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Abstract. This paper introduces a novel extension of hypersoft sets, termed binary hypersoft sets (Bn-
HySSs), representing an advanced generalization of binary soft sets over two universal sets and a parameter
set. It presents fundamental operations of BnHySSs such as subset, superset, equality, complement, null and
absolute sets, extended union/intersection, union, intersection, difference, AND, and OR operations. We
also examine foundational properties and provide a comparative analysis of BnHySSs, HySSs, and BnSSs.
Building on this foundation, we introduce the notion of binary hypersoft topology and its corresponding
subspace concept. Further, we explore topological notions within this framework, including limit points,
neighborhoods, closure, interior, and boundary in the context of BnHySSs.

1. Introduction

In the realm of mathematical modeling and decision-making, dealing with uncertainty, vagueness, and
incomplete information is a common challenge. Traditional mathematical tools like classical set theory,
fuzzy set theory, and rough set theory have been employed to address these issues. However, in 1999,
Molodtsov [22] introduced a new approach called Soft Set Theory, which provides a more general and
flexible framework for handling uncertainty. Soft set theory is based on the concept of parameterization.
Unlike classical sets that focus on object membership, soft sets associate parameters with subsets of a
universe, allowing for a more nuanced representation of data. This parameterized structure makes soft sets
particularly useful in fields such as decision-making, data analysis, engineering, medical diagnosis, and
social sciences.

In [23], Molodtsov et al. effectively used soft sets in fields including probability, theory of measure-
ment, Riemann integration, Perron integration, operations research, theories of games, and smoothness of
functions. In 2005, Pie and Miao [30] enhanced the outcomes of Maji et al. [20]. Lately, in 2011 Shabir
and Naz [38] started delving into the realm of soft topological spaces, alongside other academics, such as
Aygunoglu, [11], Ahmad [4], Maji [21], Hussain [17] continued work on soft topology. Some theoretical
studies on the theory of soft sets can be found in [5-8, 15, 19] in more details.
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Building upon Molodtsov’s foundational work on soft sets, researchers have proposed various exten-
sions to enhance the theory’s applicability and structural richness. One such extension is the concept of
binary soft sets, introduced to address problems involving binary relations under uncertainty. In 2016,
Acikgoz and Ta§ [3], presented a novel framework that integrates binary relations into the structure of soft
sets called binary soft set (BnSS) theory on two initial universal sets and examined a few features, allowing
for a more expressive representation of relational data. This approach not only generalizes classical soft
set theory but also opens new avenues for research in relational decision-making and other applied dis-
ciplines. In 2017, Benchalli, Patil, Dodamani, and Pradeepkumar [12] introduced binary soft topological
spaces and binary soft operators. Later on, Hussain [16] investigated further properties of binary soft
topological spaces. Many researchers have worked on binary soft sets to explore their structure, properties,
and applications such as [13, 14, 29, 37].

In the evolving landscape of mathematical tools used to handle uncertainty, ambiguity, and vagueness,
Hypersoft Set Theory has emerged as a novel and promising approach. Introduced as an extension of
soft set theory, hypersoft sets provide a more refined structure to model complex decision-making prob-
lems where multi-parameter and multi-subparameter relationships are involved. Unlike classical soft sets,
which associate a single set of parameters with approximate values, hypersoft sets allow for a multi-layered
parameterization, enabling a more detailed and flexible representation of data. This enhanced granularity
makes hypersoft set theory particularly suitable for real-world applications in fields such as medical diag-
nosis, engineering, data analysis, and artificial intelligence, where nuanced and hierarchical data structures
often arise. By accommodating sub-parameter values within the decision-making process, hypersoft sets
overcome limitations of existing frameworks like fuzzy sets, rough sets, and intuitionistic fuzzy sets, of-
fering a more adaptable and comprehensive mathematical foundation for dealing with indeterminate and
imprecise information.

Smarandache [39] explored the fundamental concepts of hypersoft set (HySS) theory, reviews its al-
gebraic structure, and discusses its advantages over traditional soft computing methods. Furthermore,
potential applications and future research directions are outlined, emphasizing the theory’s significance
in contemporary data science and intelligent systems. This approach is better suited for decision-making
problems and is more flexible than soft sets. Smarandache also introduced fuzzy HySSs, intuitionistic
fuzzy HySSs, neutrosophic HySSs, and plithogenic HySSs as extensions of the HySSs. Based on the HySSs
and their extension, many researchers have developed various operators, properties, and applications
[1, 9, 25, 26, 34, 35]. In 2022, Musa and Asaad [24] presented the concept of bipolar HySS which is a
novel extension of HySS. They explored bipolar HyS topological space [27]. Recentrly, Musa, Mohammed
and Asaad [28] introduced N-hypersoft sets which is an enriched and versatile extension of HyS sets.
Many researchers have worked on the development and application of hypersoft set theory to enhance its
mathematical foundation and practical utility such as [2, 10, 18, 31-33, 36]

The structure of the paper is as follows: Section 2 provides a brief overview of HySS, HyST, BnSS and
BnST and some relevant properties. In Section 3, we define a novel extension of hypersoft sets called
the binary hypersoft sets (BnHySSs) which is an advanced generalization of binary soft sets over two
universal sets and a parameter set. Later, we present some operations on binary hypersoft sets such as
BnHyS subset, BnHyS superset, BnHyS equality, BnHyS complement, BnHyS null, BnHyS absolute, BnHyS
extended union, BnHyS extended intersection, BnHyS union, intersection, BnHyS difference, BnHyS AND
and BnHyS OR. Furthermore, we explore some of their basic properties. Also, we compare among BnHySSs,
HySSs and BnSSs. Additionally, in Section 4, we introduce the concept of binary hypersoft topology and
we present the concept of binary hypersoft subspace. In Section 5, we investigate binary hypersoft limit
points, binary hypersoft neighborhood, binary hypersoft closure, binary hypersoft interior and binary
hypersoft boundary. Finally, Section 6 concludes with a summary of findings and potential avenues for
future research.

2. Preliminaries

This section explores the foundational principles and operations associated with soft sets and their
extension such as hypersoft sets and binary soft sets.
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2.1. Hypersoft sets and hypersoft topology

This section introduces the core concepts and results related to hypersoft sets and hypersoft topology.
Hypersoft sets, an advanced generalization of soft sets, introduce enhanced parameterization for handling
complex data. Key relationships such as hypersoft subset and hypersoft equal are defined to facilitate
comparisons between hypersoft sets. Operations like hypersoft union, hypersoft ], hypersoft complement,
and hypersoft difference are presented to demonstrate their utility in managing hypersoft structures. Addi-
tionally, logical operators, including hypersoft AND and hypersoft OR, are analyzed for their applications
in decision-making and problem-solving processes.

Let ] be an initial universe set and the non empty set £ be an entire set of parameters. The power set
of ][] can be represented as (I 1), and let @ # m;, 9; C£withi=1,2,..,n.

Definition 2.1. [22] Let = C £. A pair (1, 7t) is referred to as a soft set over [], where the mapping 7 is
provided by n : m — B(LI). Stated differently, a parameterized family of subsets of the universe ][] is
referred to as a soft set over [ [. One way to think of n(p) is as the set of e-approximate members of the soft
set for a given ¢ € 7.

Definition 2.2. [39] It is possible to identify a hypersoft set (HySS) by the pair (1, 11 X 71 X ... X 7,), where:

n:m XmX... X1, — B(I).

In order to keep things simple, we write 7t for m; X 12 X ... X 71, and g for an element of the set . We also
suppose that none of the set 7; is empty for each i.

Definition 2.3. [34] Itis said (1, 7t) is a hypersoft (HyS) subset of (u, 8) if 1 C 3, where § = 31 X 9, X... X 8,
and n(g) € u(p) for each p € m. We write (1, 1) c (u,9).
An HySS (1, ) is claimed to be an HyS superset of (u, 9), if (4, 9) is an HyS subset of (1, r). We write (1, 1)

2 (1, 9).

Definition 2.4. [34] Two HySSs (1, ) and (p, 9) are claimed to be an HyS equal if (1, 7t) is an HyS subset of
(u,9) and (u, 9) is an HyS subset of (1, ).

Definition 2.5. [35] Let (1, ©) and (u, 9) be two HySSs over []. Then the HyS extended union of (1), ©) and
(u, 9) is symbolized by (O, D) = (1, n)Gg(y, N withD = Dy xD,x...xD, where D, = m;Ud; withi =1,2,...,n,
and O can be characterized by

(o) ifoen—39
O(0) = u(0) ifoed-n
ne) Vule) ifoennd+o

where o = (D, D,, ..., D,) € D.

Remark 2.6. [35] It should be noted that when two HySSs are united, the set of parameters is a Cartesian
product of the sets of parameters; when two soft sets are united, the set of parameters is simply the union
of the sets of parameters.

Definition 2.7. [35] Let (1, ®) and (u, 9) be two HySSs over [ [. Then the HyS extended intersection of (1, )
and (u,9) is symbolized by (G,D) = (n, n)ﬁg(y, I with D = D; xD, X...x D, where D; = m; U Y; with
i=1,2,..,n,and O can be characterized by

(o) ifoemn—9
Olo) =q (@) ifoe9—n
ne)Nulp) ifpennNd+#0

where ¢ = (D, Dy, ..., D,) € D.
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Definition 2.8. [35] Let (1, ) and (u, 9) be two HySSs over []. Then the HyS union of (1, ) and (y, 9) is
symbolized by (O, D)=(n, m)U(y,d) with D = D; XD, X ... XD, where D, = ;N Y; # @ withi =1,2,...,n,
and O can be characterized by

O(0) = n(m) U u(I)

where 0 = (D, D,, ..., D,) € D. If, for some i, D, is an empty set, then (7, R)G([J, J) is defined to be a null
HySS.

Definition 2.9. [35] Let (1, ) and (p, 9) be two HySSs over [ [. Then the HyS intersection of (1, ) and (u, 9)
is symbolized by (O, D)=(n, m)N(y, 9) with D =D; XD, X ... x D, where D, = ;N Y; # @ withi =1,2,...,n,
and O can be characterized by

O(0) = n(m) N u(9)

where 0 = (D, D,,...,D,) € D. If, for some i, ), is an empty set, then (1, n)ﬁ(y, J) is defined to be a null
HySS.

Definition 2.10. [35] Let (1, ®) and (i, 9) be two HySSs over ] ]. Then the HyS difference of (1, 7t) and (u, 9)

is symbolized by (O, D)=(n, m)\(u,9) with D = D; XD, x ... XD, where D, = ;N 9; # @ withi =1,2,...,n,
and O can be characterized by

O(0) = n(m) \ u(d)
where o = (D, D,, ..., D,) € D.

Definition 2.11. [34] The HyS complement of an HySS (7, ), symbolized by (1, )¢, can be characterized
by (1%, m) where 1 : 1 — B(L1) is a mapping given by n°(¢) = I1\n(o) for each p € m.

Definition 2.12. [35] It is said an HySS (1, 7) a null HySS, symbolized by (2, n1), if (g) = @ for each g € 7.

Definition 2.13. [35] It is said an HySS (), ) an absolute HySS, symbolized by (ﬁ, n), if n(g) = 11 for each
pE .

Definition 2.14. [26] Let (17, ©) be an HySS over [] and u € [[. Then u € (1, n) if u € 1n(p) for each g € n.
Keep in mind that for every u € [ [, u ¢ (1, ), if u ¢ 1(p) for some g € 7.

Definition 2.15. [26] Let 74 be the collection of HySSs over [ [, then 74, is claimed to be a hypersoft topology
(HyST) on [T if:

1. (2, n),(ﬁ, 1) belongs to T4,.
2. The HyS intersection of any two HySSs in 74 belongs to 4.
3. The HyS union of any number of HySSs in 74/ belongs to 4.

Then (ﬁ, T(,£) is known as hypersoft topological space (HySTS). The members of 74, are claimed to be
HyS open sets in [ [. An HySS (1, t) over ] is claimed to be an HyS closed set in [, if its HyS complement
(n, m)° belongs to T4,.

Definition 2.16. [26] Let (ﬁ, T4¢,£) be an HySTS over ][, and V be a non empty subset of [ [. Then

Ty = {My, 7)) | (1, 7) € T}

is claimed to be relative HyST on V and (V,74/4,£) is known as an HyS subspace of (ﬁ, Ty £).
It is simple to confirm that 74/, is an HyST on V.
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Definition 2.17. [26] Let (ﬁ, T¢¢,£) be an HySTS over [[ and let (17, ) be an HySS over []. A pointu € [ is
called a hypersoft limit point of (1, ) if (n, 7) n (u, 9) \fu} # @ for every HyS open set (u, 9) containing u.
The set of all hypersoft limit points of (1, 7t) is called the hypersoft derived set of (1, ) and is denoted by
(n, ).

Proposition 2.18. [26] Let (H, Tg¢,£) be an HySTS over [ [ and let (n, ) and (u, S) be two HySSs over [ . Then

1. (n,7) C (u,9) implies (n, )" C (u, 9)°.
2. ((n,m) ﬁ (4, 9)* € (n, ) ﬁ (4, 9.
3. (1) U (, 9)) = (, )" U (u, 9)°.

Definition 2.19. [26] Let (ﬁ, Tq¢,£) be an HySTS over [ [ and u € [[. Then an HySS (1, ) over [] is claimed
to be an HyS neighborhood of u if there exists an HyS open set (u, ) such that u € (u, ©) € (1, ™)

Definition 2.20. [26] Let (][, T4(,£) be an HySTS and (1, ) be an HySS over ] ]. The HyS intersection of all
HyS closed supersets of (1, 1) is known as the HyS closure of (1, ) and is symbolized by CI(n, ).

In other words, CI(n, 7t) = ﬁ{(y, ) | (4, 1) € teq,(n,7) C (U, M)}

That is, Cl(n, ) is the smallest HyS closed set containing (1, 7).

Definition 2.21. [26] Let (][, T, £) be an HySTS and (1), @) be an HySS over ] ]. Then HyS interior of HySS
(n, ) over [] is symbolized by Int(n, ) and is described as the HyS union of all HyS open sets contained in
(n, ).

In other words, Int(n, ) = G{(y, )} | (4, m) € ey, (1, TI)E(T], )}

That is, Int(n, m) is the largest HyS open set contained in (7, 7).

Definition 2.22. [26] Let (ﬁ, T4,£) be an HySTS over [], then HyS boundary of HySS (n, ) over ][] is
symbolized by b(n, ) and is described as

b(n,m) = Cl(n, ) N Cl(n, m)°.

2.2. Binary soft sets and binary soft topology

Let [1;, ]I, be two initial universe sets and the non empty set £ be an entire set of parameters. Let
B(I1,), B(L1,) indicate the power set of ][, ] I,, respectively. Also, let @ # 7, d C£.

Definition 2.23. [3] A pair (1}, 7) is claimed to be a binary soft set (BnSS) over [, ] [,, where 7 is described
as below:

n:m— B(L) x B(LL2),
where 1(0) = (X, Y) for each g € msuch that X C [[;, Y € [],.

Definition 2.24. [3] Let (1, m) and (u, 9) be two BnSSs over the common [[;, [ I,. (1, 7) is known as a binary
soft (BnS) subset of (u, 9) if

1. tC9.
2. X1 € Xy € I, and Y1 € Y> C 1, such that n(g) = (X1, Y1), u() = (X2, Y>) foreach g € .

We indicate it (1, 7t) c (u, m), briefly.
(n, ) is known as a BnS super set of (y, 9) if (i, 9) is a BnS subset of (1, ©). We write (1, 1) 5(;1, 9).

Definition 2.25. [3] Let (1, 7t), (i, 9) be two BnSSs over ], I1,. (1, ) is known as a BnS equal of (u, ) if
(n, m) is a BnS subset of (i, 9) and (p, 9) is a BnS subset of (1, 7). We indicate it (1, m)=(u, 9).
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Definition 2.26. [3] The BnS complement of a BnSS (), ) is symbolized by (1, )¢ and is defined (1, ©)° =
(n°, m), wheren*® : 1 — B(111)XB(11,), isa mapping givenby 11°(0) = (I1; =X, [1, —¥) such thatn(g) = (X, Y).
Clearly, ((n, 7)) = (n, ).

Definition 2.27. [3] A BnSS (1, ) over [[;, ][], is known as a null binary soft set symbolized by o if
n(o) = (@, @) for each g € 7.

Definition 2.28. [3] A BnSS (1, ) over ], I, is known as an absolute binary soft set symbolized by ﬁ if
n(o) = (L4, [1,) for each g € 7.

Definition 2.29. [3] The extended union of two BnSSs (1, ) and (u, 9) over [ [;, [ I, is the BnSS (O, p), where
D =nUY¥, and for each p € D,

(X1, Y1) if pen—9
O(p) =3(X2, Y>) if oed—-m
(XqUXp, Y1UY) if pennNd+0

such that n(g) = (X1, Y1) for each ¢ € m and u(p) = (X2, Y>) for each g € 9. We indicate it (1, 7t) Ug (u,9) =
(O, D).

Definition 2.30. [3] The extended intersection of two BnSSs (1, 7) and (u, 9) over [ [;, I 1, is the BnSS (O, D),
where D = m U 9, and for each p € D,

(X1, Y1) if pen-9
O(0) =1 (X2, Y2) if ped-mn
(X10X2,ylﬂy2) lf PETMNI#Q

such that 1(0) = (X, Y1) for each g € 7 and () = (X2, Y>) for each p € 9. We indicate it (n, 7) Ng (i, 9) =
(O, D).

Definition 2.31. [3] The BnS union of two BnSSs (1,7) and (u,9) over [y, ]I, is the BnSS (O,D) =
(n,m) U (1, 9), where D = NS # @, and O(p) = (X1 U X2, Y1 UY,) for each p € D such that n(o) = (X1, Y1)
for each p € mand p(g) = (X2, Y>) for each g € 9.

Definition 2.32. [3] The BnS intersection of two BnSSs (1, ) and (y, 9) over [[;, I, is the BnSS (O, D) =
(n, m) n (u,9), where D = N9 # @, and O(p) = (X1 N X2, Y1 NY,) for each ¢ € D such that n(g) = (X1, Y1)
for each g € mand () = (X, Y>) for each p € 9.

Definition 2.33. [16] The BnSS (1,£) is known as a BnS point over [];, [],, symbolized by g,, if for the
element p € £, n(0) # (2,9)and n(¢’) = (@, ), for each ¢’ € £—{0}.

Definition 2.34. [12] Let tg be the collection of BnSSs over [, [I,, then 75 is claimed to be a binary soft
topology (BnST) on [1, [, if

1. 6, ﬁ €Tg.
2. The BnS intersection of two BnSSs in 7 is belong to 7g.
3. The BnS union of any number of BnSSs in 7 is belong to 7g.

Then (I1;, [1,, 78, £) is known as a binary soft topological space (BnSTS) over [[;, [1,. The members of
1g are claimed to be BnS open sets in [ [, [ ,.
A BnSS (1, ) over [, I, is claimed to be a BnS closed setin ][, I I,, if its BnS complement (1, 77)° belongs
to 7g.
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Definition 2.35. [16] Let ([ 1;, [1,, T8, £) be a BnSTS over the common universe sets [[;, [ [, and V1,V be
non empty subsets of [ [, [1,. Then t(y, 4,y = {(V1, V2),£) | (n,m) € 7g}is claimed to be the BnS relative
topology over V1, V, and (V1, Vo, T(v,,v,), £) is known as a BnS subspace of (] 14, [ 1,, 78, £). We can readily
confirm that 7y, ,) is in fact a BnST over V;, V>.

Definition 2.36. [16] A binary soft set (1, ) in a BnSTS (1, [1,, 78, £) is known as a BnS neighborhood of
the BnS point g, over [[;, [ [,, if there exists a BnS open set (u, 7) such that g, € (u,m) S (1, 7).

The BnS neighborhood system of BnS point g,, symbolized by N:(¢g;), is the family of all its BnS neighbor-
hoods.

Definition 2.37. [16] A BnSS (1, ) in a BnSTS ([ 14, [1,, 7, £) is known as a BnS neighborhood of the BnS
set (O, m), if there exists a BnS open set (u, 1) such that (¢, m) € (O, ) € (1, 7).

Definition 2.38. [12] Let (]I, [1,, t8,£) be a BnSTS over [, [1, and (1, @) be the BnSS over [, [ I,. Then
the BnS closure of (17, ©) symbolized by CI(1, ) is the BnS intersection of all BnS closed sets containing (1, 7).
In other words, Cl(n, 77) = N{(x, 7) | (u, 7)° € T8, (n,7) € (4, 0)}.

Thus, Cl(n, 7t) is the smallest BnS closed sets over [ [;, [ [, which contains (1), 7).

Definition 2.39. [12] Let ([1;, I1,, T8, £) be a BnSTS over [1;, [ I, and (1, 7) be the BnSS over [1;, [I,. Then
the BnS interior of BnSS (1, ) over ], [, is symbolized by Int(n, ) and is described as the BnS union of
all BnS open sets contained in (1, 7).

In other words, Int(n, ) = U{(u, m) | (u,m) € 18, (1, ™) c (n, m)}.

Thus, Int(n, m) is the largest BnS open set contained in (1, 7).

3. Binary hypersoft sets

In this section, we define a novel extension of hypersoft sets called the binary hypersoft sets (BnHySSs)
which is an advanced generalization of binary soft sets over two universal sets and a parameter set. Later,
we present some operations on binary hypersoft sets such as subset, superset, equality, complement, null,
absolute, extended union, extended intersection, union, intersection, difference, AND and OR. Moreover,
we investigate some of their basic properties.

Let [[;, [ 1, be two non empty initial universe sets and the non empty set £ be an entire set of parameters.
Let B(I11), B(I1,) indicate the power set of ]];, [ I,, respectively. Also, let @ # m;, 9; C£withi=1,2,..,n.
To make things simpler, we write the symbol 7 for 71 X 71, X -+ X 7, and g for an element of the set 7. We
also suppose that none of the set 7; is empty for each i.

Definition 3.1. A pair (1, ) is claimed to be a BnHySS over [ [, I ,, where 7 is described as below:

n:m X1 X ... X1, — B(I1) x B(11,),
where 7(g) = (X, Y) for each g € 711 X 713 X ... X 1, such that X € [[; and Y C [],.

Example 3.2. Let’s say Mr. X wishes to purchase a tablet and a phone from a mobile market. The collection
of discourse consists of six different kinds of mobiles (options) | [,={m1,ma,m3,ms,ms,me}, and the four types
of tablets that make up the discourse set [[, = {1, k2, k3, k4}. By looking at the qualities, one may choose
which choice is better. i.e. g =Company, g, =Camera Resolution, g3 =Size, o4 =Ram and g5 =Battery
Power. The attribute-valued sets corresponding to these attributes are: £= {01, 02, 03, 04, 05}

Let 1 = {01, 02}, m2 = {03, 04} and 73 = {gs5}, where ™ = 711 X 113 X 713.

Then BnHySS (7, 1) can be written as follow:

(n, ) ={((01, 03, 05), (Im1, M2}, {k2})), ((01, 04, 05), ({Mma, m5, me}, {k1, K3})), ((02, 03, 05), ({1112, M4, Mg}, {2, Ka})), (02,
04, 05), ({m1, ms}, {x3}))}.
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Proposition 3.3. Let (1, ) be a BuHySS over 11, 11,. If we write it into two parts as m(a) = X and ma(a) = Y
foreach a € mq X 1p X ... X 70, such that X C 11, and Y C [1,. Then (1, ) and (n, m) become HySSs over [ [, and
L1, respectively.

Example 3.4. Let us consider the BnHySS (1, ) over 1, [ [, in Example 3.2.
We can write the BnHySS (1, ) as follow:
(m, ) = {((or, 03, 05), {m1, m2}), (01, 04, 05), {ma, ms, me}), ((02, 03, 05), {m2, ma, me}), (02, 04, 05), {m1, ms})} and

(2, 1) = {((01, 03, 05), {K2}), ((01, 04, 05), {1, K3}), (02, 03, 05), (K2, %4}), (02, 04, 05), {K3})}.
Then (11, ) and (172, ) are HySSs over []; and [, respectively.

Remark 3.5. In Definition 3.1, if n = 1, then (1, ) becomes BnSS over [, [1,.

Definition 3.6. (Subset) Let (1), ), (4, 9) be two BnHySSs over [ [, I1,. (1, ) is known as a binary hypersoft
(BnHyS) subset of (u, 9) if

1. 1 €9, where § = 9 X 8 X...x 9, thatis ; C 9; foreachi =1,2,...,n.
2. X1 € Xy € 11, and Y1 € Y> C 1, such that n(g) = (X1, Y1), u(0) = (X2, Y>) for each g € 7.

We indicate it (1, ) c (u, 9), briefly. _
(n, ) is known as a BnHyS super set of (i, 9) if (1, 9) is a BnHyS subset of (1, ). We write (1, ) 2 (i, 9).

Definition 3.7. (Equality) Let (1, 7t), (i, 9) be two BnHySSs over |14, [1,. (1, 7t) is known as a BnHyS equal
of (u, 9)if (n, ) is a BnHyS subset of (1, 9) and (u, 9) is a BnHyS subset of (1, 7). Weindicateit (n, m) = (u,9).

Definition 3.8. (Complement) The BnHyS complement of BnHySS (n, ) is symbolized by (1, 7)° and is
defined (n, ) = (y°, m), where nn : ™1 X M X ... X M, — B(I1;) X B(I1,) is a mapping given by n°(g) =
(I1, =X, 11, =) such that n(g) = (X,Y) for each g € (11 X M2 X ... X 11,), X € []; and Y C [],. Clearly,
((n, ) = (n, ).

Definition 3.9. (Null) A BnHySS (1, ) over I1;, I, is known as a null BnHySS symbolized by @ if n(e) =
(2, 2) for each p € m.

Definition 3.10. (Absolute) A BnHySS (1, ) over [, [ I, is known as an absolute BnHySS symbolized by
1T if n(e) = (114, L1,) for each p € 7.

Example 3.11. Let [ [; = {x1, 12, k3, K4, K5}, [ [, = {01, 02, 03,04, 05} and £ = {01, 02, 03, 04, 05, 06}

Let 11 = {01, 02}, T2 = {04, 05} and 713 = {06}, where 7 = 711 X 712 X T13.

Let 91 = {01, 02, 03}, 92 = {04, 05} and 93 = {gs}, where & = 91 X 5 X I3.

Then, (n, 7), (1, 9) are two BnHySSs over [, [ [, defined as follow:

(n, ) = {((01, 04, 06), ({xc1, 2}, {011})), ((01, 05, 06), ({x3}, {03, 94})), ((02, 04, 06), ({1, K4}, {01, 02})), ((02, 05, 06), ({K5},
{o4})}.

(4, 9) = {(((01, 04, 06), ({1, k2, %3}, {01))), ((01, 05, 06), ({1, %3}, {03, 04, T5})), ((02, 04, 06), ({%1, K3, K4}, [12)), ((02, 05,
06), (111, 11)), ((03, 04, 06), ({%c1, 3, x4}, {03, 04})), ((03, 05, 06), ({1, K4}, {02, 03}))}-

Therefore, (1, ) € (u, 9).

The BnHyS complement of BnHySS (1), 7) is:

Table 1: BnHyS complement of BnHySS (7, 7)

0ET (n,m) (n, m)°
(01,04,06) | ({1, %2}, {01}) ({xs, x4, x5}, {02, 03, 04, 05})
(01,05,06) | (x3}, {03, 04}) ({x1, 12, K4, K5}, {01, 02, 05})

(02,04,06) | ({x1, %4}, {01, 02}) ({x2, k3, %5}, {03, 04, 05})
(02/ 05, 06) ({K5}/ {0-4}) ({K]/ K2, K3, K4}/ {01/ 02,03, 05})
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Let (O, nr) and (K, 1) be two BnHySSs as follow:

(Or 77) = {((er 04, 06)/ (Qr @)), ((er 05, 06)/ (®r @)), ((02/ O4, 06)1 (®/ Q))r ((02/ %Y 06)1 (®/ ®))}
Then, (O, ) is a null BnHySS.

(K/ T‘) z{((Qll 04, 96)1 (le HZ))/ ((er 05, «96)/ (Hl/ HZ))/ ((QZ/ 04, Qé)r (le HZ))/ ((QZ/ 05, 06)1 (le HZ))}
Then, (K, ) is an absolute BnHySS.

Definition 3.12. (Extended Union) Let (1, 7) and (u, ) be two BnHySSs over [];, [1,. Then the extended
union of (1, ) and (u, 7) is symbolized by (O,D) = (n,7) Ug (i, 9), with D = Dy x D, X ... X D,,, where
D; =n; Ud; withi=1,2,..,n, and O can be characterized by,

(X1, Y1) if pen-9
O(0) =1 (X2, Y2) if ped-mn
(XlUXZ,yluyz) lf PETMNI#Q
for each p € D) such that 1(g) = (X1, Y1) for each p € m and u(p) = (X2, Y>) for each g € 9.

Definition 3.13. (Extended Intersection) Let (1, 77) and (u, ™) be two BnHySSs over [I;,[[,. Then the
extended intersection of (1, ) and (u, 1) is symbolized by (O, D) = (1, ) Ng (1, 9), withD = D; xD,X...xD,,,
where D; = m; U 9; withi=1,2,...,n, and O can be characterized by,

(X1, Y1) if pen—9
O(0) ={ (X2, Y2) if ped-m
(XiNnXy, Y1NYy) if pennd+o
for each p € D) such that 1(g) = (X1, Y1) for each p € m and u(p) = (X2, Y>) for each g € 9.

Definition 3.14. (Union) Let (1, ©) and (u, 9) be two BnHySSs over [[;, ] ,. Then the BnHyS union of (1, )
and (u, 9) is symbolized by (O, D) = (n, m) U (u,9), withD = D; xD, x...xD,, where D), = ;N §; # @ with
i=1,2,..,n,and O can be characterized by,

O(0) = 1(0) U p(0) = (X1 U X5, Y1 U Yy)
for each p € D) such that 1(g) = (X1, Y1) for each p € m and u(p) = (X2, Y>) for each g € 9.

Definition 3.15. Let {(n;,7t;) : j € ]} be an infinite family of BnHySSs over [[;, [[,. The BnHyS union

of this family is defined as the BnHySS (n, ) (That is (n,7) = U jes(Mj, 1)), where the parameter set is
7 =g mj # @ where 7t; = j1 X T jp X ... X 7 for each j € ], and the mapping

n:m X1 X ... X1, — B(11) x B(11,)

is defined for each parameter g € 711 X 112 X ... X 71, by 11(0) = U jej nj(0).

0ETLj

Definition 3.16. (Intersection) Let (1, ©) and (y, 9) be two BnHySSs over [, [1,. Then the BnHyS inter-
section of (1, ) and (u, 9) is symbolized by (O,D) = (n,m) N (1, 9), with D = D; x D, x ... X D,, where
D;=miNYd; # @withi=1,2,..,n, and O can be characterized by,

O(0) = 10) N (o) = (X1 N X2, Y1 N Y)
for each ¢ € ) such that n(g) = (X1, Y1) for each g € mand u(g) = (X2, Y>) for each p € 9.

Definition 3.17. Let {(n;, 7t;) : j € ]} be an infinite family of BnHySSs over [[;, [ [,. The BnHyS intersection

of this family is defined as the BnHySS (1, ) (That is (n,m) = ) jes(Mj, 1)), where the parameter set is
n=(je Tj # @ where 11j = 1j1 X Ttjp X ... X 7y, for each j € ], and the mapping
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N1 X1y X ... X1, — B(111) X B(11)

is defined for each parameter g € 71 X 713 X ... X 11, by 1(0) = ﬁ jes 1j(0)-

Q€T

Definition 3.18. (Difference) Let (1), ) and (y, 9) be two BnHySSs over ], I1,. Then BnHyS difference of

(n, ) and (u, 9), symbolized by (O,D) = (n,7) \ (1, 9), withD =D; XD, X ... xD,, where D, = m; N Y; # @
withi=1,2,..,n,and O can be characterized by

O(o) = n(0) \ 1(0) = (X1 = X2, Y1 = )
for each p € mN I such that 1(g) = (X1, Y1) and p(p) = (X2, V2).

Example 3.19. Let [[; = {x1, k2, k3, k4, x5}, 11, = {01, 02,03,04,05} and £ = {p1, p2, P3, P4, P5, Ps}-
Suppose that 71 = {p1, p2}, T2 = {ps3, pa}, 73 = {ps}, 91 ={p1}, 92 = {ps, p}, and 93 = {p5, pe}. Thatis 7;, 9; €
£foreachi=1,2,3.
Let the BnHySSs (n, ) and (u, 9) be defined by
(n, ) ={((p1, p3, p5), ({x1, K3}, {01, 02))), ((p1, pa, ps), ({K2, k3, K4}, {021)), (P2, p3, p5), ({K4, K5}, {03, 04})), (02, P4,
ps), ({x1, K2, 3}, {01, 04}))},
and
(1, 9) ={((p1, p3, p5), (K1}, {02, 03})), ((P1, P4, p5), ({2, K4, K5}, {02}), ((P1, 3, Ps), (K4}, {01, 04})), (1, P4, ps), ({3,
Ka}, {03, 04}))}-

Then the extended union and extended intersections of both (17, ) and (u, 9) are given by:

Table 2: Extended union and extended intersections of both (1, 7t) and (u, 9)

penUY (n,7) Yg (1, 9) (n, ™) Ng (1, )
(p1,p3, ps) | ({x1,%3},{01,02,03)) ({x1}, {o2})

(p1, pa, ps) | (K2, k3, k4, %5}, {02}) ({rc2, x4}, {02})
(p2,p3,p5) | ({xq, x5}, {03, 04}) (x4, x5}, {03, 04})
(p2, p4, ps) | ({xc1, %2, x3), {01, 04)) | ({x1, k2, %3}, {01, 04})
(p1, p3, ps) ({4}, {01, 04})) ({xa}, {o1,04})
(p1,pa,ps) | (Ix3, x4}, {03,04}) ({x3, x4}, {03, 04})

Then the BnHyS union and BnHyS intersections of both (1, ) and (u, 9) are given by:

Table 3: BnHyS union and BnHyS intersections of both (1, ) and (u, 9)
penns | @mUwd) [ @m0 w9)
(p1,p3,p5) | k1, %3}, {01,02,03)) | (K1}, {o2})

(p1,pa, ps) | (K2, %3, k4, K5}, {02}) | ({x2, K4}, {02})

Th_g BnHyS differences (1, 7) Y (u,9) and (u, 9) Y (n, ) are the following:
(T]! 7'() l(‘u/ ‘9) = {((Pl/ P3, P5)/ ({KS}/ {Gl}))/ ((Pl/ P4, P5)/ ({K3}r @))}
("l/ ‘9) \ (T]/ T[) = {((Plz %Y, ,OS)/ (®/ {03}))/ ((Plx P4, p5)/ ({KS}/ ®))}

Table 4: BnHyS differegce of both (1, ™) and (u, 9)
pennd | o\ @S | 1)\ {mn
(p1,p3,p5) | ({xs}, {o1}) (2,{03})
(pl’ P4, PS) ({K3}/ ®) ({K5}/ ®)
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Definition 3.20. (AND)If (1, ) and (u, 9) are two BnHySSs, then (17, ) AND(u, 9), symbolized by (7, 7t) A (u,9),
canbe characterized by (O, D) = (1, ) A (y, 9), withD = D; XD, x...xD,, where D, = r;x9; withi = 1,2, ..., n,
and O can be characterized by, O(g) = n(0)Nu(o) = (X1N X2, Y1NY>) for each p € D such that () = (X1, Y1)
for each g € mand () = (X, Y>) for each p € 9.

Definition 3.21. (OR)If (n, ™) and (y, 9) are two BnHySSs, then (1, m)OR(y, 9), symbolized by (1, ) v (u,9),
can be characterized by (O, D) = (1, ) v (4, 9), withD = Dy xD,x...xD,, where D, = m;x9;withi=1,2,...,n,
and O can be characterized by, O(g) = n(0)U u(0) = (X1 UX3, Y1 UY,) for each g € D such that n(g) = (X1, Y1)
for each p € mand p(p) = (X2, Y>) for each g € 9.

Example 3.22. Let [[; = {k1, k2, &3, %4, x5}, [[, = {01,02,03,04,05} and £ = {p1, p2, p3, ps, p5, ps}. Suppose
that

11 = {p1, p2}, T2 =1{p3, pal, 13 = {ps}, 91 = {p1}, 92 = {pa, pa}, and 93 = {ps, pe}.

That is m;, 9; C £ for each i = 1,2, 3. Let the BnHySSs (1, ) and (u, 9) be defined by

(n, ) ={((p1, p3, p5), (Ix1, x3}, {01, 02))), ((P1, P4, p5), (K2, K3, %4}, {02))), (P2, p3, p5), ({x4, K5}, {03, 04})), (P2, P4,
ps), ({x1, k2, x3}, {01, 04}))},

and

(1, 9) ={((p1, p3, p5), (K1}, {02, 03})), ((P1, P4, p5), ({2, K4, K5}, {02}), ((P1, P3, Ps), (K4}, (01,04, 1)), ((P1, P, ps), (4

K3, K4}, {03, 04}))}.

Then (O, 7t x 9) = (,70) A (u,9) and (Q, t x 9) = (7, T()V([u, 9) are the BnHySSs as shown below:

Table 5: BnHyS AND and BnHyS OR of both (1, ) and (i, 9)

pEMXY (n,m) A (,9) (n,m) Vv (4 9)
((p1, p3,p5), (p1,p3,p5) | ({x1}, {o2}) ({x1, k3}, {01, 02, 03))
((p1, p3, ps), (P1, pa, P5)) (@,{02}) (114, {o1,02})
((p1, p3, P5), (P1, P3, P6)) (2,101}) ({x1, k3, K4}, {01, 02, 04})
((p1, p3, P5), (P1, P4, P6)) ({xs}, @) ({x1, k3, x4}, {01, 02,03, 04})
((p1, pa, ps), (1, p3, P5)) (2,102}) ({x1, k2, K3, K4}, {02, 03})
((p1, pa, p5), (p1, pa, p5)) | (K2, %4}, {02)) ({x2, k3, %4, K5}, {02})
((p1, p1, p5), (1, P3, P6)) ({4}, @) ({x2, k3, K4}, {01, 02, 04})
((p1, pa, ps), (p1, pa, pe)) | (K3, %4}, @) ({x2, 3, x4}, {02, 03, 04})
((p2, p3, p5), (1, p3, Ps5)) (2,{03}) ({x1, k4, K5}, {02, 03, 04})
((p2, p3,P5), (p1, P4, p5)) | (K4, K5}, @) ({x2, k4, x5}, {02, 03, 04})
((p2, p3, p5), (P1, P3, P6)) ({xa}, {o4}) ({ra, x5}, {01, 03, 04})
((p2, p3,P5), (P1, P4, ps)) | ({xa}, {03, 04)) ({x3, k4, x5}, {03, 04})
((p2/ p1, p3), (P1, P3, P5)) ({x1}, @) ({x1, k2, %3}, {01, 02, 03, 04})
((p2, p1, p5), (1, P4, P5)) ({x2}, @) (113, {o1,02,04})
((p2, pa, p5), (P1, p3, ps)) | (@,{01,04}) ({xc1, %2, K3, K4}, {01, 04})
((p2, pa, p5), (P1, pa, pe) | (s}, {oa)) | ({k1, k2, K3, K4}, {01, 03, 04})

Definition 3.23. The BnHySS (1, 7t) is known as a BnHyS point over [[;, [[,, symbolized by g,, if for the
element p € 11 X 112 X ... X 11, 1(0) # (@,@) and 1(¢’) = (@, @), for each ¢’ € (111 X Mx X ... X 71,,) — {0}

Definition 3.24. The BnHyS point g, is claimed to be in the BnHySS (u, 8), symbolized by g, € (u, 9) if for
the element p € ;1 X 71 X ... X 11, 7(0) S p(0)-

Example 3.25. Let [[; = {x1, %2}, 11, = {y1, y2}, £=1{01, 02,03}, m11 =101}, 72 = {02, 03}

The BnHyS points over ][, ] I, are defined as follow:
(m, ) =1{(01, 22), (@, {y1)), (01, ©3), (@, D))} = (01, ©2)iyy
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(12, 1) = {((01, ©2), (@, {y2})), ((01, 03), (@, @))} = (01, 02)1,
(773/ T() = {((@1/ Q2)r (®/ HZ))/ ((er Q3)l (®/ Q))} = (Ql/ QZ)T]3
(s, 1) = {((01, 02), ({1}, @)), (01, 03), (D, D))} = (01, 02)1,
(15, 1) = {((01, 02), x1}, {y1}), ((01, 03), (@, D)} = (01, 02)5
(ne, 1) = {((01, 02), ({x1}, {y2})), ((01, 03), (@, @))} = (01, 02) 136
(7, 1) = {((01, 02), ({x1}, L12)), (1, 03), (@, @)} = (01, 02),
(778/ T[) = {((01/ 02) ({X2 @)), ((Ql/ QS)/ (® Q))} (Ql/ 02)1]8
(119, ) = {((01, 02), ({x2}, yl}))/ ((01,03), (2, 2)} = (01, ©2)1po
(mo, 1) = {((¢1, 02), ({x2}, {y2})), ((01, 03), (@, @)} = (01, 02)10
(M1, ) = {((01, 02), ({x2}, [12)), (01, 03), (2, @)} = (01, 02)y1,
(m2, ) = {((¢1, 02), (L11, 2)), (01, ©3), (@, @)} = (01, 02)p12
(T]lSr 71) = {((Ql/ QZ)/ (Hl/ {yl}))/ ((Ql/ QB)/ (@, ®))} = (Ql/ QZ)T]B
(T]14, 7T) = {((er QZ)/ (Hl/ {yZ}))/ ((er QS)/ (®/ Q))} = (Ql/ 02)7114
(7715/ 7T) = {((er 92)/ (Hl/ HZ))/ ((Qlf 93)1 (®r @))} = (Ql' 02)7]15
(me, ) = {((01, ©2), (2, 2)), (01, 03), (D, {y1 )} = (01, 03)s6
(mz,m) ={((01, 02), (@, @)), (01, 03), (@, {y2))} = (01, 03)nsy
(7718/ 71) = {((Ql/ QZ)/ (®/ @)), ((Ql/ QB)/ (®/ HZ))} = (er @3)018
(Mo, ) = {((01, 02), (2, 2)), (01, B3), ({x1}, D))} = (01, 03)ss
(20, 1) = {((01, 02), (@, @)), ((01, 03), ({x1}, {y1 D))} = (01, 03)1pag
(21, ) = {((01, 02), (2, 2)), ((01, 03), ({x1}, {yz N} = (01, 03)n
(7722/ ﬂ) = {((Qll QZ)/ (®/ Q))/ ((Ql/ 93) ({x } HZ)) (er 03)1]22
(1123, 1) = {((01, 22), (2, D)), ((01, ©3), ({x2}, D))} = (01, 03) 15
(1124, 1) = {((01, 02), (9, @)), ((01, 03), ({x2}, {y1 )} = (01, 03)1pas
(25, 1) = {((01, 02), (2, @), ((01, 03), ({x2}, {y2 )} = (01, 03) s
(26, 1) = {((1, 02), (2, @), ((01, 03), ({x2}, Ilz)) (01, 03)ns6
(27, 1) = {((01, 02), (2, 2)), ((01, 03), (L1, 2))} = (01, 03)17
(s, ) = {((01, 02), (2, D)), (01, 03), (L1, {ya )} = (01, 03)11s5
(1129, 1) = {((01, 02), (@, @)), ((01, 03), (111, {y21))} = (01, 03) s
(T]3Or 7T) = {((er QZ)/ (®/ Q))/ ((er 93)/ (Hl/ HZ))} = (Ql/ 03)7130'

Some main properties of BnHySSs are given below:
Proposition 3.26. Let (1, 1), (u, 9) and (O, D) be three BnHySSs. Then we have the following results:

1 (nm)U@ =1, n).

(M) U1l =11

(n,m) U (,7) = (1,7).

(n,m U (u,9) =9 V@ mn).

(n,7) U (1,9) U (O, D)) = ((n,m) U (1, 9)) U (O, D).
(n,m) € (1) U (g, 9) and (, 9) S(n, ) U (1, 9).
(n,m) U (1, V) =@ ifand only if (n, ) = @ and (u,d) =
(1, 70) € (, 9) if and only if (1, 70) U (1, 9) = (1, 9).

Proof. 5. Suppose that (y,9) U (O,D) = (K1,9ND). Then for all @« € $ N D, X1,X5, X3 € [[; and
Y1,Y2,Y5 C [, such that n(a) = (X1, Y1), (@) = (X2, Y2), O(a) = (X3,Y3) we have the following

TKi(a) = wa@) UO(a) = (X2 U X3, Y2 U Y3).

Assume (1, ) U (%, 9 N D) = (K, m N (S N D)) then for all &« € 7 N (¥ N D) we have the following

Ka(a) = n(a) U Ki(a) = (X1 U (X2 U X3), Y1 U (Y2 U Y3)) = (X1 U Xo) U X3, (Y1 U Y>) U Ys) by associative
property. Hence, () = (n(a) U p(a)) U O(a). Then, we getforallaenn(SND)=(nmNI)ND

(n,7) U (1, 8) U (0,D)) = ((n,7) U (1, 9) U (O, D).

® NG
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8. Suppose that (1, 1) c (u,9), thenn € Sforalla € m, X1 € X, € []; and Y1 € Y, C [1, such that
n(a) = (X1, Y1), u(@) = (X2, M2). Now, n(a) U u(a) = (X1 U Xy, Y1 UY)) = (X2, Y2) = u(a). Therefore, (1), )
0 (1, 9) = (1, 9). i
Conversely, suppose (1, ) U (i, 9) = (1, 9), then we have the following n(a) U u(a) = u(a) foralla € n
and n(a) = (X1, Y1), p(a) = (X2, Y7). Leth € Xy and k € Y, then h € X; U X, and k € Y; U Y,, we have
X1UXy = Xy and Y1 UY, = Y,, therefore h € Xy and k € Y, and Xq € X and Y1 € Y». Hence, n(a) € u(a).
Thus, (1, ) C (1, 9).

The remaining parts can be proved with the same method. [

Proposition 3.27. Let (1, 7), (1, 9) and (O, D) be three BnHySSs. Then we have the following results:

L (n,m) 0 (n,m) = (n,70)._

) 0 (w9 =@ Hnmm). B
(N (4, 9) N (O, D)) = ((n,7) N (1, 9)) N (G, D).
nmno=0o.

(n,m) N 1L = (n,m). N N

() N (y, ) € (n,m0) and (n, 70) N (4, 9) < (1, 9).
(n,70) € (u, 8) if and only if (n, 1) 0 (u, 9) = (n, 7).

Proof. We can prove all parts by the same way in the above proposition. [J

NSk »DN

Proposition 3.28. Let (1, ) and (u, ) be two BnHySSs. Then we have the following results:

(MU =11

- ()N, n) =2 B

- (n,m) € (u, 9) if and only if (u, 9)° < (n, )"
() U (w,9)° = (0,0 N (u, )
() 0w, 9)° = (0,0 U (u, 9)

Proof. 4. Let (n,7) U (4, 9) = (O, D) where O(a) = n(a) U p(a) forall e € D = N 9. Since (1, ) U (g, 9))°
= (O, D) we have O(a) = (n(a) U u(@))* = 11 — (n(@) U p(a)) = [T - nla) N 1 - p(a) = n°(a) N p“(a). Now,
(O, D) = (n,m)° N (1, ).

Hence, (1, 1) U (1, 9))° = (1, )¢ N (1, 9)°.
The remaining parts can be proved with the same method. O

Ol = W N~

Proposition 3.29. Let (1, 1), (u, 9) and (O, D) be three BnHySSs. Then we have the following results:

L (1,7) 0 (1, 9) U (O, D)) = ((n, ) 0 (g, 9)) U (0, )N (O, D)).
2. (™) U (1, 9) 0(O,D)) = ((n,7) U (1, 9) 0 ((n,7) U (O, D).

Proof. 1. Suppose that (y, 9) U(O,D) = (K, 9nD) foralla e 9ND, X1, X2, X3 C I, and Y1, Y5, Y5 C 11,
such that n(a) = (X1, Y1), u(a) = (X2,Y>), O(a) = (X3,Y3) we have the following

HKi(a) = p(@) UO(@) = (X2 U X3, Y, U W)

Assume (1, 7) N (K, 9ND)= (Ko, N ND))foralla e rN(dND)

Kao(a) = n(@) NKi(a) = (X1 N (X2 UXG), Y1 N (Y2 U Y3)) = (X1 NX) U (X1 NKXs), (Y1 NY2) U (Y1 NYs)) by
distribution property % (a) = (n(a) N p(a) U (n(a) NO(a)) foralla e N (3 ND) = (mNd) N(mND).
Hence, (n, ) N (1, 9) U (G, D)) = ((n, 7) N (1, 9)) U ((n, 1N (G, D). O

Proposition 3.30. Let (1, ), (u, 9) and (O, D) be three BuHySSs. Then we have the following results:
L () V (@, 9) = (0,10 A (9.
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(A @S =0V (@9,

(Y (1, 9) Y (©,D) = (0,1) Y (1, 9) V (O, D).
(A (1, 9) A ©,D) = (0,7) A (1, 9) A (O, D).
(A (19) Y (©,D) = ((0,7) A (1, 9) V ((n,7) A (O, D))
)V (1 9) A ©,D) = ((0,7) Y (1, 9) A ((n,m) Y (D, D))

Proof. It is obvious. [

N Ul = W IN
—~ o~~~

4. Binary hypersoft topology

In this section, we introduce the concept of binary hypersoft topology and we present the concept of
binary hypersoft subspace.

Let [1;, ]I, be two initial universe sets and the non empty set £ be an entire set of parameters. Let
B(L11), B(I1,) indicate the power set of ]I, I [,, respectively. Also, let @ # ; C£withi=1,2,..,n. Tomake
things simpler, we write the symbol 7 for 711 X o X --- X 1, and g for an element of the set 7. We also
suppose that none of the set rt; is empty for each i.

Definition 4.1. Let 7,9, be the collection of BnHySSs over [[, [],, then 7,4y, is claimed to be a binary
hypersoft topology on [, [ 1 if the following three conditions hold:

1. 6, H E TBn‘Hy-
2. The BnHyS intersection of two BnHySSs in 7,4, belongs to tgusyy-
3. The BnHyS union of any number of BnHySSs in 7,4, belongs to g4

Then (L4, [ 15, T8u#y,7) is known as a binary hypersoft topological space (BnHySTS) over [ [, [ .

Definition 4.2. Let (I;, [ 15, Tu#y,7) be a BnHySTS over [1;, [I,, then the members of 7g,4, are claimed
to be a BnHyS open sets in [ [, [ I,.

Definition 4.3. Let ([Iy, [1,, 78441,,7) be a BnHySTS over [, [1,, then the BnHySS (1, ) over [y, [15 is
claimed to be a BnHyS closed set in [[;, [I,, if its BnHyS complement is belong to Tg,,-

Definition 4.4. Let Tg,4(, = (@, E[}. Then 7,4, is known as the BnHyS indiscrete topology on [[;, [, and
(IT4, I, TZ;Z,Hy,T() is known as a BnHyS indiscrete space over [[;, [ I,.

Definition 4.5. Assume that the collection of all BnHySSs that can be specified over [[;, [, is ng; gy Then
déi 9y is known as the BnHyS discrete topology on [y, I1, and (11, [1,, ’cdgfz (Hy,n) is known as a BnHyS
discrete space over ], [1,.

T

Example 4.6. Consider the following sets: [[; = {p1, p2, p3, P4, p5}, 11> = {01, 02,03, 04},
£=1{01, 0,03, 04}, T ={an}, M2 = {02}, T3 = {03, 04} and

Tgurty = 19, L1, (1, 1), (N2, ™), (N3, ), (Na, T0)}

where (11, ), (2, 1), (N3, ™), (14, ™) are BnHySSs defined as follow:

(m, ) = {((01, 02, 03), ({p2}, {02))), ((01, 02, 04), ({p3}, {o3}))}-

(12, 1) = {((01, 02, 03), ({p3}, {o1})), ((01, 02, 04), ({p3, ps}, {01, 02}))}-

(3, 1) = {((01, 02, 03), ({p2, p3}, {01, 02))), ((01, 02, 04), (U p3, ps}, (01, 02, 03}))).

(174/ 77) = {((@1/ 02, 03)/ (@/ @)), ((er 02, 04)/ ({P3}/ @))}
Clearly tg,4, is a BnHyST over [, [I,.

Theorem 4.7. Let (14, Lo, tgupy, ) and (114, L, T;;nﬂy,ﬂ) be two BnHySTSs over the same universal sets
L4, L, then (14, Lz tgnpy N T;gnwy,n) is a BnHySTS over 11, I 1.
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Proof. (1) @, ﬁ are belongs to tgupry, N T:B;ﬂ_{y.
(2) Let the two BnHySSs (n, 10), (4, ©) € Tgupy N T;Sn‘Hy' Then (n, 1), (4, ) € Tgupyand (n,70), (4, 7) € T,Bn’Hy'
Since (n,7) N (u, ) € TBury ANd (n,m) N (u, 1) € T’Bn“Hy’ so(n,m) N (u,m) € Tguty N T/Bn‘Hy'

(3) Let {(ni, m) | i € I} be a family of BnHySSs in tgup, N T Then (ni, 1) € Tgupy and (1;,71) € T

’

BnHy"

’ ’

_ - BnHy’ BnHy’
for each i € 1, 50 Uier)(1i, ©) € Tgupry and Uer(1i, 1) € T
’
BnHy" _

Hence, Tgupy N T, defines the BnHyST on [y, [, and (L4, 12, Tgupy N ngn,Hy,n) is a BnHySTS over

BnHy
le HZ' U

Remark 4.8. Let (I1y, [, 784y, and (113, Lo, T.:Bn’/—(y’n) be two BnHySTS over the same universal sets
L4, I, then (ITy, 2, tgury Y T:Bn(Hy,ﬂ) may not be BnHySTS over [ [, I1,.

Thus, G(iel)(ni,ﬂ) € Tgnpy N T

Example 4.9. Let [[; = {p1, p2, p3, p4, ps}, 1y = {01,02,03, 04}, £= {01, 02, 03, 04},

m = {o1, 02}, T2 = {3, 01} and tgu91, = {2, 11, (M, 1), (12, 70), (N3, 0), (111, T0)},

where (111, ), (N2, 1), (113, ), (14, 1) are BnHySSs defined as follow:

(1, 1) ={((01, 03), ({1}, {o1}), ((01, 01), ({2}, {021)), ((02, 03), (@, @)), ((02, 04), ({3}, {o3}))}-

(12, ) = {((01, 03), ({pa}, {04})), ((01, 04), ({p3}, {o1})), ((02, 03), ({p1, P2}, {03})), ((02, 04), ({3, s}, {01, a21)}-

(13, 77;)):}{((@1/ 03), ({p1, pat, {01, 04})), (1, 04), ({p2, p3}, {01, 021)), ((02, 03), ({p1, P2}, {o3))), ((02, 04), ({p3, p5}, o1,
02,03 .

(774(117-() = {((@11 03)1 (®/ @)), ((01/ 04)1 (Qr Q))r ((@21 @3)/ (Qr Q))r ((02/ @4)1 ({PS}, ®))}

an

T'Bn(Hy ={2, I, (11, m), (u2, 1), (u3, ), (14, )},

where (u1, 1), (42, ™), (U3, 70), (U4, ) are BnHySSs defined as follow:

(u1, ) ={((01, 03), {p2}, {021)), (01, 04), Up3, pa}, (o1, 03})), (02, 03), ({1, p3}, {02})), ((02, 04), (@, D))}

(p2, 1) ={((01, 03), ({p3}, {o1}), (@1, 04), ({pst, {o3))), (02, 03), ({p1, P2}, {03})), (02, 04), ({3, p5}, {01, 32}))}-

(u3, 1) ={((01, 03), ({2, p3}, {01, 02})), ((01, 04), {3, P4, p5}, o1, 031)), ((02, 03), ({p1, P2, p3}, {02, 03))), (02, 04), ({
p3, ps), {01, 021))}

([/l4/ TC) :{((er 03)1 (®/ @)), ((er Q4)r (®/ {03}))/ ((QZ/ 03)/ ({Pl}/ Q))r (((.02/ 04)1 (®/ @))}

Clearly, 1g,4(, and T;gn,}_(y are BnHySTS.

Then o

TBnHy U T,Bn‘Hy = {® s H/ (nll 71), (UZ/ TC), (n3/ 7'(), (774/ ﬂ), (‘ulr n)/ ((UZ/ 71), (ySI ﬂ), ([J4, 7T)}

Clearly,

(Th/ 77)0([11/ n) = {((Qll 03)/ ({plr PZ}/ {01/ 02}))/ (((.01/ 04)/ ({pZI P3, P4}/ {Ul/ 02, 03}))/ ((QZ/ 03)7 ({Plz P3}/ {62}))/ ((92/ (_04)/
(psh o))

Since (111, MU(p1, 70) ¢ Tgnpry U ngn(Hy'

Thus, tgupy, U T:Bn’Hy is not BnHyST.

Proposition 4.10. Let (L1, [ 15, Tgury,70) be a BnHySTS over 11y, [, and (n, 1) € Tgupry, where n(a) = (X, Y)
foreach a € 1y X My X ... X 10, X C [ and Y C [1,. Suppose that the collections 14y = {(A, ) | AMe) = X} and
Ty = {(6,1) | 8(a) = Y}. Then t4, and T, are defines HyST5 on 11, and 11, respectively.

Example 4.11. Consider the following sets: [1; = {p1, p2, p3, p4, p5}, 11> = {01,02,03,04},
£={01, 02,03, 04}, 11 = {1}, M2 = {02}, ™3 = {03, 04} and 18,91, = {2, L1, (1, ), (N2, ), (N3, ), (N4, )}
where (11, 1), (2, 1), (N3, ™), (14, ™) are BnHySSs defined as follow:

(m, ) = {((01, 02, 83), ({p2}, {02))), ((01, 02, 04), {p3}, {o3}))},

(12, ) = {((01, 02, 03), ({ps}, {o1})), ((01, 02, 04), ({3, p5}, {01, 02})},

(3, 1) = {((01, 02, 03), ({2, p3}, {01, 02})), ((01, 02, 04), ({p3, 5}, {01, 02,03}))} and

(774/ T() = {((@1/ 02, 03)/ (®/ ®))/ ((Ql/ 02, Q4)/ ({P3}/ Q))}
Clearly 7,4, is a BnHyST over [[;, [],. It can be easily seen that
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T = {6/ ﬁ/ (/\1/ T(), (/\2, T[)/ (A3/ ﬂ), (/\4/ T[)}

where (A1, 7t), (A2, 1), (A3, 1), (A4, ) are HySSs defined as follow:
(A1, ) = {((01, 02, 03), {p2}), ((01, 02, 04), {P3})}

(A2, 1) = {((01, 02, 03), {p3}), ((01, 02, 04), {3, P5})}

(Az, ) = {((01, 02, 03), P2, p3}), ((01, 02, 04), {P3, p5})}

(/\41 n) = {((er 02, 03)/ ®)r ((Ql/ 02, Q4)r {P3})}

and

T;_{ = {®/ H/ (61/ T[)/ (62/ TC)/ (63/ T()/ (64/ T[)}

where (61, 1), (02, ), (03, ), (04, ) are HySSs defined as follow:
(61, 7) = {((01, 02, B3), {02}), ((01, 02, 04), {03})}

(02, 1) = {((01, 02, 03), {01}), ((01, 02, 04), {01, 02})}

(63, 1) = {((01, 02, 03), {01, 02}), (01, 02, 04), {01, 02, 03})}

(54/ 7T) = {((Qll 02, 03)/ @), ((Ql/ 02, 04)/ @)}
Then, 74 is an HyST on [, and 7, is an HyST on [[,.

Now we give an example to show that the converse of Proposition 4.10 does not hold.

Example 4.12. Consider the following sets: [[; = {p1, p2, p3, ps, p5}, Ll = {01, 02, 03,04}, £ = {01, 02, 03, 04},
1 = {o1}, M2 = {02} and 13 = {03, 04}

Suppose that T4, = 2,11, (A1, ), (Ag, M), (A3, T0), (Ag, T0)}

where (A1, 1), (A2, 1), (A3, ), (A4, 7t) are HySSs defined as follow:
(A1, 1) = {((01, 02, 03), {p2}), ((01, 02, 04), {P3})},

(A2, 1) = {((o1, 02, 03), {p3}), (01, 02, 04), {3, P D)},

(Az, 1) = {((01, 02, 03), P2, P3}), ((01, 02, 04), {p3, p5})} and

(Ag, 1) = {((01, 02, 03), D), ((01, 02, 04), {P3})}-

Also, _

T;{ = {®/ Hr (61/ T()/ (621 71), (63/ 77)/ (64/ T()}

where (61, ), (02, 1), (03, ™), (84, ) are HySSs defined as follow:
(611 T[) = {((er 02, ‘.03)/ ®)/ ((@1/ 02, 04)1 @)},

(02, 1) = {((01, 02, 03), {01, 02}), ((01, 02, 04), {01, 02, 03})},

(03, ) = {((01, 02, 03), {o1}), ((01, 02, 04), {01, 02})} and

(641 n) = {((er 02, 03)/ {O_Z})r ((Ql/ 02, Q4)/ {03})}
Clearly, 74/ is an HyST on [[; and 7}, is an HyST on [],.

Now, TBnHy = {®/ H/ (7711 ‘R), (TTZ/ ‘R), (773/ 71), (774r 71)} where

(T]l/ T() = {((@1/ 02, QS)/ ({p2}r Q))/ ((Ql/ 02, Q4)r ({P3}, @))}

(2, ) = {((01, 02, ©3), ({3}, {01, 021)), ((01, 02, 04), ({p3, p5}, {01, 02, 03)}.
(n3, ) = {((01, 02, ©3), ({p2, 3}, {o1})), ((01, 02, 04), ({3, p5}, {01, 52))}.
(M4, 10) = {((01, 02, 03), (@, {02})), ((01, 02, 04), (1P}, {o3]))}-

Since (11, 1) U (M2, T0) € Tguy-

Then, Tg,4, is not a BnHyST over [[;, [,

The converse of Proposition 4.10 holds under certain conditions, as stated in the following proposition.

Proposition 4.13. Suppose that Tg,4(, = {(n, 70) | n(a) = (X, Y) for each a € 1 X 712 X ... X 70, such that X C [,
and Y C [1,}. Suppose that t4; = {(A, ) | Mer) = X} is an HyST on |1 and ©3,, = {(6,70) | 6(a) = Y} is an HyST
on [T, If (Ap(), 6p(a)) = no(@) € Tgupy where Ap(@) = Nz, Ai(@) € Tg and 6p(@) = (Nizq, , 0ia) € (o and
also if (Aq(a), 64(@)) = 1c(@) € Tgugry where Ag(a) = Ujey Aj(@) € T and dq(a) = Uy 6j(a) € TfoOT each o € T,
then tgyqq, is define a BnHyST over [y, [1,.

Proof. Obvious. [

Definition 4.14. Let (II;, [15, Tgu,,7) be a BnHySTS over the common universe sets [[;, [, and Vy,V;
be non empty subsets of [[;, [, respectively. Then t(y, v,y = {(V1,V2)y, 1) | (1, 7) € Tgupyl is claimed
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to be the BnHyS relative topology over Vi, V, and (V1, Va, Ty, ,),7) is known as a BnHyS subspace of
(L4, LT, T8u1y,m)- We can easily verify that 7(y, 4,) is infact a BnHyST over Vi, V,.

Remark 4.15. Any BnHyS subspace of a BnHyS discrete topological space is a BnHyS discrete topological
space.

Remark 4.16. Any BnHyS subspace of a BnHyS indiscrete topological space is a BnHyS indiscrete topolog-
ical space.

Example 4.17. Let [[; = {p1,p2,p3,ps, p5}, 1o = {01,02,03,04}, Vi = {p1,p3,ps}, Vo = {02,04}, £ =
{or, 02,03, 04}, 11 = {01, 02}, 12 = {03, 04} and

TBnHy = {2, H/ (Thr T()r (Thr T‘)r (7731 7T), (774, T()}/

where (11, 1), (2, 1), (N3, ™), (14, ) are BnHySSs defined as follow:

(1, 1) ={((01, 03), ({1}, {o1})), ((01, 04), ({2}, {021)), ((02, 03), (@, @)), ((02, 04), ({p3}, {o3]))}.-

(12, 1) ={((01, 03), ({4}, {04})), ((01, 04), ({3}, {o1})), ((Qz, 03), {p1, p2},103})), ((02, 04), ({p3, 5}, {01, 021))}

(s, ﬂ;);{((glfgs),({m,m}, {01,04})), (01, 04), ({p2, p3}, {01, 021)), ((02, 03), ({1, P2}, {03})), ((02, 04), ({p3, ps}), (o1,
02,03 .

(7]4/ 7'() = {((@1/ 03)1 (®/ @)), ((Ql/ (.04)1 (®/ Q))r ((02/ 03)1 (®/ @)), ((92/ 04)1 ({Ps}, @))}

Then the BnHyS subspace (V1, Va, 1¢v, ,),7) is described as follow:

T, =19, V, (V1, V2)y, 10, (V1, V2)p,, 70, (V1, V2)ys, 1), (V1, V2)ye, O,

where (V1, V2)y,, 1), (V1, V2)i,, 10, (V1, Vo), 1), (V1, V2)y,, 71) are BnHySSs defined as follow:

((V1, V2)y,, 1) ={((01, 03), ({p1}, D)), ((01, 04), (@, {02})), ((02, 03), (@, D)), ((02, 04), ({3}, D))}

(V1, V), 0) ={((01, 03), ({pal, {o )) ((01, 01), ({ps}, 2)), ((02, 03), {p1}, @), (02, 04), ({3}, {o2})}-

((V1, Va)n,, 1) ={((01, 03), (p1,p4 {oa})), ((01, 04), {p3} {02})), ((02, 03), (Ip1}, @), (02, 04), ({p3}, {o2}))}

(V1, Vo), 1) = {(01, 03), (2, D)), (01, 04), (2, @), (02, 03), (@, D)), (02, 04), ({p3}, @)}

5. Binary hypersoft operators

In this section, we investigate binary hypersoft limit points, binary hypersoft neighborhood, binary
hypersoft closure, binary hypersoft interior and binary hypersoft boundary.

Definition 5.1. Let (LI, [ 15, Tgus,,7) be a BnHySTS over [y, [1, and let (1, ) be a BnHySS over [, [ .
A BnHyS point g, €[] is called a binary hypersoft limit point of (1, 7) if (17, 77 n ((u,9)\ 0y) # @ for every
BnHyS open set (i, 9) containing BnHyS point g,,.

The set of all binary hypersoft limit points of (1, 7t) is called the binary hypersoft derived set of (1, ) and is
denoted by (1, 7)“.

Proposition 5.2. Let ([1y, [1,, T8uy,7) be a BnHySTS over [ 14, L1, and let (1, ) and (n2, 1) be two BnHySSs
over [14,I1,. Then

1. (m,n) C (2, 7) implies (ny, 7)* C (1, )7
2. ((771,71)m (2, ) C (m, ) N (1, )"
3. ((m1,m) U (12, m)* = (1, ) U (12, ).

Proof ) Let 0, € (11, n)%, so that 0, is a binary hypersoft limit point of (11, 7). Then, (11, n) n ((u,9) \ oy
+0 for every BnHyS open set (i, 9) containing g,. But (11, ) [« (2, m), it follows that (172, ) n ((u, 9\ o #
2. Thus, oy € (M2, n)?. Therefore, (m, n)? c (M2, n)e.

_ (2.) Since (11, ™) HLnQ, I) c (nl, nt) and (11, ) n (12, ™) F%i(rp, ). I’Lfollows fiom (1.) that ((n1, ) n (M2, 7))?
C (m,m)" and ((1, ) N (72, 1))? C (12, m)*. Hence ((m, 1) N (172, 1))*C (1, 1) N (2, )"
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(3.) Since (n1,7) C (1, m) U (2, m) and (2, 7) € (1, 7) U (2, 7). By (1.) we have (1, )" C (1, ) U
(12, )" and (2, 1) € (1, 70) U (12, )" S0, (1, 0)* U (172, ) € (1, 70) U (12, )"
Now, let g, € ((171,7) U (12, m)?. Then ((m1, 1) U (172, ) N ((, 9) \ op) # @ for every BnHyS open set (u, 9)
containing g,. Therefore, either (171, ) n ((u,9)\ o) # 2 or (M2, ) n ((u,9)\ o) # 2. Thus, either oy €
(m, )% or g, € (N2, m)* and hence g, € ((n1, 7)* U (2, 1)%). Therefore, ((m, ) U (2, )¢ € (1, 7)* U (2, )"
So, ((m, ) U (2, m))* = (1, m)* U (2, ). O3

Remark 5.3. The following example shows that the equality in Proposition 5.2 (2.) does not hold in general.

Example 5.4. Let [[; = a az}, [, = {b1, b2}, £ = {01, 02, 03}, 1 = {01}, T2 = {02, 03}

Suppose that 1g,4, = (2, ]_I (m, m), (N2, ™)}, where BnHySSs (111, ), (12, 7t) are defined as below

(m, ) ={((e1, 02), ({111}, {b21)), (01, 03), (2, {b1})} and (172, ) = {((01, 02), ({a}, {b21)), ((01, 03), ({42}, (b2 }))}.
If we take two BnHySSs (O, 1) and (u, ) defined as follow

(O, 1) = {((01, 02), (a1}, 2)), (01, 03), (fa2}, {b1}))} and (u, 1) = {((01, 02), ({2}, {b2})), (@1, 03), (2, {b2}))}-
Then

(U T()dz (91/02)](1‘ lf izllz ///// 15
' (0,03 if j=1,2,...,15
and
(ot = | @@ 1 1=134578,...,15
' (01,090 if j=1,2,...,15.
Hence

~ . if i=1,3,4,5,7,8,...,15
(U’n)dm(‘u/n)d: (‘.01'02)](, 1 l' 19y Xy, 4,0y, ’
(o, 08), if j=1,2,...,15.

Now, since (O, ) N ()= {01, 2), (2, 2)), (01, 03), (@, D))} = 2; 50, (0, ) N (1, M)" = (2, 2).
Therefore, (O, ) N (g, 7)? # (O, )4 N (, 7).

The BnHyS points (01, 02)x; and (1, 03)«;, wherei=1,2,...,15and j = 1,2,...,15, over [[;, ][], can be
written as follow

(Ql’ QZ)kl = {((er QZ)/ (®/ {bl }))/ ((er Q?))/ (®/ @))}

(01, 2k, = {((01, 02), (2, {b2})), ((01, 03), (2, @))}
(er 02)k3 = {((Qll QZ)/ (®/ H2))/ ((Ql/ 03)1 (®/ @))}
(01, 02k, = {((01, 02), ({41}, @)), ((01, 03), (@, @))}
(01, 02)ks = {((01, 02), ({an}, {bl})) (01, 23), (2, 2))}
(01, 02)k, = {((01, 02), ({a1},{b2})), ((01, 03), (2, @)}
(01, 2k, = {((01, 02), ({41} Hz)) ((01,03), (2, 2))}
(01, 02)is = {((01, 02), (a2}, ), ((02, 03), (2, D))}
(01, 02k = {((01, 02), (12}, {b1})), ((02, 03), (2, @))}
(01, 02)kyy = {((01, 02), (a2}, {b2})), ((02, 03), (@, @))}
(01, 02)k,, = {((01, 02), ({a2}, [12)), ((02, 03), (2, @))}
(01, 02k, = (01, 02), (111, 9)), ((01, 03), (2, @))}
(01, 02)i5 = {((01, 2), (L1, {01})), (01, 03), (2, @))}
(01, 02)ks = {((01, 02), (111, {b21)), (01, 03), (2, @))}
(01, 02)ks = {((01, 22), (L1, [12)), (01, 03), (2, @))}

(Ql/ L03)k1 = {((er QZ)/ (®/ 2)), ((Ql/ 93)/ (®/ {b1 }))}
(01, 03)k, = {((01, 02), (2, D)), (01, 03), (D, {D2}))}
(01, 03)ks = {((01, 02), (2, 9)), (01, 03), (2, L12))}
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(01, 03), = {((01,22), (2, @), (&1, 03), ({21}, D))}
(01, 03)ks = {((01, 22), (2, @), (1, 03), ({1}, (b))}
(01, 03)k = {((01, 22), (2, 2)), ((01, ©3), ({a1}, {b2}))}
(er Q3)k7 = {((er 02)/ (®/ Q))/ ((Qll 03)1 ({al }/ HZ))}
(01, )k = {((01, 02), (2, D)), (01, 03), ({a2}, @))}
(01, 03)k = {((01,02), (2, @), (01, 03), (a2}, {b1})}
(01, 03)k = {((01, 22), (2, 92)), (01, 03), (142}, {b2}))}

(Ql/ Q3)k11 = {((Qll QZ)/ (®/ Q))r ((@1/ 03)1 ({ﬂ2}, HZ))}
(Ql' 03)](12 = {((@1/ 02)1 (2,2)), ((@1/ 03)1 (le 2))}

(er 03)1{13 = {((01/ 02)1 (®/ @))/ ((01/ 03)1 (Hl/ {bl }))}
(Ql/ Q?))km = {((@1/ 02)/ (®/ @))/ (((.01/ 03)/ (Hll {bZ}))}
(Ql/ QS)k]S = {((01/ QZ)/ (®/ @)), ((@11 03)/ (Hl/ HZ))}

Definition 5.5. A BnHySS (17, ) in a BnHySTS (1, L5, Tgu#y,7) is known as a BnHyS neighborhood of
the BnHyS point g, over [[;, [ [,, if there exists a BnHyS open set (u, ) such that g, € (u, ) < (n,m).

The BnHyS neighborhood system of BnHyS point g,, symbolized by N:(g;), is the family of all its BnHyS
neighborhoods.

Definition 5.6. A BnHySS (17, ) in a BnHySTS (I, [15, T8u#1y,7) is known as a BnHyS neighborhood of
the BnHySS (O, n), if there exists a BnHyS open set (i, 1) such that (O, 1) C (u, 7t) € (1, 7).

Theorem 5.7. Let (LI, [12, Tguy, ™) be a BnHySTS over 114, [15, then
1. If (n, m) is a BnHyS neighborhood of o, over [ 14, [1,, then g, € (n, ).
2. Each g, C 11 has a BnHyS neighborhood.
3. If (n, ) and (u, 1) are BaHyS neighborhoods of oy c ﬁ, then (1, 7) N (u, 70) is also a BuHyS neighborhood of
o CII.
4. If (n, m) is a BnHyS neighborhood of o, c ﬁ, and (1, m) c (u, m), then (u, ) is also a BnHyS neighborhood of
o, €11

Proof. 1. If (1, ) is a BnHyS neighborhood of g, then there is a BnHyS open set (u, 1) € Tgu, such that
0y € (4, m) c (n, ). Therefore, we have g, € (1, ).

2. For any g, € E[, SO o, € ﬁ c ﬁ Thus, ﬁ is a BnHyS neighborhood of g,.

3. Let g, € ] be any BnHyS point and let (1, ) and (u, ) be any two BnHyS neighborhoods of g,
Now to prove (1, ) N (4, ) is also a BnHyS neighborhood of g,. Now (1, 7t) is a BnHyS neighborhood of
0, implies that there exists a BnHyS open set (O,  such that g, € (O, n)C (1, ). Also (u, ) is a BnHyS
neighborhood of g, implies that there exists a BnHyS open set (K, 7) such that g, € (K, 7)C (u, 7).

Now (O, m)N(K, n) is BnHyS open set, also we have

oy € [(O, N, m] < [(1n, )N (g, )]
Thus, there exists a BnHyS open set [(O, ©) N (K, )] such that
op € (O, 1) N (K, m)] < [(n, ) N (u, ).
From the definition of BnHyS neighborhood, it follows [(1, ) N (i, 7)] is a BnHyS neighborhood of ¢,. Thus,
the intersection of any two BnHyS neighborhoods is again BnHyS neighborhood.

4. Letg, € [ be any BnHyS point and let (1, 7) be an BnHyS neighborhood of g,,. Let (u, ) be any BnHyS
superset of (1], ). Now, since (y, 7t) is also a BnHyS neighborhood of g,; therefore, there exists a BnHyS open
set (O, rt) such that g, € (O, ) C (1, ). Now, (1, ) is a BnHyS subset of (i, 7t) this implies (1, ) € (u, 7).
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Therefore, we have g, € (O,n) C (n,m) C (u, ), which implies g, € (O, ) C (u, ). Thus, there exists a
BnHyS open set (O, nt) such that g, € (O, ) C (u, 7). Therefore, (1, 7) is a BnHyS neighborhood of g,. Thus,
every BnHyS superset of a BnHyS neighborhood is again a BnHyS neighborhood of that point. [J

Definition 5.8. Let (LI, [I,, T8uy,7) be a BnHySTS and (1, ) be a BnHySS over [, [[,- The BnHyS
intersection of all BnHyS closed super sets of (7, 1) is known as the BnHyS closure of (1, ) and is symbolized
by Cl(n, n).

In other words, CI(, 7t) = {N(u, 70) | (1, )¢ € T8uHy, (1, 70) C (u, M)}

Thus, Cl(n, n) is the smallest BnHyS closed set containing (7, 7).

Example 5.9. Eetj_h = {p1, P2, p3, P4, s}, Lo = {01,02,03,04}, £=1{01,0, 03,04}, ™1 = {01, 02}, T2 = {03, 04}
and TBn‘Hy = {®/ H/ (171/ n)/ (172/ 7-[)/ (n3/ 71), (n4/ n)}/

where (11, ), (2, 1), (N3, ™), (14, ™) are BnHySSs defined as follow:

(1, 1) ={((01, 03), ({1}, {o1})), ((01, 04), ({2}, {021)), ((02, 03), (@, @)), ((02, 04), ({3}, {o3}))}-

(2, 1) ={((01, 03), ({pa}, {oa})), (01, 04), {p3}, {o1})), ((02, 03), ({p1, p2}, {o3))), ((02, 04), ({p3, ps}, {01, 02}))}-

(3, 1) ={((01, 03), Up1, pa}, {01, 04))), (01, 04), ({p2, p3), {01, 02))), ((02, 03), ({1, P2}, {o3})), ((02, 04), ({p3, 5}, {01,
02,03)))}.

(174/ 7'[) :{((Ql, 03)/ (®I g))/ ((@1/ 04)/ (®/ Q))/ ((QZ/ 03)/ (®/ Q))/ ((QZ/ 04)/ ({P3}/ @))}

Let (1, ) = {((01, 03), ({3, ps}, {02})), ((01, 04), ({ps), {01, 031)), ((02, 03), {pa, s}, (02))), ((02, 04), (P2, pa}, {01, 02}
Nk
Then BnHyS closure of (u, r) is:

Cl(u, 1) = (n1, ) = {((01, 03), ({2, P3, P4, p5}, 102, 03, 04})), ((01, 04), ({1, P3, P4, ps}, {01, 03, 04))), ((02, 03), (111,
112)), ((02, 04), ({p1, p2, pa, ps}, {01, 02, 04)))}.

Proposition 5.10. Let (I1y, [, T8y, m) be a BnHySTS and (n, m),(u, 70) be two BnHySSs over [ 14, [1,. Then

Cl(@, ) = (@, ) and CI(I1, ) = (LI, 7).

(n,m) € Cl(n, m).

(n, m) is BuHyS closed if and only if Cl(n, ) = (n, 7).
Cl(Cl(n,m)) = Cl(n, m).

If (n,m) c (u, m), then Cl(n), m) c Cl(u, m).

Cl((n,7) U (u,m)) = Cl(n,m) U Cl(w, ).

Cl((n, m) A (4, ™)) € Cl(n, m) A Cll, ).

NS LN

Proof. (1.) and (2.) are obvious.

3. If (n, m) is a BnHyS closed set over [ [, ] 1,, then (1, 1) is itself a BnHyS closed set over ][, [, which
contains (1, ). So (1, 1) is the smallest BnHyS closed set containing (1, ) and (1, ) = Cl(n, n).
Conversely, suppose that (1, 1) = Cl(n, ). Since CI(n, i) is BnHyS closed, so (1, ) is a BnHyS closed set
over [[;, I,

4. Since Cl(n, n) is a BnHyS closed set, therefore by part (3.), we have CI(CI(n, 7)) = Cl(n, 7).

5. Since (1, m) c (u,m) and (u, ) c Cl(u, mt) then (1, m) c (4, m) c Cl(u, ) and hence (1, ) c Cl(u, m), so
Cl(n, ) € CI(Cl(u, 1)) which implies that Cl(n, 7) € Cl(u, 7).

6. Since (1, ) < (n, m) U (u, ™) and (u, m) c (n,m) v (4, ™). So, by part (5.)
Cl(n,m) € Cl((rkn) U (u, 71)) and Cl(& mt) C Cl((n, ™) U (u, m)).
Thus, Cl(n, ©) U Cl(u, ) € Cl((n, ™) U (1, 7).
Conversely, suppose that (1, 7t) c Cl(n, ) and (u, m) c Cl(u, m).
So, (n, ) U (u, 1) € Cl(n, ) U Cl(, 7). Since C(n, 7) and Cl(u, 7t) are BnHyS closed sets, then CI(n, 7t) U Cl(u, )
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isa BnHyS closed set. By part (4.) CI(Cl(n, n) U Cl(u, m)) = Cl(n, ) U Cl(u, ) implies that CI((n, 7) V] (u, ) c
Cl(n, m) U Cl(u, m). Thus, Cl((n, ) U (4, )) = Cl(n, ) U Cl(, 7).

So, by part (5.) Cl((n,7) N (u, 7)) € Cl(n, 70)

7. Since (n,7) N (1, 7) € (n,7) and (n, 1) N (u, ) € (4, ).
Cl(n, ) N Cl(w, 7). O

s
and Cl((n, 7t) N (u, 7)) € Cl(u, 7). Hence, CI((n, ) N (, 7)) €

Remark 5.11. This example demonstrates that the equivalence in Proposition 5.10 (7.) is not often true.

Example 5.12. Let [y = {p1, p2, pal, 11z = 01,02, 03}, £ =101, 02,03}, 1 = {en), 72 = {02, 03} and Tgpy =
(@, 11, (m, ), (2, ), (3, 1), (14, 70), (5, 7)) be a BnHyST defined over [Ty, [1,,

where (11, ), (2, 1), (N3, ™), (4, ™), (15, T) are defined as follow:

(m, ) = {((01, 22), {p2}, {02}))/ (01, 83), {p1}, {o )}

(m2, 1) = {((01, 02), {p2, p3}, {02, 03})), (01, 03), ({p1, P2}, {01, o2})}-

(13, ) = {((01, 02), ({p1, P2}, {01, 02})), (01, 03), (111, T12))}-

(N4, 1) = {((01, 02), ({p1, P2}, {01, 02))), ((01, 03), ({1, p3}, {o1, 03})}.

(15, 70) = {((01, 02), {p2}, {02})), ((01, 03), ({p1, p2}, {01, 02})}-

Clearly, we consider the BnHyS closed sets are:

(m, ) = {((e1, @), {p1, p3}, {01, 03})), ((01,03) ({p2, p3}, {02, 03}))}
(112, ) = {((01, ©2), {p1}, {o1})), ((01, 03), ({p3}, {o3))}-

(M3, 1) = {((1, 02), {ps}, {o3}), (01, 03), (® ®))

(2, 0 = {((01, 02), ({3}, {o3})), ((01, 03), ({2}, {o2}))}-

(15, ) = {((01, 02), {p1, p3}, {01, 03})), ((01, 03), ({p3}, {as )}
Now we consider the BnHySSs (4, ) and (U, ),

(1, 1) = {((01, 02), {pal, 03 D), (01, 03), ({p2}. ))}
(O, m) = {((01, 02), ({p2}, {o3})), (01, 03), ({p1, Pz {ash)}.

(1, 7) 0 (O, 70) = {(01, 02), (@, {03))), (01, 3), ({p2}, @))}.
Then,

Cl(u, ) = {((01, 02), ({p1, p3}, {01, 03})), ((01, 03), ({p2, p3}, {02, 03}))} and
Cl(O, ) = {((01, 02), (111, LI2)), ((01, 03), (L4, LI}
Hence, Cl(u, 1) 0 CI(O, 71) = {((e1, 02), ({p1, p3l, {01, 03})), ((01, 03), ({p2, p3}, {02, 03}))} and

Cl((u, m) N (O, m)) = {((01, 02), {3}, {a3})), (o1, 03), ({2}, fo2 )}
Thus, CI((n, n) n (u, n)) c Cl(n, n) n Cl(u, m).

But CI(n, 7) A (u, ™)) 2 Cl(n, 7) A Cl(, ).

Definition 5.13. Let (LI, [ 15, Tgus,,7) be a BnHySTS and (17, ) be a BnHySS over [[;, [1,. Then BnHyS
interior of BnHySS (1, ) over [, [ I, is symbolized by Int(n, ) and is described as the BnHyS union of all
BnHyS open sets contained in (1, 7r).

In other words, Int(n, ) = G{(y, 1) | (4, ) € Ty (1, 70) E(n, 0)}.

Thus, Int(n, n) is the largest BnHyS open set contained in (7, 7).

Proposition 5.14. Let (I1y, [, Tguy,m) be a BnHySTS and (n, ), (i, 70) be two BnHySSs over 14, [1,. Then

Ink(@, ) = (@, 1) and Int(ﬁ,n) = (ﬁ, ).

Int(n, ) € (n, n).

Int(Int(n, 7)) = Int(n, n).

(n, m) is BnHyS open if and only if Int(n, ©) = (n, 7).
If(n,m) c (u, m), then Int(n, m) c Int(u, 7).

Int((n, 7) N (u, 7)) = Int(n,7) N Int(y, 7).

Int(n, 7) U Int(u, 7) C Int((n, ) U (1, 70)).

NS TN

Proof. (1.) and (2.) are obvious.
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3. Since Int(n, ) is BnHyS open and Int(Int(n, 7)) is the BnHyS union of all BnHyS open subsets over
11, I, contained in Int(n, 1), then Int(n, ) C Int(Int(n, )). But in general Int(Int(n, 7)) C Int(n, 7). Hence
Int(Int(n, 7)) = Int(n, 7).

4. If (n, ) is a BnHyS open set, then (7, 7t) is itself a BnHyS open set contains (1, ). So Int(1, ) is the
largest BnHyS open set contained in (1, ) and (1, ) = Int(n, ).
Conversely, suppose that (1, 1) = Int(n, ). Since Int(n, 7) is a BnHyS open set, so (1, 71) is BnHyS open set.

5. Suppose that (1, 7) C (u, 7). Since Int(n, ) C (1, 7) C (4, 7). Int(n, 7) is a BnHyS open subset of (u, 11),
so by definition of Int(u, 7), Int(n, ©) C Int(u, 7).

6. Since (1, 1) N (1, 7) € (n, ™) and (1, 7) N (4, 70) € (1, 1), thenwe haveby (5.), Int((n, ) N (1, 7)) € Int(y, 7)
and Int((n, 7) n (u,m)) c Int(u, ). This implies that Int((n, ) N (u, 7)) € Int(n, ™) N Int(u, 7).

Conversely, Int(n, ©) c (n, ) and Int(u, m) c (4, ) implies that
Int(n, m) n Int(u, ) c (n,m) n (4, ™). Therefore Int(n), 7) n Int(u, m) is a BnHyS open subset of (7, 1) n (u, m).
Hence Int(n, ) n Int(u, m) c Int((n, m) n (u, m)).
Thus, Int((n, 7) n (u,m)) = Int(n, n) n Int(u, m).

7. Since (1, 1) € (1, 1) U (1, ) and (u, 7t) € (n, 1) U (4, 71). So by part (5),
Int(n, m) c Int((n, ™) u (u, m)) and Int(u, m) c Int((n, ) V] (4, ™).
Thus Int(n, n) U Int(u, ™) c Int((n, ) U (u,m). O

Remark 5.15. This example demonstrates that the equivalence in Proposition 5.14 (7.) is not often true.

Example 5.16. Let’s think about the BnHySTS (LI, [1,, Tgu,,70) over [y, [I, in Example 5.12 and the
BnHySSs (O, ) and (u, 7t) defined as follow:

(G, ) = {((01, 02), ({p2}, {02})), (01, 03), ({p1, p3}, {01, 03}))} and

(1, 1) = {((01, 02), ({1, p3, {o1,03)), (01, 03), (111, L12))}-

Then (Ur 7T) U ([-l/ 71) = {((Qlf QZ)! (le HZ))/ ((er QS)/ (Hl/ HZ))}/

Int(G, 1) = {((01, 02), ({p2}, {02})), ((01, 03), ({p1}, {o1}))} and

Ii’lf([.l, T() = {((er QE)/ (@, @))/ ((er 93)/ (®r @))}

Hence, Int(O, m1) U Int(u, 1) = {((01, 02), ({p2}, {02]), (01, 03), ({p1}, {01}))} and
Int((U, T[) U (.’JI 7-(22 = {((Qll QZlI (le HZ))rL(Ql/ QS)/ (le HZ))}

So that Int(O, i) U Int(u, ) € Int((O, ) U (4, m)).

But Int(O, ) U Int(u, m) 5 Int((n, ™) U (4, m)).

Proposition 5.17. Let (I1y, L5, T8y, 7) be a BnHySTS and (n, ) be a BnHySS over [y, [1,. Then

1. (Cl(n, m)° = Int((n, 7)°).
2. Cl((n,m)°) = (Int(n, n))".
3. Cl(n,m) = (Int((n, m)))".
4. Int(n,m) = (CI((n, m)°))".

Proof. From the definitions of BnHyS closure and BnHyS interior, we have

L. Cl(n,m) = N{(w,m) | (4,70 € Taupy, (1,7) S (4, 7). Then
(Cltn, ) = [0, | (1) € Tgupy, (1,7) € (1, M} and hence
(Clln, ) = Ui, n)° | (1m0 € Tgumy, (1) S 0,0 = Int((n,n)). O

We can prove (2.), (3.) and (4.) by the same way.
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Definition 5.18. Let ([, [1,, 7842y, ) be a BnHySTS and (1, 71) be a BnHySS over [[;, [[,, then Bn-
HyS boundary of BnHySS (1, ) over ]y, 1, is symbolized by b(1, m) and is described as b(n, ) =
Cl(n, m) A CI((, 7).

Proposition 5.19. Let (L1, L5, Tguy, 1) be a BnHySTS and (1, 70) be a BnHySS over 114, [1,. Then
1. b(n, n) c Cl(n, ).
b(n,m) = Cl(n, 71)~ﬂ (Int(n,m))°* = Cl(n,m) \ Int(n, n).

Int(n, ) = (n,7) \ b(n, ).
b(Int(n, 7)) € b(n, 7).
b(Cl(n, m)) < b(n, 7).

Proof. 1. b(n,m) = Cl(n,m) N Cl((n, 7)) € Cl(n, 7).

AR RN

2. b(n,m) = Cl(n, m) n Cl((n, ™)) = Cl(n, n) n (Int(n, m))* = Cl(n, n)?[nt(n, 7).

3. (M \ b, ) = (n,7) 0 G, = (,m) N (I, 7)) U Int(n, )
= ((n,m) N Int((n, 7)) U ((n, ) N Int(n,m)) = @ UlInt(n,n) = Int(n, n).

4. b(Int(n,m)) = Cl(Int(n, ) N Cl((Int(n, 7))°) € Cl(n, ) N Cl((n, 7)) = b(n, 7).

5. b(CI(n,m) = CI(Cl(n, M) N CU(CI(n, m))*) € Cl(n, ) N CU((, 7)) = b(n,m). O
Proposition 5.20. Let (L1, L5, Tguy, 1) be a BnHYySTS and (1, 70), (y, ) be two BnHySSs over [y, [1,. Then

1. b((n, ) U (g, 7)) € b(n, ) U b(u, ).
2. b((1,7) A (, 1) € bin, m) T by, m).

Proposition 5.21. Let (I1y, L5, Tguy, ) be a BnHySTS and (1, ) be a BnHySSs over 14, [1,. Then
Int(n,m) U b(n, ) = Cl(n, ).

6. Conclusion

In this paper, we proposed a novel extension of hypersoft sets, referred to as binary hypersoft sets,
which provide a more comprehensive generalization of binary soft sets by operating over two universal
sets and a parameter set. We defined and explored several fundamental operations on BnHySSs, including
subset, superset, equality, complement, null and absolute sets, as well as extended and standard versions of
union, intersection, difference, AND, and OR. In addition to establishing basic properties of BnHySSs, we
conducted a comparative analysis with existing frameworks such as HySSs and BnSSs. Furthermore, we
introduced the concept of binary hypersoft topology and the related notion of binary hypersoft subspace.
Finally, we examined key topological constructs—limit points, neighborhoods, closures, interiors and
boundaries—within the context of BnHySSs, thereby demonstrating the potential of this new structure for
further theoretical exploration and practical applications.

The introduction of BnHySSs opens up several promising directions for future research. One potential
area is the development of decision-making models and algorithms based on BnHySSs, particularly in en-
vironments involving multiple universal sets and complex parameter dependencies. Further investigation
into the algebraic and categorical properties of BnHySSs could deepen the theoretical foundations and re-
veal new connections with other soft set extensions. Additionally, expanding the framework to incorporate
fuzzy, intuitionistic, or rough elements may enhance its applicability to real-world problems character-
ized by uncertainty and vagueness. From a topological perspective, exploring continuity, compactness,
connectedness, and other advanced topological properties within the BnHySS context could yield richer
mathematical structures. Finally, practical applications in areas such as data science, artificial intelligence,
medical diagnosis, and engineering decision systems remain a compelling direction for future exploration.
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