={m1,m2,m3,m4,m5,m6}, and the four types

of tablets that make up the discourse set
∐

2 = {κ1, κ2, κ3, κ4}. By looking at the qualities, one may choose
which choice is better. i.e. ϱ1 =Company, ϱ2 =Camera Resolution, ϱ3 =Size, ϱ4 =Ram and ϱ5 =Battery
Power. The attribute-valued sets corresponding to these attributes are: ₤̧= {ϱ1, ϱ2, ϱ3, ϱ4, ϱ5}.
Let π1 = {ϱ1, ϱ2}, π2 = {ϱ3, ϱ4} and π3 = {ϱ5}, where π = π1 × π2 × π3.
Then BnHySS (η, π) can be written as follow:
(η, π) = {((ϱ1, ϱ3, ϱ5), ({m1,m2}, {κ2})), ((ϱ1, ϱ4, ϱ5), ({m4,m5,m6}, {κ1, κ3})), ((ϱ2, ϱ3, ϱ5), ({m2,m4,m6}, {κ2, κ4})), ((ϱ2,
ϱ4, ϱ5), ({m1,m5}, {κ3}))}.
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Proposition 3.3. Let (η, π) be a BnHySS over
∐

1,
∐

2. If we write it into two parts as η1(α) = X and η2(α) = Y
for each α ∈ π1 × π2 × ... × πn such that X ⊆

∐
1 andY ⊆

∐
2. Then (η1, π) and (η2, π) become HySSs over

∐
1 and∐

2 respectively.

Example 3.4. Let us consider the BnHySS (η, π) over
∐

1,
∐

2 in Example 3.2.
We can write the BnHySS (η, π) as follow:
(η1, π) = {((ϱ1, ϱ3, ϱ5), {m1,m2}), ((ϱ1, ϱ4, ϱ5), {m4,m5,m6}), ((ϱ2, ϱ3, ϱ5), {m2,m4,m6}), ((ϱ2, ϱ4, ϱ5), {m1,m5})} and
(η2, π) = {((ϱ1, ϱ3, ϱ5), {κ2}), ((ϱ1, ϱ4, ϱ5), {κ1, κ3}), ((ϱ2, ϱ3, ϱ5), {κ2, κ4}), ((ϱ2, ϱ4, ϱ5), {κ3})}.
Then (η1, π) and (η2, π) are HySSs over

∐
1 and

∐
2 respectively.

Remark 3.5. In Definition 3.1, if n = 1, then (η, π) becomes BnSS over
∐

1,
∐

2.

Definition 3.6. (Subset) Let (η, π), (µ, ϑ) be two BnHySSs over
∐

1,
∐

2. (η, π) is known as a binary hypersoft
(BnHyS) subset of (µ, ϑ) if

1. π ⊆ ϑ, where ϑ = ϑ1 × ϑ2 × ... × ϑn, that is πi ⊆ ϑi for each i = 1, 2, ...,n.
2. X1 ⊆ X2 ⊆

∐
1 andY1 ⊆ Y2 ⊆

∐
2 such that η(ϱ) = (X1,Y1), µ(ϱ) = (X2,Y2) for each ϱ ∈ π.

We indicate it (η, π) ⊆̃ (µ, ϑ), briefly.
(η, π) is known as a BnHyS super set of (µ, ϑ) if (µ, ϑ) is a BnHyS subset of (η, π). We write (η, π) ⊇̃ (µ, ϑ).

Definition 3.7. (Equality) Let (η, π), (µ, ϑ) be two BnHySSs over
∐

1,
∐

2. (η, π) is known as a BnHyS equal
of (µ, ϑ) if (η, π) is a BnHyS subset of (µ, ϑ) and (µ, ϑ) is a BnHyS subset of (η, π). We indicate it (η, π) = (µ, ϑ).

Definition 3.8. (Complement) The BnHyS complement of BnHySS (η, π) is symbolized by (η, π)c and is
defined (η, π)c = (ηc, π), where η : π1 × π2 × ... × πn −→ β(

∐
1) × β(

∐
2) is a mapping given by ηc(ϱ) =

(
∐

1 −X,
∐

2 −Y) such that η(ϱ) = (X,Y) for each ϱ ∈ (π1 × π2 × ... × πn), X ⊆
∐

1 and Y ⊆
∐

2. Clearly,
((η, π)c)c = (η, π).

Definition 3.9. (Null) A BnHySS (η, π) over
∐

1,
∐

2 is known as a null BnHySS symbolized by ∅̃ if η(ϱ) =
(∅,∅) for each ϱ ∈ π.

Definition 3.10. (Absolute) A BnHySS (η, π) over
∐

1,
∐

2 is known as an absolute BnHySS symbolized by∐̃
if η(ϱ) = (

∐
1,
∐

2) for each ϱ ∈ π.

Example 3.11. Let
∐

1 = {κ1, κ2, κ3, κ4, κ5},
∐

2 = {σ1, σ2, σ3, σ4, σ5} and ₤̧ = {ϱ1, ϱ2, ϱ3, ϱ4, ϱ5, ϱ6}.
Let π1 = {ϱ1, ϱ2}, π2 = {ϱ4, ϱ5} and π3 = {ϱ6}, where π = π1 × π2 × π3.
Let ϑ1 = {ϱ1, ϱ2, ϱ3}, ϑ2 = {ϱ4, ϱ5} and ϑ3 = {ϱ6}, where ϑ = ϑ1 × ϑ2 × ϑ3.
Then, (η, π), (µ, ϑ) are two BnHySSs over

∐
1,
∐

2 defined as follow:
(η, π) = {((ϱ1, ϱ4, ϱ6), ({κ1, κ2}, {σ1})), ((ϱ1, ϱ5, ϱ6), ({κ3}, {σ3, σ4})), ((ϱ2, ϱ4, ϱ6), ({κ1, κ4}, {σ1, σ2})), ((ϱ2, ϱ5, ϱ6), ({κ5},
{σ4}))}.
(µ, ϑ) = {(((ϱ1, ϱ4, ϱ6), ({κ1, κ2, κ3}, {σ1})), ((ϱ1, ϱ5, ϱ6), ({κ1, κ3}, {σ3, σ4, σ5})), ((ϱ2, ϱ4, ϱ6), ({κ1, κ3, κ4},

∐
2)), ((ϱ2, ϱ5,

ϱ6), (
∐

1,
∐

2)), ((ϱ3, ϱ4, ϱ6), ({κ1, κ3, κ4}, {σ3, σ4})), ((ϱ3, ϱ5, ϱ6), ({κ1, κ4}, {σ2, σ3}))}.
Therefore, (η, π) ⊆̃ (µ, ϑ).

The BnHyS complement of BnHySS (η, π) is:

Table 1: BnHyS complement of BnHySS (η, π)
ϱ ∈ π (η, π) (η, π)c

(ϱ1, ϱ4, ϱ6) ({κ1, κ2}, {σ1}) ({κ3, κ4, κ5}, {σ2, σ3, σ4, σ5})
(ϱ1, ϱ5, ϱ6) ({κ3}, {σ3, σ4}) ({κ1, κ2, κ4, κ5}, {σ1, σ2, σ5})
(ϱ2, ϱ4, ϱ6) ({κ1, κ4}, {σ1, σ2}) ({κ2, κ3, κ5}, {σ3, σ4, σ5})
(ϱ2, ϱ5, ϱ6) ({κ5}, {σ4}) ({κ1, κ2, κ3, κ4}, {σ1, σ2, σ3, σ5})
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Let (℧, π) and (Ķ, π) be two BnHySSs as follow:
(℧, π) = {((ϱ1, ϱ4, ϱ6), (∅,∅)), ((ϱ1, ϱ5, ϱ6), (∅,∅)), ((ϱ2, ϱ4, ϱ6), (∅,∅)), ((ϱ2, ϱ5, ϱ6), (∅,∅))}.
Then, (℧, π) is a null BnHySS.
(Ķ, π) ={((ϱ1, ϱ4, ϱ6), (

∐
1,
∐

2)), ((ϱ1, ϱ5, ϱ6), (
∐

1,
∐

2)), ((ϱ2, ϱ4, ϱ6), (
∐

1,
∐

2)), ((ϱ2, ϱ5, ϱ6), (
∐

1,
∐

2))}.
Then, (Ķ, π) is an absolute BnHySS.

Definition 3.12. (Extended Union) Let (η, π) and (µ, π) be two BnHySSs over
∐

1,
∐

2. Then the extended
union of (η, π) and (µ, π) is symbolized by (℧, Ḑ) = (η, π) ∪̃E (µ, ϑ), with Ḑ = Ḑ1 × Ḑ2 × ... × Ḑn, where
Ḑi = πi ∪ ϑi with i = 1, 2, ...,n, and ℧ can be characterized by,

℧(ϱ) =


(X1,Y1) i f ϱ ∈ π − ϑ

(X2,Y2) i f ϱ ∈ ϑ − π

(X1 ∪ X2,Y1 ∪Y2) i f ϱ ∈ π ∩ ϑ , ∅

for each ϱ ∈ Ḑ such that η(ϱ) = (X1,Y1) for each ϱ ∈ π and µ(ϱ) = (X2,Y2) for each ϱ ∈ ϑ.

Definition 3.13. (Extended Intersection) Let (η, π) and (µ, π) be two BnHySSs over
∐

1,
∐

2. Then the
extended intersection of (η, π) and (µ, π) is symbolized by (℧, Ḑ) = (η, π) ∩̃E (µ, ϑ), with Ḑ = Ḑ1×Ḑ2×...×Ḑn,
where Ḑi = πi ∪ ϑi with i = 1, 2, ...,n, and ℧ can be characterized by,

℧(ϱ) =


(X1,Y1) i f ϱ ∈ π − ϑ

(X2,Y2) i f ϱ ∈ ϑ − π

(X1 ∩ X2,Y1 ∩Y2) i f ϱ ∈ π ∩ ϑ , ∅

for each ϱ ∈ Ḑ such that η(ϱ) = (X1,Y1) for each ϱ ∈ π and µ(ϱ) = (X2,Y2) for each ϱ ∈ ϑ.

Definition 3.14. (Union) Let (η, π) and (µ, ϑ) be two BnHySSs over
∐

1,
∐

2. Then the BnHyS union of (η, π)
and (µ, ϑ) is symbolized by (℧, Ḑ) = (η, π) ∪̃ (µ, ϑ), with Ḑ = Ḑ1 × Ḑ2 × ...× Ḑn, where Ḑi = πi ∩ϑi , ∅with
i = 1, 2, ...,n, and ℧ can be characterized by,

℧(ϱ) = η(ϱ) ∪̃ µ(ϱ) = (X1 ∪ X2,Y1 ∪Y2)

for each ϱ ∈ Ḑ such that η(ϱ) = (X1,Y1) for each ϱ ∈ π and µ(ϱ) = (X2,Y2) for each ϱ ∈ ϑ.

Definition 3.15. Let {(η j, π j) : j ∈ J} be an infinite family of BnHySSs over
∐

1,
∐

2. The BnHyS union
of this family is defined as the BnHySS (η, π) (That is (η, π) =

⋃̃
j∈J(η j, π j)), where the parameter set is

π =
⋂

j∈J π j , ∅where π j = π j1 × π j2 × ... × π jn for each j ∈ J, and the mapping

η : π1 × π2 × ... × πn −→ β(
∐

1) × β(
∐

2)

is defined for each parameter ϱ ∈ π1 × π2 × ... × πn by η(ϱ) =
⋃̃

j∈J
ϱ∈π j

η j(ϱ).

Definition 3.16. (Intersection) Let (η, π) and (µ, ϑ) be two BnHySSs over
∐

1,
∐

2. Then the BnHyS inter-
section of (η, π) and (µ, ϑ) is symbolized by (℧, Ḑ) = (η, π) ∩̃ (µ, ϑ), with Ḑ = Ḑ1 × Ḑ2 × ... × Ḑn, where
Ḑi = πi ∩ ϑi , ∅with i = 1, 2, ...,n, and ℧ can be characterized by,

℧(ϱ) = η(ϱ) ∩̃ µ(ϱ) = (X1 ∩ X2,Y1 ∩Y2)

for each ϱ ∈ Ḑ such that η(ϱ) = (X1,Y1) for each ϱ ∈ π and µ(ϱ) = (X2,Y2) for each ϱ ∈ ϑ.

Definition 3.17. Let {(η j, π j) : j ∈ J} be an infinite family of BnHySSs over
∐

1,
∐

2. The BnHyS intersection
of this family is defined as the BnHySS (η, π) (That is (η, π) =

⋂̃
j∈J(η j, π j)), where the parameter set is

π =
⋂

j∈J π j , ∅where π j = π j1 × π j2 × ... × π jn for each j ∈ J, and the mapping
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η : π1 × π2 × ... × πn −→ β(
∐

1) × β(
∐

2)

is defined for each parameter ϱ ∈ π1 × π2 × ... × πn by η(ϱ) =
⋂̃

j∈J
ϱ∈π j

η j(ϱ).

Definition 3.18. (Difference) Let (η, π) and (µ, ϑ) be two BnHySSs over
∐

1,
∐

2. Then BnHyS difference of
(η, π) and (µ, ϑ), symbolized by (℧, Ḑ) = (η, π) \̃ (µ, ϑ), with Ḑ = Ḑ1 × Ḑ2 × ... × Ḑn, where Ḑi = πi ∩ ϑi , ∅
with i = 1, 2, ...,n, and ℧ can be characterized by

℧(ϱ) = η(ϱ) \ µ(ϱ) = (X1 − X2,Y1 −Y2)

for each ϱ ∈ π ∩ ϑ such that η(ϱ) = (X1,Y1) and µ(ϱ) = (X2,Y2).

Example 3.19. Let
∐

1 = {κ1, κ2, κ3, κ4, κ5},
∐

2 = {σ1, σ2, σ3, σ4, σ5} and ₤̧ = {ρ1, ρ2, ρ3, ρ4, ρ5, ρ6}.
Suppose that π1 = {ρ1, ρ2}, π2 = {ρ3, ρ4}, π3 = {ρ5}, ϑ1 = {ρ1}, ϑ2 = {ρ3, ρ4}, and ϑ3 = {ρ5, ρ6}. That is πi, ϑi ⊆

₤̧ for each i = 1, 2, 3.
Let the BnHySSs (η, π) and (µ, ϑ) be defined by
(η, π) ={((ρ1, ρ3, ρ5), ({κ1, κ3}, {σ1, σ2})), ((ρ1, ρ4, ρ5), ({κ2, κ3, κ4}, {σ2})), ((ρ2, ρ3, ρ5), ({κ4, κ5}, {σ3, σ4})), ((ρ2, ρ4,
ρ5), ({κ1, κ2, κ3}, {σ1, σ4}))},
and
(µ, ϑ) ={((ρ1, ρ3, ρ5), ({κ1}, {σ2, σ3})), ((ρ1, ρ4, ρ5), ({κ2, κ4, κ5}, {σ2}), ((ρ1, ρ3, ρ6), ({κ4}, {σ1, σ4})), ((ρ1, ρ4, ρ6), ({κ3,
κ4}, {σ3, σ4}))}.

Then the extended union and extended intersections of both (η, π) and (µ, ϑ) are given by:

Table 2: Extended union and extended intersections of both (η, π) and (µ, ϑ)

ρ ∈ π ∪ ϑ (η, π) ∪̃E (µ, ϑ) (η, π) ∩̃E (µ, ϑ)
(ρ1, ρ3, ρ5) ({κ1, κ3}, {σ1, σ2, σ3}) ({κ1}, {σ2})
(ρ1, ρ4, ρ5) ({κ2, κ3, κ4, κ5}, {σ2}) ({κ2, κ4}, {σ2})
(ρ2, ρ3, ρ5) ({κ4, κ5}, {σ3, σ4}) ({κ4, κ5}, {σ3, σ4})
(ρ2, ρ4, ρ5) ({κ1, κ2, κ3}, {σ1, σ4}) ({κ1, κ2, κ3}, {σ1, σ4})
(ρ1, ρ3, ρ6) ({κ4}, {σ1, σ4})) ({κ4}, {σ1, σ4})
(ρ1, ρ4, ρ6) ({κ3, κ4}, {σ3, σ4}) ({κ3, κ4}, {σ3, σ4})

Then the BnHyS union and BnHyS intersections of both (η, π) and (µ, ϑ) are given by:

Table 3: BnHyS union and BnHyS intersections of both (η, π) and (µ, ϑ)

ρ ∈ π ∩ ϑ (η, π) ∪̃ (µ, ϑ) (η, π) ∩̃ (µ, ϑ)
(ρ1, ρ3, ρ5) ({κ1, κ3}, {σ1, σ2, σ3}) ({κ1}, {σ2})
(ρ1, ρ4, ρ5) ({κ2, κ3, κ4, κ5}, {σ2}) ({κ2, κ4}, {σ2})

The BnHyS differences (η, π) \̃ (µ, ϑ) and (µ, ϑ) \̃ (η, π) are the following:
(η, π) \̃ (µ, ϑ) = {((ρ1, ρ3, ρ5), ({κ3}, {σ1})), ((ρ1, ρ4, ρ5), ({κ3},∅))}.
(µ, ϑ) \̃ (η, π) = {((ρ1, ρ3, ρ5), (∅, {σ3})), ((ρ1, ρ4, ρ5), ({κ5},∅))}.

Table 4: BnHyS difference of both (η, π) and (µ, ϑ)

ρ ∈ π ∩ ϑ (η, π) \̃ (µ, ϑ) (µ, ϑ) \̃ (η, π)
(ρ1, ρ3, ρ5) ({κ3}, {σ1}) (∅, {σ3})
(ρ1, ρ4, ρ5) ({κ3},∅) ({κ5},∅)
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Definition 3.20. (AND) If (η, π) and (µ, ϑ) are two BnHySSs, then (η, π)AND(µ, ϑ), symbolized by (η, π) ∧̃ (µ, ϑ),
can be characterized by (℧, Ḑ) = (η, π) ∧̃ (µ, ϑ), with Ḑ = Ḑ1×Ḑ2×...×Ḑn, where Ḑi = πi×ϑi with i = 1, 2, ...,n,
and℧ can be characterized by,℧(ϱ) = η(ϱ)∩µ(ϱ) = (X1∩X2,Y1∩Y2) for each ϱ ∈ Ḑ such that η(ϱ) = (X1,Y1)
for each ϱ ∈ π and µ(ϱ) = (X2,Y2) for each ϱ ∈ ϑ.

Definition 3.21. (OR) If (η, π) and (µ, ϑ) are two BnHySSs, then (η, π)OR(µ, ϑ), symbolized by (η, π) ∨̃ (µ, ϑ),
can be characterized by (℧, Ḑ) = (η, π) ∨̃ (µ, ϑ), with Ḑ = Ḑ1×Ḑ2×...×Ḑn, where Ḑi = πi×ϑi with i = 1, 2, ...,n,
and℧ can be characterized by,℧(ϱ) = η(ϱ)∪µ(ϱ) = (X1∪X2,Y1∪Y2) for each ϱ ∈ Ḑ such that η(ϱ) = (X1,Y1)
for each ϱ ∈ π and µ(ϱ) = (X2,Y2) for each ϱ ∈ ϑ.

Example 3.22. Let
∐

1 = {κ1, κ2, κ3, κ4, κ5},
∐

2 = {σ1, σ2, σ3, σ4, σ5} and ₤̧ = {ρ1, ρ2, ρ3, ρ4, ρ5, ρ6}. Suppose
that
π1 = {ρ1, ρ2}, π2 = {ρ3, ρ4}, π3 = {ρ5}, ϑ1 = {ρ1}, ϑ2 = {ρ3, ρ4}, and ϑ3 = {ρ5, ρ6}.
That is πi, ϑi ⊆ ₤̧ for each i = 1, 2, 3. Let the BnHySSs (η, π) and (µ, ϑ) be defined by
(η, π) ={((ρ1, ρ3, ρ5), ({κ1, κ3}, {σ1, σ2})), ((ρ1, ρ4, ρ5), ({κ2, κ3, κ4}, {σ2})), ((ρ2, ρ3, ρ5), ({κ4, κ5}, {σ3, σ4})), ((ρ2, ρ4,
ρ5), ({κ1, κ2, κ3}, {σ1, σ4}))},
and
(µ, ϑ) ={((ρ1, ρ3, ρ5), ({κ1}, {σ2, σ3})), ((ρ1, ρ4, ρ5), ({κ2, κ4, κ5}, {σ2}), ((ρ1, ρ3, ρ6), ({κ4}, {σ1, σ4, })), ((ρ1, ρ4, ρ6), ({
κ3, κ4}, {σ3, σ4}))}.

Then (℧, π × ϑ) = (η, π) ∧̃ (µ, ϑ) and (O̧, π × ϑ) = (η, π)∨̃(µ, ϑ) are the BnHySSs as shown below:

Table 5: BnHyS AND and BnHyS OR of both (η, π) and (µ, ϑ)

ρ ∈ π × ϑ (η, π) ∧̃ (µ, ϑ) (η, π) ∨̃ (µ, ϑ)
((ρ1, ρ3, ρ5), (ρ1, ρ3, ρ5)) ({κ1}, {σ2}) ({κ1, κ3}, {σ1, σ2, σ3})
((ρ1, ρ3, ρ5), (ρ1, ρ4, ρ5)) (∅, {σ2}) (

∐
1, {σ1, σ2})

((ρ1, ρ3, ρ5), (ρ1, ρ3, ρ6)) (∅, {σ1}) ({κ1, κ3, κ4}, {σ1, σ2, σ4})
((ρ1, ρ3, ρ5), (ρ1, ρ4, ρ6)) ({κ3},∅) ({κ1, κ3, κ4}, {σ1, σ2, σ3, σ4})
((ρ1, ρ4, ρ5), (ρ1, ρ3, ρ5)) (∅, {σ2}) ({κ1, κ2, κ3, κ4}, {σ2, σ3})
((ρ1, ρ4, ρ5), (ρ1, ρ4, ρ5)) ({κ2, κ4}, {σ2}) ({κ2, κ3, κ4, κ5}, {σ2})
((ρ1, ρ4, ρ5), (ρ1, ρ3, ρ6)) ({κ4},∅) ({κ2, κ3, κ4}, {σ1, σ2, σ4})
((ρ1, ρ4, ρ5), (ρ1, ρ4, ρ6)) ({κ3, κ4},∅) ({κ2, κ3, κ4}, {σ2, σ3, σ4})
((ρ2, ρ3, ρ5), (ρ1, ρ3, ρ5)) (∅, {σ3}) ({κ1, κ4, κ5}, {σ2, σ3, σ4})
((ρ2, ρ3, ρ5), (ρ1, ρ4, ρ5)) ({κ4, κ5},∅) ({κ2, κ4, κ5}, {σ2, σ3, σ4})
((ρ2, ρ3, ρ5), (ρ1, ρ3, ρ6)) ({κ4}, {σ4}) ({κ4, κ5}, {σ1, σ3, σ4})
((ρ2, ρ3, ρ5), (ρ1, ρ4, ρ6)) ({κ4}, {σ3, σ4}) ({κ3, κ4, κ5}, {σ3, σ4})
((ρ2, ρ4, ρ5), (ρ1, ρ3, ρ5)) ({κ1},∅) ({κ1, κ2, κ3}, {σ1, σ2, σ3, σ4})
((ρ2, ρ4, ρ5), (ρ1, ρ4, ρ5)) ({κ2},∅) (

∐
1, {σ1, σ2, σ4})

((ρ2, ρ4, ρ5), (ρ1, ρ3, ρ6)) (∅, {σ1, σ4}) ({κ1, κ2, κ3, κ4}, {σ1, σ4})
((ρ2, ρ4, ρ5), (ρ1, ρ4, ρ6)) ({κ3}, {σ4}) ({κ1, κ2, κ3, κ4}, {σ1, σ3, σ4})

Definition 3.23. The BnHySS (η, π) is known as a BnHyS point over
∐

1,
∐

2, symbolized by ϱη, if for the
element ϱ ∈ π1 × π2 × ... × πn, η(ϱ) , (∅,∅) and η(ϱ′) = (∅,∅), for each ϱ′ ∈ (π1 × π2 × ... × πn) − {ϱ}.

Definition 3.24. The BnHyS point ϱη is claimed to be in the BnHySS (µ, ϑ), symbolized by ϱη ∈ (µ, ϑ) if for
the element ϱ ∈ π1 × π2 × ... × πn, η(ϱ) ⊆ µ(ϱ).

Example 3.25. Let
∐

1 = {x1, x2},
∐

2 = {y1, y2}, ₤̧ = {ϱ1, ϱ2, ϱ3}, π1 = {ϱ1}, π2 = {ϱ2, ϱ3}.

The BnHyS points over
∐

1,
∐

2 are defined as follow:
(η1, π) = {((ϱ1, ϱ2), (∅, {y1})), ((ϱ1, ϱ3), (∅,∅))} = (ϱ1, ϱ2)η1
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(η2, π) = {((ϱ1, ϱ2), (∅, {y2})), ((ϱ1, ϱ3), (∅,∅))} = (ϱ1, ϱ2)η2

(η3, π) = {((ϱ1, ϱ2), (∅,
∐

2)), ((ϱ1, ϱ3), (∅,∅))} = (ϱ1, ϱ2)η3

(η4, π) = {((ϱ1, ϱ2), ({x1},∅)), ((ϱ1, ϱ3), (∅,∅))} = (ϱ1, ϱ2)η4

(η5, π) = {((ϱ1, ϱ2), ({x1}, {y1})), ((ϱ1, ϱ3), (∅,∅))} = (ϱ1, ϱ2)η5

(η6, π) = {((ϱ1, ϱ2), ({x1}, {y2})), ((ϱ1, ϱ3), (∅,∅))} = (ϱ1, ϱ2)η6

(η7, π) = {((ϱ1, ϱ2), ({x1},
∐

2)), ((ϱ1, ϱ3), (∅,∅))} = (ϱ1, ϱ2)η7

(η8, π) = {((ϱ1, ϱ2), ({x2},∅)), ((ϱ1, ϱ3), (∅,∅))} = (ϱ1, ϱ2)η8

(η9, π) = {((ϱ1, ϱ2), ({x2}, {y1})), ((ϱ1, ϱ3), (∅,∅))} = (ϱ1, ϱ2)η9

(η10, π) = {((ϱ1, ϱ2), ({x2}, {y2})), ((ϱ1, ϱ3), (∅,∅))} = (ϱ1, ϱ2)η10

(η11, π) = {((ϱ1, ϱ2), ({x2},
∐

2)), ((ϱ1, ϱ3), (∅,∅))} = (ϱ1, ϱ2)η11

(η12, π) = {((ϱ1, ϱ2), (
∐

1,∅)), ((ϱ1, ϱ3), (∅,∅))} = (ϱ1, ϱ2)η12

(η13, π) = {((ϱ1, ϱ2), (
∐

1, {y1})), ((ϱ1, ϱ3), (∅,∅))} = (ϱ1, ϱ2)η13

(η14, π) = {((ϱ1, ϱ2), (
∐

1, {y2})), ((ϱ1, ϱ3), (∅,∅))} = (ϱ1, ϱ2)η14

(η15, π) = {((ϱ1, ϱ2), (
∐

1,
∐

2)), ((ϱ1, ϱ3), (∅,∅))} = (ϱ1, ϱ2)η15

(η16, π) = {((ϱ1, ϱ2), (∅,∅)), ((ϱ1, ϱ3), (∅, {y1}))} = (ϱ1, ϱ3)η16

(η17, π) = {((ϱ1, ϱ2), (∅,∅)), ((ϱ1, ϱ3), (∅, {y2}))} = (ϱ1, ϱ3)η17

(η18, π) = {((ϱ1, ϱ2), (∅,∅)), ((ϱ1, ϱ3), (∅,
∐

2))} = (ϱ1, ϱ3)η18

(η19, π) = {((ϱ1, ϱ2), (∅,∅)), ((ϱ1, ϱ3), ({x1},∅))} = (ϱ1, ϱ3)η19

(η20, π) = {((ϱ1, ϱ2), (∅,∅)), ((ϱ1, ϱ3), ({x1}, {y1}))} = (ϱ1, ϱ3)η20

(η21, π) = {((ϱ1, ϱ2), (∅,∅)), ((ϱ1, ϱ3), ({x1}, {y2}))} = (ϱ1, ϱ3)η21

(η22, π) = {((ϱ1, ϱ2), (∅,∅)), ((ϱ1, ϱ3), ({x1},
∐

2))} = (ϱ1, ϱ3)η22

(η23, π) = {((ϱ1, ϱ2), (∅,∅)), ((ϱ1, ϱ3), ({x2},∅))} = (ϱ1, ϱ3)η23

(η24, π) = {((ϱ1, ϱ2), (∅,∅)), ((ϱ1, ϱ3), ({x2}, {y1}))} = (ϱ1, ϱ3)η24

(η25, π) = {((ϱ1, ϱ2), (∅,∅)), ((ϱ1, ϱ3), ({x2}, {y2}))} = (ϱ1, ϱ3)η25

(η26, π) = {((ϱ1, ϱ2), (∅,∅)), ((ϱ1, ϱ3), ({x2},
∐

2))} = (ϱ1, ϱ3)η26

(η27, π) = {((ϱ1, ϱ2), (∅,∅)), ((ϱ1, ϱ3), (
∐

1,∅))} = (ϱ1, ϱ3)η27

(η28, π) = {((ϱ1, ϱ2), (∅,∅)), ((ϱ1, ϱ3), (
∐

1, {y1}))} = (ϱ1, ϱ3)η28

(η29, π) = {((ϱ1, ϱ2), (∅,∅)), ((ϱ1, ϱ3), (
∐

1, {y2}))} = (ϱ1, ϱ3)η29

(η30, π) = {((ϱ1, ϱ2), (∅,∅)), ((ϱ1, ϱ3), (
∐

1,
∐

2))} = (ϱ1, ϱ3)η30 .

Some main properties of BnHySSs are given below:

Proposition 3.26. Let (η, π), (µ, ϑ) and (℧, Ḑ) be three BnHySSs. Then we have the following results:

1. (η, π) ∪̃ ∅̃ = (η, π).

2. (η, π) ∪̃
∐̃
=
∐̃

.
3. (η, π) ∪̃ (η, π) = (η, π).
4. (η, π) ∪̃ (µ, ϑ) = (µ, ϑ) ∪̃ (η, π).
5. (η, π) ∪̃ ((µ, ϑ) ∪̃ (℧, Ḑ)) = ((η, π) ∪̃ (µ, ϑ)) ∪̃ (℧, Ḑ).
6. (η, π) ⊆̃ (η, π) ∪̃ (µ, ϑ) and (µ, ϑ) ⊆̃(η, π) ∪̃ (µ, ϑ).
7. (η, π) ∪̃ (µ, ϑ) = ∅̃ if and only if (η, π) = ∅̃ and (µ, ϑ) = ∅̃.
8. (η, π) ⊆̃ (µ, ϑ) if and only if (η, π) ∪̃ (µ, ϑ) = (µ, ϑ).

Proof. 5. Suppose that (µ, ϑ) ∪̃ (℧, Ḑ) = (K1, ϑ ∩ Ḑ). Then for all α ∈ ϑ ∩ Ḑ, X1,X2,X3 ⊆
∐

1 and
Y1,Y2,Y3 ⊆

∐
2 such that η(α) = (X1,Y1), µ(α) = (X2,Y2), ℧(α) = (X3,Y3) we have the following

K1(α) = µ(α) ∪℧(α) = (X2 ∪ X3,Y2 ∪Y3).
Assume (η, π) ∪ (K1, ϑ ∩ Ḑ) = (K2, π ∩ (ϑ ∩ Ḑ)) then for all α ∈ π ∩ (ϑ ∩ Ḑ) we have the following
K2(α) = η(α) ∪ K1(α) = (X1 ∪ (X2 ∪ X3),Y1 ∪ (Y2 ∪ Y3)) = ((X1 ∪ X2) ∪ X3, (Y1 ∪ Y2) ∪ Y3) by associative
property. Hence,K2(α) = (η(α) ∪ µ(α)) ∪℧(α). Then, we get for all α ∈ π ∩ (ϑ ∩ Ḑ) = (π ∩ ϑ) ∩ Ḑ
(η, π) ∪̃ ((µ, ϑ) ∪̃ (℧, Ḑ)) = ((η, π) ∪̃ (µ, ϑ)) ∪̃ (℧, Ḑ).
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8. Suppose that (η, π) ⊆̃ (µ, ϑ), then π ⊆ ϑ for all α ∈ π, X1 ⊆ X2 ⊆
∐

1 and Y1 ⊆ Y2 ⊆
∐

2 such that
η(α) = (X1,Y1), µ(α) = (X2,Y2). Now, η(α) ∪ µ(α) = (X1 ∪ X2,Y1 ∪ Y2) = (X2,Y2) = µ(α). Therefore, (η, π)
∪̃ (µ, ϑ) = (µ, ϑ).
Conversely, suppose (η, π) ∪̃ (µ, ϑ) = (µ, ϑ), then we have the following η(α) ∪ µ(α) = µ(α) for all α ∈ π
and η(α) = (X1,Y1), µ(α) = (X2,Y2). Let h ∈ X1 and k ∈ Y1, then h ∈ X1 ∪ X2 and k ∈ Y1 ∪ Y2, we have
X1∪X2 = X2 andY1∪Y2 = Y2, therefore h ∈ X2 and k ∈ Y2 andX1 ⊆ X2 andY1 ⊆ Y2. Hence, η(α) ⊆ µ(α).
Thus, (η, π) ⊆̃ (µ, ϑ).

The remaining parts can be proved with the same method.

Proposition 3.27. Let (η, π), (µ, ϑ) and (℧, Ḑ) be three BnHySSs. Then we have the following results:

1. (η, π) ∩̃ (η, π) = (η, π).
2. (η, π) ∩̃ (µ, ϑ) = (µ, ϑ) ∩̃ (η, π).
3. (η, π)∩̃ ((µ, ϑ) ∩̃ (℧, Ḑ)) = ((η, π) ∩̃ (µ, ϑ)) ∩̃ (℧, Ḑ).
4. (η, π) ∩̃ ∅̃ = ∅̃.
5. (η, π) ∩̃

∐̃
= (η, π).

6. (η, π) ∩̃ (µ, ϑ) ⊆̃ (η, π) and (η, π) ∩̃ (µ, ϑ) ⊆̃ (µ, ϑ).
7. (η, π) ⊆̃ (µ, ϑ) if and only if (η, π) ∩̃ (µ, ϑ) = (η, π).

Proof. We can prove all parts by the same way in the above proposition.

Proposition 3.28. Let (η, π) and (µ, ϑ) be two BnHySSs. Then we have the following results:

1. (η, π) ∪̃ (η, π)c =
∐̃

.
2. (η, π) ∩̃ (η, π)c = ∅̃.
3. (η, π) ⊆̃ (µ, ϑ) if and only if (µ, ϑ)c

⊆̃ (η, π)c.
4. ((η, π) ∪̃ (µ, ϑ))c = (η, π)c

∩̃ (µ, ϑ)c.
5. ((η, π) ∩̃ (µ, ϑ))c = (η, π)c

∪̃ (µ, ϑ)c.

Proof. 4. Let (η, π) ∪̃ (µ, ϑ) = (℧, Ḑ) where ℧(α) = η(α) ∪ µ(α) for all α ∈ Ḑ = π ∩ ϑ. Since ((η, π) ∪̃ (µ, ϑ))c

= (℧, Ḑ)c we have ℧c(α) = (η(α) ∪ µ(α))c =
∐̃
− (η(α) ∪ µ(α)) =

∐̃
− η(α) ∩

∐̃
− µ(α) = ηc(α) ∩ µc(α). Now,

(℧, Ḑ)c = (η, π)c
∩̃ (µ, ϑ)c.

Hence, ((η, π) ∪̃ (µ, ϑ))c = (η, π)c
∩̃ (µ, ϑ)c.

The remaining parts can be proved with the same method.

Proposition 3.29. Let (η, π), (µ, ϑ) and (℧, Ḑ) be three BnHySSs. Then we have the following results:

1. (η, π) ∩̃ ((µ, ϑ) ∪̃ (℧, Ḑ)) = ((η, π) ∩̃ (µ, ϑ)) ∪̃ ((η, π)∩̃ (℧, Ḑ)).
2. (η, π) ∪̃ ((µ, ϑ) ∩̃ (℧, Ḑ)) = ((η, π) ∪̃ (µ, ϑ)) ∩̃ ((η, π) ∪̃ (℧, Ḑ)).

Proof. 1. Suppose that (µ, ϑ) ∪̃ (℧, Ḑ) = (K1, ϑ ∩ Ḑ) for all α ∈ ϑ ∩ Ḑ, X1,X2,X3 ⊆
∐

1 and Y1,Y2,Y3 ⊆
∐

2
such that η(α) = (X1,Y1), µ(α) = (X2,Y2), ℧(α) = (X3,Y3) we have the following
K1(α) = µ(α) ∪℧(α) = (X2 ∪ X3,Y2 ∪Y3).
Assume (η, π) ∩̃ (K1, ϑ ∩ Ḑ) = (K2, π ∩ (ϑ ∩ Ḑ)) for all α ∈ π ∩ (ϑ ∩ Ḑ)
K2(α) = η(α)∩K1(α) = (X1 ∩ (X2 ∪X3),Y1 ∩ (Y2 ∪Y3)) = ((X1 ∩X2)∪ (X1 ∩X3), (Y1 ∩Y2)∪ (Y1 ∩Y3)) by
distribution propertyK2(α) = ((η(α) ∩ µ(α) ∪ (η(α) ∩℧(α)) for all α ∈ π ∩ (ϑ ∩ Ḑ) = (π ∩ ϑ) ∩ (π ∩ Ḑ).
Hence, (η, π) ∩̃ ((µ, ϑ) ∪̃ (℧, Ḑ)) = ((η, π) ∩̃ (µ, ϑ)) ∪̃ ((η, π)∩̃ (℧, Ḑ)).

Proposition 3.30. Let (η, π), (µ, ϑ) and (℧, Ḑ) be three BnHySSs. Then we have the following results:

1. ((η, π) ∨̃ (µ, ϑ))c = (η, π)c
∧̃ (µ, ϑ)c.
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2. ((η, π) ∧̃ (µ, ϑ))c = (η, π)c
∨̃ (µ, ϑ)c.

3. ((η, π) ∨̃ (µ, ϑ)) ∨̃ (℧, Ḑ) = (η, π) ∨̃ ((µ, ϑ) ∨̃ (℧, Ḑ)).
4. ((η, π) ∧̃ (µ, ϑ)) ∧̃ (℧, Ḑ) = (η, π) ∧̃ ((µ, ϑ) ∧̃ (℧, Ḑ)).
5. (η, π) ∧̃ ((µ, ϑ) ∨̃ (℧, Ḑ)) = ((η, π) ∧̃ (µ, ϑ)) ∨̃ ((η, π) ∧̃ (℧, Ḑ)).
6. (η, π) ∨̃ ((µ, ϑ) ∧̃ (℧, Ḑ)) = ((η, π) ∨̃ (µ, ϑ)) ∧̃ ((η, π) ∨̃ (℧, Ḑ)).

Proof. It is obvious.

4. Binary hypersoft topology

In this section, we introduce the concept of binary hypersoft topology and we present the concept of
binary hypersoft subspace.

Let
∐

1,
∐

2 be two initial universe sets and the non empty set ₤̧ be an entire set of parameters. Let
β(
∐

1), β(
∐

2) indicate the power set of
∐

1,
∐

2, respectively. Also, let ∅ , πi ⊆ ₤̧with i = 1, 2, ...,n. To make
things simpler, we write the symbol π for π1 × π2 × · · · × πn and ϱ for an element of the set π. We also
suppose that none of the set πi is empty for each i.

Definition 4.1. Let τBnHy be the collection of BnHySSs over
∐

1,
∐

2, then τBnHy is claimed to be a binary
hypersoft topology on

∐
1,
∐

2 if the following three conditions hold:

1. ∅̃,
∐̃
∈̃ τBnHy.

2. The BnHyS intersection of two BnHySSs in τBnHy belongs to τBnHy.
3. The BnHyS union of any number of BnHySSs in τBnHy belongs to τBnHy.

Then (
∐

1,
∐

2, τBnHy,π) is known as a binary hypersoft topological space (BnHySTS) over
∐

1,
∐

2.

Definition 4.2. Let (
∐

1,
∐

2, τBnHy,π) be a BnHySTS over
∐

1,
∐

2, then the members of τBnHy are claimed
to be a BnHyS open sets in

∐
1,
∐

2.

Definition 4.3. Let (
∐

1,
∐

2, τBnHy,π) be a BnHySTS over
∐

1,
∐

2, then the BnHySS (η, π) over
∐

1,
∐

2 is
claimed to be a BnHyS closed set in

∐
1,
∐

2, if its BnHyS complement is belong to τBnHy.

Definition 4.4. Let τBnHy = {∅̃,
∐̃
}. Then τBnHy is known as the BnHyS indiscrete topology on

∐
1,
∐

2 and
(
∐

1,
∐

2, τ
ind
BnHy,π) is known as a BnHyS indiscrete space over

∐
1,
∐

2.

Definition 4.5. Assume that the collection of all BnHySSs that can be specified over
∐

1,
∐

2 is τdis
BnHy. Then

τdis
BnHy is known as the BnHyS discrete topology on

∐
1,
∐

2 and (
∐

1,
∐

2, τ
dis
BnHy,π) is known as a BnHyS

discrete space over
∐

1,
∐

2.

Example 4.6. Consider the following sets:
∐

1 = {ρ1, ρ2, ρ3, ρ4, ρ5},
∐

2 = {σ1, σ2, σ3, σ4},
₤̧ = {ϱ1, ϱ2, ϱ3, ϱ4}, π1 = {ϱ1}, π2 = {ϱ2}, π3 = {ϱ3, ϱ4} and
τBnHy = {∅̃,

∐̃
, (η1, π), (η2, π), (η3, π), (η4, π)}

where (η1, π), (η2, π), (η3, π), (η4, π) are BnHySSs defined as follow:
(η1, π) = {((ϱ1, ϱ2, ϱ3), ({ρ2}, {σ2})), ((ϱ1, ϱ2, ϱ4), ({ρ3}, {σ3}))}.
(η2, π) = {((ϱ1, ϱ2, ϱ3), ({ρ3}, {σ1})), ((ϱ1, ϱ2, ϱ4), ({ρ3, ρ5}, {σ1, σ2}))}.
(η3, π) = {((ϱ1, ϱ2, ϱ3), ({ρ2, ρ3}, {σ1, σ2})), ((ϱ1, ϱ2, ϱ4), ({ρ3, ρ5}, {σ1, σ2, σ3}))}.
(η4, π) = {((ϱ1, ϱ2, ϱ3), (∅,∅)), ((ϱ1, ϱ2, ϱ4), ({ρ3},∅))}.
Clearly τBnHy is a BnHyST over

∐
1,
∐

2.

Theorem 4.7. Let (
∐

1,
∐

2, τBnHy,π) and (
∐

1,
∐

2, τ
′

BnHy,π) be two BnHySTSs over the same universal sets∐
1,
∐

2, then (
∐

1,
∐

2, τBnHy ∩ τ
′

BnHy,π) is a BnHySTS over
∐

1,
∐

2.
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Proof. (1) ∅̃ ,
∐̃

are belongs to τBnHy ∩ τ
′

BnHy.
(2) Let the two BnHySSs (η, π), (µ, π) ∈ τBnHy ∩ τ

′

BnHy. Then (η, π), (µ, π) ∈ τBnHy and (η, π), (µ, π) ∈ τ′
BnHy.

Since (η, π) ∩̃ (µ, π) ∈ τBnHy and (η, π) ∩̃ (µ, π) ∈ τ′
BnHy, so (η, π) ∩̃ (µ, π) ∈ τBnHy ∩ τ

′

BnHy.
(3) Let {(ηi, π) | i ∈ I} be a family of BnHySSs in τBnHy ∩ τ

′

BnHy. Then (ηi, π) ∈ τBnHy and (ηi, π) ∈ τ′
BnHy,

for each i ∈ I, so ∪̃(i∈I)(ηi, π) ∈ τBnHy and ∪̃(i∈I)(ηi, π) ∈ τ′
BnHy.

Thus, ∪̃(i∈I)(ηi, π) ∈ τBnHy ∩ τ
′

BnHy.

Hence, τBnHy ∩ τ
′

BnHy defines the BnHyST on
∐

1,
∐

2 and (
∐

1,
∐

2, τBnHy ∩̃ τ
′

BnHy,π) is a BnHySTS over∐
1,
∐

2.

Remark 4.8. Let (
∐

1,
∐

2, τBnHy,π) and (
∐

1,
∐

2, τ
′

BnHy,π) be two BnHySTS over the same universal sets∐
1,
∐

2, then (
∐

1,
∐

2, τBnHy ∪ τ
′

BnHy,π) may not be BnHySTS over
∐

1,
∐

2.

Example 4.9. Let
∐

1 = {ρ1, ρ2, ρ3, ρ4, ρ5},
∐

2 = {σ1, σ2, σ3, σ4}, ₤̧= {ϱ1, ϱ2, ϱ3, ϱ4},

π1 = {ϱ1, ϱ2} , π2 = {ϱ3, ϱ4} and τBnHy = {∅̃ ,
∐̃
, (η1, π), (η2, π), (η3, π), (η4, π)},

where (η1, π), (η2, π), (η3, π), (η4, π) are BnHySSs defined as follow:
(η1, π) ={((ϱ1, ϱ3), ({ρ1}, {σ1})), ((ϱ1, ϱ4), ({ρ2}, {σ2})), ((ϱ2, ϱ3), (∅,∅)), ((ϱ2, ϱ4), ({ρ3}, {σ3}))}.
(η2, π) = {((ϱ1, ϱ3), ({ρ4}, {σ4})), ((ϱ1, ϱ4), ({ρ3}, {σ1})), ((ϱ2, ϱ3), ({ρ1, ρ2}, {σ3})), ((ϱ2, ϱ4), ({ρ3, ρ5}, {σ1, σ2}))}.
(η3, π) ={((ϱ1, ϱ3), ({ρ1, ρ4}, {σ1, σ4})), ((ϱ1, ϱ4), ({ρ2, ρ3}, {σ1, σ2})), ((ϱ2, ϱ3), ({ρ1, ρ2}, {σ3})), ((ϱ2, ϱ4), ({ρ3, ρ5}, {σ1,
σ2, σ3}))}.
(η4, π) = {((ϱ1, ϱ3), (∅,∅)), ((ϱ1, ϱ4), (∅,∅)), ((ϱ2, ϱ3), (∅,∅)), ((ϱ2, ϱ4), ({ρ3},∅))}.
and
τ′
BnHy = {∅̃,

∐̃
, (µ1, π), (µ2, π), (µ3, π), (µ4, π)},

where (µ1, π), (µ2, π), (µ3, π), (µ4, π) are BnHySSs defined as follow:
(µ1, π) ={((ϱ1, ϱ3), ({ρ2}, {σ2})), ((ϱ1, ϱ4), ({ρ3, ρ4}, {σ1, σ3})), ((ϱ2, ϱ3), ({ρ1, ρ3}, {σ2})), ((ϱ2, ϱ4), (∅,∅))}.
(µ2, π) ={((ϱ1, ϱ3), ({ρ3}, {σ1})), ((ϱ1, ϱ4), ({ρ5}, {σ3})), ((ϱ2, ϱ3), ({ρ1, ρ2}, {σ3})), ((ϱ2, ϱ4), ({ρ3, ρ5}, {σ1, σ2}))}.
(µ3, π) ={((ϱ1, ϱ3), ({ρ2, ρ3}, {σ1, σ2})), ((ϱ1, ϱ4), ({ρ3, ρ4, ρ5}, {σ1, σ3})), ((ϱ2, ϱ3), ({ρ1, ρ2, ρ3}, {σ2, σ3})), ((ϱ2, ϱ4), ({
ρ3, ρ5}, {σ1, σ2}))}.
(µ4, π) ={((ϱ1, ϱ3), (∅,∅)), ((ϱ1, ϱ4), (∅, {σ3})), ((ϱ2, ϱ3), ({ρ1},∅)), ((ϱ2, ϱ4), (∅,∅))}.
Clearly, τBnHy and τ′

BnHy are BnHySTS.
Then
τBnHy ∪ τ

′

BnHy = {∅̃ ,
∐̃
, (η1, π), (η2, π), (η3, π), (η4, π), (µ1, π), (µ2, π), (µ3, π), (µ4, π)}.

Clearly,
(η1, π)∪̃(µ1, π) = {((ϱ1, ϱ3), ({ρ1, ρ2}, {σ1, σ2})), ((ϱ1, ϱ4), ({ρ2, ρ3, ρ4}, {σ1, σ2, σ3})), ((ϱ2, ϱ3), ({ρ1, ρ3}, {σ2})), ((ϱ2, ϱ4),
({ρ3}, {σ3}))}.
Since (η1, π)∪̃(µ1, π) < τBnHy ∪ τ

′

BnHy.
Thus, τBnHy ∪ τ

′

BnHy is not BnHyST.

Proposition 4.10. Let (
∐

1,
∐

2, τBnHy,π) be a BnHySTS over
∐

1,
∐

2 and (η, π) ∈ τBnHy, where η(α) = (X,Y)
for each α ∈ π1 × π2 × ... × πn, X ⊆

∐
1 and Y ⊆

∐
2. Suppose that the collections τH = {(λ, π) | λ(α) = X} and

τ∗
H
= {(δ, π) | δ(α) = Y}. Then τH and τ∗

H
are defines HySTs on

∐
1 and

∐
2 respectively.

Example 4.11. Consider the following sets:
∐

1 = {ρ1, ρ2, ρ3, ρ4, ρ5},
∐

2 = {σ1, σ2, σ3, σ4},
₤̧ = {ϱ1, ϱ2, ϱ3, ϱ4}, π1 = {ϱ1}, π2 = {ϱ2}, π3 = {ϱ3, ϱ4} and τBnHy = {∅̃,

∐̃
, (η1, π), (η2, π), (η3, π), (η4, π)}

where (η1, π), (η2, π), (η3, π), (η4, π) are BnHySSs defined as follow:
(η1, π) = {((ϱ1, ϱ2, ϱ3), ({ρ2}, {σ2})), ((ϱ1, ϱ2, ϱ4), ({ρ3}, {σ3}))},
(η2, π) = {((ϱ1, ϱ2, ϱ3), ({ρ3}, {σ1})), ((ϱ1, ϱ2, ϱ4), ({ρ3, ρ5}, {σ1, σ2}))},
(η3, π) = {((ϱ1, ϱ2, ϱ3), ({ρ2, ρ3}, {σ1, σ2})), ((ϱ1, ϱ2, ϱ4), ({ρ3, ρ5}, {σ1, σ2, σ3}))} and
(η4, π) = {((ϱ1, ϱ2, ϱ3), (∅,∅)), ((ϱ1, ϱ2, ϱ4), ({ρ3},∅))}.
Clearly τBnHy is a BnHyST over

∐
1,
∐

2. It can be easily seen that
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τH = {∅̃,
∐̃
, (λ1, π), (λ2, π), (λ3, π), (λ4, π)}

where (λ1, π), (λ2, π), (λ3, π), (λ4, π) are HySSs defined as follow:
(λ1, π) = {((ϱ1, ϱ2, ϱ3), {ρ2}), ((ϱ1, ϱ2, ϱ4), {ρ3})}
(λ2, π) = {((ϱ1, ϱ2, ϱ3), {ρ3}), ((ϱ1, ϱ2, ϱ4), {ρ3, ρ5})}
(λ3, π) = {((ϱ1, ϱ2, ϱ3), {ρ2, ρ3}), ((ϱ1, ϱ2, ϱ4), {ρ3, ρ5})}
(λ4, π) = {((ϱ1, ϱ2, ϱ3),∅), ((ϱ1, ϱ2, ϱ4), {ρ3})}
and
τ∗
H
= {∅̃,

∐̃
, (δ1, π), (δ2, π), (δ3, π), (δ4, π)}

where (δ1, π), (δ2, π), (δ3, π), (δ4, π) are HySSs defined as follow:
(δ1, π) = {((ϱ1, ϱ2, ϱ3), {σ2}), ((ϱ1, ϱ2, ϱ4), {σ3})}
(δ2, π) = {((ϱ1, ϱ2, ϱ3), {σ1}), ((ϱ1, ϱ2, ϱ4), {σ1, σ2})}
(δ3, π) = {((ϱ1, ϱ2, ϱ3), {σ1, σ2}), ((ϱ1, ϱ2, ϱ4), {σ1, σ2, σ3})}
(δ4, π) = {((ϱ1, ϱ2, ϱ3),∅), ((ϱ1, ϱ2, ϱ4),∅)}
Then, τH is an HyST on

∐
1 and τ∗

H
is an HyST on

∐
2.

Now we give an example to show that the converse of Proposition 4.10 does not hold.

Example 4.12. Consider the following sets:
∐

1 = {ρ1, ρ2, ρ3, ρ4, ρ5},
∐

2 = {σ1, σ2, σ3, σ4}, ₤̧ = {ϱ1, ϱ2, ϱ3, ϱ4},
π1 = {ϱ1}, π2 = {ϱ2} and π3 = {ϱ3, ϱ4}.
Suppose that τH = {∅̃,

∐̃
, (λ1, π), (λ2, π), (λ3, π), (λ4, π)}

where (λ1, π), (λ2, π), (λ3, π), (λ4, π) are HySSs defined as follow:
(λ1, π) = {((ϱ1, ϱ2, ϱ3), {ρ2}), ((ϱ1, ϱ2, ϱ4), {ρ3})},
(λ2, π) = {((ϱ1, ϱ2, ϱ3), {ρ3}), ((ϱ1, ϱ2, ϱ4), {ρ3, ρ5})},
(λ3, π) = {((ϱ1, ϱ2, ϱ3), {ρ2, ρ3}), ((ϱ1, ϱ2, ϱ4), {ρ3, ρ5})} and
(λ4, π) = {((ϱ1, ϱ2, ϱ3),∅), ((ϱ1, ϱ2, ϱ4), {ρ3})}.
Also,
τ∗
H
= {∅̃,

∐̃
, (δ1, π), (δ2, π), (δ3, π), (δ4, π)}

where (δ1, π), (δ2, π), (δ3, π), (δ4, π) are HySSs defined as follow:
(δ1, π) = {((ϱ1, ϱ2, ϱ3),∅), ((ϱ1, ϱ2, ϱ4),∅)},
(δ2, π) = {((ϱ1, ϱ2, ϱ3), {σ1, σ2}), ((ϱ1, ϱ2, ϱ4), {σ1, σ2, σ3})},
(δ3, π) = {((ϱ1, ϱ2, ϱ3), {σ1}), ((ϱ1, ϱ2, ϱ4), {σ1, σ2})} and
(δ4, π) = {((ϱ1, ϱ2, ϱ3), {σ2}), ((ϱ1, ϱ2, ϱ4), {σ3})}.
Clearly, τH is an HyST on

∐
1 and τ∗

H
is an HyST on

∐
2.

Now, τBnHy = {∅̃,
∐̃
, (η1, π), (η2, π), (η3, π), (η4, π)}where

(η1, π) = {((ϱ1, ϱ2, ϱ3), ({ρ2},∅)), ((ϱ1, ϱ2, ϱ4), ({ρ3},∅))}.
(η2, π) = {((ϱ1, ϱ2, ϱ3), ({ρ3}, {σ1, σ2})), ((ϱ1, ϱ2, ϱ4), ({ρ3, ρ5}, {σ1, σ2, σ3}))}.
(η3, π) = {((ϱ1, ϱ2, ϱ3), ({ρ2, ρ3}, {σ1})), ((ϱ1, ϱ2, ϱ4), ({ρ3, ρ5}, {σ1, σ2))}.
(η4, π) = {((ϱ1, ϱ2, ϱ3), (∅, {σ2})), ((ϱ1, ϱ2, ϱ4), ({ρ3}, {σ3}))}.
Since (η1, π) ∪̃ (η2, π) < τBnHy.
Then, τBnHy is not a BnHyST over

∐
1,
∐

2.

The converse of Proposition 4.10 holds under certain conditions, as stated in the following proposition.

Proposition 4.13. Suppose that τBnHy = {(η, π) | η(α) = (X,Y) for each α ∈ π1 × π2 × ... × πn such that X ⊆
∐

1
and Y ⊆

∐
2}. Suppose that τH = {(λ, π) | λ(α) = X} is an HyST on

∐
1 and τ∗

H
= {(δ, π) | δ(α) = Y} is an HyST

on
∐

2. If (λp(α), δp(α)) = η0(α) ∈ τBnHy where λp(α) =
⋂

i=1,...,n λi(α) ∈ τH and δp(α) =
⋂

i=1,...,n δi(α) ∈ τ∗
H

and
also if (λq(α), δq(α)) = ηc(α) ∈ τBnHy where λq(α) =

⋃
j∈J λ j(α) ∈ τH and δq(α) =

⋃
j∈J δ j(α) ∈ τ∗

H
for each α ∈ π,

then τBnHy is define a BnHyST over
∐

1,
∐

2.

Proof. Obvious.

Definition 4.14. Let (
∐

1,
∐

2, τBnHy,π) be a BnHySTS over the common universe sets
∐

1,
∐

2 and V1,V2
be non empty subsets of

∐
1,
∐

2, respectively. Then τ(V1,V2) = {((V1,V2)η, π) | (η, π) ∈ τBnHy} is claimed
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to be the BnHyS relative topology over V1,V2 and (V1,V2, τ(V1,V2),π) is known as a BnHyS subspace of
(
∐

1,
∐

2, τBnHy,π). We can easily verify that τ(V1,V2) is infact a BnHyST overV1,V2.

Remark 4.15. Any BnHyS subspace of a BnHyS discrete topological space is a BnHyS discrete topological
space.

Remark 4.16. Any BnHyS subspace of a BnHyS indiscrete topological space is a BnHyS indiscrete topolog-
ical space.

Example 4.17. Let
∐

1 = {ρ1, ρ2, ρ3, ρ4, ρ5},
∐

2 = {σ1, σ2, σ3, σ4}, V1 = {ρ1, ρ3, ρ4}, V2 = {σ2, σ4}, ₤̧ =
{ϱ1, ϱ2, ϱ3, ϱ4} , π1 = {ϱ1, ϱ2}, π2 = {ϱ3, ϱ4} and
τBnHy = {∅̃,

∐̃
, (η1, π), (η2, π), (η3, π), (η4, π)},

where (η1, π), (η2, π), (η3, π), (η4, π) are BnHySSs defined as follow:
(η1, π) ={((ϱ1, ϱ3), ({ρ1}, {σ1})), ((ϱ1, ϱ4), ({ρ2}, {σ2})), ((ϱ2, ϱ3), (∅,∅)), ((ϱ2, ϱ4), ({ρ3}, {σ3}))}.
(η2, π) ={((ϱ1, ϱ3), ({ρ4}, {σ4})), ((ϱ1, ϱ4), ({ρ3}, {σ1})), ((ϱ2, ϱ3), ({ρ1, ρ2}, {σ3})), ((ϱ2, ϱ4), ({ρ3, ρ5}, {σ1, σ2}))}.
(η3, π) ={((ϱ1, ϱ3), ({ρ1, ρ4}, {σ1, σ4})), ((ϱ1, ϱ4), ({ρ2, ρ3}, {σ1, σ2})), ((ϱ2, ϱ3), ({ρ1, ρ2}, {σ3})), ((ϱ2, ϱ4), ({ρ3, ρ5}, {σ1,
σ2, σ3}))}.
(η4, π) = {((ϱ1, ϱ3), (∅,∅)), ((ϱ1, ϱ4), (∅,∅)), ((ϱ2, ϱ3), (∅,∅)), ((ϱ2, ϱ4), ({ρ3},∅))}.
Then the BnHyS subspace (V1,V2, τ(V1,V2),π) is described as follow:
τ(V1,V2) = {∅̃, Ṽ, ((V1,V2)η1 , π), ((V1,V2)η2 , π), ((V1,V2)η3 , π), ((V1,V2)η4 , π)},
where ((V1,V2)η1 , π), ((V1,V2)η2 , π), ((V1,V2)η3 , π), ((V1,V2)η4 , π) are BnHySSs defined as follow:
((V1,V2)η1 , π) ={((ϱ1, ϱ3), ({ρ1},∅)), ((ϱ1, ϱ4), (∅, {σ2})), ((ϱ2, ϱ3), (∅,∅)), ((ϱ2, ϱ4), ({ρ3},∅))}
((V1,V2)η2 , π) ={((ϱ1, ϱ3), ({ρ4}, {σ4})), ((ϱ1, ϱ4), ({ρ3},∅)), ((ϱ2, ϱ3), ({ρ1},∅)), ((ϱ2, ϱ4), ({ρ3}, {σ2}))}.
((V1,V2)η3 , π) ={((ϱ1, ϱ3), ({ρ1, ρ4}, {σ4})), ((ϱ1, ϱ4), ({ρ3}, {σ2})), ((ϱ2, ϱ3), ({ρ1},∅)), ((ϱ2, ϱ4), ({ρ3}, {σ2}))}.
((V1,V2)η4 , π) = {((ϱ1, ϱ3), (∅,∅)), ((ϱ1, ϱ4), (∅,∅)), ((ϱ2, ϱ3), (∅,∅)), ((ϱ2, ϱ4), ({ρ3},∅))}.

5. Binary hypersoft operators

In this section, we investigate binary hypersoft limit points, binary hypersoft neighborhood, binary
hypersoft closure, binary hypersoft interior and binary hypersoft boundary.

Definition 5.1. Let (
∐

1,
∐

2, τBnHy,π) be a BnHySTS over
∐

1,
∐

2 and let (η, π) be a BnHySS over
∐

1,
∐

2.

A BnHyS point ϱη ∈̃
∐̃

is called a binary hypersoft limit point of (η, π) if (η, π) ∩̃ ((µ, ϑ) \ ϱη) , ∅̃ for every
BnHyS open set (µ, ϑ) containing BnHyS point ϱη.
The set of all binary hypersoft limit points of (η, π) is called the binary hypersoft derived set of (η, π) and is
denoted by (η, π)d.

Proposition 5.2. Let (
∐

1,
∐

2, τBnHy,π) be a BnHySTS over
∐

1,
∐

2 and let (η1, π) and (η2, π) be two BnHySSs
over
∐

1,
∐

2. Then

1. (η1, π) ⊆̃ (η2, π) implies (η1, π)d
⊆̃ (η2, π)d.

2. ((η1, π) ∩̃ (η2, π))d
⊆̃ (η1, π)d

∩̃ (η2, π)d.
3. ((η1, π) ∪̃ (η2, π))d = (η1, π)d

∪̃ (η2, π)d.

Proof. (1.) Let ϱη ∈ (η1, π)d, so that ϱη is a binary hypersoft limit point of (η1, π). Then, (η1, π) ∩̃ ((µ, ϑ) \ ϱη
, ∅̃ for every BnHyS open set (µ, ϑ) containing ϱη. But (η1, π) ⊆̃ (η2, π), it follows that (η2, π) ∩̃ ((µ, ϑ) \ ϱη ,
∅̃. Thus, ϱη ∈ (η2, π)d. Therefore, (η1, π)d

⊆̃ (η2, π)d.

(2.) Since (η1, π) ∩̃ (η2, π) ⊆̃ (η1, π) and (η1, π) ∩̃ (η2, π) ⊆̃ (η2, π). It follows from (1.) that ((η1, π) ∩̃ (η2, π))d

⊆̃ (η1, π)d and ((η1, π) ∩̃ (η2, π))d
⊆̃ (η2, π)d. Hence ((η1, π) ∩̃ (η2, π))d

⊆̃ (η1, π)d
∩̃ (η2, π)d.
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(3.) Since (η1, π) ⊆̃ (η1, π) ∪̃ (η2, π) and (η2, π) ⊆̃ (η1, π) ∪̃ (η2, π). By (1.) we have (η1, π)d
⊆̃ ((η1, π) ∪̃

(η2, π))d and (η2, π)d
⊆̃ ((η1, π) ∪̃ (η2, π))d. So, (η1, π)d

∪̃ (η2, π)d
⊆̃ ((η1, π) ∪̃ (η2, π))d.

Now, let ϱη ∈ ((η1, π) ∪̃ (η2, π))d. Then ((η1, π) ∪̃ (η2, π)) ∩̃ ((µ, ϑ) \ ϱη) , ∅̃ for every BnHyS open set (µ, ϑ)
containing ϱη. Therefore, either (η1, π) ∩̃ ((µ, ϑ) \ ϱη) , ∅̃ or (η2, π) ∩̃ ((µ, ϑ) \ ϱη) , ∅̃. Thus, either ϱη ∈
(η1, π)d or ϱη ∈ (η2, π)d and hence ϱη ∈ ((η1, π)d

∪̃ (η2, π)d). Therefore, ((η1, π) ∪̃ (η2, π))d
⊆̃ (η1, π)d

∪̃ (η2, π)d.
So, ((η1, π) ∪̃ (η2, π))d = (η1, π)d

∪̃ (η2, π)d.

Remark 5.3. The following example shows that the equality in Proposition 5.2 (2.) does not hold in general.

Example 5.4. Let
∐

1 = {a1, a2},
∐

2 = {b1, b2}, ₤̧ = {ϱ1, ϱ2, ϱ3}, π1 = {ϱ1}, π2 = {ϱ2, ϱ3}.
Suppose that τBnHy = {∅̃,

∐̃
, (η1, π), (η2, π)}, where BnHySSs (η1, π), (η2, π) are defined as below

(η1, π) = {((ϱ1, ϱ2), ({a1}, {b2})), ((ϱ1, ϱ3), (∅, {b1}))} and (η2, π) = {((ϱ1, ϱ2), ({a1}, {b2})), ((ϱ1, ϱ3), ({a2}, {b1}))}.
If we take two BnHySSs (℧, π) and (µ, π) defined as follow
(℧, π) = {((ϱ1, ϱ2), ({a1},∅)), ((ϱ1, ϱ3), ({a2}, {b1}))} and (µ, π) = {((ϱ1, ϱ2), ({a2}, {b2})), ((ϱ1, ϱ3), (∅, {b2}))}.
Then

(℧, π)d =

(ϱ1, ϱ2)ki if i = 1, 2, . . . , 15
(ϱ1, ϱ3)k j if j = 1, 2, . . . , 15,

and

(µ, π)d =

(ϱ1, ϱ2)ki if i = 1, 3, 4, 5, 7, 8, . . . , 15
(ϱ1, ϱ3)k j if j = 1, 2, . . . , 15.

Hence

(℧, π)d
∩̃ (µ, π)d =

(ϱ1, ϱ2)ki if i = 1, 3, 4, 5, 7, 8, . . . , 15
(ϱ1, ϱ3)k j if j = 1, 2, . . . , 15.

Now, since (℧, π) ∩̃ (µ, π) = {((ϱ1, ϱ2), (∅,∅)), ((ϱ1, ϱ3), (∅,∅))} = ∅̃; so, ((℧, π) ∩̃ (µ, π))d = (∅,∅).
Therefore, ((℧, π) ∩̃ (µ, π))d , (℧, π)d

∩̃ (µ, π)d.

The BnHyS points (ϱ1, ϱ2)ki and (ϱ1, ϱ3)k j , where i = 1, 2, . . . , 15 and j = 1, 2, . . . , 15, over
∐

1,
∐

2 can be
written as follow
(ϱ1, ϱ2)k1 = {((ϱ1, ϱ2), (∅, {b1})), ((ϱ1, ϱ3), (∅,∅))}
(ϱ1, ϱ2)k2 = {((ϱ1, ϱ2), (∅, {b2})), ((ϱ1, ϱ3), (∅,∅))}
(ϱ1, ϱ2)k3 = {((ϱ1, ϱ2), (∅,

∐
2)), ((ϱ1, ϱ3), (∅,∅))}

(ϱ1, ϱ2)k4 = {((ϱ1, ϱ2), ({a1},∅)), ((ϱ1, ϱ3), (∅,∅))}
(ϱ1, ϱ2)k5 = {((ϱ1, ϱ2), ({a1}, {b1})), ((ϱ1, ϱ3), (∅,∅))}
(ϱ1, ϱ2)k6 = {((ϱ1, ϱ2), ({a1}, {b2})), ((ϱ1, ϱ3), (∅,∅))}
(ϱ1, ϱ2)k7 = {((ϱ1, ϱ2), ({a1},

∐
2)), ((ϱ1, ϱ3), (∅,∅))}

(ϱ1, ϱ2)k8 = {((ϱ1, ϱ2), ({a2},∅)), ((ϱ2, ϱ3), (∅,∅))}
(ϱ1, ϱ2)k9 = {((ϱ1, ϱ2), ({a2}, {b1})), ((ϱ2, ϱ3), (∅,∅))}
(ϱ1, ϱ2)k10 = {((ϱ1, ϱ2), ({a2}, {b2})), ((ϱ2, ϱ3), (∅,∅))}
(ϱ1, ϱ2)k11 = {((ϱ1, ϱ2), ({a2},

∐
2)), ((ϱ2, ϱ3), (∅,∅))}

(ϱ1, ϱ2)k12 = {((ϱ1, ϱ2), (
∐

1,∅)), ((ϱ1, ϱ3), (∅,∅))}
(ϱ1, ϱ2)k13 = {((ϱ1, ϱ2), (

∐
1, {b1})), ((ϱ1, ϱ3), (∅,∅))}

(ϱ1, ϱ2)k14 = {((ϱ1, ϱ2), (
∐

1, {b2})), ((ϱ1, ϱ3), (∅,∅))}
(ϱ1, ϱ2)k15 = {((ϱ1, ϱ2), (

∐
1,
∐

2)), ((ϱ1, ϱ3), (∅,∅))}
(ϱ1, ϱ3)k1 = {((ϱ1, ϱ2), (∅,∅)), ((ϱ1, ϱ3), (∅, {b1}))}
(ϱ1, ϱ3)k2 = {((ϱ1, ϱ2), (∅,∅)), ((ϱ1, ϱ3), (∅, {b2}))}
(ϱ1, ϱ3)k3 = {((ϱ1, ϱ2), (∅,∅)), ((ϱ1, ϱ3), (∅,

∐
2))}
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(ϱ1, ϱ3)k4 = {((ϱ1, ϱ2), (∅,∅)), ((ϱ1, ϱ3), ({a1},∅))}
(ϱ1, ϱ3)k5 = {((ϱ1, ϱ2), (∅,∅)), ((ϱ1, ϱ3), ({a1}, {b1}))}
(ϱ1, ϱ3)k6 = {((ϱ1, ϱ2), (∅,∅)), ((ϱ1, ϱ3), ({a1}, {b2}))}
(ϱ1, ϱ3)k7 = {((ϱ1, ϱ2), (∅,∅)), ((ϱ1, ϱ3), ({a1},

∐
2))}

(ϱ1, ϱ3)k8 = {((ϱ1, ϱ2), (∅,∅)), ((ϱ1, ϱ3), ({a2},∅))}
(ϱ1, ϱ3)k9 = {((ϱ1, ϱ2), (∅,∅)), ((ϱ1, ϱ3), ({a2}, {b1}))}
(ϱ1, ϱ3)k10 = {((ϱ1, ϱ2), (∅,∅)), ((ϱ1, ϱ3), ({a2}, {b2}))}
(ϱ1, ϱ3)k11 = {((ϱ1, ϱ2), (∅,∅)), ((ϱ1, ϱ3), ({a2},

∐
2))}

(ϱ1, ϱ3)k12 = {((ϱ1, ϱ2), (∅,∅)), ((ϱ1, ϱ3), (
∐

1,∅))}
(ϱ1, ϱ3)k13 = {((ϱ1, ϱ2), (∅,∅)), ((ϱ1, ϱ3), (

∐
1, {b1}))}

(ϱ1, ϱ3)k14 = {((ϱ1, ϱ2), (∅,∅)), ((ϱ1, ϱ3), (
∐

1, {b2}))}
(ϱ1, ϱ3)k15 = {((ϱ1, ϱ2), (∅,∅)), ((ϱ1, ϱ3), (

∐
1,
∐

2))}.

Definition 5.5. A BnHySS (η, π) in a BnHySTS (
∐

1,
∐

2, τBnHy,π) is known as a BnHyS neighborhood of
the BnHyS point ϱη over

∐
1,
∐

2, if there exists a BnHyS open set (µ, π) such that ϱη ∈ (µ, π) ⊆̃ (η, π).
The BnHyS neighborhood system of BnHyS point ϱη, symbolized by Nτ(ϱη), is the family of all its BnHyS
neighborhoods.

Definition 5.6. A BnHySS (η, π) in a BnHySTS (
∐

1,
∐

2, τBnHy,π) is known as a BnHyS neighborhood of
the BnHySS (℧, π), if there exists a BnHyS open set (µ, π) such that (℧, π) ⊆̃ (µ, π) ⊆̃ (η, π).

Theorem 5.7. Let (
∐

1,
∐

2, τBnHy,π) be a BnHySTS over
∐

1,
∐

2, then

1. If (η, π) is a BnHyS neighborhood of ϱη over
∐

1,
∐

2, then ϱη ∈ (η, π).

2. Each ϱη ⊆̃
∐̃

has a BnHyS neighborhood.

3. If (η, π) and (µ, π) are BnHyS neighborhoods of ϱη ⊆̃
∐̃

, then (η, π) ∩̃ (µ, π) is also a BnHyS neighborhood of
ϱη ⊆̃

∐̃
.

4. If (η, π) is a BnHyS neighborhood of ϱη ⊆̃
∐̃

, and (η, π) ⊆̃ (µ, π), then (µ, π) is also a BnHyS neighborhood of
ϱη ⊆̃

∐̃
.

Proof. 1. If (η, π) is a BnHyS neighborhood of ϱη, then there is a BnHyS open set (µ, π) ∈ τBnHy such that
ϱη ∈ (µ, π) ⊆̃ (η, π). Therefore, we have ϱη ∈ (η, π).

2. For any ϱη ∈
∐̃

, so ϱη ∈
∐̃
⊆̃
∐̃

. Thus,
∐̃

is a BnHyS neighborhood of ϱη.

3. Let ϱη ∈
∐̃

be any BnHyS point and let (η, π) and (µ, π) be any two BnHyS neighborhoods of ϱη.
Now to prove (η, π) ∩ (µ, π) is also a BnHyS neighborhood of ϱη. Now (η, π) is a BnHyS neighborhood of
ϱη implies that there exists a BnHyS open set (℧, π such that ϱη ∈ (℧, π)⊆ (η, π). Also (µ, π) is a BnHyS
neighborhood of ϱη implies that there exists a BnHyS open set (Ķ, π) such that ϱη ∈ (Ķ, π)⊆ (µ, π).
Now (℧, π)∩(Ķ, π) is BnHyS open set, also we have

ϱη ∈ [(℧, π)∩(Ķ, π)] ⊆ [(η, π)∩(µ, π)].

Thus, there exists a BnHyS open set [(℧, π) ∩ (Ķ, π)] such that

ϱη ∈ [(℧, π) ∩ (Ķ, π)] ⊆ [(η, π) ∩ (µ, π)].

From the definition of BnHyS neighborhood, it follows [(η, π)∩ (µ, π)] is a BnHyS neighborhood of ϱη. Thus,
the intersection of any two BnHyS neighborhoods is again BnHyS neighborhood.

4. Let ϱη ∈
∐̃

be any BnHyS point and let (η, π) be an BnHyS neighborhood of ϱη. Let (µ, π) be any BnHyS
superset of (η, π). Now, since (µ, π) is also a BnHyS neighborhood of ϱη; therefore, there exists a BnHyS open
set (℧, π) such that ϱη ∈ (℧, π) ⊆ (η, π). Now, (η, π) is a BnHyS subset of (µ, π) this implies (η, π) ⊆ (µ, π).
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Therefore, we have ϱη ∈ (℧, π) ⊆ (η, π) ⊆ (µ, π), which implies ϱη ∈ (℧, π) ⊆ (µ, π). Thus, there exists a
BnHyS open set (℧, π) such that ϱη ∈ (℧, π) ⊆ (µ, π). Therefore, (µ, π) is a BnHyS neighborhood of ϱη. Thus,
every BnHyS superset of a BnHyS neighborhood is again a BnHyS neighborhood of that point.

Definition 5.8. Let (
∐

1,
∐

2, τBnHy,π) be a BnHySTS and (η, π) be a BnHySS over
∐

1,
∐

2. The BnHyS
intersection of all BnHyS closed super sets of (η, π) is known as the BnHyS closure of (η, π) and is symbolized
by Cl(η, π).
In other words, Cl(η, π) = {∩̃(µ, π) | (µ, π)c

∈ τBnHy, (η, π) ⊆̃ (µ, π)}.
Thus, Cl(η, π) is the smallest BnHyS closed set containing (η, π).

Example 5.9. Let
∐

1 = {ρ1, ρ2, ρ3, ρ4, ρ5},
∐

2 = {σ1, σ2, σ3, σ4}, ₤̧ = {ϱ1, ϱ2, ϱ3, ϱ4}, π1 = {ϱ1, ϱ2}, π2 = {ϱ3, ϱ4}

and τBnHy = {∅̃,
∐̃
, (η1, π), (η2, π), (η3, π), (η4, π)},

where (η1, π), (η2, π), (η3, π), (η4, π) are BnHySSs defined as follow:
(η1, π) ={((ϱ1, ϱ3), ({ρ1}, {σ1})), ((ϱ1, ϱ4), ({ρ2}, {σ2})), ((ϱ2, ϱ3), (∅,∅)), ((ϱ2, ϱ4), ({ρ3}, {σ3}))}.
(η2, π) ={((ϱ1, ϱ3), ({ρ4}, {σ4})), ((ϱ1, ϱ4), ({ρ3}, {σ1})), ((ϱ2, ϱ3), ({ρ1, ρ2}, {σ3})), ((ϱ2, ϱ4), ({ρ3, ρ5}, {σ1, σ2}))}.
(η3, π) ={((ϱ1, ϱ3), ({ρ1, ρ4}, {σ1, σ4})), ((ϱ1, ϱ4), ({ρ2, ρ3}, {σ1, σ2})), ((ϱ2, ϱ3), ({ρ1, ρ2}, {σ3})), ((ϱ2, ϱ4), ({ρ3, ρ5}, {σ1,
σ2, σ3}))}.
(η4, π) ={((ϱ1, ϱ3), (∅,∅)), ((ϱ1, ϱ4), (∅,∅)), ((ϱ2, ϱ3), (∅,∅)), ((ϱ2, ϱ4), ({ρ3},∅))}.

Let (µ, π) = {((ϱ1, ϱ3), ({ρ3, ρ5}, {σ2})), ((ϱ1, ϱ4), ({ρ5}, {σ1, σ3})), ((ϱ2, ϱ3), ({ρ4, ρ5}, {σ2})), ((ϱ2, ϱ4), ({ρ2, ρ4}, {σ1, σ2}

))}.
Then BnHyS closure of (µ, π) is:
Cl(µ, π) = (η1, π)c = {((ϱ1, ϱ3), ({ρ2, ρ3, ρ4, ρ5}, {σ2, σ3, σ4})), ((ϱ1, ϱ4), ({ρ1, ρ3, ρ4, ρ5}, {σ1, σ3, σ4})), ((ϱ2, ϱ3), (

∐
1,∐

2)), ((ϱ2, ϱ4), ({ρ1, ρ2, ρ4, ρ5}, {σ1, σ2, σ4}))}.

Proposition 5.10. Let (
∐

1,
∐

2, τBnHy,π) be a BnHySTS and (η, π),(µ, π) be two BnHySSs over
∐

1,
∐

2. Then

1. Cl(∅̃, π) = (∅̃, π) and Cl(
∐̃
, π) = (

∐̃
, π).

2. (η, π) ⊆̃ Cl(η, π).
3. (η, π) is BnHyS closed if and only if Cl(η, π) = (η, π).
4. Cl(Cl(η, π)) = Cl(η, π).
5. If (η, π) ⊆̃ (µ, π), then Cl(η, π) ⊆̃ Cl(µ, π).
6. Cl((η, π) ∪̃ (µ, π)) = Cl(η, π) ∪̃ Cl(µ, π).
7. Cl((η, π) ∩̃ (µ, π)) ⊆̃ Cl(η, π) ∩̃ Cl(µ, π).

Proof. (1.) and (2.) are obvious.
3. If (η, π) is a BnHyS closed set over

∐
1,
∐

2, then (η, π) is itself a BnHyS closed set over
∐

1,
∐

2 which
contains (η, π). So (η, π) is the smallest BnHyS closed set containing (η, π) and (η, π) = Cl(η, π).
Conversely, suppose that (η, π) = Cl(η, π). Since Cl(η, π) is BnHyS closed, so (η, π) is a BnHyS closed set
over

∐
1,
∐

2.

4. Since Cl(η, π) is a BnHyS closed set, therefore by part (3.), we have Cl(Cl(η, π)) = Cl(η, π).

5. Since (η, π) ⊆̃ (µ, π) and (µ, π) ⊆̃ Cl(µ, π) then (η, π) ⊆̃ (µ, π) ⊆̃ Cl(µ, π) and hence (η, π) ⊆̃ Cl(µ, π), so
Cl(η, π) ⊆̃ Cl(Cl(µ, π)) which implies that Cl(η, π) ⊆̃ Cl(µ, π).

6. Since (η, π) ⊆̃ (η, π) ∪̃ (µ, π) and (µ, π) ⊆̃ (η, π) ∪̃ (µ, π). So, by part (5.)
Cl(η, π) ⊆̃ Cl((η, π) ∪̃ (µ, π)) and Cl(µ, π) ⊆̃ Cl((η, π) ∪̃ (µ, π)).
Thus, Cl(η, π) ∪̃ Cl(µ, π) ⊆̃ Cl((η, π) ∪̃ (µ, π)).
Conversely, suppose that (η, π) ⊆̃ Cl(η, π) and (µ, π) ⊆̃ Cl(µ, π).
So, (η, π) ∪̃ (µ, π) ⊆̃ Cl(η, π) ∪̃ Cl(µ, π). Since Cl(η, π) and Cl(µ, π) are BnHyS closed sets, then Cl(η, π) ∪̃ Cl(µ, π)
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is a BnHyS closed set. By part (4.) Cl(Cl(η, π) ∪̃ Cl(µ, π)) = Cl(η, π) ∪̃ Cl(µ, π) implies that Cl((η, π) ∪̃ (µ, π)) ⊆̃
Cl(η, π) ∪̃ Cl(µ, π). Thus, Cl((η, π) ∪̃ (µ, π)) = Cl(η, π) ∪̃ Cl(µ, π).

7. Since (η, π) ∩̃ (µ, π) ⊆̃ (η, π) and (η, π) ∩̃ (µ, π) ⊆̃ (µ, π). So, by part (5.) Cl((η, π) ∩̃ (µ, π)) ⊆̃ Cl(η, π)
and Cl((η, π) ∩̃ (µ, π)) ⊆̃ Cl(µ, π). Hence, Cl((η, π) ∩̃ (µ, π)) ⊆̃ Cl(η, π) ∩̃ Cl(µ, π).

Remark 5.11. This example demonstrates that the equivalence in Proposition 5.10 (7.) is not often true.

Example 5.12. Let
∐

1 = {ρ1, ρ2, ρ3},
∐

2 = {σ1, σ2, σ3}, ₤̧ = {ϱ1, ϱ2, ϱ3}, π1 = {ϱ1}, π2 = {ϱ2, ϱ3} and τBnHy =

{∅̃,
∐̃
, (η1, π), (η2, π), (η3, π), (η4, π), (η5, π)} be a BnHyST defined over

∐
1,
∐

2,
where (η1, π), (η2, π), (η3, π), (η4, π), (η5, π) are defined as follow:
(η1, π) = {((ϱ1, ϱ2), ({ρ2}, {σ2})), ((ϱ1, ϱ3), ({ρ1}, {σ1}))}.
(η2, π) = {((ϱ1, ϱ2), ({ρ2, ρ3}, {σ2, σ3})), ((ϱ1, ϱ3), ({ρ1, ρ2}, {σ1, σ2}))}.
(η3, π) = {((ϱ1, ϱ2), ({ρ1, ρ2}, {σ1, σ2})), ((ϱ1, ϱ3), (

∐
1,
∐

2))}.
(η4, π) = {((ϱ1, ϱ2), ({ρ1, ρ2}, {σ1, σ2})), ((ϱ1, ϱ3), ({ρ1, ρ3}, {σ1, σ3}))}.
(η5, π) = {((ϱ1, ϱ2), ({ρ2}, {σ2})), ((ϱ1, ϱ3), ({ρ1, ρ2}, {σ1, σ2}))}.
Clearly, we consider the BnHyS closed sets are:
(η1, π)c = {((ϱ1, ϱ2), ({ρ1, ρ3}, {σ1, σ3})), ((ϱ1, ϱ3), ({ρ2, ρ3}, {σ2, σ3}))}.
(η2, π)c = {((ϱ1, ϱ2), ({ρ1}, {σ1})), ((ϱ1, ϱ3), ({ρ3}, {σ3}))}.
(η3, π)c = {((ϱ1, ϱ2), ({ρ3}, {σ3})), ((ϱ1, ϱ3), (∅,∅))}.
(η4, π)c = {((ϱ1, ϱ2), ({ρ3}, {σ3})), ((ϱ1, ϱ3), ({ρ2}, {σ2}))}.
(η5, π)c = {((ϱ1, ϱ2), ({ρ1, ρ3}, {σ1, σ3})), ((ϱ1, ϱ3), ({ρ3}, {σ3}))}.
Now we consider the BnHySSs (µ, π) and (℧, π),
(µ, π) = {((ϱ1, ϱ2), ({ρ1}, {σ3})), ((ϱ1, ϱ3), ({ρ2}, {σ2}))}.
(℧, π) = {((ϱ1, ϱ2), ({ρ2}, {σ3})), ((ϱ1, ϱ3), ({ρ1, ρ2}, {σ3}))}.
(µ, π) ∩̃ (℧, π) = {((ϱ1, ϱ2), (∅, {σ3})), ((ϱ1, ϱ3), ({ρ2},∅))}.
Then,
Cl(µ, π) = {((ϱ1, ϱ2), ({ρ1, ρ3}, {σ1, σ3})), ((ϱ1, ϱ3), ({ρ2, ρ3}, {σ2, σ3}))} and
Cl(℧, π) = {((ϱ1, ϱ2), (

∐
1,
∐

2)), ((ϱ1, ϱ3), (
∐

1,
∐

2))}.
Hence, Cl(µ, π) ∩̃ Cl(℧, π) = {((ϱ1, ϱ2), ({ρ1, ρ3}, {σ1, σ3})), ((ϱ1, ϱ3), ({ρ2, ρ3}, {σ2, σ3}))} and
Cl((µ, π) ∩̃ (℧, π)) = {((ϱ1, ϱ2), ({ρ3}, {σ3})), ((ϱ1, ϱ3), ({ρ2}, {σ2}))}.
Thus, Cl((η, π) ∩̃ (µ, π)) ⊆̃ Cl(η, π) ∩̃ Cl(µ, π).
But Cl((η, π) ∩̃ (µ, π)) ⊉̃ Cl(η, π) ∩̃ Cl(µ, π).

Definition 5.13. Let (
∐

1,
∐

2, τBnHy,π) be a BnHySTS and (η, π) be a BnHySS over
∐

1,
∐

2. Then BnHyS
interior of BnHySS (η, π) over

∐
1,
∐

2 is symbolized by Int(η, π) and is described as the BnHyS union of all
BnHyS open sets contained in (η, π).
In other words, Int(η, π) = ∪̃{(µ, π) | (µ, π) ∈ τBnHy (µ, π) ⊆̃(η, π)}.
Thus, Int(η, π) is the largest BnHyS open set contained in (η, π).

Proposition 5.14. Let (
∐

1,
∐

2, τBnHy,π) be a BnHySTS and (η, π), (µ, π) be two BnHySSs over
∐

1,
∐

2. Then

1. Int(∅̃, π) = (∅̃, π) and Int(
∐̃
, π) = (

∐̃
, π).

2. Int(η, π) ⊆̃ (η, π).
3. Int(Int(η, π)) = Int(η, π).
4. (η, π) is BnHyS open if and only if Int(η, π) = (η, π).
5. If (η, π) ⊆̃ (µ, π), then Int(η, π) ⊆̃ Int(µ, π).
6. Int((η, π) ∩̃ (µ, π)) = Int(η, π) ∩̃ Int(µ, π).
7. Int(η, π) ∪̃ Int(µ, π) ⊆̃ Int((η, π) ∪̃ (µ, π)).

Proof. (1.) and (2.) are obvious.
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3. Since Int(η, π) is BnHyS open and Int(Int(η, π)) is the BnHyS union of all BnHyS open subsets over∐
1,
∐

2 contained in Int(η, π), then Int(η, π) ⊆̃ Int(Int(η, π)). But in general Int(Int(η, π)) ⊆̃ Int(η, π). Hence
Int(Int(η, π)) = Int(η, π).

4. If (η, π) is a BnHyS open set, then (η, π) is itself a BnHyS open set contains (η, π). So Int(η, π) is the
largest BnHyS open set contained in (η, π) and (η, π) = Int(η, π).
Conversely, suppose that (η, π) = Int(η, π). Since Int(η, π) is a BnHyS open set, so (η, π) is BnHyS open set.

5. Suppose that (η, π) ⊆̃ (µ, π). Since Int(η, π) ⊆̃ (η, π) ⊆̃ (µ, π). Int(η, π) is a BnHyS open subset of (µ, π),
so by definition of Int(µ, π), Int(η, π) ⊆̃ Int(µ, π).

6. Since (η, π) ∩̃ (µ, π) ⊆̃ (η, π) and (η, π) ∩̃ (µ, π) ⊆̃ (µ, π), then we have by (5.), Int((η, π) ∩̃ (µ, π)) ⊆̃ Int(η, π)
and Int((η, π) ∩̃ (µ, π)) ⊆̃ Int(µ, π). This implies that Int((η, π) ∩̃ (µ, π)) ⊆̃ Int(η, π) ∩̃ Int(µ, π).

Conversely, Int(η, π) ⊆̃ (η, π) and Int(µ, π) ⊆̃ (µ, π) implies that
Int(η, π) ∩̃ Int(µ, π) ⊆̃ (η, π) ∩̃ (µ, π). Therefore Int(η, π) ∩̃ Int(µ, π) is a BnHyS open subset of (η, π) ∩̃ (µ, π).
Hence Int(η, π) ∩̃ Int(µ, π) ⊆̃ Int((η, π) ∩̃ (µ, π)).
Thus, Int((η, π) ∩̃ (µ, π)) = Int(η, π) ∩̃ Int(µ, π).

7. Since (η, π) ⊆̃ (η, π) ∪̃ (µ, π) and (µ, π) ⊆̃ (η, π) ∪̃ (µ, π). So by part (5),
Int(η, π) ⊆̃ Int((η, π) ∪̃ (µ, π)) and Int(µ, π) ⊆̃ Int((η, π) ∪̃ (µ, π)).
Thus Int(η, π) ∪̃ Int(µ, π) ⊆̃ Int((η, π) ∪̃ (µ, π)).

Remark 5.15. This example demonstrates that the equivalence in Proposition 5.14 (7.) is not often true.

Example 5.16. Let’s think about the BnHySTS (
∐

1,
∐

2, τBnHy,π) over
∐

1,
∐

2 in Example 5.12 and the
BnHySSs (℧, π) and (µ, π) defined as follow:
(℧, π) = {((ϱ1, ϱ2), ({ρ2}, {σ2})), ((ϱ1, ϱ3), ({ρ1, ρ3}, {σ1, σ3}))} and
(µ, π) = {((ϱ1, ϱ2), ({ρ1, ρ3}, {σ1, σ3})), ((ϱ1, ϱ3), (

∐
1,
∐

2))}.
Then (℧, π) ∪̃ (µ, π) = {((ϱ1, ϱ2), (

∐
1,
∐

2)), ((ϱ1, ϱ3), (
∐

1,
∐

2))},
Int(℧, π) = {((ϱ1, ϱ2), ({ρ2}, {σ2})), ((ϱ1, ϱ3), ({ρ1}, {σ1}))} and
Int(µ, π) = {((ϱ1, ϱ2), (∅,∅)), ((ϱ1, ϱ3), (∅,∅))}.
Hence, Int(℧, π) ∪̃ Int(µ, π) = {((ϱ1, ϱ2), ({ρ2}, {σ2})), ((ϱ1, ϱ3), ({ρ1}, {σ1}))} and
Int((℧, π) ∪̃ (µ, π)) = {((ϱ1, ϱ2), (

∐
1,
∐

2)), ((ϱ1, ϱ3), (
∐

1,
∐

2))}.
So that Int(℧, π) ∪̃ Int(µ, π) ⊆̃ Int((℧, π) ∪̃ (µ, π)).
But Int(℧, π) ∪̃ Int(µ, π) ⊉̃ Int((η, π) ∪̃ (µ, π)).

Proposition 5.17. Let (
∐

1,
∐

2, τBnHy,π) be a BnHySTS and (η, π) be a BnHySS over
∐

1,
∐

2. Then

1. (Cl(η, π))c = Int((η, π)c).
2. Cl((η, π)c) = (Int(η, π))c.
3. Cl(η, π) = (Int((η, π)c))c.
4. Int(η, π) = (Cl((η, π)c))c.

Proof. From the definitions of BnHyS closure and BnHyS interior, we have
1. Cl(η, π) = ∩̃ {(µ, π) | (µ, π)c

∈ τBnHy, (η, π) ⊆̃ (µ, π)}. Then
(Cl(η, π))c = [∩̃ {(µ, π) | (µ, π)c

∈ τBnHy, (η, π) ⊆̃ (µ, π)}]c and hence
(Cl(η, π))c = ∪̃ {(µ, π)c

| (µ, π)c
∈ τBnHy, (µ, π)c

⊆̃ (η, π)c
} = Int((η, π)c).

We can prove (2.), (3.) and (4.) by the same way.
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Definition 5.18. Let (
∐

1,
∐

2, τBnHy,π) be a BnHySTS and (η, π) be a BnHySS over
∐

1,
∐

2, then Bn-
HyS boundary of BnHySS (η, π) over

∐
1,
∐

2 is symbolized by b(η, π) and is described as b(η, π) =

Cl(η, π) ∩̃ Cl((η, π)c).

Proposition 5.19. Let (
∐

1,
∐

2, τBnHy,π) be a BnHySTS and (η, π) be a BnHySS over
∐

1,
∐

2. Then

1. b(η, π) ⊆̃ Cl(η, π).
2. b(η, π) = Cl(η, π) ∩̃ (Int(η, π))c = Cl(η, π) \̃ Int(η, π).
3. Int(η, π) = (η, π) \̃ b(η, π).
4. b(Int(η, π)) ⊆̃ b(η, π).
5. b(Cl(η, π)) ⊆̃ b(η, π).

Proof. 1. b(η, π) = Cl(η, π) ∩̃ Cl((η, π)c) ⊆̃ Cl(η, π).

2. b(η, π) = Cl(η, π) ∩̃ Cl((η, π)c) = Cl(η, π) ∩̃ (Int(η, π))c = Cl(η, π) \̃ Int(η, π).

3. (η, π) \̃ b(η, π) = (η, π) ∩̃ (b(η, π))c = (η, π) ∩̃ (Int((η, π)c) ∪̃ Int(η, π))
= ((η, π) ∩̃ Int((η, π)c)) ∪̃ ((η, π) ∩̃ Int(η, π)) = ∅̃ ∪̃ Int(η, π) = Int(η, π).

4. b(Int(η, π)) = Cl(Int(η, π)) ∩̃ Cl((Int(η, π))c) ⊆̃ Cl(η, π) ∩̃ Cl((η, π)c) = b(η, π).

5. b(Cl(η, π)) = Cl(Cl(η, π)) ∩̃ Cl((Cl(η, π))c) ⊆̃ Cl(η, π) ∩̃ Cl((η, π)c) = b(η, π).

Proposition 5.20. Let (
∐

1,
∐

2, τBnHy,π) be a BnHySTS and (η, π), (µ, π) be two BnHySSs over
∐

1,
∐

2. Then

1. b((η, π) ∪̃ (µ, π)) ⊆̃ b(η, π) ∪̃ b(µ, π).
2. b((η, π) ∩̃ (µ, π)) ⊆̃ b(η, π) ∪̃ b(µ, π).

Proposition 5.21. Let (
∐

1,
∐

2, τBnHy,π) be a BnHySTS and (η, π) be a BnHySSs over
∐

1,
∐

2. Then

Int(η, π) ∪̃ b(η, π) = Cl(η, π).

6. Conclusion

In this paper, we proposed a novel extension of hypersoft sets, referred to as binary hypersoft sets,
which provide a more comprehensive generalization of binary soft sets by operating over two universal
sets and a parameter set. We defined and explored several fundamental operations on BnHySSs, including
subset, superset, equality, complement, null and absolute sets, as well as extended and standard versions of
union, intersection, difference, AND, and OR. In addition to establishing basic properties of BnHySSs, we
conducted a comparative analysis with existing frameworks such as HySSs and BnSSs. Furthermore, we
introduced the concept of binary hypersoft topology and the related notion of binary hypersoft subspace.
Finally, we examined key topological constructs—limit points, neighborhoods, closures, interiors and
boundaries—within the context of BnHySSs, thereby demonstrating the potential of this new structure for
further theoretical exploration and practical applications.

The introduction of BnHySSs opens up several promising directions for future research. One potential
area is the development of decision-making models and algorithms based on BnHySSs, particularly in en-
vironments involving multiple universal sets and complex parameter dependencies. Further investigation
into the algebraic and categorical properties of BnHySSs could deepen the theoretical foundations and re-
veal new connections with other soft set extensions. Additionally, expanding the framework to incorporate
fuzzy, intuitionistic, or rough elements may enhance its applicability to real-world problems character-
ized by uncertainty and vagueness. From a topological perspective, exploring continuity, compactness,
connectedness, and other advanced topological properties within the BnHySS context could yield richer
mathematical structures. Finally, practical applications in areas such as data science, artificial intelligence,
medical diagnosis, and engineering decision systems remain a compelling direction for future exploration.
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