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Abstract. The purpose of this work is to investigate some classes of periodic evolution problems involving
Leray-Lions type operators with nonlinear boundary conditions. Two key results are presented concerning
weak solutions. For cases where the source term does not depend on the solution, a general abstract method
is utilized, leveraging the time-periodic condition to provide both existence and uniqueness. For scenarios
involving a nonlinear source term strongly linked to the solution, the existence and uniqueness of weak
solutions are achieved without requiring any sign constraints on the nonlinearity. The methodology heavily
relies on Leray-Schauder topological degree, supported by innovative technical estimates.

1. Introduction

The study of partial differential equations, like periodic evolutionary equations, is motivated by de-
scribing several relevant real phenomena. For instance, such periodic equations can be used to model
periodic behaviors of biological, economic, ecological phenomena and physical processes, like for example
the distribution biological model of two interacting species [26, 27], see also lagoon ecological interactions
model [2, 3]. Furthermore, scientific evolution has given birth to different types of PDEs, we talk here
about those involving nonlinear terms. These type of boundary value problems has the ability to predict
certain complex phenomena, like for example the model of nonlinear heat transfer after the enthalpy and
Kirchhoff transformations [33, 35, 36]. Several works have been dedicated to investigating the properties of
solutions to nonlinear problems (existence, uniqueness, bifurcation, asymptotic behavior, etc). Topological
methods are one of the most powerful and elegant approaches for studying nonlinear partial differential
equations. It provides new tools commensurate with different application fields. For more details about
these methods, we refer interested readers to see the works [11, 16-19, 27, 34].

In this work, we are concerned with a class of periodic PDEs having nonlinear boundary conditions
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modeled by the following problem

dt — div(A(t, x, Vu)) = f(t,x,u) in Qr
u(0,-) = u(T,-) in Q (1)
—A(t, x, Vu).ii = g(t,x, u) on X,

where Q is an open regular bounded subset of RV, with smooth boundary 9Q, 7 is the outer unit normal
vector on dQ, T > 0 is the period, Qr = (0,T) X Q, X1 = (0,T) x dQ, A : Qr X RN — RN is a Carathéodory
function satisfies the standard conditions of Leray-Lions operator with growth p > 2. f: Qr xR — R
is a Carathéodory function, periodic in time with period T and enjoying some growth assumptions. The
function g : L7 X R — R is a Carathéodory function, periodic in time with period T and satisfies some
growth conditions to be specified later.

Related to the existing literature, the periodic PDEs have gained more attention from several workers
[5,7,8,13, 14, 21, 29]. We start by referring the readers to see the book [29] for a major and comprehensive
introduction to periodic parabolic equations with regular data. Amann was also studied periodic parabolic
equations with regular data in their work [4]. The author assured the existence of a classical periodic solution
to the considered problem via the sub- and super-solution-method. In [31] Lions studied the well-posedness
of the weak to a class of periodic parabolic equations involving Leray-Lions type operators. The author
used the theory of maximal monotone operators to prove existence, uniqueness and regularity properties
for the obtained solutions. Deuel & Hess in [21] interested by a quasilinear periodic equation having
critical growth nonlinearity with respect to the gradient. They established the existence and regularity
property of a weak periodic solution by employing the technics of sub- and super-solutions. The work
[21] was generalized by Alaa et al in their paper [12], the authors examined the existence of a weak
periodic solution to a nonlinear parabolic equation with L! data. They combined the truncation method
with the sub- and super-solution technics to obatin SOLA solution (Solution Obtained as the Limit of
Approximation). All the early mentioned works involves Dirichlet boundary conditions. However, the
literature of periodic parabolic equations with nonlinear boundary condition are more limited. In [6] Badii’s
considered the equation (1) in the case p = 2 with bounded nonlinearity. Under this special choice, He
established the existence and uniquness of weak bounded solution. Alaa et al [24] examined a quasilinear
periodic equation involving Laplacian operator with nonlinear boundary conditions. The authors proved
the existence of a weak periodic solution when the nonlinearity has critical growth with respect to the
gradient and involves sign condition. Their proof was based on the utilization of Schauder’s fixed point
Theorem combined with the truncation method. Fragnelli [27] studied a system of (p(x), q(x))-Laplacian
time-periodic equations with nonlocal terms under certain growth conditions in the L? framework. Utilizing
the Leray-Schauder topological degree theory, Fragnelli demonstrated the existence of a positive weak
periodic solution, assuming inf 5p(x) > 2 and inf 54(x) > 2. In [9], Charkaoui addressed nonlinear
periodic evolution equations featuring variable growth conditions and nonlinear source terms. The author
introduced an innovative formulation, converting the periodic problem into an equivalent fixed-point
problem within an appropriately chosen Banach space. By employing Leray-Schauder’s topological degree
theory, the existence and uniqueness of weak periodic solutions to the studied problems were rigorously
established.

In the present work, we propose to investigate the existence and uniqueness of weak periodic solution
to (1) with general assumptions. We will show two interesting existence and uniqueness results of the
periodic solutions to (1). In the first one, we will study problem (1) when the source term does not depend
on the solution u. For this setting, we shall use the monotone operators theory [31] to establish the existence
of a periodic solution in a weak sense. Based on the monotony property of Leray-Lions operators, we
prove that the obtained weak periodic solution is unique. Secondly, we study problem (1) by imposing
general assumptions on the source term f(¢, x, u) involving monotony and growth conditions. We start by
reformulating the studied problem into an equivalent fixed-point problem posed on a suitable Banach space.
Then, we use Leray Shauder topological degree to demonstrate the existence of a weak periodic solution to
(1). After, we combine the monotony property of the considered operator with the monotony of the source
term f(t,x,) to prove the uniqueness result. Furthermore, we shall show interesting compactness results
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which will be applicable to more general classes of periodic PDEs with nonlinear boundary conditions.
Let us stress that our work is original in the sense that it generalizes the existing works in the literature
[1, 6,10, 13, 15, 21, 24, 29]. Moreover, it can be seen that our work affords the readers a new topological
methods application for nonlinear periodic PDEs with general boundary conditions. Furthermore, the
result of our paper can be applied to the periodic p-Laplacian equations with generalized Robin boundary
condition modeled by

du — div(|VulP=2Vu) = f(t,x, u) in Qr
u(0,-) = w(T,") in Q

—|Vu|7"2% = y(t, x)ulul’~% + g(t,x,u) on XIr,

with y is a measurable function satisfying 0 < y¢ < y(t,x) < y; for some constants ), 1 and for almost
(t,x) in Xr. On the other view, we can easy to check that our obtained theoretical results include the case of
mean curvature periodic PDEs modeled as follows

-

2)
duu — div ((1 + |Vu|2) : Vu) = f(t,x,u) in Qr

u(0,-) = u(T,-) in QQ
32 Ju

- (1 + IVulz) : prie y(t, )ulP~2u + g(t,x,u) on Xr.
We have structured the rest of this work as follows. We begin Section 2 by presenting the necessary
assumptions to solve problem (1). Thereafter, we introduce the functional framework involving our
theoretical results and we recall an interesting surjectivity result from the monotone operators theory.
Section 3 gives a plain matter for solving problem (1) with linear source term (f(t, x, ) does not depends on
the solution u). We will divide it into two subsections, in the first one, we establish the existence of a weak
periodic solution via monotone operator theory. In the second subsection, we will show that the weak
periodic solution is unique. Section 4 will be reserved to prove the main result of our paper. We will define
the notion of a weak periodic solution to problem (1). We divide again the proof of our main result into
two paragraphs. For the first one, we reformulate the periodic problem into a well-posedness fixed point
problem in a suitable Banach space. Thereafter, we shall show the existence of a fixed point to the latter
problem by using the Leray-Schauder topological degree. In the second paragraph, we will demonstrate
that the obtained weak periodic solution to (1) is unique. In Section 5, we present an Appendix in which
we prove some interesting compactness results that we will frequently use in the proof of our main results.

2. Assumptions and Mathematical Preliminaries

The aim of this section is to build the notion of a weak periodic solution to (1). First of all, let us introduce
the necessary hypotheses to study the problem (1).

2.1. Assumptions

Throughout this paper, we assume that A : Qr X R¥ — RY is a Carathéodory function satisfies the
following assumptions:

(H;): There exist a nonnegative function H € L' (Qr) with (p’ = p%l) and a nonnegative constant ay such
that for all £ € RV, we have

|A(t,x, &) < H(t, x) + apléP™t for ae. (t,x) € Qr.

(H,): There exists d > 0 such that for all & € RN

At,x, )& > d|EF  for a.e. (£, x) € Q.
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(Hs): For all &, &* in RN such that (£ # &), we have
(A(t,x, &) — A(t,x, &), E - &Y >0 fora.e. (¢ x) € Qr.
We assume that g : Zr X R — R is a Carathéodory function, periodic in time with period T such that
(H,): There exist a constant a; > 0 and a measurable function K € L (L7) such that for all s € R, we have

lg(t, x,s)| < K(t, x) + mlsP~t fora.e. (t,x) € Zr.

(IHs): There exist a measurable, bounded function § periodic in time, such that
g(t,x,s).s = B, x)lsl’, foralls € R, a.e. (t,x) € Lr. (2)
with
0<pBo<p(tx)<p1, ae. (tx)€Xr.
(He): s — g(t, x,s) is nondecreasing for a.e. (f,x) € L.

2.2. Functional framework and definitions

To study the existence result of a weak periodic solution to (1), it is necessary to clarify in which sense
we want to solve problems (1). Let T > 0 and let X be a Banach space. For any ¢ € [1, 0], we denote by
L?(0, T; X) the space of measurable functions u : [0, T] — X such that the following norm is finite:

T 1/0 .
(momgar) ", if1<o<o

€SS SUP (g 7] lu@®llx, if o = oo.

l2ellroo,1:%) =

We also introduce the space C([0, T]; X), consisting of all strongly continuous mappings from [0, T] into X,
endowed with the norm:

llulleqo,m:x) = sup llu)llx.
te[0,T]

Equipped with their respective norms, both L°(0, T; X) and C([0, T]; X) form Banach spaces. These functional
spaces play a central role in our analysis and provide the appropriate framework for studying time-
dependent problems. For further foundational details, the reader is referred to classical sources such as
[22, 25].

Let us introduce the functional framework involving our work. For any p > 2, we set

Vr:= LF(0, T; WP(Q)).

We equip with the following norm

lilhy, :=( f f Vul? dxdt + f f ﬁ(t,x)lul”daxdt)p,
Qr Zr

which is equivalent to the standard norm of V. Here o, is the measure on the boundary dQ. Furthermore,
we set

Vi =10, T;(W(Q)),
the dual space of Vr. These spaces lead to introduce the following functional space

WT = {u € (VT, 8tu [S (V;-}
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We equip with the graph norm
lullw, = llully, + ll9sully; .

We will denote by (-, -) the duality pairing between (W'#(Q))* and W'#(Q). Before closing this paragraph,
we recall an interesting Theorem of [31] which will be used in what follows.

Theorem 2.1 ([31]). Let IL be a linear closed, densely defined operator from the reflexive space Vr to V7, IL maximal
monotone and let A be a bounded hemicontinuous monotone mapping from Vr to V-, then IL + A is maximal
monotone in Vi X V.. Moreover, if A is coercive, then (IL + A) is surjective.

In the whole of the paper, we will denote by C any generic nonnegative constant where its value may be
changed from line to line and sometimes in the same line.

Let r and s be two positive constants such that 1 + 1 = 1. Then, for any ¢ > 0, the following inequality
holds:

ab < ea” + C.b°, foralla,b > 0. 3)

Here, C, = ™71, and this result is widely known as the elementary form of Young’s inequality with & > 0.

3. Existence and uniqueness result with V.. source term

This section tackles the existence and uniqueness of a weak periodic solution to (1) when the source
term does not depend on the solution u. Let & be an element of V7, we consider the following periodic
boundary value problem

o — div(A(t, x, Vu)) = h(t,x) in Qr
u(0,) = uw(T,-) in Q 4)
—A(t, x, Vu).ii = g(t, x, u) on Xr.

Let us mention that the results of this section (existence and uniqueness) can be viewed as an auxiliary step
to establish the well-posedness of the proposed model (equation (1)). In the following definition, we will
define the notion of a weak periodic solution used to solve problem (4).

Definition 3.1. A measurable function u : Qr — R is said to be a weak periodic solution to (4) if it satisfies

ueWr, u(0)=u(T)in L2(Q)

T T

5
f(&m,go) dt+ffA(t,x,Vu)V(pdxdt+ffg(t,x,u)(pdaxdtz f(h,(p) dt, ©)
0 Qr Tr 0

for every test function ¢ € Vr.

In this manuscript, it is important to note that all integrals over the boundary JQ are taken with respect to
the (N — 1)-dimensional Hausdorff measure, denoted by o,, which serves as the surface measure.

Remark 3.2. Let us remark that the periodic condition in Definition 3.1 makes sense. Indeed, from [31] the following
continuous embedding holds true

Wr = C([0, T} LA(Q)), 6)

which gives that the mapping t +— u(t, x) is continuous from [0, T] into L*(Q2) and therefore we have

f u(0, x)p(x) dx = f u(T, x)p(x) dx,

Q Q

for all ¢ in L*(Q).



A. Charkaoui, G. El Guermai / Filomat 39:27 (2025), 9473-9492 9478

In the following theorem, we enunciate the main result of this section.

Theorem 3.3. Assume that (Hi)-(He) hold. Then, for any h belonging to V=, problem (4) has a unique weak
periodic solution u in the sens of Definition 3.1.

We divide the proof of Theorem 3.3 into two steps. In the first step, we establish the existence of a weak
periodic solution to (4) via the result of Theorem 2.1. While the second step will be reserved to establishing
the uniqueness of the obtained solution.

3.1. Existence result

To show the existence of a weak periodic solution to 4, we shall use the result of Theorem 2.1. To do
this, we must introduce two mappings IL and A. Let us define

D(L) := {u € Wy such that #(0) = u(T)}.

By employing the density of C2° (Qr) in V1 and using the fact that C° (Qr) € ID(IL), one may conclude that
ID(IL) is dense in V7. Let us define the mapping IL : ID(IL) — V7. such as

T
(Lu, p) := f (G, @y dt, Vo eVr.
0

In view to the result of [[31], Lemma 1.1, p. 313], we can deduce that LL is closed, skew-adjoint and maximal
monotone operator. Thereafter, we will define the operator A : Vr — V7. by the following form

(Au, ) := ffA(t,x,Vu)qudxdt+ffg(t,x,u)qodoxdt,
Qr Ir

for all ¢ € V7. Hence, it is easily verified that the problem (4) is equivalent to the research of a solution to
following abstract equation

Lu+ Au=TF, )

where F is an element of (V*T defined as

T
(F,p):= f(h,(p) dt, Yo e Vr.
0

To apply the result of Theorem 2.1, we must verify that A is hemicontinuous, monotone and coercive
operator.

e Hemicontinuity of the operator A: For any u, ¢ € Vr, we employ the growth assumptions (H;) and
(H4) to obtain

KAu, @) < f f (H(t,x)+a0|Vu|”’1)|V(p|dxdt+ f f (K(t,x)+a1|u|p’1)l(p|daxdt.
Qr Xr

By applying Holder’s inequality, one gets

-1 -1
A, @) < (IHlLr 0 + aoll Vil i IVl + (1Kl ey + anlill e il
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Which permit us to deduce

A, @) < (IHlLyr 0 + Kl ey + Clly gl (8)
where C is a constant dependent on T, Q, ap, @1 and f8;. Hence, from (8) it follows that

Aulby, < (Il gr) + KLy ey + Cllully )

Consequently, by using the result of [[30], Theorems 2.1. and 2.3], it follows that A is a hemicontinuous
bounded operator.

e Monotonicity of the operator A: Let u,v € Vr, we have

(A(u) — A(v),u —v) = f (A(t, x, Vu) — A(t, x, Vv))(Vu — Vo) dxdt
Qr

+ f (g(t, x,u) — g(t, x,0)) (1 — v) dodt.
Ir

Due to the assumptions (IH3) and (Hs), one may deduce that
(A(u) - A(v),u—v) >0.
Which gives us the monotony property of the operator A.

o Coercivity of the operator A: Let us employ the assumptions (IH;) and (Hs), one has

(Au,uy = ff (t, x, Vu)Vu dxdt + ffg(t x, u)udo,dt
> dff [VulP dxdt + ffﬁ(t xX)ulf do,dt

> mm(l,d)llullf’VT.

Then we get

Au,u . . -
¢ '>2m1n(1,d) lim lulf}," = co.
Nl 00 |[2al, lltlly, =00 T

Hence, the operator A is coercive.

Consequently, one may use the result of Theorem 2.1 to deduce the existence of u € ID(IL) a solution to the
abstract problem (7), which permit us to conclude the existence of a weak periodic solution to (4) in the
sense of Definition 3.1.

3.2. Uniquness result

To establish the uniqueness of the weak periodic solution (4), we take u; and u; two weak periodic

solutions to (4). Let us choose ¢ = u; — u in the weak formulation (5) of u; and also for the weak
formulation of u,, one obtains

T T
f(atul,ul —up) dt + ffA(t, x, Vu)V(uy — up) + ffg(t, x,u1)(uy — up) dodt = f(h, (11 — up)) dt, (9)
0 Qr Ir 0
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and

T T
f(&tuz, Uy — up) dt + ffA(t, x, Vu)V(uy — up) + ffg(t,x, Up)(u1 — up) doydt = f(h, (11 — up)) dt. (10)
0 Qr Ir 0

After, we subtract the two relations (9) and (10), one gets

T
f{&t(ul —Up), Uy — up)y dt + f (A(t,x, Vuq) — A(t, x, Vup))V(u1 — up) dxdt
0 Qr (11)
+ ff(g(t, x,u1) — g(t, x, up)) (U1 — up) doydt = 0.
Ir

Let us remark that (11 — u3)(0, ) = (41 — ux)(T, -) in Q3, we then have

T
f<at(u1 —up),uy —up) dt = 0.
0

Therefore, the relation (11) becomes

ff(A(f, x, Vuy) — A(t, x, Vup))V(uy — up) dxdt + ff(g(f/ x,u1) — g(t, x, u2))(u1 — up) doydt = 0. (12)
Qr Ir
From (12), it is not difficult to see that

ff(A(t, x, Vuy) — A(t, x, Vir))V(uy — up) dxdt = 0 (13)
Qr
ff(g(t, x,u1) — g(t, x, uz))(u1 — up) dodt = 0. (14)
Xr

Therefore, using assumptions (H3) and (IHg), we can deduce from the relations (13) and (14) the existence
of a constant ¢ such that

U —up=cae. inQrandu; —up; =0a.e. in L. (15)
From (15), it comes that
Ui = Uy a.e. in QT-

Which proves the uniqueness of the weak periodic solution to (4).

4. Main results

In this section, we take interest in the existence and uniqueness of the weak periodic solution to (1). We
will start by specifying some hypotheses on the nonlinear source term f(¢, x, ). Under the assumption that
f 1 Qr xR — Ris a Carathéodory function, periodic in time with period T, we assume that

(Hy): f satisfies the following growth condition
|£(t,x,9)| < a(t, 0)ls|® + b(t, x), (16)

for a.e (t,x) € Qr and for all s € R, where 0 € [1,p] and (a, ) are nonnegative functions belonging to

L=(Qr) X LV (Qr).
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(Hg): s — f(t,x,s) is nondecreasing for a.e. (t,x) in Qr.

Without loss of clarity, we propose to enunciate in the following definition the means of a weak periodic
solution to (1).

Definition 4.1. We call weak periodic solution to (1), all measurable function u : Qr — R that satisfies

ueWr, u0)=uT)inL*(Q)

T

17
f(&ﬂt,(p) dt+ffA(t,x,Vu)V(pdxdt+ffg(t,x,u)(pdaxdtz fff(t,x,u)(pdxdt, 17
0 Qr Ir Qr

for every test function ¢ € Vr.

Remark 4.2. It is important to highlight that assumption (IH;) guarantees that, for every u € LF(Qr), the nonlinear
function f(-,-,u) belongs to L (Qr). This result stems directly from (Hy), particularly when combined with the
classical Holder’s inequality. Specifically, we derive the following estimate

ff|f(t,x,u)|r”dxdtgc ol o, ff|u|”f3” dxdt+ff|b(t,x)|ﬂ’ dxdt|.
Qr Qr

Qr

Applying Holder’s inequality once more with carefully chosen exponents, we further obtain

f |f(t,x, u)l dxdt <C ((Tmeas Q)7 Nl o, Il + I1BIE, (QT)). (18)
Qr

where 0 = 2;% € [0, 1], and C is a nonnegative constant depending on p. Moreover, taking into account the embedding

Vr — LP(Qr) and utilizing the result from (18), we conclude that the right-hand side of (17) is well-defined.
In the following theorem, we state our main result of this section.
Theorem 4.3. Assume that (H;)-(IHg) hold. Additionally, if either of the following conditions is fulfilled:
@ 1<o<p,or
(if) 6 = pand ||allr~(q,) is sufficiently small,
then problem (1) admits a unique weak periodic solution u satisfying the conditions of Definition 4.1.

Similarly to the above theorem, we will divide the proof of Theorem 4.3 into two main parts. In the first
one, we will establish the existence of a weak periodic solution to the problem (1). For the second part, we
shall show the uniqueness of the weak periodic solution to (1).

4.1. Existence result

The aim of this paragraph is to show the existence of a weak periodic solution to (1). To do this, we
propose to use Leray Schauder topological degree. We start by introducing the following mapping

G :[0,1] x L(Qr) — L¥(Qr)
(A,0) —u,
where u is a weak periodic solution to the following problem

i — div(A(t, x, Vu)) = Af(t,x,v) in Qr
u(0,-) = u(T,-) in Q (19)
—A(t, x, Vu).il = g(t, x, u) on Xr.
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From Remark 4.2, we argue that for any fixed (A, v) in [0, 1] X LP(Qr) the source term A f(f, x, v) belongs to
L” (Qr). Moreover, we know that L (Qr) < V7. Then, according to the existence and uniqueness results
of Theorem 2.1, we derive that for any fixed (A, v) € [0,1] X LP(Qr) problem (19) has a unique weak periodic
solution u which satisfies the following conditions

ueWr, u0,x)=uT,x)in L*(Q)

T

20
f(&tu,@ dt+ffA(t,x,Vu)V(pdxdt+ffg(t,x,u)(pdaxdt: )\fff(t,x,v)(pdxdt, 29)
0 Qr Ir Qr

for every test function ¢ € V7. Thus, the mapping G is well defined for all (A, v) belonging to [0, 1] X LP(Qr).
As well known, to apply Leray Schauder’s topological degree, we need to proclaim that G satisfies some
properties. This will be done in the succeeding subsections.

4.1.1. The mapping G is continuous

Our aim is to show that the mapping G is continuous. To do this, let us consider a sequence (A, v,) in
[0,1] x LP(Qr) such that

(An,v4) = (A, 0) strongly in [0, 1] x LP(Qr). (21)
By setting
u, =G (A}’ll vn) , u=@g (A/ U) ’ (22)

the continuity of G requires only that (u,) converges strongly to u in LP(Qr), where u is the weak periodic
solution of (19) and (u,) is a sequence of weak periodic solution to the following problem

iy, — div(A(t, x, Vuy,)) = A f(t,x,v,)  inQr
uu(0,-) = uy(T,-) in Q (23)
—A(t, x, V).l = g(t, x, uy) on Xr.

It is clear that (u,) satisfies the following weak formulation

tn € Wr,  1,(0) = u,(T) in LA(QY)
T

24
f(atu”,(p) dt+ffA(t,x,Vun)Vgodxdt+ffg(t,x,u,,)qodaxdtz/\n fff(t,x,v,,)qodxdt, @4
0 Qr Ir Qr

for every test function ¢ € Vr. Particularly for ¢ = u, in (24), one gets

T
f{&tun, U,y dt + ffA(t,x, Vu,)Vu, dxdt + ffg(t,x, Uy, doydt = A, fff(t,x, V) Uy, dxdt. (25)
0 Or Ir Qr

By using the periodicity properties of (1), we obtain

T
f Ot ) dt = f ()2~ f (1,(0) dx = 0. (26)

0 Q Q

Furthermore, by using hypotheses (IH,) and (IHs), we derive from (25) that

d f f Vi, |P dxdt + f f B(t, )P dodt < f f |f(t, x, )| dxdt 27)
Qr Zr Qr
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To deal with the right-hand side of (27), we employ Holder’s inequality, one gets

1
7

1
4 4
min(L, d)lluylly, < f f |f(t,x,vn)|’“'dxdt X f f [unfF dxdt| . (28)
Qr Qr

From (21), we deduce that the sequence (v,) is bounded in L7 (Qr). Moreover, using the result from Remark
4.2, we can infer the existence of a nonnegative constant C, independent of #, such that

1
7

f f Ft,x,00 dxdt| <C. (29)
Qr

Therefore inequality (28) becomes

min(L, d)lfully, < Clltalliray- (30)
By combining the continuous embedding Vr — LF(Qr) with Young's inequality, we obtain

lluallf, < C, 31)

where C is a nonnegative constant independent of n. Which proves that (u,) is bounded in V. In addition,
by taking into account the growth condition (H,), we derive that (g(¢, x, u,)) is bounded in L (Z7). Thus,
by following a standard argument, we can show that

0ettally, < C. (32)

Thanks to the compactness results (i)-(iii) of Lemma 5.2, we deduce the existence of a measurable function
u* : Qr — R and a subsequence of (u,) still denoted by (u,) for simplicity such that

(un) — u* strongly in L¥(Qr) and a.e. in Qr, (33)
(un) — u* strongly in LP(X1) and a.e. in Zr, (34)
(Vu,) — Vu* a.e. in Qr. (35)

Furthermore, it results that

Auf(t, x,0,) = Af(t,x,0) weakly in L7 (Qr) and a.e. in Qr, (36)
g(t, x,1,) = g(t, x,u*) weakly in LV’ (Z7) and a.e. in Zr. (37)

On the other hand, we combine assumption (H;) with (31), we conclude that (A(t, x, Vu,)) is bounded in
L7 (Qr)N. In addition, the almost everywhere convergence (35) and (32) gives us

(A(t, x, Vuy,)) — A(t,x, Vu*) weakly in L7 (Qr), (38)
diuty, — dyu™ weakly in V7. (39)

With the help of the convergences (36)-(39), we pass to the limit in (24) as n goes to +oo, one obtains

u* e Wy, u*(0) = u*(T)in L2(Q)

T
f(atu*,(p) dt + ffA(t,x, Vu*)Ve dxdt + ffg(t, x, u*)p dodt = Afff(t,x, V) dxdt,
0 Qr Ir Qr

for all test function ¢ € Vr. Which proves that u* solves (19) and since problem (19) has a unique weak
periodic solution, we deduce that u* = u. Hence, the mapping G is continuous.
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4.1.2. The mapping G is compact

In this paragraph, we will show that the mapping G is compact, which means that the image of each
bounded set of [0, 1] X LP(Qr) is a relatively compact set in LP(Qr). To do this, let us take (1,, v,) a bounded
sequence in [0, 1] X LP(Qr), we shall show that the sequence (G (1, v,)) is relatively compact in L7(Qr). By
setting u, = G (A, vy), it is clear that u, solves problem (23). With the help of the boundness of (A,,v,)
in [0,1] x LP(Qr), we follow the same reasoning as of the continuity proof, we can establish directly the
following estimates

lallow, <G F %00l 0 <G N9t %, )l ey < C (40)

Consequently, using again the compactness result (i) of Lemma 5.2, we deduce that (1,) is relatively compact
in LP(Qr), which is quivalent to say that the mapping G is compact.

4.1.3. Existence of a positive radius R such that deg (u — G(A, u), Bg,0) = 1
To continue, we need to establish the existence of a radius R > 0 such that the homotopy G is admissible
within the ball
Bri={ve’Qr), Pl <R}
This is equivalent to proving that there exists a radius R > 0, independent of A, such that u # G(A, u) for
any u € dBg and A € [0,1]. Assuming the contrary, let us suppose there exists a sequence (u,) € L*(Qr)

such that [|u,lip;) — +o0 and u, = G(A,, u,) for some A, € [0,1]. This implies that () solves the following
weak formulation

Uy € Wr,  u,(0) = u,(T) in L2(Q)

T

41
f(atu”,(p) dt+ffA(t,x,Vun)Vgodxdt+ffg(t,x,u,,)qodaxdtz/\n fff(t,x,un)(pdxdt, 41
0 Qr Ir Qr

for every test function ¢ € Vr. By choosing ¢ = u, as a test function in (41) and employing (IH;) and (IHs),
we obtain

T
f(()tun, Uy) dt+dff [V, [P dxdt + ‘fj‘ﬁ(if,x)lunl’7 dodt < ff )f(t,x, u,,)u,,) dxdt. 42)
0 Qr P Qr

Since u, is periodic in time, one gets

T
f CORY . f (02T~ 3 f (P (0) dx = 0. (43)
0 Q Q

Taking advantage of the growth assumption (16), inequation (42) becomes

: 4 o
min (1, d) ||u,|| . < ffa(t,x)|u,,| dxdt + ffb(t,x)|un|dxdt. (44)
Qr Qr

By employing Holder’s inequality and invoking the continuous embedding Vr < LF(Qr), one achieves

: =) 5
S min (1,d) sl o, < (Tmeas Q)7 Nallusonlitnlly g,y + 10l o il (45)
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where S is the embedding constant which depending on 3, T and N. We have two cases to discuss.
Case 1: If 1 < 0 < p. A direct application of Young’s inequality (3) yields, for some ¢, &’ > 0, the following

result holds

S” min (1, d) [lua|l} + Celil! (46)

< (e + &) Junll? LY (Qr)

+ C¢ (T meas (Q)) |Ia||

L7(Qr) Lr(Qr) L*(Qr)

By choosing 0 < (¢ + ¢’) < 8’ min (1,d) in (46), we derive that u, is bounded L7(Qr).
Case 2: If 0 = p. Inequality (45) becomes

S’ min (1, d) llunllf, o, < Nallieinllttall}y o, + 10l ) Il (47)
Using again Young’s inequality (3) with the choice ¢ = w, it implies from (47) that

SP min (1,d)

— allly o,y < Nalls@nllttallly o, + Ce IIbIIZ, o' (48)

Then, when |la]l.~(@,) is small enough such that [lalli~,) < w, we deduce from (48) that (u,) is

bounded L(Qr). Thus taking advantage to the analysis of two above cases, we derive a contradiction
with the fact that |[u,lr ;) — +oo. We establish that there exists a nonnegative radius R for which the
Leray-Schauder topological degree is admissible within the ball Bg in the space L7(Qr). Consequently, we
conclude that the topological degree remains invariant under homotopy, which yields the relation

deg (Z74(-) - G(1,-), Bg,0) = deg (Za() - G(0, ), Br, 0), (49)
where 7, is the identity mapping defined from L(Qr) into LP(Qr). Our strategy now is to show that

deg (Z4(-) - G(0,"), Bg,0) # 0. (50)
Thus, to check property (50), we set 6 = G(0, ) which means that 9 satisfies the following conditions

e Wr, 6(0) =06(T)inL*Q)

T

51
f((?tG,(p) dt + ffA(t,x, VO)Vo dxdt + ffg(t,x, O)pdo.dt =0, G1)
0 Qr X

for all ¢ € V7. We choose ¢ = 0 as a test function in (51), one gets

T
f(&te, 0) dt + ffA(t,x, VO)VO dxdt + ffg(t,x, 60)0 dodt = 0. (52)
0 Qr Ir

To deal with the first integral, we use the periodicity properties of 6, we have

T

f (0:6,0) dt = f (0)*(T)dx — = f (60)*(0) dx =

0 Q Q

Furthermore, by using the hypotheses (IH;) and (IHs), the equality (52) becomes

d f f IVOP dxdt + f B(t, %) |61 dosdt < 0. 53
Qr Ir
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Which implies that
ek, =o,
and consequently 6 = 0. By taking into account the homotopy invariance property (49), we arrive at
deg (Z4() — G(1,-), Bg,0) = deg (Za("), Bg,0) = 1.

Hence, by employing the Leray-Schauder topological degree (see e.g [23])), we deduce that problem (1) has
a weak periodic solution # which satisfies the conditions of Definition 4.1. Which ends the existence proof.

4.2. Uniquness result

Let us consider 17 and u, two weak periodic solutions to (1) which satisfy the weak formulation (20).
By taking ¢ = u; — u5 as a test function in the difference between the two weak formulations of 1y and uy,
we get

T
f(&t(ul —Up), Uy — up)y dt + ff(A(t, x, Vuy) — A(t, x, Vi)V (uy — up) dxdt
0 Qr (54)
" Zf f (90t %, 11) — 9(t, %, 1)) (11 — 142) st = ! f (Pt 11) = £, %) 102)) (111 — 1) .

From the monotonicity assumption (IHs), the relation (54) becomes

T
f Orlany — 1), 1 — ) dt + f (At x, Vi) — A(t x, Vi)V (11 — 12) dcl
0 Qr

+ Zf f (g(t, x, u1) — g(t, x, u2)) (U1 — up) do,dt < 0.

Therefore, the rest of the uniqueness proof immediately follows the same reasoning as that of Theorem 3.3,
which finishes Theorem 4.3 proof.

5. Appendix

This section focuses on proving a compactness result relevant to periodic parabolic problems with
general nonlinear boundary conditions. To begin, we recall a fundamental lemma commonly known as
Lebesgue’s generalized convergence theorem.

Lemma 5.1. [20] Let (F,) be a sequence of measurable functions and F a measurable function such that F, — F a.e.
in Qr. Let (G,,) € LY(Qr) such that for all n € N, we have |F,| < G, a.e. in Qr and G, — G in LY(Qr). Then

ffF,,dxdt - ffl—“dxdt.
Qr Qr

Lemma 5.2. Assume that (IH;)-(IHs) hold and let (u,,) be the weak periodic solution of the following problem

dpu, — div(A(t, x, Vuy,)) = fn(tr X, uy) in Qr
uy(0,°) = uy(T,") in Q (55)
—A(t, x, Vi)l = g,(t, x, 1) on Xr,
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in the sense that

Uy € Wr,  1u,(0) = u,(T) in L*(Q)

T
56
f(&tun,(p) dt+ffA(t,x,Vun)V(pdxdt+ffgn(t,x,un)(pdaxdt: fffn(t,x,un)(pdxdt, (56)
0 Qr Ir Qr

for every test function ¢ € Vr. If we assume that (uy) is bounded in Vr, (fu(t, x, uy,)) is bounded in L (Qr) and
(gu(t, x, 1)) is bounded in LY (X1). Then, we have ( up to a subsequence)

(1) (un) — ustrongly in LP(Qr) and a.e. in Qr,
(i1) (un) — u strongly in LP(X1) and a.e. in X,
(iii) (Vu,) - Vuae. in Qr.
(iv) Moreover, if we have

lim ff(A(t, x, Vu,) — A(t, x, Vu))(Vu,, — Vu) dxdt < 0. (57)
Qr

Then
u, — u strongly in Vr.

Proof.

(i) Since (uy,) is bounded in Vr, (f,(t, x, u,)) is bounded in L' (Qr) and (g, (¢, x, uy,)) is bounded in L7 (Z7),
one may deduce from the equation (55) that (dsu,) is bounded in V7. By using Aubin’s compactness
lemma (see [31])), we derive that

compact

Wr = LP(Qr).
Therefore, we deduce that (up to a subsequence), one has
u, — u strongly in LP(Qr) and a.e. in Qr.
(if) With the help of the above boundness results, one may use Theorem 3.4.1 from [32], we get
u, — u strongly in I (Xr) and a.e. in Xr.

(ii)) Our strategy is to prove that (Vu,) is a Cauchy sequence in measure which permits to deduce that
(Vu,) converges to Vu almost everywhere in Qr (up to a subsequence). To do this, we are aiming to
show that

VY6 > 0,¥e > 0,dng such that ¥Yn, m > ny, meas {(t, x), |(Vu, — Vuy,) (£, x)] = 6} < e. (58)
Let 6 > 0 and ¢ > 0, we remark that for k > 0 and 1 > 0 we have the following inequality

meas {(t, x), |(Vu, — Vuy,) (£, x)] = 0} < meas(w1) + meas(w,) + meas(wsz) + meas(wy),
where,

w1 = {(t,x),|Vuu| 2k}, w2 = {(t,x), Vi, >k}, w3 = {(t,x), [uy — uml > 1},
ws = {(t,x),|(Vuy = Vi)l = 6, [Vuy| <k, [Vuy| <k, |y — | < 1.}
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Let us start by the first set w;, we have

kmeas (wq1) < ff |V, | dxdt < ffqunl dxdt.
w1 Qr

Sine (u,) is bounded in Vr and by using the continuous embedding V¢ < L! (O, T; Wl'l(Q)), we
deduce that

~10

1 C
meas (@1) <  [IVitullon < £ lally, <

By the same manner, we obtain that
C
meas (w;p) < T

Consequently, one may choose k large enough such that
meas (wq) + meas (w;) < 2¢. (59)

Now, let us fix k large enough such that (59) holds true and passing to estimate meas(ws). We remark
that

nmeas (w3) < ffl(un — Up)| dxdt < ffl(un — Uy,)| dxdt.
w3 Qr

By employing Holder’s inequality, one obtains
C
meas (w3) < E letn = tmllipop) -
Using the strong convergence of (u,,) to u in L” (Qr), we deduce that for a given 7, there exists 1y such
that for n, m > ng we have
meas (w3) < €.

To finalize the proof, we need to estimate meas (w4) and to choose 7. To this end, we must use the equa-
tion (55) satisfied by u,,. Due to the monotonicity property (IH;),,onehas (A (¢, x, &1) — A (t,x, &) (&1 — &2) >
0 for &1 # &,. Moreover, let us remark that the set

K 1= {(£1,&) € RN x RY such that |&] <k, &) < kand |€1 - &| > 6)

is compact and the mapping & —— A(t, x, &) is continuous for almost (f, x) in Qr. This fact permits to
conclude that (A (t,x, &1) — A (t, x, £2)) (&1 — &2) reaches its minimum on K which will be denoted by
y(t, x). Therefore, it is clearly that y(t, x) > 0 a.e in Qr. Employing this result, we deduce the existence
of ¢’ such that, for all measurable set w C Qr,

ffy(t, X)dxdt <&’ = meas(w) < e. (60)

’

Thus, to obtain meas(ws) < ¢, it suffices to prove that f f y(t, x)dxdt < €.

w4

In accordance with the

definitions of y and w4, we have

ffy(t, X) dxdt < ff (A(t,x,Vu,) — A(t,x,Vu,)) (Vu, — V”m)1{|un—um|sn} dxdt.
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In addition, let us remark that the integrated term is nonnegative and

VT, (un — um) = (Vi — V) 1{|u,,—u,,,|§n}’

where T)(s) = min(n, max(s, —n)). As a consequence, we obtain

ffy(t, X) dxdt < ff (At x,Vu,) = A(t,x, Vi) VT, (uy — wy,) dxdt. (61)
w. Qr

Subtracting the equation (56) for different indexes n and m, one gets

f(at(un — Uy), Q)dt +f (A(t,x, Vu,) — A(t, x, Vu,,))Ve dxdt +f (gu(t, x, tuy) = gm(t, x, Um))p dodt
Qr

Zf (fult, 2, 1) = fuu(t, x, u))@ dxdt.
Qr

(62)
By taking ¢ = T, (1, — u;,) € Vr in the equation (62), one has
T
f 8t (n = tm), Ty (uy = um dt + ff(A (t,x,Vuy) = At x, Vi) VT, (uy — ) dxdt
0 Qr
+ f f (Gn(t, %, un) = Gt X, ) Ty (= ) dodt (63)
Ir
=[] Gt = ot ) T = ) .
Qr
Using the fact that (1, — 1,,)(0) = (1, — u,,)(T), it follows that
T
f<&t (un - um) /Tr] (un - um)) dt = fsq(un - um)(T) dx — fsr](un - Mm)(O) dx =0,
0 Q Q
where S, (r) = f T (s)ds. Hence, the equation (63) becomes
0
f (At x, V) = A(t,x, Vi) VT, (uy — wy,) dxdt
Qr
+ f (gn(t/ X, un) - gm(t/ X, um)) Ti] (un - um) dedt (64)

= f (fn(tr X, Up) — fm(tr X, um)) Tn (un — uy,) dxdt.
Qr



(iv)

A. Charkaoui, G. El Guermai / Filomat 39:27 (2025), 9473-9492 9490

Using the fact that |T;(s)| < 17, one gets

ff (A(t,x, V) = A(t, x, Vi) VT, (uy — wy,) dxdt

< 27} ff|g}’l t x un)| dO‘xdt"I‘ ff |fn(t x ],[n)| dxdt .

On the other hand, since (f,(t, x, u,)) is bounded in L¥' (Qr) and (g.(t, x, 1)) is bounded in L7 (Z7), we
deduce from (65) that

(65)

ff (A(t,x, Vuy) = A(t,x, Vi) VT, (uy — wy) dxdt < 2nC. (66)
Qr

Consequently, by employing (66) we can estimate (61) as

ff y(t, x) dxdt < 2nC. (67)

7’

Therefore, by choosing 1 < ¢ >C one obtains f f y(t,x)dxdt < ¢ and due to the result of (60), we

W4
conclude that meas (w4) < ¢.
Finally, we have 1) is fixed and from the upper bound of meas (w3;) we obtain the existence of 7 such
that for all n, m > ny, we have

meas {(t, x), |(Vu, — Vuy,) (£, x)| = 6} < 4e.

This proves that (Vu,,) converges to Vu a.e in Qr (up to a subsequence).
Let us split the succeeding integral as follows

f (At x, Vuy,) — At x, Vu))(Vu, — Vu)dxdt = Iy — Ly — I n, (68)
where,
L= ffA(t, x, Vu,)Vu, dxdt, I, = ffA(t,x, Vu,)Vu dxdt,
Qr Qr

Iz, = ffA(t,x, Vu)(Vu, — Vu) dxdt.

From the result of (iii) and the weak convergence of (u,) in Vr, it is clear that

lim b, = ffA(t x, Vu)Vu dxdt, hm I, =0.

Hence, employing the assumption (57) and passing to the limit in (68), one obtains

lim I, < f f A(t, x, Vu)Vu dxdt. (69)
n—oo
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On the other hand, it comes from the result of #ii) that
A(t,x,Vu,)Vu, — A(t,x,Vu)Vu a.e in Qr

Then, after a direct application of Fatou’s Lemma one deduce that

n—oo

ffA(t, x, Vu)Vudxdt < lim I . (70)
Qr

Combining (69), (70) and (H;), we arrive at
A(t, x, Vu,)Vu, — A(t, x, Vu)Vu strongly in LY(Qr).

Now, with the help of the assumption (IH,) one may use the result of Lemma 5.1 with the following
choice

F,=d|\Vu,, F=d|Vul’, G,=A(x, Vu,)Vu,, G=A(tx,Vu)Vu.

We deduce that,
ff |\Vu, P dxdt — ffqul” dxdt.
Qr Qr

On the other hand, by using the strong convergence result of (i), we arrive at

u, — u strongly in Vr.
|
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