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Abstract. This article is devoted to establishing the existence and uniqueness of solutions to the fractional
problem of diffusion waves in the following Colombeau algebra:

Diu(x, t) + Acu(x, t) = f(tult, x)); (x,)) e QAx[0,T]
u(0, x) = o(x) = 0(x);
90, x) = Y.

Where DY is the fractionnal derivative with 1 < @ < 2, A is the Laplace operator, 1y, { are generalized
functions, 0 is distributions and Q ¢ R". This study is based on the integral solution of this problem using
the Gronwall’s lemma. Finally we study the association concept with the classical solution.

1. Introduction

A fractional diffusion-wave equation is an integro-linear partial differential formula, extracted from
the classical diffusion or wave equation by substituting the first- or second-order time derivative with a
fractional « derivative, 1 < @ < 2. These equations get up in continuous-time random walks [5], model-
ing of anomalous diffusive and sub-diffusive systems [3], unification of diffusion and wave propagation
phenomenon [2]. For trendy scattering o = 1, while for abnormal sub-scattering a < 1, and for abnormal
super-scattering a > 1. Fractional diffusion equations are of great importance because of their link with
several fields such as physics, chemistry, engineering, finance and other sciences that have been developed
in the last decade. In 1999, Oldham, Spanier, took into consideration a fractional diffusion equation that
carries a first-order derivative in space and a half-order derivative in time[4].In 1986, Nigmatullin talked
about that a few of the regular electromagnetic, and mechanical responses may be modeled appropriately

the usage of the fractional diffusion-wave equation [6]. In 1990, Fujita, supplied the life and uniqueness of
the answer of the Cauchy trouble of the fallowing type

Pu(x,t) _ Pu(x,t)
ot X

JA1<a,p<2
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The effects supplied provide an interpretation to phenomena among the warmth equation (@ = 1, § = 2) and
the wave equation (o = § = 2). In 1990, Fujita taken into consideration integro-differential equations which
show off warmth diffusion and wave propagation properties [10, 11]. In 1996, Mainardi offered analytical
research of the time-fractional diffusion wave equations. Using Laplace remodel method, he acquired the
essential answers of the simple Cauchy and signalling issues and expressed them in phrases of an auxiliary
characteristic M(z; y), wherein z = 2 is the similarity variable. He similarly confirmed that this kind of
characteristic is an whole characteristic of Wright type [12, 13]. In 1997, Mainardi furnished a complete
evaluate of studies at the utility of calculus in continuum and statistical mechanics which include studies
on fractional diffusion-wave solutions [2]. In 2001, Agarwal used the identical method to gain a general
answer for a fourth-order fractional diffusion-wave equation [15]. In 2002, Agarwal offered a fashionable
answer for a time-fractional diffusion-wave equation described in a bounded area area. His answer relies
upon upon the usage of the finite sine remodel method to transform fractional diffusion-wave equation
from a area area to a wave quantity area, then the Laplace remodel is used to lessen the ensuing equation
to an normal algebraic equation, finally, the inverse Laplace and inverse sine transforms are used to gain
the preferred solutions [16]. In 2005, Al-Khaled and Momani used the decomposition technique to acquire
an approximate answer for the generalized time-fractional diffusion-wave equation. Their consequences
showed the transition from a natural diffusion process (a¢ = 1) to a natural wave process (@ = 2) [17]. This
short assessment of fractional diffusion-wave equations and their programs is with the aid of using no way
complete. References to different papers similar to fractional diffusion-wave equaitons can be discovered
in[2, 4, 6,7, 14, 20 — -22].

In this paper, we consider the following time-fractional diffusion-wave equation of order 1 < a < 2:

Dfu(x, £) + Acu(x, t) = f(t, u(t, x)); (x,H) e Qx[0,T]
u(0, x) = Po(x) = 6(x); 1)
(0, x) = ¢1(x).

The motivation for considering the fractional derivative of delta and other distributions was its connection
to equations with delay and memory and their applications. The article is organized as follows. In Section
2, we recall some notions of Colombeau’s algebra and present the definition of the fractional derivative
in Colombeau algebra. In Section 3, we will demonstrate the existence and uniqueness of the solution in
Colombeau algebra. In section 4, we study the association.

2. Preliminaries

In this section, we will give notations and definition from Colombeau theory, definitions and results
from the fractional calculus used in this paper that we have used while evalu-ating the main results. For
more details, see [1, 5, 18, 19]. Let D (R") be the space of all smooth functions ¢ : R” — R” with compact
support. For g € N we denote

A; (R") = {qo € D(R"Y) /f @(x)dx =1 and f o(x)dx =0forl <a < q}.
R" R

The elements of the set A, are called test functions. It is obvious that A; > A, O Az ... Also, A; # @ for
i € N, For ¢ € A; (R") and € > 0 it is denoted as

Pe(x) = ;—n(p(l—c) for ¢ € D(R").

We denote by
ERY ={u: Ay xR" > C/ with u(p,x) is C™ to thesecond variable x}.
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With Vo € A,
U(@e,x) =u(x), YxeR"

In this work we construct an extended Colombeau algebra of generalized functions in L? norm con-
taining fractional derivatives following the approach given in [7, 8] for the purposes of the problem under
consideration in this document.

Let Q subset of R", I = (0,1)

E(Q) = fu = (ue). € (C™(Q) suchthat u, € W(Q), Ve € I};

Ema(Q) = {1 € ExQ) suchthat Yy e N"INeN such that [[97u(x)ll2 = O ™), e > 0};
No(Q) ={u € E(Q) suchthat Yy e N"VgeIN such that [|07u. (x| = O(e7), ¢ — 0};

G2(Q) = Eni2(QQ)/ Na(Q).

Let iy : W**(R") — &(R"), w - (w * ¢,)eer. With, W**(IR") is a sub-algebra of G»(IR"). For compact
imbedding i : &' — GR"), i(u) = [u* (UPe)eer] In which u is a few compactly supported smooth
features identically identical to at least one in a community of zero, [8, 9]. Define the Colombeau space
Gw22([0, T] X R"), T > 0, within the algebra G,([0, T] x R"). Let

Enne2([0, TIX R = { (1), € E([0, TIXR") such that Yx e QVT>03NAC>0 and e €,
”ayuf(t/x)”Lz < CE_N)/V € {0/ 112}18 < 80}'

Nw22([0, TI X R") = {(u)e € E([0, TI X R") suchthat Yxe€e QVT >0VYpeINIC >0 and ¢ €],
”&yus(t/ x)||L2 < Cgp)’ )4 € {O/ 1/ 2} €< 50}‘
This norm is negligible for any y € {0,1,2}. Colombeau algebra generalized functions defined by

ng,z([(), T] X IR”) = SM,Wz,z([O, T] X ]R“)/ Nwz,z([o, T] X ]Rn).

Define the Colombeau space g;’NM([o, TIxR"), T >0, [7] within the algebra Gp22([0, T] X R"), with D”u,
is a fractional derivative, where u, is a representative of u.

warwzlz([o, TI X R") = {(ue)e € Epmwe2([0, TI X R") suchthat Yxe€ QVT >03INIC>0 and e €],
IDYue(t, )2 < Ce ™),y €[1,2], € < &)

Ni22 ([0, TI X R?) = H(ue)e € Eyne2([0, TIX R")  suchthat Yxe QVT >0¥p e NIC >0 and ¢ €,
||D‘lelg(t, x)”LZ < CEP)J/ € [1/ 2] €< 50}-

This norm is negligible for any y € {0, 1, 2}. Colombeau algebra generalized functions defined by
;\/2/2([0/ T]xR") = S;A,Wz,z([ol T]xR")/ Nst,Z([O/ T]x R").

The meaning of the term association in Colombeau’s algebra is given as follows:
Let u,v € G1~(R"), We say that u and v are associated and we note u = v, if

tina [ (1= 0)@p =0,
IRVI

For all ¢ € D(R").
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3. Existence and uniqueness of the generalized solution in g;vn

In this section, we need the following definition and proposition in what follows:

Definition 3.1. [1] We say that f generalized function is of logarithmic type, if there exists a representative ( f;) of f
such that

suplfe(x)l = O(ln (S*N)) when ¢ — 0.

xeK

Proposition 3.2. [1] If f is of logarithmic type, then for any representative of ( f,)

_ ~N 0.
sxlelflﬁ(x)I—O(ln(& )) when ¢ 0

Theorem 3.3. Suppose that 1 < a < 2, if f € L? ([0,T] x R") is of logarithmic type. Then, there exist a

Loc
unique solution to the problem (1) in the extended Colombeau space G:,,,([0, T] X R"), if the initial data g, €

wea ([0, TTX R™).

e
W22

Proof. Existence:
The integral solution of the equation (1) is

u(t, x) = Eq(t* A)o(x) + JEa(t* A)r (%)
+ljm4u—ﬂ%mfﬂﬂ@m@mma)wmn<a<2
Fourier transform of the integral representation is
a(t, &) = Ea(t*A(8))po(&) + JEL(I*A(E)1(E)
+ljmﬂa—wmgmf“ﬂnmzamunmm1<a<z

Using logarithmic boundedness of f and connection of fractional differentiation and integration, we obtain
by Holder in-equality, for 0 <b < 1

TE(* A1),

2

I, F. < = A@)SoE)], +

+

1
f JEa((t — P AE)Da(r, u(t, £)d(v)
0

12

assuming that

2. = [[Bat AE)GoE);. + [TEat* AP )]
and
1 2
IR = f JEa((t = 7 AE)DZ 0, u(x, £))d(1)
0 12

For ||l IIi2 the estimate is give in details in [28,29], so we have a moderateness of I; due to the moderateness
of the initial data and L2-boundedness of the Mittag-Leffler function on compact set.

For
2

|I%||7. < Clne

f P Ba((t — T AE)DE (T, u(t, £)d(x)
0

12
By Buniakowsky equality

t t
][, < Clinel” fR ” {( fo (]E"a((t—T)”A(é))sz)( fo (J“-Zaa,e)fdu))}da
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We denote these two multipliers by f]Rn ABdE, we calculate the parts A, B separately, we have

t t
1< [ (Bt -ora©) de < [ 0 -o7R (- oAt i
0 0

By Buniakowsky inequality

t T T
IA] < f ( f (T—S)zds) f (I« (T—s)“A(g))dsF)decN;.
0 0 0

t t T 2
IB| < fo (]“-Za(T,g))zd(T)s fo ( fo (T—S)a_aﬁ(’[,é)ds) d(7).

By Buniakowsky inequality
£ T T
|B| Sf (f (T—s)z"“6ds) (f Iﬁ(s,é)zlds)d”c
0 \Jo 0

T T2a74
< j(; a5 suTlplﬁ(s, &)PPdr.

On the other hand

So, we obtain using Fubini theorem

5 b t2 T T2a—4 )
oscmet [ 5[ Eg supins ypan) e

) bTZ T TZa—4 s
< CiClinel' - fo 35 SuplliGs .

~

I

So

TZa—4

T2 (7
sup [la(t, O)IZ, < Clinel™" + C%ClIn e|b7 f 5 sup [li(s, &I d.
t 0 2a—-5 .
By the Gronwall’s inequality

TZa—l
2a - 1)(2a - 5)

sup ||4(t, E)Ili2 < Cllne|*" exp(Ci,Clln elb2 ).

And moderateness of the L3-norm follows with a great speed, by Plancharel equality we obtain

sup [lue(t, )|, < CxCe™, IN>0,xeR"
t

Uniqueness:
Let’s say there are two solutions u ¢(t, .), U2 (t,.) to the problem (1), consequently

Diue(x, 1) + Axrire(x, 1) = fe(t une(t, x)); (x,t) e Qx[0,T]
{ u1,6(0,x) = ll/O,s(x) = 0:(x);
At ,£(0, x) = P1e(%).
And
D?”Z,s (X, t) + AXMZ,S (x/ t) = f&‘(t/ uZ,é‘ (t/ .X')),' (x/ t) e Qx [O/ T]
{ uZ,e(Or X) = llfo,e(x) = 6{,(3(');
Itttz (0, x) = P1(0).
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Then
D?(ul,s = up,e) (X, 1) + Ax(ur,e — tpe)(x, 1) = fe (t, u1,e(t, x)) — fe (t, uze(t, x));
(ul,e - u2,e)(0/ x) = Ng,e;

ai.‘(ul,s - uz,e)(ol x) =N,

with g1, 192 € Ne2([0, T] X IR"). We consider the integral solution of problem (2)

1
ul,s(t/ x) — u2,s(t/ x) = Nnoe + N1 f JE((t - T){XA)D%_(X (fs(T/ ul,s(T/ x)) — fe(T/ uZ,E(T/ x))) d(T)
0

with 1 < a < 2, we pose that n, = ng . + 111,.. Then

1
ul,E(tl x) — uz,e(t/ X)=ng+ f JE.((t - T)aA)th_a(fs(T/ ul,e(Tr x)) — fs(T/ uZ,e(Tr x)))d(1)
0

”ul,e(tl x) - uZ,e(tl x)” < ”ne”
1
+l fo JEo((t = T M)DF(fe(T, 1h1,6(T, X)) = fe(T, th2,(, )))d(T)|]
”ul,e(tr JC) - uZ,e(tr JC)H < ||né||
1
+ f(; IJEa((t = 1)*A)llall fe (T, u1,6(T, X)) = fe(T, 2,(T, ))ld(7)
llua,e(E, ) = 12,6 (&, )| < [l

1
+ tlIIfogllfo IJEa((t = 1) M)llllut,e (T, X) = 1z, (7, 2)lld(7).

According to the Gronwall’s inequality, we have

1
llur,e(t, %) = ua,e(t, 0| < | exp (allvxfé‘”j; IEa((t = T)* A)lld(7))

a”fos”CNtz)

et ) = w28, )] < Im-leXp( :

As f is logarithmic type, n. € NJ,,,([0, T] X R"), it follows that
11, (¢, x) — up (¢, x)Il = O(e"),¥q € N, when & — 0.

O

4. Association with classical solution

Let v the solution to

(DY + Ayo(x, t) = 0; (x,H) e Qx[0,T]
o(x,0) = Yo(x);  do(x,0) = Y1(x) x€R;

and w the solution to

(D + Adw(x, t) = f(t, w(t, x)); (x,1) € Ax[0,T]
w(x,0)=0; Jdw(x,0=0 xeR.

Proposition 4.1. The generalized solution u, of (1) in Gye2([0, T] X R") is associated with v + w.

9498

)

(4)
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Proof. Let v, by the classical solution to

(DY + A)ve(x, £) = 0; (x, ) e Qx[0,T]
0(x,0) = Yoe(x);  9ive(x,0) = Pre(x) x€R
Then
(DY + AY)(ve + w)(x, t) = f(t,w(t,x)); (x,t) e Qx[0,T]
(ve + w)(x,0) = Yo e(x);  I(ve + w)(x,0) = P1(x) x€R.
We have
(DY + A (e —ve —w)(x, t) = fe(t, uc(t, x)) — f(t, w(t, x)); (x, 1) e Qx[0,T]
(e —ve —w)(x,0)=0; J(u, —v. —w)(x,00=0 xeR.

Let u, the integral solution generalized the problem (1)
Ue(t, X) = Eq(t*A)iho,e(x) + JEa(t A1, (%)
+ fo 1 JEo((t = T)*A)D?™ f(1, ue(7, x))d(7) with1<a <2.
And v, +w the integral solution classic of the equation
(Ve + w)(t, %) = Ea(t*A)o,e () + JEa (" A)h1 e (x)

1
+ f JEL((t — T)"‘A)Df“"f(’f, w(t,x))d(t) withl <a < 2.
0

The integral solution the problem (7) with 1 < a < 21is

1
(e —ve —w)(t,x) = fo JEo((t = D) A)DF ™ (fe(, ue (7, %)) = f(1,w(1, X)))d(1)

1
(e = ve = w)(, X)ll2 = |If0 JEa((t = D)* A)DF(fe(t, 1e(7, %)) = f(t, w(T, x))d(Dll.2

1
(e = v = w)(t, D)2 < fo ITEa((t = O M2 DF N (fe(, e (T, %)) = fe(T, (ve + w)(T, %))
+fe(T, (Ve + w)(1, %)) = fe(T, w(T, X)))lld(7)
1
(e = ve —w)(t, 2)ll12 < fo ITEa((t = T)*MIDF I fe(, tte(T, %)) = fe(T, (06 + w)(T, X))l 2d(7)

1
+f0 ITE((t = DMl DF Nl fe(T, (v + w)(1, X)) = fo(T, w(t, ))2d(7).

Since
lIfe(7, (ve + w)(1, X)) = fe(T,w(T, X))l = 0, V(7,x) € [0, T] X R.
Then

CnTPllfelle
e = o, - w)e 9l < 2 f lhee(5,2) = (@ +w)(T, Dl2d.
0
By the Granwall’s inequality

CnNT?

9499

(7)
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Such as f; is of logarithmic type
(e —ve —w)(t, V2 =0 (), as e—0 VgelN.

Then,
U % U+ W.

O
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