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Abstract. In this paper, we investigate the preconditioned AOR method for solving linear systems. We
study two general preconditioners and propose some lower triangular, upper triangular and combination
preconditioners. For A being an L-matrix, a nonsingular M-matrix, an irreducible L-matrix and an irre-
ducible nonsingular M-matrix, four types of comparison theorems are presented, respectively. They contain
a general comparison result, a strict comparison result and two Stein-Rosenberg type comparison results.
Our theorems include and are better than almost all known corresponding results.

1. Introduction

Consider a system of n equations

Ax = b, (1)

where A = (ai, j) ∈ Rn×n, b, x ∈ Rn with b known and x unknown. In order to solve the system (1) with
iterative methods, the coefficient matrix A is split into

A =M −N, (2)

where M is nonsingular and N , 0. Then a linear stationary iterative method for solving (1) can be described
as

xk+1 = Txk +M−1b, k = 0, 1, 2, · · · , (3)

where T =M−1N is the iteration matrix.
We decompose A into

A = D − L −U,

where D is a diagonal matrix, L and U are strictly lower and upper triangular matrices, respectively, as
usual.

2020 Mathematics Subject Classification. Primary 65F10; Secondary 65F08.
Keywords. Linear system, preconditioner, preconditioned AOR method, comparison, M-matrix, L-matrix.
Received: 22 April 2021; Accepted: 26 July 2025
Communicated by Dragan S. Djordjević
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For ω ∈ R \ {0} and γ ∈ R, let

A =Mγ,ω −Nγ,ω, (4)

where

Mγ,ω =
1
ω

(D − γL), Nγ,ω =
1
ω

[
(1 − ω)D + (ω − γ)L + ωU

]
.

Then the AOR method for solving (1) is defined in [16] by

xk+1 = Lγ,ωxk + ω(D − γL)−1b, k = 0, 1, 2, . . . ,

where

Lγ,ω = (D − γL)−1[(1 − ω)D + (ω − γ)L + ωU]

is the AOR iteration matrix. The splitting (4) is also called the AOR splitting of A.
When (γ,ω) is equal to (ω,ω), (1,1) and (0,1), the AOR method reduces respectively to the SOR method,

Gauss-Seidel method and Jacobi method, whose iteration matrices are represented by Lω, L and J .
In [16] it is pointed out that, for γ , 0, the AOR method is an extrapolated SOR (ESOR) method with

overrelaxation parameter γ and extrapolation one ω/γ, i.e.,

Lγ,ω =

(
1 −

ω
γ

)
I +

ω
γ

Lγ,

and, hence, if η is an eigenvalue of Lγ and λ, the corresponding one of Lγ,ω, then we have

λ = 1 −
ω
γ
+
ω
γ
η. (5)

It is well known that, if A is nonsingular, then the iterative method (3) is convergent if and only if the
spectral radius ρ(T) of the iteration matrix T is less than 1. In this case, the matrix T is also called convergent.
However, if A is singular, then we have ρ(T) ≥ 1, so that we can only require the semiconvergence of the
splitting. When the iterative method (semi)converges, the convergence speed is determined by ρ(T), and
the smaller it is, the faster the iterative method converges. Therefore ρ(T) is called convergence factor.

In order to decrease the spectral radius of the iteration matrix, an effective method is to precondition
the linear system (1). It is well known that the term preconditioning refers to transforming the system (1)
into another system with more favorable properties for iterative methods.

If P is a nonsingular matrix, then the preconditioned linear system

PAx = Pb

has the same solution as (1). Here P is called the preconditioner.
Generally speaking, preconditioning attempts to improve the spectral properties of the coefficient matrix.

A good preconditioner P should meet the following requirements:

• The preconditioned system should have more favorable properties for iterative methods, in particular,
the iterative methods can be convergent more faster.

• The preconditioner should be cheap to construct.

To choose a good preconditioner P is an interesting problem, which has been investigated widely. In a
large number of papers, in particular for the AOR method, a special preconditioner P is proposed by

P = I +Q, Q > 0.

Then we define a matrix splitting as

PA = M̂ − N̂.
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A preconditioned iterative method can be defined by

xk+1 = T̂xk + M̂−1b, k = 0, 1, 2, · · · ,

where T̂ = M̂−1N̂ is the iteration matrix.
When A is an L-matrix, a nonsingular M-matrix, an irreducible L-matrix or an irreducible nonsingular

M-matrix, the preconditioned AOR, SOR, Gauss-Seidel and Jacobi methods are constructed, generalized
and applied by [1, 2, 7–9, 12, 14, 15, 17–20, 22–24, 26, 29–31, 34–47, 50–56, 58–63, 66–72, 74–76, 79, 82–85, 90–
94, 96–105, 107–111, 113, 114].

In this paper, we investigate the preconditioned AOR method for solving linear systems. We study
two general preconditioners and propose some lower triangular, upper triangular and combination pre-
conditioners. For A being an L-matrix, a nonsingular M-matrix, an irreducible L-matrix and an irreducible
nonsingular M-matrix, four types of comparison theorems are presented, respectively. They contain a
general comparison result, a strict comparison result and two Stein-Rosenberg type comparison results.
Our theorems include and are better than almost all known corresponding results. Some incorrect known
results are pointed out.

This paper is organized as follows. In Section 2 we give some concepts and results, which will applied in
the next section. In Section 3, we study two general preconditioners, some lower triangular, upper triangular
and combination preconditioners for the preconditioned AOR method. Four types of comparison results
are proved. In Section 4, we give some explanations and prospects.

2. Some concepts and lemmas

For convenience we recall and give some concepts and lemmas as follows.
A matrix B ∈ Rn×m is called nonnegative, semi-positive, positive if each element of B is nonnegative,

nonnegative but at least a positive element, positive, which is denoted by B ≥ 0, B > 0 and B ≫ 0,
respectively. When B1 − B2 ≥ (>,≫)0, we denote B1 ≥ (>,≫)B2 or B2 ≤ (<,≪)B1. Similarly, for y ∈ Rn, by
identifying it with n × 1 matrix, we can also define y ≥ (≤)0, y > (<)0 and y ≫ (≪)0. B ∈ Rn×n is called
monotone, if B is invertible and B−1 > 0. B = (bi, j) ∈ Rn×n is called a Z-matrix if bi, j ≤ 0 for i, j = 1, · · · ,n,
i , j; an L-matrix if it is a Z-matrix with ai,i > 0, i = 1, · · · ,n; a nonsingular M-matrix if it is a Z-matrix and
is monotone. It is well known that a nonsingular M-matrix is an L-matrix.

A matrix B ∈ Rn×n is called reducible if there is a permutation matrix V such that

VBVT =

[
B1,1 B1,2

0 B2,2

]
,

where B1,1 ∈ Rr×r, B2,2 ∈ R(n−r)×(n−r) with 1 ≤ r ≤ n − 1. Otherwise, B is irreducible. The directed graph of
a matrix B = (bi, j) ∈ Rn×n is denoted by G(B). A path in G(B) which leads from the vertex Vi to the vertex
V j is denoted by σi, j, i.e., σi, j = ( j0, j1, · · · , jl+1) with i = j0, j = jl+1, l ≥ 0 and b jk jk+1 , 0, k = 0, · · · , l. It is well
known that a matrix B is irreducible if and only if G(B) is strongly connected, which means that for any
i, j ∈ {1, · · · ,n} there exists a path σi, j ∈ G(B).

Definition 2.1. The decomposition (2) is called a splitting of A if M is nonsingular. A splitting is called:

(i) Regular if M−1
≥ 0 and N ≥ 0 (cf. [86, Definition 3.28]);

(ii) Weak regular if M−1
≥ 0 and M−1N ≥ 0 (cf. [86, Definition 3.28]);

(iii) Nonnegative if M−1N ≥ 0 (cf. [80, Definition 1.1]).

Lemma 2.2. [86, Theorems 2.7 and 2.20]

(i) Let B ≥ 0. Then B has a nonnegative eigenvalue equal to ρ(B), and there corresponds an eigenvector x > 0.
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(ii) Let B ≥ 0 be irreducible. Then B has a positive eigenvalue equal to ρ(B), and there corresponds an eigenvector
x≫ 0.

Lemma 2.3. [4, Theorem 2-1.11] Let B ≥ 0.

(i) If Bx ≥ αx with x > 0, then ρ(B) ≥ α.

(ii) If Bx ≤ βx with x≫ 0, then ρ(B) ≤ β.

(iii) If B is irreducible and Bx > αx with x > 0, then ρ(B) > α.

(iv) If B is irreducible and Bx < βx with x > 0, then ρ(B) < β and x≫ 0.

Here we have made a minor modification to [4, Theorem 2-1.11]. In fact, for (iii), x ≫ 0 cannot be
derived.

Lemma 2.4. Let B ≥ 0 and x > 0.

(i) If Bx≫ αx then ρ(B) > α.

(ii) If Bx≪ βx then ρ(B) < β and x≫ 0.

Proof. Since B ≥ 0, then there exists y > 0 such that BT y = ρ(B)y. Multiply yT on the left side of Bx≫ αx or
Bx ≪ βx respectively, we can obtain ρ(B)yTx > αyTx or ρ(B)yTx < βyTx, which derives ρ(B) > α or ρ(B) < β
directly. When Bx≪ βx, x≫ 0 is obvious.

Lemma 2.5. [4, Theorem 6-2.7] Let B be an irreducible Z-matrix. Then B is a nonsingular M-matrix if and only if
B−1
≫ 0.

Lemma 2.6. [4, Theorem 6-2.3] Let B be a Z-matrix. Then the following statements are equivalent:

(i) B is a nonsingular M-matrix.

(ii) There is a vector x≫ 0 such that Bx≫ 0.

(iii) The weak regular splitting of B is convergent.

Lemma 2.7. [86, Theorem 3.37] Any weak regular splitting of B is convergent if and only if B is nonsingular with
B−1 > 0.

Lemma 2.8. [86, Exerxise 3.3-6] Let A be an irreducible L-matrix. Then ρ(L ) > 0 and it has associated eigenvector
x≫ 0.

Lemma 2.9. Let A be an irreducible L-matrix, and let 0 ≤ γ ≤ ω ≤ 1 and ω > 0.

(i) Then ρ(Lγ,ω) > 0 holds.

(ii) Assume that x > 0 satisfies Lγ,ωx = ρ(Lγ,ω)x. Then x≫ 0.

(iii) Assume that y > 0 satisfies yTLγ,ω = ρ(Lγ,ω)yT. Then yT(D − γL)−1
≫ 0.

Proof. Denote ρ = ρ(Lγ,ω).
Since A is an irreducible L-matrix, then (D − γL)−1

≥ 0 and

Lγ,ω = (D − γL)−1[(1 − ω)D + (ω − γ)L + ωU] = (1 − ω)I + ω(D − γL)−1[(1 − γ)L +U] ≥ 0,

so that there exists u > 0 such that Lγ,ωu = ρu. Clearly, ρ = 0 if and only if Nγ,ωu = 0. Because A is
irreducible L-matrix, it gets that Nγ,ω ≥ U > 0.
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When ω < 1, we have Nγ,ωu ≥ (1 − ω)/ωu > 0. When ω = 1 and γ < 1, we have that Nγ,ω = (1 − γ)L +U
is irreducible so that Nγ,ωu > 0. Hence, for these two cases we obtain ρ > 0. When ω = γ = 1, by Lemma
2.8 we have also ρ > 0. We have proved (i).

If Lγ,ωx = ρx, then we obtain

[(ω + ρ − 1)D − (ω − γ + γρ)L − ωU]x = 0. (6)

Let Â = (ω+ρ− 1)D− (ω−γ+γρ)L−ωU. Since ω > 0 and ω−γ+γρ > 0, then Â is an irreducible Z-matrix.
If x has some zero elements, without loss of generality, then we can assume that

x =
(

0
x̂

)
, x̂≫ 0 ∈ Rr, 1 ≤ r ≤ n − 1.

We divide Â accordingly as

Â =
(

A1,1 A1,2
A2,1 A2,2

)
, A2,2 ∈ Rr×r.

Then A1,2 ≤ 0. From (6) we derive A1,2x̂ = 0 so that A1,2 = 0, which implies that Â is reducible. This is a
contradiction. Hence, x has no zero elements, i.e., x≫ 0. This has proved (ii).

When yTLγ,ω = ρyT, let zT = yT(D− γL)−1. Then z > 0. Further, we have zT[(1−ω)D+ (ω− γ)L+ωU] =
ρzT(D − γL), so that [(ω + ρ − 1)D − (ω − γ + γρ)LT

− ωUT]z = 0. Since AT ia also an irreducible L-matrix,
then similar to the proof of (ii) we can prove z≫ 0. Then (iii) is proved.

Lemma 2.10. Let P > 0 be nonsingular, and let the splitting

PA = M̂ − N̂ (7)

be weak regular. Then the following three statements are equivalent:

(i) A−1 > 0.

(ii) (PA)−1 > 0.

(iii) The splitting (7) is convergent.

Proof. By Lemma 2.7, (ii) and (iii) are equivalent, immediately.
The splitting (7) can be rewritten into A = P−1M̂ − P−1N̂. Clearly, this splitting is weak regular and

(P−1M̂)−1(P−1N̂) = M̂−1N̂. The equivalence between (i) and (iii) follows directly by Lemma 2.7 again.

From this lemma, the following lemma is obvious.

Lemma 2.11. Let A and PA be Z-matrices, where P > 0 is nonsingular. Then A is a nonsingular M-matrix if and
only if PA is a nonsingular M-matrix.

We prove two Stein-Rosenberg type comparison theorems.

Lemma 2.12. Let the splittings A = M1 − N1 = M2 − N2 be respectively weak regular and nonnegative, and let
x ≫ 0, y > 0 satisfy M−1

2 N2x = ρ(M−1
2 N2)x, yTM−1

1 N1 = ρ(M−1
1 N1)yT. Suppose that one of the following two

conditions is satisfied:

(i) M−1
1 (N2 −N1)x≫ 0.

(ii) yTM−1
1 ≫ 0 and (N2 −N1)x > 0.

Then one of the following mutually exclusive relations holds:

(a) ρ(M−1
1 N1) < ρ(M−1

2 N2) < 1.
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(b) ρ(M−1
1 N1) = ρ(M−1

2 N2) = 1.

(c) ρ(M−1
1 N1) > ρ(M−1

2 N2) > 1.

Proof. Since Ax = (M2 −N2)x = [1 − ρ(M−1
2 N2)]M2x, then by simple operation we have

M−1
1 N1x − ρ(M−1

2 N2)x = (M−1
1 N1 −M−1

2 N2)x = (M−1
2 A −M−1

1 A)x =M−1
1 (M1 −M2)M−1

2 Ax

= [ρ(M−1
2 N2) − 1]M−1

1 (M2 −M1)x = [ρ(M−1
2 N2) − 1]M−1

1 (N2 −N1)x (8)

and, therefore,

[ρ(M−1
1 N1) − ρ(M−1

2 N2)]yTx = [ρ(M−1
2 N2) − 1]yTM−1

1 (N2 −N1)x.

When one the conditions (i) and (ii) is satisfied, it derives that yTM−1
1 (N2 −N1)x > 0. Since yTx > 0, then

we obtain

ρ(M−1
1 N1) − ρ(M−1

2 N2)


< 0, i f ρ(M−1

2 N2) < 1,
= 0, i f ρ(M−1

2 N2) = 1,
> 0, i f ρ(M−1

2 N2) > 1.

The proof is completed.

By the definition of the AOR method, when ω = γ = 1 in (4) we derive the Gauss-Seidel method, whose
iteration matrix is denoted by L . Now, let

PA = D̃ − L̃ − Ũ = M̃1,1 − Ñ1,1,

where D̃ is a diagonal matrix, L̃ and Ũ are strictly lower and upper triangular matrices respectively
and M̃1,1 = D̃ − L̃, Ñ1,1 = Ũ. Then the preconditioned Gauss-Seidel iteration matrix can be defined as
L̃ = M̃−1

1,1Ñ1,1 = (D̃ − L̃)−1Ũ.

Lemma 2.13. Let A and PA be L-matrices, and let L x = ρ(L )x with x ≫ 0. Suppose that the second to nth
elements of M̃−1

1,1(N1,1 − Ñ1,1)x are positive. Then one of the following mutually exclusive relations holds:

(a) ρ(L̃ ) < ρ(L ) < 1.

(b) ρ(L̃ ) = ρ(L ) = 1.

(c) ρ(L̃ ) > ρ(L ) > 1.

Proof. Consider the splittings

PA = M̃1,1 − Ñ1,1 = PM1,1 − PN1,1.

Clearly, they are regular and nonnegative respectively.
Since the first column L̃ is a zero vector, then it can be decomposed as

L̃ =

(
0 ψ1,2
0 Ψ2,2

)
, Ψ2,2 ≥ 0 ∈ R(n−1)×(n−1),

so that ρ(L̃ ) = ρ(Ψ2,2).
Correspondingly, we decompose x and M̃−1

1,1(N1,1 − Ñ1,1)x as

x =
(

x1
x2

)
, M̃−1

1,1(N1,1 − Ñ1,1)x =
(

x̃1
x̃2

)
, x2, x̃2 ∈ R(n−1).

Then x2 ≫ 0 and x̃2 ≫ 0.
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Similar to the proof of Lemma 2.12, by (8) we can obtain that(
0 ψ1,2
0 Ψ2,2

) (
x1
x2

)
− ρ(L )

(
x1
x2

)
= [ρ(L ) − 1]M̃−1

1,1(N1,1 − Ñ1,1)x = [ρ(L ) − 1]
(

x̃1
x̃2

)
,

so that

Ψ2,2x2 − ρ(L )x2 = [ρ(L ) − 1]x̃2.

SinceΨ2,2 ≥ 0, then there exists z > 0 such that zTΨ2,2 = ρ(Ψ2,2)zT. Hence, we have

[ρ(Ψ2,2) − ρ(L )]zTx2 = zTΨ2,2x2 − ρ(L )zTx2 = [ρ(L ) − 1]zTx̃2.

Because of x2 ≫ 0, x̃2 ≫ 0 and z > 0, we drives zTx2 > 0 and zTx̃2 > 0, so that

ρ(Ψ2,2) − ρ(L )


< 0, i f ρ(L ) < 1,
= 0, i f ρ(L ) = 1,
> 0, i f ρ(L ) > 1.

The proof is completed.

Similar to [81, Theorem 3.4], we prove a strictly comparison result.

Lemma 2.14. Let the both splittings A1 =M1−N1 and A2 =M2−N2 be nonnegative and convergent with A−1
2 ≫ 0

and A−1
2 ≥ A−1

1 . Suppose that there exists x > 0 such that M−1
2 N2x = ρ(M−1

2 N2)x and M2x > M1x ≥ 0. Then
ρ(M−1

1 N1) < ρ(M−1
2 N2).

Proof. We have that

A−1
2 M2x≫ A−1

2 M1x ≥ A−1
1 M1x,

so that
1

1 − ρ(M−1
2 N2)

x = A−1
2 M2x≫ (I −M−1

1 N1)−1x.

Clearly, (I −M−1
1 N1)−1

≥ 0. It follows by Lemma 2.4 that

1
1 − ρ(M−1

2 N2)
> ρ((I −M−1

1 N1)−1) =
1

1 − ρ(M−1
1 N1)

.

The required result can be derived.

3. Preconditioned AOR method and comparison results

In this section, without loss of generality, suppose that all of the diagonal elements of A are 1. In this
case, A is an L-matrix if and only if A is a Z-matrix.

For convenience, if the matrix Q is chosen as Qν, then we write Pν = I +Qν, Qν = (q(ν)
i, j ) and A(ν) = PνA =

(a(ν)
i, j ). Let

A(ν) = Dν − Lν −Uν =M(ν)
γ,ω −N(ν)

γ,ω (9)

with

M(ν)
γ,ω =

1
ω

(Dν − γLν), N(ν)
γ,ω =

1
ω

[
(1 − ω)Dν + (ω − γ)Lν + ωUν

]
,

where Dν = dia1(A(ν)) is a diagonal matrix, Lν and Uν are strictly lower and upper triangular matrices
respectively. Then the corresponding preconditioned AOR method for solving (1) can be defined as

xk+1 = L (ν)
γ,ωxk + ω(Dν − γLν)−1Pνb, k = 0, 1, 2, . . . ,
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where

L (ν)
γ,ω = (Dν − γLν)−1[(1 − ω)Dν + (ω − γ)Lν + ωUν]

is the preconditioned AOR iteration matrix.
We will propose four types of comparison theorems. They contain a general comparison result, a strict

comparison result and two Stein-Rosenberg type comparison results.
We first give them as follows.

Theorem A (Stein-Rosenberg Type Theorem I)
Let A be an L-matrix. Then one of the following mutually exclusive relations is valid:

(i) ρ(L (ν)
γ,ω) ≤ ρ(Lγ,ω) < 1.

(ii) ρ(L (ν)
γ,ω) = ρ(Lγ,ω) = 1.

(iii) ρ(L (ν)
γ,ω) ≥ ρ(Lγ,ω) > 1.

Theorem B (General Comparison Theorem)
Let A be a nonsingular M-matrix. Then

ρ(L (ν)
γ,ω) ≤ ρ(Lγ,ω) < 1.

Theorem C (Stein-Rosenberg Type Theorem II)
Let A be an irreducible L-matrix. Then one of the following mutually exclusive relations is valid:

(i) ρ(L (ν)
γ,ω) < ρ(Lγ,ω) < 1.

(ii) ρ(L (ν)
γ,ω) = ρ(Lγ,ω) = 1.

(iii) ρ(L (ν)
γ,ω) > ρ(Lγ,ω) > 1.

Theorem D (Strict Comparison Theorem)
Let A be an irreducible nonsingular M-matrix. Then

ρ(L (ν)
γ,ω) < ρ(Lγ,ω) < 1.

Lemma 3.1. Suppose that Lγ,ω ≥ 0, L (ν)
γ,ω ≥ 0. Assume that one of Theorems A, B, C and D is valid for 0 ≤ γ ≤

ω ≤ 1, ω > 0. Then it is valid for 0 < ω ≤ 1 and 0 ≤ γ ≤ 1.

Proof. Assume that Theorem C is valid for 0 ≤ γ ≤ ω ≤ 1, ω > 0.
We just need to prove that it is also valid for 0 < ω < γ ≤ 1. From (5), it is easy to prove that

ρ(Lγ,ω) = 1 −
ω
γ
+
ω
γ
ρ(Lγ), ρ(L (ν)

γ,ω) = 1 −
ω
γ
+
ω
γ
ρ(L (ν)

γ ).

Clearly,

ρ(Lγ,ω)


< 1
= 1
> 1

⇐⇒ ρ(Lγ)


< 1
= 1
> 1

and

ρ(L (ν)
γ,ω)


< 1
= 1
> 1

⇐⇒ ρ(L (ν)
γ )


< 1
= 1
> 1.
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Since Theorem C is valid for γ ≤ ω, then we have that

ρ(L (ν)
γ )


< ρ(Lγ) if ρ(Lγ) < 1
= ρ(Lγ) if ρ(Lγ) = 1
> ρ(Lγ) if ρ(Lγ) > 1,

so that

ρ(L (ν)
γ,ω)


< ρ(Lγ,ω) if ρ(Lγ,ω) < 1
= ρ(Lγ,ω) if ρ(Lγ,ω) = 1
> ρ(Lγ,ω) if ρ(Lγ,ω) > 1.

When one of Theorems A, B and D is valid for 0 ≤ γ ≤ ω ≤ 1, ω > 0, the proof is completely same.
The proof is completed.

In the following, if there is no special explanation then we always assume that

0 < ω ≤ 1, 0 ≤ γ ≤ 1.

We will construct some Qν (Pν) to make the above four theorems hold. For simplicity, when we provide
the conditions for the establishment of Theorems A, B, C and D we always assume that A is an L-matrix, a
nonsingular M-matrix, an irreducible L-matrix and an irreducible nonsingular M-matrix, respectively. We
will not elaborate on this point one by one below.

3.1. General preconditioners

In [94] we have proposed some general preconditioners. A class of general constructions of Q is given
by

Q1 = (q(1)
i, j )

with

q(1)
i, j

{
= 0, i = j = 1, · · · ,n,
≥ 0, i, j = 1, · · · ,n, i , j, and

n∑
i, j=1
i, j

q(1)
i, j , 0.

Some comparison theorems have been proved.
By direct operation we have

a(1)
i, j = ai, j + q(1)

i, j +

n∑
k=1
k,i, j

q(1)
i,k ak, j, i, j = 1, · · · ,n, i , j, a(1)

i,i = 1 +
n∑

k=1
k,i

q(1)
i,k ak,i, i = 1, · · · ,n. (10)

We define several decompositions as

Q1 = Q(l) +Q(u), Q(l)U = E1 + F1 + G1, Q(u)L = E2 + F2 + G2,

where E1 and E2 are diagonal matrices, Q(l), F1 and F2 are strictly lower triangular matrices, while Q(u), G1
and G2 are strictly upper triangular matrices. Then the three matrices in (9) are given by

D1 = I − E1 − E2, L1 = L + F1 + F2 +Q(l)L −Q(l), U1 = U + G1 + G2 +Q(u)U −Q(u).

Similar to the proof of [94, Theorem 2.6], we prove a lemma.

Lemma 3.2. (i)

P1Nγ,ω −N(1)
γ,ω = P1Mγ,ω −M(1)

γ,ω =
1
ω

[E1 + E2 + γ(F1 + F2) + (1 − γ)Q(l) + ωQ(u)Mγ,ω].
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(ii) Assume that λ is an eigenvalue of Lγ,ω and x , 0 is its associated eigenvector. Then

L (1)
γ,ωx − λx = (λ − 1)[M(1)

γ,ω]−1[E1 + E2 + γ(F1 + F2) + (1 − γ)Q(l) + ωQ(u)Mγ,ω]x.

Proof. Since

P1A =M(1)
γ,ω −N(1)

γ,ω = P1Mγ,ω − P1Nγ,ω,

then by direct operation we have

P1Nγ,ω −N(1)
γ,ω = P1Mγ,ω −M(1)

γ,ω =
1
ω

[(I +Q(l) +Q(u))(I − γL) − (D1 − γL1)]

=
1
ω

[E1 + E2 + γ(F1 + F2) + (1 − γ)Q(l) +Q(u)(I − γL)],

which shows (i).
Similar to (8), we can get

L (1)
γ,ωx − λx = (λ − 1)[M(1)

γ,ω]−1(P1Mγ,ω −M(1)
γ,ω)x.

By (i), we derive (ii).

Let

∆(1)(γ) = (E1 + E2) + γF1 + γF2 + γQ(u)U + (1 − γ)Q = ∆11 + γ∆12 + γ∆13 + γ∆14 + (1 − γ)Q,

where ∆11 = E1 + E2, ∆12 = F1, ∆13 = F2, ∆14 = Q(u)U. Denote

∆(1)(γ) = (δ(1)
i, j (γ)), ∆k = (δ(1k)

i, j ), k = 1, 2, 3, 4.

By direct operation we can obtain that

δ(11)
i, j =

 −
n∑

k=1
k,i

q(1)
i,k ak,i, i = j = 1, · · · ,n,

0, otherwise,

δ(12)
i, j =

 −
j−1∑
k=1

q(1)
i,k ak, j, i = 3, · · · ,n, j = 2, · · · , i − 1,

0, otherwise,

δ(13)
i, j =

 −
n∑

k=i+1
q(1)

i,k ak, j, i = 2, · · · ,n − 1, j = 1, · · · , i − 1,

0, otherwise,

δ(14)
i, j =

 −
j−1∑

k=i+1
q(1)

i,k ak, j, i = 1, · · · ,n − 2, j = i + 2, · · · ,n,

0, otherwise,

so that

δ(1)
i, j (γ) = δ(11)

i, j + γδ
(12)
i, j + γδ

(13)
i, j + γδ

(14)
i, j + (1 − γ)q(1)

i, j

=



−

n∑
k=1
k,i

q(1)
i,k ak,i, i = j = 1, · · · ,n;

(1 − γ)q(1)
i, j − γ

j−1∑
k=i+1

q(1)
i,k ak, j, i = 1, · · · ,n − 1, j = i + 1, · · · ,n;

(1 − γ)q(1)
i, j − γ

∑
1≤k≤ j−1
i+1≤k≤n

q(1)
i,k ak, j, i = 2, · · · ,n, j = 1, · · · , i − 1
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and

δ(1)
i, j (1) =



−
∑

1≤k≤ j−1
i+1≤k≤n

q(1)
i,k ak, j, i = 1, · · · ,n, j = 1, · · · , i, (i, j) , (n, 1);

−

j−1∑
k=i+1

q(1)
i,k ak, j, i = 1, · · · ,n − 2, j = i + 2, · · · ,n;

0, i = 1, · · · ,n − 1, j = i + 1;
0, i = n, j = 1,

(11)

where the sum is taken to be zero when the upper limit is less than the lower limit.

Lemma 3.3. Let A be an L-matrix.

(i) Let 0 ≤ γ < 1.

(i1) If q(1)
i, j > 0 for some i , j, then δ(1)

i, j (γ) > 0.

(i2) There exist i, j ∈ {1, · · · ,n}, i , j, such that δ(1)
i, j (γ) > 0.

(ii) Let γ = 1.

(ii1) Suppose that there exist i, j ∈ {1, · · · ,n} such that q(1)
i, j a j,i < 0. Then δ(1)

i,i (1) > 0.

(ii2) Suppose that there exist i ∈ {1, · · · ,n − 1} and j ∈ {1, · · · , i} such that q(1)
i,n an, j < 0. Then δ(1)

i, j (1) > 0.

(ii3) Suppose that there exist i ∈ {1, · · · ,n − 1} and j ∈ {i + 1, · · · ,n} such that q(1)
i, j a j,1 < 0. Then δ(1)

i,1 (1) > 0.

(ii4) Suppose that there exist i ∈ {1, · · · ,n} and j ∈ {1, · · · ,n − 1} such that q(1)
i, j a j, j+1 < 0. Then δ(1)

i, j+1(1) > 0.

(ii5) Suppose that there exist i ∈ {2, · · · ,n} and j ∈ {2, · · · , i} such that q(1)
i,1 a1, j < 0. Then δ(1)

i, j (1) > 0.

In addition, suppose that A is irreducible.

(ii6) If q(1)
i,i+1 > 0 for some i ∈ {1, · · · ,n − 1}, then there exists j ∈ {1, · · · ,n} \ {i + 1} such that δ(1)

i, j (1) > 0.

(ii7) If q(1)
n,1 > 0, then there exists j ∈ {2, · · · ,n} such that δ(1)

n, j(1) > 0.

(ii8) If an,1 < 0 and ak,k+1 < 0, k = 1, · · · ,n − 1, then there exist i, j ∈ {1, · · · ,n} such that δ(1)
i, j (1) > 0.

Proof. Since A is an L-matrix, then δ(1k)
i, j ≥ 0, k = 1, 2, 3, 4, and δ(1)

i, j (γ) ≥ 0.

Assume that γ < 1. If q(1)
i, j > 0, i , j, then δ(1)

i, j (γ) ≥ (1 − γ)q(1)
i, j > 0, i.e., (i1) holds.

By the definition of Q1, there exist i, j ∈ {1, · · · ,n} and i , j, such that q(1)
i, j > 0, it follows by (i1) that (i2)

holds.
Now we prove (ii). From

δ(1)
i,i (1) = −

n∑
k=1
k,i

q(1)
i,k ak,i, i = 1, · · · ,n,

(ii1) is obvious.
By (11), when i = 1, · · · ,n − 1, then we have δ(1)

i, j (1) ≥ −q(1)
i,n an, j for j = 1, · · · , i, which implies (ii2), while

δ(1)
i,1 (1) ≥ −q(1)

i, j a j,1, for j = i + 1, · · · ,n, which implies (ii3).

Similarly, when i = 2, · · · ,n, j = 1, · · · , i − 1 and i = 1, · · · ,n − 2, j = i + 1, · · · ,n − 1, we get δ(1)
i, j+1(1) ≥

−q(1)
i, j a j, j+1, which implies (ii4).

While, when i = 2, · · · ,n and j = 2, · · · , i, then δ(1)
i, j (1) ≥ −q(1)

i,1 a1, j, which implies (ii5).
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Assume that A is irreducible.
By the irreducibility of A, we have

∑n
j=1, j,i+1 ai+1, j < 0. If q(1)

i,i+1 > 0 then

n∑
j=1

j,i+1

δ(1)
i, j (1) = −

i∑
j=1

∑
1≤k≤ j−1
i+1≤k≤n

q(1)
i,k ak, j −

n∑
j=i+2

j−1∑
k=i+1

q(1)
i,k ak, j

≥ −

i∑
j=1

q(1)
i,i+1ai+1, j −

n∑
j=i+2

q(1)
i,i+1ai+1, j = −q(1)

i,i+1

n∑
j=1

j,i+1

ai+1, j > 0,

which implies that there exists j ∈ {1, · · · ,n} \ {i + 1} such that δ(1)
i, j (1) > 0. This proves (ii6).

Similarly, we have
∑n

j=2 a1, j < 0. If q(1)
n,1 > 0 then

n∑
j=2

δ(1)
n, j(1) = −

n∑
j=2

j−1∑
k=1

q(1)
n,kak, j ≥ −

n∑
j=2

q(1)
n,1a1, j = −q(1)

n,1

n∑
j=2

a1, j > 0,

which implies that there exists j ∈ {2, · · · ,n} such that δ(1)
n, j(1) > 0. This proves (ii7).

At last, assume that an,1 > 0 and ak,k+1 > 0, k = 1, · · · ,n − 1.
For i = 1, · · · ,n − 1, we have

δ(1)
i,1 (1) = −

n∑
k=i+1

q(1)
i,k ak,1 ≥ −q(1)

i,n an,1.

Similarly, we have that for i = 1, · · · ,n − 1, j = i + 2, · · · ,n,

δ(1)
i, j (1) = −

j−1∑
k=i+1

q(1)
i,k ak, j ≥ −q(1)

i, j−1a j−1, j,

and for i = 2, · · · ,n, j = 2, · · · , i,

δ(1)
i, j (1) = −

∑
1≤k≤ j−1
i+1≤k≤n

q(1)
i,k ak, j ≥ −q(1)

i, j−1a j−1, j.

Hence it gets that

δ(1)
i, j (1) ≥ −q(1)

i, j−1a j−1, j, i = 1, · · · ,n, j = 2, · · · ,n, j , i + 1.

Denote η = min{−an,1; −ak,k+1 : k = 1, · · · ,n − 1}. Then η > 0. Now, we obtain

n∑
i, j=1

δ(1)
i, j (1) =

n∑
i=1

n∑
j=2

δ(1)
i, j (1) +

n∑
i=1

δ(1)
i,1 (1) ≥

n∑
i=1

n∑
j=2

j,i+1

δ(1)
i, j (1) +

n−1∑
i=1

δ(1)
i,1 (1)

≥ −

n∑
i=1

n∑
j=2

j,i+1

q(1)
i, j−1a j−1, j −

n−1∑
i=1

q(1)
i,n an,1 ≥ η

n∑
i=1

n∑
j=2

j,i+1

q(1)
i, j−1 + η

n−1∑
i=1

q(1)
i,n

= η


n∑

i=1

n−1∑
j=1
j,i

q(1)
i, j +

n−1∑
i=1

q(1)
i,n

 = η
n∑

i, j=1
i, j

q(1)
i, j > 0,

which implies that there exist i, j ∈ {1, · · · ,n} such that δ(1)
i, j (1) > 0, i.e., (ii8) holds.
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We first give the condition for the establishment of the Stein-Rosenberg Type Theorem I.

Theorem 3.4. Suppose that P1A is an L-matrix. Then Theorem A is valid for ν = 1.

Proof. Denote ρ = ρ(Lγ,ω).
Since A is an L-matrix, then it gets that Ei ≥ 0, Fi ≥ 0, i = 1, 2, M−1

γ,ω > 0 and

Lγ,ω =M−1
γ,ωNγ,ω = (1 − ω)I + ω(I − γL)−1[(1 − γ)L +U] ≥ 0,

which shows that the splitting (4) is weak regular. By Lemma 2.2, ρ is an eigenvalue of Lγ,ω with associated
eigenvector x > 0.

Similarly, the AOR splitting P1A =M(1)
γ,ω −N(1)

γ,ω is weak regular, i.e., [M(1)
γ,ω]−1 > 0 and L (1)

γ,ω ≥ 0.
By Lemma 3.2 we obtain

L (1)
γ,ωx − ρx = (ρ − 1)[M(1)

γ,ω]−1[E1 + E2 + γ(F1 + F2) + (1 − γ)Q(l) + ωQ(u)Mγ,ω]x. (12)

By Lemma 3.1 we just need to consider the case when γ ≤ ω. In this case Nγ,ω ≥ 0.
When ρ ≥ 1, then Mγ,ωx = Nγ,ωx/ρ ≥ 0. Since [M(1)

γ,ω]−1 > 0, Q(l)
≥ 0 and Q(u)

≥ 0, then from (12) it derives
that L (1)

γ,ωx ≥ ρx. It follows by Lemma 2.3 that ρ(L (1)
γ,ω) ≥ ρ.

Assume that ρ ≤ 1.
When A is irreducible, by Lemma 2.9, ρ > 0 and we can choose x≫ 0. Since Mγ,ωx = Nγ,ωx/ρ ≥ 0, then

from (12) it derives that L (1)
γ,ωx ≤ ρx. It follows by Lemma 2.3 that ρ(L (1)

γ,ω) ≤ ρ.
If A is reducible, then definite Ǎ = (ǎi, j) with

ǎi, j =

{
0, if ai, j , 0,
1, if ai, j = 0, i, j = 1, · · · ,n.

Let A(ϵ) = A − ϵǍ with ϵ > 0. Then A(ϵ) is an irreducible L-matrix. From P1A(ϵ) = P1A − ϵP1Ǎ, it is easy to
see that P1A(ϵ) is an L-matrix for sufficient small ϵ, since the matrix P1A is an L-matrix and P1Ǎ ≥ 0. Denote
the AOR iteration matrices corresponding to A(ϵ) and P1A(ϵ) by Lγ,ω(ϵ) and L (1)

γ,ω(ϵ), respectively. By the
proof above we have ρ(L (1)

γ,ω(ϵ)) ≤ ρ(Lγ,ω(ϵ)), so that

ρ(L (1)
γ,ω) = lim

ϵ→0+
ρ(L (1)

γ,ω(ϵ)) ≤ lim
ϵ→0+

ρ(Lγ,ω(ϵ)) = ρ.

Now, we have proved that either ρ(L (ν)
γ,ω) ≤ ρ(Lγ,ω) ≤ 1 or ρ(L (ν)

γ,ω) ≥ ρ(Lγ,ω) ≥ 1, which implies that one
of the three mutually exclusive relations (i), (ii) and (iii) of Theorem A holds.

The proof is completed.

This result is consistent with [94, Theorem 2.6].

Theorem 3.5. Suppose that P1A is a Z-matrix. Then Theorem B is valid for ν = 1.

Proof. Since A is a nonsingular M-matrix, then the splitting (4) is weak regular. By Lemma 2.6, the AOR
method is convergent, i.e., ρ(Lγ,ω) < 1.

On the other hand, by Lemma 2.11, P1A is a nonsingular M-matrix so that it is an L-matrix.
Now, it follows by Theorem 3.4 that Theorem B is valid.

Next, we give the Stein-Rosenberg Type Theorem II.

Theorem 3.6. Suppose that P1A is an L-matrix. Then Theorem C is valid for ν = 1, provided one of the following
conditions is satisfied:

(i) 0 ≤ γ < 1 and P1A is irreducible.

(ii) γ = 1 and P1A is irreducible. One of the following conditions holds:
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(ii1) There exist i, j ∈ {1, · · · ,n} such that δ(1)
i, j (1) > 0.

(ii2) q(1)
n,1 > 0.

(ii3) There exists k ∈ {1, · · · ,n − 1} such that q(1)
k,k+1 > 0.

(ii4) There exist i, j ∈ {1, · · · ,n} such that q(1)
i, j a j,i < 0.

(ii5) There exist i ∈ {1, · · · ,n − 1} and j ∈ {1, · · · , i} such that q(1)
i,n an, j < 0.

(ii6) There exist i ∈ {1, · · · ,n − 1} and j ∈ {i + 1, · · · ,n} such that q(1)
i, j a j,1 < 0.

(ii7) There exist i ∈ {1, · · · ,n} and j ∈ {1, · · · ,n − 1} such that q(1)
i, j a j, j+1 < 0.

(ii8) There exist i ∈ {2, · · · ,n} and j ∈ {2, · · · , i} such that q(1)
i,1 a1, j < 0.

(ii9) an,1 < 0, ak,k+1 < 0, k = 1, · · · ,n − 1.

(iii) 0 ≤ γ < 1 and for each i ∈ {1, · · · ,n − 1} there exists j(i) ∈ {1, · · · ,n} such that q(1)
i, j(i) > 0.

(iv) γ = 1 and for each i ∈ {2, · · · ,n − 1} one of the following conditions holds:

(iv1) There exists j(i) ∈ {1, · · · ,n} such that δ(1)
i, j(i)(1) > 0.

(iv2) q(1)
i,i+1 > 0.

(iv3) There exists ji ∈ {1, · · · ,n} such that q(1)
i, ji

a ji,i < 0.

(iv4) There exists ji ∈ {1, · · · , i} such that q(1)
i,n an, ji < 0.

(iv5) There exists ji ∈ {i + 1, · · · ,n} such that q(1)
i, ji

a ji,1 < 0.

(iv6) There exists ji ∈ {1, · · · ,n − 1} such that q(1)
i, ji

a ji, ji+1 < 0.

(iv7) There exists ji ∈ {2, · · · , i} such that q(1)
i,1 a1, ji < 0.

At the same time, one of the following conditions also holds:

(iva) There exist j ∈ {2, · · · ,n} and k ∈ {1, · · · , j − 1} such that q(1)
n,kak, j < 0.

(ivb) q(1)
n,1 > 0.

(ivc) There exists j ∈ {2, · · · ,n − 1} such that

an, j + q(1)
n, j +

n−1∑
k=1
k, j

q(1)
n,kak, j < 0. (13)

(ivd) One of the conditions (iv1)-(iv6) holds for i = 1 and

an,1 + q(1)
n,1 +

n−1∑
k=2

q(1)
n,kak,1 < 0. (14)

(ive) One of the conditions (iv1)-(iv6) holds for i = 1 and an,1 < 0.
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Proof. Denote ρ = ρ(Lγ,ω). Assume that x > 0 is its associated eigenvector.
Consider two splittings of P1A given by

P1A =M(1)
γ,ω −N(1)

γ,ω = P1Mγ,ω − P1Nγ,ω. (15)

Since A and P1A are L-matrices, then the splittings are respectively weak regular and nonnegative, so that
[M(1)

γ,ω]−1 > 0.
By Lemma 3.1 we just need to consider the case when γ ≤ ω. By Lemma 2.9 it follows that ρ > 0 and

x≫ 0.
Furthermore, we have 1/(ω − γ + γρ) > 0. From Nγ,ωx = ρMγ,ωx, it gets that

Lx =
1

ω − γ + γρ
[(ω + ρ − 1)I − ωU]x,

so that

Mγ,ωx =
1

ω − γ + γρ
[(1 − γ)I + γU]x.

By Lemma 3.2, we obtain

(P1Nγ,ω −N(1)
γ,ω)x =

1
ω

{
E1 + E2 + γ(F1 + F2) + (1 − γ)Q(l) +

ω
ω − γ + γρ

Q(u)[(1 − γ)I + γU]
}

x

= Φ(γ,ω)x, (16)

where

Φ(γ,ω) =
1
ω

(E1 + E2 + γF1 + γF2) = +
γ

ω − γ + γρ
Q(u)U + (1 − γ)

[
1
ω

Q(l) +
1

ω − γ + γρ
Q(u)

]
.

Clearly, Φ(γ,ω) ≥ 0, ∆(1)(γ) ≥ 0, ∆1k ≥ 0, k = 1, 2, 3, 4, and the positions of the positive elements of the
both matrices Φ(γ,ω) and ∆(1)(γ) are completely same, since ω > 0 and ω − γ + γρ > 0.

Since P1A is an irreducible L-matrix, then, by Lemma 2.9, we can obtain ρ(L (1)
γ,ω) > 0 and yT(D1−γL1)−1

≫

0 whenever y satisfies y > 0 and yTL (1)
γ,ω = ρ(L (1)

γ,ω)yT.
We first prove (i).
In this case by (i2) in Lemma 3.3 it follows that ∆(1)(γ) > 0 so that Φ(γ,ω) > 0. From (16), we can get

(P1Nγ,ω − N(1)
γ,ω)x > 0. This shows that the condition (ii) of Lemma 2.12 is satisfied. The required result

follows by Lemma 2.12 directly.
We prove (ii).
Since γ = 1, then ω = 1. In this case, the AOR method reduces to the Gauss-Seidel method. The equality

(16) reduces to P1N1,1 −N(1)
1,1 = E1 + E2 + F1 + F2 +Q(u)U/ρ = Φ(1, 1).

If one of the conditions (ii2)-(ii9) is satisfied, then by (ii) of Lemma 3.3 it is easy to prove that there exist
i, j ∈ {1, · · · ,n} such that δ(1)

i, j (1) > 0, which shows that (ii1) is satisfied.

If (ii1) is satisfied, then Φ(1, 1) > 0, so that (P1N1,1 − N(1)
1,1)x > 0. This shows that the condition (ii) of

Lemma 2.12 is satisfied.
We prove (iii). Let

M(1)
γ,ω = (m(1)

i, j ) =
(

M̄1,1 m̄1,2

m̄2,1 m(1)
n,n

)
, M̄1,1 ∈ R(n−1)×(n−1).

Then m̄1,2 = 0, m̄2,1 = (m(1)
n,1 · · ·m

(1)
n,n−1) and for j = 1, · · · ,n − 1, m(1)

j, j > 0,

m(1)
n, j = an, j + q(1)

n, j +

n−1∑
k=1
k, j

q(1)
n,kak, j ≤ 0. (17)
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Furthermore, we have

[M(1)
γ,ω]−1 = (m̂i, j) =

 M̄−1
1,1 0

−
1

m(1)
n,n

m̄2,1M̄−1
1,1

1
m(1)

n,n

 > 0,

where m̂k,k > 0, m̂n,k ≥ −m(1)
n,km̂k,k/m

(1)
n,n, k = 1, · · · ,n − 1.

By (i1) in Lemma 3.3, for each i ∈ {1, · · · ,n − 1}, δ(1)
i, j(i)(γ) > 0. Hence, in this case, the every row of Φ(γ,ω)

has positive elements except the last row, so that the first to (n−1)th elements ofΦ(γ,ω)x are positive. Since
[M(1)

γ,ω]−1 > 0 and m̂k,k > 0 for k = 1, · · · ,n − 1, then the first to (n − 1)th elements of [M(1)
γ,ω]−1Φ(γ,ω)x are also

positive.
Since A is irreducible, then there exists jn ∈ {1, · · · ,n − 1} such that an, jn < 0.
If q(1)

n, jn
> 0 then δ(1)

n, jn
(γ) ≥ (1 − γ)q(1)

n, jn
> 0. This shows that the last row of Φ(γ,ω) has positive elements,

so that the last element of Φ(γ,ω)x is positive. From (16) we have proved that (P1Nγ,ω − N(1)
γ,ω)x ≫ 0 and,

therefore,

[M(1)
γ,ω]−1(P1Nγ,ω −N(1)

γ,ω)x≫ 0. (18)

When q(1)
n, jn
= 0 then from (17) m(1)

n, jn
≤ an, jn < 0, so that m̂n, jn > 0. Hence the last element of [M(1)

γ,ω]−1Φ(γ,ω)x
is positive, which shows that (18) holds.

Now, we have proved that the condition (i) of Lemma 2.12 is satisfied for the splittings given in (15). By
Lemma 2.12 we can prove that Theorem C is valid.

At last, we prove (iv).
In this case, the AOR method reduces to the Gauss-Seidel method.
If one of (iv2)-(iv7) holds, then it follows by (ii1)-(ii6) in Lemma 3.3 that (iv1) is satisfied.
When (iv1) holds, then the every row of Φ(1, 1) has positive elements except the first and last rows, so

that the second to (n − 1)th elements of Φ(1, 1)x and [M(1)
1,1]−1Φ(1, 1)x are positive.

If (iva) holds then δ(1)
n, j(1) ≥ −q(1)

n,kak, j > 0. And if (ivb) is satisfied, then by (ii7) in Lemma 3.3 there exists

j ∈ {2, · · · ,n} such that δ(1)
n, j(1) > 0. Hence, for these two cases the nth row of Φ(1, 1) has positive elements.

This has proved that the second to nth rows of Φ(1, 1) has positive elements, so that the second to nth
elements of Φ(1, 1)x and [M(1)

1,1]−1Φ(1, 1)x are all positive.

If (ivc) holds, then m(1)
n, j < 0, so that m̂n, j > 0. Hence the last element of [M(1)

γ,ω]−1Φ(1, 1)x is positive, which
shows that its second to nth elements are all positive.

When (ive) holds, if q(1)
n,1 > 0 then the proof is given above. If q(1)

n,1 = 0 then

an,1 + q(1)
n,1 +

n−1∑
k=2

q(1)
n,kak,1 ≤ an,1 < 0,

which implies that (ivd) is satisfied.
Now, we consider that (ivd) holds. Just as the proof above, the first row of Φ(1, 1) has positive elements,

so that the first to (n − 1)th elements of Φ(1, 1)x and [M(1)
1,1]−1Φ(1, 1)x are positive. the inequality (14) shows

that m(1)
n,1 < 0, so that m̂n,1 > 0. Hence the last element of [M(1)

1,1]−1Φ(1, 1)x is positive, and therefore, its second
to nth elements are all positive.

We have proved that if one of (iv1)-(iv7) and one of (iva)-(ive) hold at the same time, then the condition
of Lemma 2.13 is satisfied. By Lemma 2.13 we can prove that Theorem C is valid.

The proof is completed.

Theorem 3.7. Suppose that P1A is a Z-matrix. Then Theorem D is valid for ν = 1, provided one of the following
conditions is satisfied:
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(i) One of the conditions (i)-(iv) of Theorem 3.6 holds.

(ii) For i = 2, · · · ,n, j = 1, · · · , i − 1, ai, j ≥ a(1)
i, j . And one of the following conditions holds:

(i1) There exists i0 ∈ {1, · · · ,n} such that a(1)
i0,i0

< 1.

(ii2) γ > 0 and there exist i0 ∈ {2, · · · ,n}, j0 ∈ {1, · · · , i0 − 1} such that ai0, j0 > a(1)
i0, j0

.

Proof. By Lemma 2.11, PA ia a nonsingular M-matrix. Hence both AOR splittings A = Mγ,ω − Nγ,ω and
P1A =M(1)

γ,ω −N(1)
γ,ω are weak regular.

Denote ρ = ρ(Lγ,ω) and x > 0 being its associated eigenvector. By Theorem 3.5, we have ρ(L (1)
γ,ω) ≤

ρ(Lγ,ω) < 1.
When (i) holds, the proof is completely same as the proof of Theorem 3.5, by Theorem 3.6 we can prove

the required result.
Now, we prove (ii).
Since A is an irreducible nonsingular M-matrix, then, by Lemma 2.5, A−1

≫ 0. While by Lemma 2.10,
(P1A)−1 > 0. From A−1

− (P1A)−1 = (P1A)−1(P1 − I) = (P1A)−1Q1 > 0, it gets that A−1 > (P1A)−1.
By Lemma 3.1 we just need to consider the case when γ ≤ ω. Then Nγ,ω > 0 and N(1)

γ,ω ≥ 0. By Lemma
2.9, ρ > 0 and x ≫ 0. Then it is easy to prove that Mγ,ω > M(1)

γ,ω, so that Mγ,ωx > M(1)
γ,ωx. Noticing that

Ax = (1/ρ − 1)Nγ,ωx > 0, we have M(1)
γ,ωx = P1Ax + N(1)

γ,ωx > 0. Now we have proved that the condition of
Lemma 2.14 is satisfied. By Lemma 2.14 it follows that ρ(L (1)

γ,ω) < ρ(Lγ,ω) < 1.

By the definitions of L-matrix and Z-matrix, the following two corollaries can be derived from Theorems
3.4 and 3.5 directly.

Corollary 3.8. Suppose that a(1)
i,i > 0, a(1)

i, j ≤ 0, i, j = 1, · · · ,n, i , j. Then Theorem A is valid for ν = 1.

Corollary 3.9. Suppose that a(1)
i, j ≤ 0, i, j = 1, · · · ,n, i , j. Then Theorem B is valid for ν = 1.

In all of the following, for the case when A is irreducible, the symbol “≲” (“≳”) indicates “≤” (“≥”) if
A(ν) is irreducible even when it appears “=”, otherwise it is “<” (“>”).

Corollary 3.10. Suppose that a(1)
i,i > 0, a(1)

i, j ≤ 0, i, j = 1, · · · ,n, i , j. Then Theorem C is valid for ν = 1, provided
one of the following conditions is satisfied:

(i) For i, j = 1, · · · ,n, i , j, a(1)
i, j ≲ 0 whenever ai, j < 0. One of the conditions 0 ≤ γ < 1 and (ii1)-(ii9) whenever

γ = 1 in Theorem 3.6 holds.

(ii) One of the conditions (iii) and (iv) of Theorem 3.6 holds.

Proof. Clearly, the matrix P1A is an L-matrix. The condition a(1)
i, j ≲ 0 whenever ai, j < 0 ensures that P1A is

irreducible, since A is irreducible. This shows that the condition of Theorem 3.6 is satisfied, so that Theorem
C is valid.

Similarly, the following corollary can be derived from Theorem 3.7 directly.

Corollary 3.11. Suppose that a(1)
i, j ≤ 0, i, j = 1, · · · ,n, i , j. Then Theorem D is valid for ν = 1, provided one of the

conditions (ii) of Theorem 3.7, (i) and (ii) of Corollary 3.10 is satisfied.

Furthermore, noticing (10), from Corollaries 3.8-3.11, we give the following corollaries.
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Corollary 3.12. Suppose that q(1)
i, j ≤ −ai, j, i, j = 1, · · · ,n, i , j, and

1 +
n∑

k=1
k,i

q(1)
i,k ak,i > 0, i = 1, · · · ,n. (19)

Then Theorem A is valid for ν = 1.

Proof. For i, j = 1, · · · ,n, we have

a(1)
i, j = ai, j + q(1)

i, j +

n∑
k=1
k,i, j

q(1)
i,k ak, j ≤ ai, j + q(1)

i, j ≤ 0, i , j,

and

a(1)
i,i = 1 +

n∑
k=1
k,i

q(1)
i,k ak,i > 0, i = j.

This shows that the condition of Corollary 3.8 is satisfied. Therefore Theorem A is valid.

By Corollary 3.9 and the proof of Corollary 3.12 we obtain the following corollary directly.

Corollary 3.13. Suppose that q(1)
i, j ≤ −ai, j, i, j = 1, · · · ,n, i , j. Then Theorem B is valid for ν = 1.

Corollary 3.14. Suppose that the condition of Corollary 3.12 is satisfied. Then Theorem C is valid for ν = 1, provided
one of the following conditions is satisfied:

(i) For i, j = 1, · · · ,n, i , j, q(1)
i, j ≲ −ai, j whenever ai, j < 0. One of the conditions 0 ≤ γ < 1 and (ii1)-(ii9) whenever

γ = 1 in Theorem 3.6 holds.

(ii) One of the conditions (iii) and (iv) of Theorem 3.6 holds, where the inequality (14) can be replaced by q(1)
n, j < −an, j.

Proof. Since A is irreducible, then there exists j ∈ {1, · · · ,n − 1} such that an, j < 0. So we can choose Q1 such
that q(1)

n, j < −an, j in (ii).
From the proof of Corollary 3.12 it is easy to prove that the condition of Corollary 3.10 is satisfied.

Therefore Theorem C is valid.

Similarly, by Corollary 3.11 we can prove the following corollary directly.

Corollary 3.15. Suppose that q(1)
i, j ≤ −ai, j, i, j = 1, · · · ,n, i , j. Then Theorem D is valid for ν = 1, provided one of

the conditions (ii) of Theorem 3.7, (i) and (ii) of Corollary 3.14 is satisfied.

As a special case, in [94] we propose q(2)
i, j = −αi, jai, j and get

Q2 = (−αi, jai, j)

with

αi,i = 0, αi, j ≥ 0, i, j = 1, · · · ,n, i , j, and
n∑

i, j=1
i, j

αi, jai, j , 0.

Of course, when ai, j = 0, the choice of αi, j is meaningless.
In [20], two special preconditioners are proposed for the preconditioned Gauss-Seidel method, where

one is αi, j = 1, the other is αi, j = 1 + α for α ≥ 0, i, j = 1, · · · ,n, i , j. In [58, 90], for the preconditioned



Y. Song / Filomat 39:28 (2025), 9865–9946 9883

Gauss-Seidel and AOR methods respectively, the authors consider the case when αi, j = α ≥ 0 for i > j,
αi, j = β ≥ 0 for i < j, i, j = 1, · · · ,n, with α + β , 0.

Denote

δ(2)
i, j (γ) =



n∑
k=1
k,i

αi,kai,kak,i, i = j = 1, · · · ,n;

(γ − 1)αi, jai, j + γ
j−1∑

k=i+1
αi,kai,kak, j, i = 1, · · · ,n − 1, j = i + 1, · · · ,n;

(γ − 1)αi, jai, j + γ
∑

1≤k≤ j−1
i+1≤k≤n

αi,kai,kak, j, i = 2, · · · ,n, j = 1, · · · , i − 1

and

δ(2)
i, j (1) =



∑
1≤k≤ j−1
i+1≤k≤n

αi,kai,kak, j; i = 1, · · · ,n, j = 1, · · · , i, (i, j) , (n, 1);

j−1∑
k=i+1

αi,kai,kak, j, i = 1, · · · ,n − 2, j = i + 2, · · · ,n;

0, i = 1, · · · ,n − 1, j = i + 1;
0, i = n, j = 1.

Using Corollaries 3.8-3.11, we prove corresponding comparison theorems.

Theorem 3.16. Suppose that
∑n

k=1,k,i αi,kai,kak,i < 1, i = 1, · · · ,n, and

(1 − αi, j)ai, j −

n∑
k=1
k,i, j

αi,kai,kak, j ≤ 0, i, j = 1, · · · ,n, i , j. (20)

Then Theorem A is valid for ν = 2.

Proof. The inequality (20) shows that a(2)
i, j ≤ 0, i, j = 1, · · · ,n, i , j, and the inequality

∑n
k=1,k,i αi,kai,kak,i < 1

shows that a(2)
i,i > 0, i = 1, · · · ,n.

It has proved that the condition of Corollary 3.8 is satisfied so that Theorem A is valid.

Theorem 3.17. Suppose that (20) holds. Then Theorem B is valid for ν = 2.

Proof. From the proof of Theorem 3.16 it can prove that the condition of Corollary 3.9 is satisfied. Therefore
Theorem B is valid.

Theorem 3.18. Suppose that
∑n

k=1,k,i αi,kai,kak,i < 1, i = 1, · · · ,n. Then Theorem C is valid for ν = 2, provided one
of the following conditions is satisfied:

(i) 0 ≤ γ < 1 and

(1 − αi, j)ai, j −

n∑
k=1
k,i, j

αi,kai,kak, j ≲ 0 whenever ai, j < 0, i, j = 1, · · · ,n, i , j. (21)

(ii) γ = 1, the inequality (21) holds and one of the following conditions holds:

(ii1) There exist i, j ∈ {1, · · · ,n} such that δ(2)
i, j (1) > 0.

(ii2) an,1 < 0 and αn,1 > 0.

(ii3) There exists k ∈ {1, · · · ,n − 1} such that ak,k+1 < 0 and αk,k+1 > 0.
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(ii4) There exist i, j ∈ {1, · · · ,n} such that αi, jai, ja j,i > 0.

(ii5) There exist i ∈ {1, · · · ,n − 1} and j ∈ {1, · · · , i} such that αi,nai,nan, j > 0.

(ii6) There exist i ∈ {1, · · · ,n − 1} and j ∈ {i + 1, · · · ,n} such that αi, jai, ja j,1 > 0.

(ii7) There exist i ∈ {1, · · · ,n} and j ∈ {1, · · · ,n − 1} such that αi, jai, ja j, j+1 > 0.

(ii8) There exist i ∈ {2, · · · ,n} and j ∈ {2, · · · , i} such that αi,1ai,1a1, j > 0.

(ii9) an,1 < 0 and ak,k+1 < 0, k = 1, · · · ,n − 1.

(iii) 0 ≤ γ < 1, the inequality (20) holds and for each i ∈ {1, · · · ,n − 1} there exists j(i) ∈ {1, · · · ,n} such that
αi, j(i)ai, j(i) < 0.

(iv) γ = 1, the inequality (20) holds and for each i ∈ {2, · · · ,n − 1} one of the following conditions holds:

(iv1) There exists j(i) ∈ {1, · · · ,n} such that δ(2)
i, j(i)(1) > 0.

(iv2) ai,i+1 < 0 and αi,i+1 > 0.

(iv3) There exists ji ∈ {1, · · · ,n} such that αi, ji ai, ji a ji,i > 0.

(iv4) There exists ji ∈ {1, · · · , i} such that αi,nai,nan, ji > 0.

(iv5) There exists ji ∈ {i + 1, · · · ,n} such that αi, ji ai, ji a ji,1 > 0.

(iv6) There exists ji ∈ {1, · · · ,n − 1} such that αi, ji ai, ji a ji, ji+1 > 0.

(iv7) There exists ji ∈ {2, · · · , i} such that αi,1ai,1a1, ji > 0.

At the same time, one of the following conditions also holds:

(iva) There exist j ∈ {2, · · · ,n} and k ∈ {1, · · · , j − 1} such that αn,kan,kak, j > 0.

(ivb) an,1 < 0 and αn,1 > 0.

(ivc) There exists j ∈ {2, · · · ,n − 1} such that

(1 − αn, j)an, j −

n−1∑
k=1
k, j

αn,kan,kak, j < 0. (22)

(ivd) One of the conditions (iv1)-(iv6) holds for i = 1 and

(1 − αn,1)an,1 −

n−1∑
k=2

αn,kan,kak,1 < 0. (23)

(ive) One of the conditions (iv1)-(iv6) holds for i = 1 and an,1 < 0.

Proof. The inequality
∑n

k=1,k,i αi,kai,kak,i < 1 shows that a(2)
i,i > 0, i = 1, · · · ,n. Now, δ(1)

i, j (γ) reduces to δ(2)
i, j (γ),

(13) and (14) reduce to (22) and (23), respectively.
For i , j, if ai, j = 0 then

a(2)
i, j = −

n∑
k=1
k,i, j

αi,kai,kak, j ≤ 0.

When ai, j < 0, the inequality (21) implies a(2)
i, j ≲ 0.

Now, we have proved that the condition of Corollary 3.10 is satisfied. Hence Theorem C is valid.

By Corollary 3.11 it is easy to prove the following theorem.
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Theorem 3.19. Theorem D is valid for ν = 2, provided one of the following conditions is satisfied:

(i) One of the conditions (i)-(iv) of Theorem 3.18 holds.

(ii) The inequality (20) holds. For i = 2, · · · ,n, j = 1, · · · , i − 1,

αi, jai, j +

n∑
k=1
k,i, j

αi,kai,kak, j ≥ 0.

And one of the following conditions holds:

(ii1) There exists i0 ∈ {1, · · · ,n} such that
n∑

k=1
k,i0

αi0,kai0,kak,i0 > 0

(ii2) γ > 0 and there exist i0 ∈ {2, · · · ,n}, j0 ∈ {1, · · · , i0 − 1} such that

αi0, j0 ai0, j0 +

n∑
k=1

k,i0 , j0

αi0,kai0,kak, j0 > 0.

Since

(1 − αi, j)ai, j −

n∑
k=1
k,i, j

αi,kai,kak, j ≤ (1 − αi, j)ai, j, i , j,

then from Theorems 3.16-3.19, we can prove the following corollaries, directly.

Corollary 3.20. Suppose that 0 ≤ αi, j ≤ 1, i, j = 1, · · · ,n, i , j, and
∑n

k=1,k,i αi,kai,kak,i < 1, i = 1, · · · ,n. Then
Theorem A is valid for ν = 2.

For the special case when αi, j = α ≥ 0 for i > j and αi, j = β ≥ 0 for i < j, i = 1, · · · ,n, the result is better
than the corresponding ones given by [90, Theorem 3.1, Corollaries 3.2, 3.3], where the assumption that A
is irreducible is redundant.

Corollary 3.21. Suppose that 0 ≤ αi, j ≤ 1, i, j = 1, · · · ,n, i , j. Then Theorem B is valid for ν = 2.

The result is consistent with [94, Theorem 2.7] and it is better than the corresponding one given by [90,
Theorem 2.2], where there are problems in the expression.

Corollary 3.22. Suppose that
∑n

k=1,k,i αi,kai,kak,i < 1, i = 1, · · · ,n. Then Theorem C is valid for ν = 2, provided one
of the following conditions is satisfied:

(i) For i, j = 1, · · · ,n, i , j, 0 ≤ αi, j ≲ 1. One of the conditions 0 ≤ γ < 1 and (ii1)-(ii9) whenever γ = 1 in
Theorem 3.18 holds.

(ii) One of the conditions (iii) and (iv) of Theorem 3.18 holds, where the inequality (20) is replaced by 0 ≤ αi, j ≤ 1,
i, j = 1, · · · ,n, i , j.

Corollary 3.23. Theorem D is valid for ν = 2, provided one of the conditions (i), (ii) of Corollary 3.22 and (ii) of
Theorem 3.19 is satisfied, where the inequality (20) is replaced by 0 ≤ αi, j ≤ 1, i, j = 1, · · · ,n, i , j.
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3.2. Lower triangular preconditioners

Let

αi, j = 0, i = 1, · · · ,n, j ≥ i.

Then Q2 reduces to

Q3 =


0 0 · · · 0 0

−α2,1a2,1 0 · · · 0 0
−α3,1a3,1 −α3,2a3,2 · · · 0 0

...
...

. . .
...

...
−αn,1an,1 −αn,2an,2 · · · −αn,n−1an,n−1 0


with αi, j ≥ 0, i = 2, · · · ,n, j < i, and

n∑
i=2

i−1∑
j=1

αi, jai, j , 0.

Theorem 3.24. Suppose that
∑i−1

k=1 αi,kai,kak,i < 1, i = 2, · · · ,n, and

(1 − αi, j)ai, j −

i−1∑
k=1
k, j

αi,kai,kak, j ≤ 0, i = 2, · · · ,n, j < i. (24)

Then Theorem A is valid for ν = 3.

Proof. For i, j = 1, · · · ,n, we have

n∑
k=1
k,i, j

αi,kai,kak, j =

i−1∑
k=1
k, j

αi,kai,kak, j.

If j > i then

(1 − αi, j)ai, j −

n∑
k=1
k,i, j

αi,kai,kak, j = ai, j −

i−1∑
k=1

αi,kai,kak, j ≤ ai, j ≤ 0.

This proves that the condition of Theorem 3.16 is satisfied, so that Theorem A is valid.

Similarly, by Theorem 3.17 we can prove the following theorem.

Theorem 3.25. Suppose that (24) holds. Then Theorem B is valid for ν = 3.

In this case, since αi, j = 0 for i ≤ j, then δ(2)
1, j(γ) = 0, j = 1, · · · ,n, so that the conditions (ii3), (ii5), (ii6), (iii),

(iv2), (iv4), (iv5), (ivd) and (ive) in Theorem 3.18 can be not satisfied.
Now, δ(2)

i, j (1) reduces to

δ(3)
i, j (1) =


j−1∑
k=1
αi,kai,kak, j, i = 2, · · · ,n, j = 2, · · · , i;

0, otherwise.

Theorem 3.26. Suppose that
∑i−1

k=1 αi,kai,kak,i < 1, i = 2, · · · ,n. Then Theorem C is valid for ν = 3, provided one of
the following conditions is satisfied:
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(i) 0 ≤ γ < 1 and

(1 − αi, j)ai, j −

i−1∑
k=1
k, j

αi,kai,kak, j ≲ 0 whenever ai, j < 0, i = 2, · · · ,n, j < i. (25)

(ii) γ = 1, (25) holds and one of the following conditions holds:

(ii1) There exist i ∈ {2, · · · ,n}, j ∈ {2, · · · , i} and k ∈ {1, · · · , j − 1} such that αi,kai,kak, j > 0.

(ii2) an,1 < 0 and αn,1 > 0.

(ii3) ak,k+1 < 0, k = 1, · · · ,n − 1.

(iii) γ = 1, the inequality (24) holds. For each i ∈ {2, · · · ,n−1} there exist j(i) ∈ {2, · · · , i} and k(i) ∈ {1, · · · , j(i)−1}
such that αi,k(i)ai,k(i)ak(i), j(i) > 0. And one of the following conditions holds:

(iii1) There exist j ∈ {2, · · · ,n} and k ∈ {1, · · · , j − 1} such that αn,kan,kak, j > 0.

(iii2) an,1 < 0 and αn,1 > 0.

(iii3) There exists j ∈ {2, · · · ,n − 1} such that

(1 − αn, j)an, j −

n−1∑
k=1
k, j

αn,kan,kak, j < 0.

Proof. By Theorem 3.18, (i) and (ii2) are obvious.
When (ii3) holds, we have max

1≤k≤n−1
{ak,k+1} < 0 and so that

n∑
i=2

i∑
j=2

j−1∑
k=1

αi,kai,kak, j ≥

n∑
i=2

i∑
j=2

αi, j−1ai, j−1a j−1, j ≥ max
1≤k≤n−1

{ak,k+1}

n∑
i=2

i−1∑
j=1

αi, jai, j > 0,

which implies that (ii1) holds.
When (ii1) holds we have that δ(3)

i, j (1) ≥ αi,kai,kak, j > 0, i.e., the condition (ii1) in Theorem 3.18 holds, so
that Theorem C is valid.

Now, we prove (iii). Clearly, δ(3)
i, j(i)(1) ≥ αi,k(i)ai,k(i)ak(i), j(i) > 0, which implies that the condition (iv1) in

Theorem 3.18 holds. The required result follows by (iva), (ivb) and (ivc) in Theorem 3.18, immediately.

The later part of the condition (ii1) is equivalent to that there exist positive elements in lower triangular
part of the matrix Q3U except the first column.

For (ii1) we can choose some special {i, j, k} to construct Q3, e.g., j = i, k = 1, k = j − 1, etc.
Similarly, by Theorem 3.19 we can prove the following result immediately.

Theorem 3.27. Theorem D is valid for ν = 3, provided one of the conditions (i), (ii) and (iii) of Theorem 3.26 is
satisfied.

Similar to Corollaries 3.20-3.23, from Theorems 3.24-3.27 we have the following corollaries, immediately.

Corollary 3.28. Suppose that 0 ≤ αi, j ≤ 1 and
∑i−1

k=1 αi,kai,kak,i < 1, i = 2, · · · ,n, j < i. Then Theorem A is valid for
ν = 3.

Corollary 3.29. Suppose that 0 ≤ αi, j ≤ 1, i = 2, · · · ,n, j < i. Then Theorem B is valid for ν = 3.

Corollary 3.30. Suppose that
∑i−1

k=1 αi,kai,kak,i < 1, i = 2, · · · ,n. Then Theorem C is valid for ν = 3, provided one of
the following conditions is satisfied:
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(i) For i = 2, · · · ,n, j < i, 0 ≤ αi, j ≲ 1. One of the conditions 0 ≤ γ < 1 and (ii1), (ii2), (ii3) whenever γ = 1 in
Theorem 3.26 holds.

(ii) The condition (iii) of Theorem 3.26 holds, where the inequality (24) is replaced by 0 ≤ αi, j ≤ 1, i = 2, · · · ,n,
j < i.

Corollary 3.31. Theorem D is valid for ν = 3, provided one of the conditions (i) and (ii) of Corollary 3.30 is satisfied.

Many known corresponding results about the preconditioned AOR method proposed in the references
are the special cases of Theorems 3.24-3.27 and Corollaries 3.28-3.31, i.e., they can be derived from these
theorems, immediately.

As a special case of Q3, let

αi, j = α, i = 2, · · · ,n, j < i,

with α > 0. Then in [90] Q is defined as

Q4 = αL,

which is studied in [108]. When α = 1 it is given in [58] for the preconditioned Gauss-Seidel method.
From Theorems 3.24-3.27 and Corollaries 3.28-3.31, we have the following comparison results.

Theorem 3.32. Suppose that α
∑i−1

k=1 ai,kak,i < 1, i = 2, · · · ,n, and

(1 − α)ai, j − α
i−1∑
k=1
k, j

ai,kak, j ≤ 0, i = 2, · · · ,n, j < i. (26)

Then Theorem A is valid for ν = 4.

Theorem 3.33. Suppose that (26) holds. Then Theorem B is valid for ν = 4.

This theorem is better than the corresponding one given by [90, Theorem 2.1], where there are problems
in the expression.

Theorem 3.34. Suppose that α
∑i−1

k=1 ai,kak,i < 1, i = 2, · · · ,n. Then Theorem C is valid for ν = 4, provided one of the
following conditions is satisfied:

(i) 0 ≤ γ < 1 and

(1 − α)ai, j − α
i−1∑
k=1
k, j

ai,kak, j ≲ 0 whenever ai, j < 0, i = 2, · · · ,n, j < i. (27)

(ii) γ = 1, (27) holds and one of the following conditions holds:

(ii1) There exist i ∈ {2, · · · ,n}, j ∈ {2, · · · , i} and k ∈ {1, · · · , j − 1} such that ai,kak, j > 0.

(ii2) an,1 < 0.

(ii3) a1,2 < 0.

(iii) γ = 1 and (26) holds. For each i ∈ {2, · · · ,n − 1} there exist j(i) ∈ {2, · · · , i} and k(i) ∈ {1, · · · , j(i) − 1} such
that ai,k(i)ak(i), j(i) > 0. And one of the following conditions holds:

(iii1) There exist j ∈ {2, · · · ,n} and k ∈ {1, · · · , j − 1} such that an,kak, j > 0.

(iii2) an,1 < 0.
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(iii3) There exists j ∈ {2, · · · ,n − 1} such that

(1 − α)an, j − α
n−1∑
k=1
k, j

an,kak, j < 0.

Proof. By Theorem 3.26 we just need to prove (ii3). In fact, if an,1 < 0 then (ii2) holds. If an,1 = 0 then, from
the irreducibility of A,

∑n−1
i=2 ai,1 =

∑n
i=2 ai,1 < 0 so that there exists i0 ∈ {2, · · · ,n− 1} such that ai0,1 < 0. Hence

ai0,1a1,2 > 0. This shows that (ii1) holds for i = i0, j = 2 and k = 1.

Theorem 3.35. Theorem D is valid for ν = 4, provided one of the conditions (i), (ii) and (iii) of Theorem 3.34 is
satisfied.

From Theorems 3.32-3.35, the following results are directly.

Corollary 3.36. Suppose that 0 < α ≤ 1 and α
∑i−1

k=1 ai,kak,i < 1, i = 2, · · · ,n. Then Theorem A is valid for ν = 4.

Corollary 3.37. Suppose that 0 < α ≤ 1. Then Theorem B is valid for ν = 4.

Corollary 3.38. Suppose that α
∑i−1

k=1 ai,kak,i < 1, i = 2, · · · ,n. Then Theorem C is valid for ν = 4, provided one of
the following conditions is satisfied:

(i) 0 < α ≲ 1. One of the conditions 0 ≤ γ < 1 and (ii1), (ii2), (ii3) whenever γ = 1 in Theorem 3.34 holds.

(ii) The condition (iii) of Theorem 3.34 holds, where the inequality (26) is replaced by 0 < α ≤ 1.

The result when (i) holds is better than the corresponding one given by [108, Theorem 4.2].
If

∑i−1
k=1 ai,kak,i > 0, i = 2, · · · ,n, then for each i ∈ {2, · · · ,n}, there exists k(i) ∈ {1, · · · , i − 1} such that

ai,k(i)ak(i),i > 0, which implies that (iii1) in Theorem 3.34 holds. Hence, Corollary 3.38 when (ii) holds is better
than the corresponding one given by [108, Theorem 4.1].

Corollary 3.39. Theorem D is valid for ν = 4, provided one of the conditions (i) and (ii) of Corollary 3.38 is satisfied.

Specially, for some r, 2 ≤ r ≤ n, αr, j = α j ≥ 0, j = 1, · · · , r − 1, and αi, j = 0 otherwise, in [92] the matrix Q
is defined as

Q5 =



0 · · · 0 0 · · · 0
...

. . .
...

...
...

...
0 · · · 0 0 · · · 0

−α1ar,1 · · · −αr−1ar,r−1 0 · · · 0
0 · · · 0 0 · · · 0
...

...
...

...
. . .

...
0 · · · 0 0 · · · 0


with

r−1∑
k=1

αkar,k , 0.

When r = n, it is proposed in [72] for the preconditioned Gauss-Seidel method.
In this case, for i = 2, · · · ,n, if i , r, then

i−1∑
k=1

αi,kai,kak,i = 0
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and

(1 − αi, j)ai, j −

i−1∑
k=1
k,i, j

αi,kai,kak, j = ai, j, for j < i.

Now, δ(3)
i, j (1) reduces to

δ(5)
i, j (1) =


j−1∑
k=1
αkar,kak, j, i = r, j = 2, · · · , r;

0, otherwise.

Hence, from Theorems 3.24-3.27 and Corollaries 3.28-3.31, we can obtain the following comparison
results, directly.

Theorem 3.40. Suppose that
∑r−1

k=1 αkar,kak,r < 1 and

(1 − α j)ar, j −

r−1∑
k=1
k, j

αkar,kak, j ≤ 0, j = 1, · · · , r − 1. (28)

Then Theorem A is valid for ν = 5.

Theorem 3.41. Suppose that (28) holds. Then Theorem B is valid for ν = 5.

Whenα j = 1, j = 1, · · · , r−1, the inequality (28) is trivial. Hence the result is better than [72, Theorem 2.9],
where the convergence hypothesis of two Gauss-Seidel methods is unnecessary and the proof is insufficient,
which is pointed out by [59]. While the condition ρ(L ) > 0 in [59, Theorem 3.2] is unnecessary.

Theorem 3.42. Suppose that
∑r−1

k=1 αkar,kak,r < 1 and

(1 − α j)ar, j −

r−1∑
k=1
k, j

αkar,kak, j ≲ 0 whenever ar, j < 0, j = 1, · · · , r − 1. (29)

Then Theorem C is valid for ν = 5, provided one of the following conditions is satisfied:

(i) 0 ≤ γ < 1.

(ii) γ = 1 and one of the following conditions holds:

(ii1) There exist j ∈ {2, · · · , r} and k ∈ {1, · · · , j − 1} such that αkar,kak, j > 0.

(ii2) ak,k+1 < 0, k = 1, · · · , r − 1.

(ii3) ak,r < 0, k = 1, · · · , r − 1.

(ii4) r = n, an,1 < 0 and α1 > 0.

Proof. By (i) and (ii) of Theorem 3.26, (i), (ii1) and (ii4) are derived directly.
By the definition of Q5, there exists k0 ∈ {1, · · · , r − 1} such that αk0 ar,k0 < 0.
If (ii2) holds then αk0 ar,k0 ak0,k0+1 > 0, which shows that (ii1) holds for j = k0 + 1 and k = k0.
Similarly, if (ii3) holds then αk0 ar,k0 ak0,r > 0, which shows that (ii1) holds for j = r and k = k0.

Theorem 3.43. Suppose that (29) holds. Then Theorem D is valid for ν = 5, provided one of the conditions (i) and
(ii) of Theorem 3.42 is satisfied.

Corollary 3.44. Suppose that 0 ≤ αk ≤ 1, k = 1, · · · , r − 1, and
∑r−1

k=1 αkar,kak,r < 1. Then Theorem A is valid for
ν = 5.
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Corollary 3.45. Suppose that 0 ≤ αk ≤ 1, k = 1, · · · , r − 1. Then Theorem B is valid for ν = 5.

The result includes the corresponding one given in [92, Corollary 2.3].

Corollary 3.46. Suppose that 0 ≤ α j ≲ 1, j = 1, · · · , r − 1, and
∑r−1

k=1 αkar,kak,r < 1. Then Theorem C is valid for
ν = 5, provided one of the conditions (i) and (ii) of Theorem 3.42 is satisfied.

Corollary 3.47. Suppose that 0 ≤ αk ≲ 1, j = 1, · · · , r − 1. Then Theorem D is valid for ν = 5, provided one of the
conditions (i) and (ii) of Theorem 3.42 is satisfied.

Similarly, for some r, 2 ≤ r ≤ n, αi,r−1 = αi ≥ 0, i = r, · · · ,n, and αi, j = 0 otherwise, the matrix Q3 reduces
to

Q6 =



0 · · · 0 0 0 · · · 0
...

. . .
...

...
...

...
...

0 · · · 0 0 0 · · · 0
0 · · · 0 −αrar,r−1 0 · · · 0
...

...
...

...
...

. . .
...

0 · · · 0 −αnan,r−1 0 · · · 0


with

n∑
k=r

αkak,r−1 , 0.

When r = 2, it is investigated in [55, 60, 104], in [22] for the preconditioned SOR method and in [17]
for the preconditioned Gauss-Seidel and Jacobi methods, respectively. When r = 2 and αi = 1, i = 2, · · · ,n,
it is a special case in [66] for the preconditioned Gauss-Seidel and Jacobi methods, and it is used to the
preconditioned AOR method in [52].

In this case, δ(3)
i, j (1) reduces to

δ(6)
i, j (1) =

{
αiai,r−1ar−1, j, i = r, · · · ,n, j = r, · · · , i;
0, otherwise.

Theorem 3.48. Suppose that 0 ≤ αk ≤ 1 and αkak,r−1ar−1,k < 1, k = r, · · · ,n. Then Theorem A is valid for ν = 6.

Proof. It is easy to prove that the condition of Corollary 3.28 is satisfied, so that Theorem A is valid.

The result includes the corresponding one given by [55, Theorem 2.2-(a)]. The result for ω = γ includes
the corresponding one given by [102, Theorem 3.3], where the condition is too strong.

Similarly, by Corollary 3.29 we can prove the following theorem.

Theorem 3.49. Suppose that 0 ≤ αk ≤ 1, k = r, · · · ,n. Then Theorem B is valid for ν = 6.

In order to give the Stein-Rosenberg Type Theorem II, we prove a lemma.

Lemma 3.50. Let A be an irreducible Z-matrix. Assume that r = 2, 0 < αk ≤ 1, k = 2, · · · ,n and A(6) has the block
form

A(6) =

(
1 ā1,2

ā(6)
2,1 A(6)

2,2

)
, A(6)

2,2 ∈ R(n−1)×(n−1).

Then

(i) A(6)
2,2 is an irreducible Z-matrix.

(ii) A(6) is an irreducible Z-matrix if and only if there exists i0 ∈ {2, · · · ,n} such that (1 − αi0 )ai0,1 , 0.
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Proof. Since

a(6)
i, j =


a1, j, i = 1, j = 1, · · · n,
(1 − αi)ai,1, i = 2, · · · ,n, j = 1,
ai, j − αiai,1a1, j, i, j = 2, · · · ,n,

then it is clearly that a(6)
1,k = a1,k ≤ 0, a(6)

k,1 = (1 − αk)ak,1 ≤ 0 for k = 2, · · · ,n and

a(6)
i, j = ai, j − αiai,1a1, j ≤ ai, j ≤ 0, i, j = 2, · · · ,n, i , j. (30)

Hence, A(6) and A(6)
2,2 are Z-matrices.

For any i, j ∈ {2, · · · ,n}, i , j, since A is irreducible, then there exists a path σi, j = ( j0, j1, · · · , jl+1) ∈ G(A)
with i = j0 and j = jl+1.

If jk ∈ {2, · · · ,n} for k = 1, · · · , l, then, by (30), it gets that a(6)
jk, jk+1

≤ a jk , jk+1 < 0 and a(6)
j0, j1
≤ a j0, j1 < 0, so that

σi, j ∈ G(A(6)
2,2).

For the case when there exists s ∈ {1, · · · , l} such that js = 1, we have js−1 > 1, js+1 > 1, a js−1,1 < 0
and a1, js+1 < 0. By (30), it gets that a(6)

js−1, js+1
= a js−1, js+1 − α js−1 a js−1,1a1, js+1 ≤ −α js−1 a js−1,1a1, js+1 < 0. It follows that

σ̃i, j = ( j0, · · · , js−1, js+1, · · · , jl+1) ∈ G(A(6)
2,2).

We have proved (i).
The necessity of (ii) is obvious. Now we prove the sufficiency.
For any i, j ∈ {1, · · · ,n}, i , j, if i, j ∈ {2, · · · ,n} then, by (i), there exists a path σi, j such that σi, j ∈ G(A(6)

2,2) ⊆
G(A(6)).

For the case when i = 1, since A is an irreducible Z-matrix, then there exists j0 ∈ {2, · · · ,n} such that
a(6)

1, j0
= a1, j0 < 0. By (i), there exists a path σ j0, j such that σ j0, j ∈ G(A(6)

2,2) so that (1, σ j0, j) ∈ G(A(6)).

For the case when j = 1, there exists a path σi,i0 such that σi,i0 ∈ G(A(6)
2,2). Since a(6)

i0,1
= (1 − αi0 )ai0,1 , 0, it

follows that (σi,i0 , 1) ∈ G(A(6)).
We have proved (ii).

This lemma improves [11, Theorem 3].

Theorem 3.51. Suppose that αkak,r−1ar−1,k < 1, k = r, · · · ,n. Then Theorem C is valid for ν = 6, provided one of the
following conditions is satisfied:

(i) 0 ≤ γ < 1 and 0 ≤ αk ≲ 1, k = r, · · · ,n.

(ii) γ = 1 and 0 ≤ αk ≲ 1, k = r, · · · ,n. And one of the following conditions holds:

(ii1) There exist i ∈ {r, · · · ,n} and j ∈ {r, · · · , i} such that αiai,r−1ar−1, j > 0.

(ii2) ar−1,r < 0.

(ii3) r = 2, an,1 < 0 and αn > 0.

(iii) r = 2, 0 ≤ γ < 1 and 0 < αk ≤ 1, k = 2, · · · ,n.

(iv) r = 2, γ = 1 and 0 < αk ≤ 1, k = 2, · · · ,n. And one of the following conditions holds:

(iv1) There exist i ∈ {2, · · · ,n} and j ∈ {2, · · · , i} such that ai,1a1, j > 0.

(iv2) a1,2 < 0.

(iv3) an,1 < 0.
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Proof. By Corollary 3.30, (i), (ii1) and (ii3) are obvious.
Assume that (ii2) holds. By the definition of Q6, there exists k0 ∈ {r, · · · ,n} such that αk0 ak0,r−1 < 0, so that

αk0 ak0,r−1ar−1,r > 0, which implies that (ii1) holds for i = k0 and j = r.
We now prove (iii) and (iv).
If there exists i0 ∈ {2, · · · ,n} such that (1 − αi0 )ai0,1 , 0, then, by Lemma 3.50, A(6) is irreducible. By

Corollary 3.22 and (i), (ii8), (ii2) in Theorem 3.18 we can derive (iii), (iv1) and (iv3), directly. When (iv2) holds,
then from the irreducibility of A, there exists i1 ∈ {2, · · · ,n} such that ai1,1 < 0, so that ai1,1a1,2 > 0, which
implies that (iv1) holds for i = i1 and j = 2.

For the case when (1 − αk)ak,1 = 0, k = 2, · · · ,n, then it gets that αk = 1 whenever ak,1 < 0. In this case the
matrix A(6) can be partitioned as

A(6) =

(
1 ā1,2

0 A(6)
2,2

)
,

where, by Lemma 3.50, A(6)
2,2 ∈ R(n−1)×(n−1) is an irreducible Z-matrix, so that it is also an L-matrix, since

a(6)
k,k = 1 − αkak,1a1,k > 0 for k = 2, · · · ,n.

Denote ρ = ρ(Lγ,ω). Let x > 0 be its associated eigenvector.
By Lemma 3.1 we just need to consider the case when γ ≤ ω. By Lemma 2.9 it follows that ρ > 0 and

x≫ 0.
Let

A(6)
2,2 = M̄γ,ω − N̄γ,ω

be the AOR splitting of A(6)
2,2. Then

M(6)
γ,ω =

(
1
ω 0
0 M̄γ,ω

)
, N(6)

γ,ω =

(
1−ω
ω −ā1,2
0 N̄γ,ω

)
and

[M(6)
γ,ω]−1 =

(
ω 0
0 M̄−1

γ,ω

)
, L (6)

γ,ω =

(
1 − ω −ωā1,2

0 M̄−1
γ,ωN̄γ,ω

)
.

Let Ē1 and F̄1 be diagonal part and strictly lower triangular part of Q6U with block forms

Ē1 =

(
e1,1 0
0 E2,2

)
, F̄1 =

(
f1,1 0
f1,2 F2,2

)
, E2,2,F2,2 ∈ R(n−1)×(n−1).

Then e1,1 = f1,1 = 0 and f1,2 = 0. Let

Q6 =

(
q(6)

1,1 q̄1,2

q̄2,1 Q2,2

)
, Q2,2 ∈ R(n−1)×(n−1), x =

(
x̄1
x̄2

)
, x̄1 ∈ ℜ, x̄2 ∈ Rn−1.

Then q(6)
1,1 = 0, q̄1,2 = 0, q̄2,1 > 0, Q2,2 = 0, x̄1 > 0 and x̄2 ≫ 0. Now, by Lemma 3.2, we obtain

L (6)
γ,ωx − ρx =

(
(1 − ω)x̄1 − ωā1,2x̄2 − ρx̄1

M̄−1
γ,ωN̄γ,ωx̄2 − ρx̄2

)
= (ρ − 1)[Ē1 + γF̄1 + (1 − γ)Q6]x

= (ρ − 1)
(
ω 0
0 M̄−1

γ,ω

) [(
0 0
0 E2,2

)
+ γ

(
0 0
0 F2,2

)
+ (1 − γ)

(
0 0

q̄2,1 0

)] (
x̄1
x̄2

)
= (ρ − 1)

(
0

M̄−1
γ,ω[(E2,2 + γF2,2)x̄2 + (1 − γ)q̄2,1x̄1]

)
.

Hence, we have

(1 − ω)x̄1 − ρx̄1 = ωā1,2x̄2 (31)
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and

M̄−1
γ,ωN̄γ,ωx̄2 − ρx̄2 = (ρ − 1)M̄−1

γ,ω[(E2,2 + γF2,2)x̄2 + (1 − γ)q̄2,1x̄1]. (32)

Since A is an irreducible L-matrix, then ā1,2 < 0 so that ωā1,2x̄2 < 0. From (31), it gets that 1 − ω < ρ.
When (iii) holds, i.e., γ < 1, since Ā2,2 is an irreducible L-matrix, then it can derive that M̄−1

γ,ωN̄γ,ω ≥ 0
is irreducible. Furthermore, M̄−1

γ,ω[(E2,2 + γF2,2)x̄2 + (1 − γ)q̄2,1x̄1] ≥ (1 − γ)M̄−1
γ,ωq̄2,1x̄1 > 0, since q̄2,1 > 0 and

x̄1 > 0.
Now, Theorem 3.48 has shown that ρ = 1 if and only if ρ(L (6)

γ,ω) = 1. If ρ < 1 then, from (32), it gets that
M̄−1
γ,ωN̄γ,ωx̄2 < ρx̄2 so that ρ(M̄−1

γ,ωN̄γ,ω) < ρ. Hence, we derive ρ(L (6)
γ,ω) = max{1 − ω, ρ(M̄−1

γ,ωN̄γ,ω)} < ρ. If

ρ > 1 then, from (32), it gets that M̄−1
γ,ωN̄γ,ωx̄2 > ρx̄2 so that ρ(M̄−1

γ,ωN̄γ,ω) > ρ. Hence, we derive ρ(L (6)
γ,ω) =

max{1 − ω, ρ(M̄−1
γ,ωN̄γ,ω)} = ρ(M̄−1

γ,ωN̄γ,ω) > ρ.
When (iv) holds, then ω = 1 and the AOR method reduces to the Gauss-Seidel method. In this case, we

have

L (6) =

(
0 −ā1,2
0 M̄−1

1,1N̄1,1

)
and therefore ρ(L (6)) = ρ(M̄−1

1,1N̄1,1).

Above we have proved that Ā(6)
2,2 is an irreducible L-matrix. By Lemma 2.9 it gets that ȳTM̄−1

1,1 ≫ 0
whenever ȳ satisfies ȳ > 0 and ȳTM̄−1

1,1N̄1,1 = ρ(M̄−1
1,1N̄1,1)ȳT. Multiply ȳT on the left side of (32), we can

derive

ρ(M̄−1
1,1N̄1,1)ȳTx̄2 − ρȳTx̄2 = (ρ − 1)ȳTM̄−1

γ,ω(E2,2 + F2,2)x̄2.

When (iv1) holds, i.e., there exist i ∈ {2, · · · ,n} and j ∈ {2, · · · , i} such that ai,1a1, j > 0, it is easy to prove that
E2,2 > 0 or F2,2 > 0 so that (E2,2 + F2,2)x̄2 > 0 and ȳTM̄−1

γ,ω(E2,2 + F2,2)x̄2 > 0. Since ȳTx̄2 > 0, then we can get

ρ(L (6)) = ρ(M̄−1
1,1N̄1,1)


< ρ, if ρ < 1
= ρ, if ρ = 1
> ρ, if ρ > 1.

When (iv2) holds, the irreducibility of A or the definition of Q6 ensures that there exists i ∈ {2, · · · ,n}
such that ai,1 < 0, we have ai,1a1,2 > 0, which implies that (iv1) holds.

Similarly, when (iv3) holds, the irreducibility of A ensures that there exists j ∈ {2, · · · ,n} such that a1, j < 0,
we have an,1a1, j > 0, which also implies that (iv1) holds.

The result for the case when r = 2 is better than the corresponding ones given by [52, Theorem 1,
Corollary 1], [60, Theorems 3.3, 3.4, 3.5] and [104, Theorems 3.11, 3.13, 3.14 and 3.15]. The proof of [52,
Theorem 1] is insufficient, which is pointed out by [107] and [11]. When r = 2 and γ = ω, the result is
better than [22, Theorems 2.1 and 2.2], where the condition ak,k+1ak+1,k > 0, k = 1, · · · ,n − 1, implies that A is
irreducible. While the proofs in [22] are insufficient, which is pointed out by [102]. The comparison result
[55, Theorem 2.2-(b)] is problematic, because [55, Lemma 2.1] is wrong, which has been shown by [107,
Example 3.1].

From Theorem 3.51, we can prove the following theorem.

Theorem 3.52. Theorem D is valid for ν = 6, provided one of the conditions (i)-(iv) of Theorem 3.51 is satisfied.

When r = 2, αk = 1, k = 2, · · · ,n, the results given in Theorems 3.49 and 3.52 are better than [74, Theorem
3.4] and [76, Theorem 3.4].
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As a special case of Q6(Q5), for some r > s with ar,s < 0 and α > 0, the matrix Q6(Q5) reduces to

Q7 =



0 · · · 0 · · · 0
...

. . .
... · · ·

...
... · · · 0 · · · 0
... −

ar,s

α

...
. . .

...
0 · · · 0 · · · 0


,

which is proposed in [23, 53, 104] for r = n and s = 1. And for r = n, s = 1 and α = 1 in [14]. It is given in
[109] to replace −ar,s/α with a constant β.

Now, δ(6)
i, j (1) reduces to

δ(7)
i, j (1) =

{
1
αar,sas, j, i = r, j = s + 1, · · · , r;
0, otherwise.

From Theorems 3.48 and 3.49, we can obtain the following comparison results, directly.

Theorem 3.53. Suppose that α ≥ 1 and α > ar,sas,r. Then Theorem A is valid for ν = 7.

This result is better than that given by [104, Theorem 3.7], where A is assumed to be irreducible.

Theorem 3.54. Suppose that α ≥ 1. Then Theorem B is valid for ν = 7.

This result includes [105, Theorem 3.4] and the corresponding one given in [45, Theorem 3.1].
In order to give the Stein-Rosenberg Type Theorem II, we prove a lemma.

Lemma 3.55. Let A be an irreducible Z-matrix. Assume that r = n, α ≥ 1 and A(7) has the block form

A(7) =

(
1 ā1,2

ā(7)
2,1 A(7)

2,2

)
, A(7)

2,2 ∈ R(n−1)×(n−1).

Then one of the following two mutually exclusive relations holds:

(i) A(7) is an irreducible Z-matrix.

(ii) A(7) is a reducible Z-matrix, but A(7)
2,2 is an irreducible Z-matrix and ak,1 = a(7)

k,1 = a(7)
n,1 = 0, k = 2, · · · ,n − 1.

Proof. Since

a(7)
i, j =


ai, j, i = 1, · · · n − 1, j = 1, · · · n,
(1 − 1

α )an,1, i = n, j = 1,
an, j −

1
αan,1a1, j, i = n, j = 2, · · · ,n,

(33)

then it is clearly that, a(7)
i, j = ai, j ≤ 0 for i = 1, · · · ,n − 1, j = 1, · · · ,n, i , j, a(7)

n,1 = (1 − 1/α)an,1 ≤ 0 and

a(7)
n, j = an, j −

1
α

an,1a1, j ≤ an, j ≤ 0, j = 2, · · · ,n. (34)

Hence, A(7) and A(7)
2,2 are Z-matrices.

Let

A =
(

â1,1 Â1,2
an,1 â2,2

)
, Â =

(
â1,1 Â1,2
0 â2,2

)
, Â1,2 ∈ R(n−1)×(n−1).

Clearly, if Â is irreducible then A(7) is irreducible, since A is irreducible. When α > 1 then A(7) is also
irreducible.
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Assume that A(7) is reducible. Then Â is reducible and α = 1. The latter implies a(7)
n,1 = 0. In this case,

there must be i∗, j∗ ∈ {1, · · · ,n} such that there is no path from i∗ to j∗ in G(A(7)).
It is easy to see that, for any i, j ∈ {1, · · · ,n}, σi, j = ( j0, j1, · · · , jl+1) < G(A(7)) with i = j0 and j = jl+1 if and

only if there is s ∈ {0, · · · , l} such that is = n and is+1 = 1.
Since A is irreducible, then there exists σi∗, j∗ = (i0, i1, · · · , it+1) ∈ G(A) with i∗ = i0 and j∗ = it+1.
If j∗ > 1 then there is µ ∈ {0, · · · , t − 1} such that iµ = n and iµ+1 = 1, which implies a1,iµ+2 < 0. Hence,

by (34), we have a(7)
n,iµ+2

= an,iµ+2 − an,1a1,iµ+2 ≤ −an,1a1,iµ+2 < 0, so that σ = (i0, · · · , iµ−1,n, iµ+2, · · · , it+1) ∈ G(A(7)).

This is a contradiction. Therefore, j∗ = 1. This shows that, for any k ∈ {2, · · · ,n−1}, there exists σi∗,k ∈ G(A(7)).
If a(7)

k,1 < 0 then σ̃i∗, j∗ = (σi∗,k, 1) ∈ G(A(7)). This is also a contradiction. Therefore, a(7)
k,1 = ak,1 = 0.

Now, let us prove the irreducibility of A(7)
2,2. For any i, j ∈ {2, · · · ,n}, i , j, since A is irreducible, then

there exists a path σi, j = (τ0, τ1, · · · , τυ+1) ∈ G(A) with i = τ0 and j = τυ+1.
If τk ∈ {2, · · · ,n} for k = 1, · · · , υ, then it gets that σi, j ∈ G(A(7)

2,2).
For the case when there exists s ∈ {1, · · · , υ} such that τs = 1, we have aτs−1,1 < 0 and a1,τs+1 < 0. By (33), τs−1

must be n, since ak,1 = a(7)
k,1 = 0 for k = 2, · · · ,n−1. By (34), it gets that a(7)

n,τs+1
= an,τs+1−an,1a1,τs+1 ≤ −an,1a1,τs+1 < 0.

This shows that σ̃i, j = (τ0, · · · , τs−2,n, τs+1, · · · , τυ+1) ∈ G(A(7)
2,2).

This has proved that G(A(7)
2,2) is irreducible.

We have proved (ii).

Using this lemma, completely similar to the proof of Theorem 3.51, we can prove the following theorem.

Theorem 3.56. Suppose that α > ar,sas,r. Then Theorem C is valid for ν = 7, provided one of the following conditions
is satisfied:

(i) α ≳ 1. And one of the following conditions holds:

(i1) 0 ≤ γ < 1.

(i2) γ = 1 and there exists k ∈ {s + 1, · · · , r} such that as,k < 0.

(ii) r = n, s = 1 and α ≥ 1.

The result when (ii) holds includes [104, Theorems 3.8 and 3.9] and [53, Theorem 1], where the proof is
insufficient, which is pointed out by [103]. We also have to point out that there exist some mistakes in [23,
Theorems 4 and 5]. For α = 1, the result is better than the corresponding ones given by [54, Theorem 2.1,
Corollaries 2.1, 2.2], where the condition ak,k+1ak+1,k > 0, k = 1, · · · ,n− 1, implies that A is irreducible and so
that the condition a1,nan,1 > 0 is unnecessary.

From Theorem 3.56, we can prove the following theorem.

Theorem 3.57. Theorem D is valid for ν = 7, provided one of the conditions (i) and (ii) of Theorem 3.56 is satisfied.

For the case when (ii) in Theorem 3.56 is satisfied, Theorem 3.57 is better than [14, Theorem 2.2] and the
corresponding ones given in [45, Theorem 3.1, Corollaries 3.1, 3.2, 3.3]. In [14, Theorem 2.2], the condition
ak,k+1ak+1,k > 0, k = 1, · · · ,n − 1, implies that A is irreducible and ρ(Lγ,ω) < 1 implies that A is a nonsingular
M-matrix. The condition an,1a1,n > 0 is unnecessary.

In [61], for the preconditioned Gauss-Seidel method, a special case of the matrix Q3 is proposed as

Q8 =


0 0 · · · 0 0

−α1a2,1 0 · · · 0 0
0 −α2a3,2 · · · 0 0
...

...
. . .

...
...

0 0 · · · −αn−1an,n−1 0


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with αk ≥ 0, k = 1, · · · ,n − 1, and
n−1∑
k=1

αkak+1,k , 0.

It is used to the preconditioned AOR method in [19, 39].
In this case, for i = 2, · · · ,n,

i−1∑
k=1

αi,kai,kak,i = αi−1ai,i−1ai−1,i.

Now, δ(3)
i, j (1) reduces to

δ(8)
i, j (1) =

{
αi−1ai,i−1ai−1,i, i = j = 2, · · · ,n;
0, otherwise.

When n ≥ 3, the conditions (ii2) and (iii2) in Theorem 3.26 can be not satisfied. By Corollaries 3.28 and
3.29, it is easy to prove the following comparison results.

Theorem 3.58. Suppose that 0 ≤ αk ≤ 1 and αkak,k+1ak+1,k < 1, k = 1, · · · ,n−1. Then Theorem A is valid for ν = 8.

Theorem 3.59. Suppose that 0 ≤ αk ≤ 1, k = 1, · · · ,n − 1. Then Theorem B is valid for ν = 8.

In order to give the Stein-Rosenberg Type Theorem II, we prove a lemma.

Lemma 3.60. Let A be a Z-matrix. Then A and A(8) are irreducible Z-matrices, provided one of the following
conditions is satisfied:

(i) ak,k+1ak+1,k > 0, 0 < αk ≤ 1, k = 1, · · · ,n − 1.

(ii) n ≥ 3, an,1 < 0, ak,k+1 < 0, 0 ≤ αk ≤ 1, k = 1, · · · ,n − 1.

Proof. The condition (i) implies ak,k+1 < 0 and ak+1,k > 0, k = 1, · · · ,n − 1. Hence, if one of (i) and (ii) holds,
then it is easy to prove that A is irreducible.

Since

a(8)
i, j =


a1, j ≤ 0, i = 1, j = 2, · · · n,
(1 − αi−1)ai,i−1 ≤ 0, i = 2, · · · ,n, j = i − 1,
ai, j − αi−1ai,i−1ai−1, j ≤ ai, j ≤ 0, i = 2, · · · ,n, j = 1, · · · ,n, j , i, i − 1,

(35)

then A(8) is a Z-matrix.
When (i) holds, for any i, j ∈ {1, · · · ,n}, i , j, since A is irreducible, then there exists a path σi, j =

( j(0), j(1), · · · , j(l+1)) ∈ G(A) with i = j(0) and j = j(l+1).
By (35), it is obviously that either if there is no j(k+1) = j(k) − 1, k ∈ {0, 1, · · · , l}, or if there exists some

s ∈ {0, 1, · · · , l} such that j(s+1) = j(s) − 1 but α j(s)−1 < 1, then σi, j ∈ G(A(8)).
For the case when j(s+1) = j(s) − 1 and α j(s)−1 = 1 for some s ∈ {0, 1, · · · , l}, then σi, j < G(A(8)), since

a(8)
j(s), j(s+1)

= a(8)
j(s), j(s)−1 = 0. If j(s) < n, then it gets that a(8)

j(s), j(s)+1 = a j(s), j(s)+1 − a j(s), j(s)−1a j(s)−1, j(s)+1 ≤ a j(s), j(s)+1 < 0

and a(8)
j(s)+1, j(s)−1 = a j(s)+1, j(s)−1 − α j(s) a j(s)+1, j(s) a j(s), j(s)−1 ≤ −α j(s) a j(s)+1, j(s) a j(s), j(s)−1 < 0. While, if j(s) = n, then j(s+1) =

n − 1. In this case it gets that a(8)
n,n−2 = an,n−2 − an,n−1an−1,n−2 ≤ −an,n−1an−1,n−2 < 0 and a(8)

n−2,n−1 = an−2,n−1 −

αn−3an−2,n−3an−3,n−1 ≤ an−2,n−1 < 0. Now we can construct a path σ(1)
i, j = ( j(0), · · · , j(s), j(s) + 1, j(s+1), · · · , j(l+1))

whenever j(s) < n or σ(1)
i, j = ( j(0), · · · , j(s−1),n,n − 2,n − 1, j(s+2), · · · , j(l+1)) whenever js = n. To continue this

process, we can eventually construct a path σ(t)
i, j , t ≤ l, such that σ(t)

i, j ∈ G(A(8)). We have proved that A(8) is
irreducible.
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When (ii) holds, then by (35) we can obtain a(8)
1,2 = a1,2 < 0, a(8)

k,k+1 ≤ ak,k+1 − αk−1ak,k−1ak−1,k+1 ≤ ak,k+1 < 0,

k = 2, · · · ,n − 1, a(8)
n,1 ≤ an,1 − αn−1an,n−1an−1,1 ≤ an,1 < 0. From this it is easy to see that A(8) is irreducible.

Theorem 3.61. Suppose that αkak,k+1ak+1,k < 1, k = 1, · · · ,n − 1. Then Theorem C is valid for ν = 8, provided one
of the following conditions is satisfied:

(i) 0 ≤ αk ≲ 1, k = 1, · · · ,n − 1. And one of the following conditions holds:

(i1) 0 ≤ γ < 1.
(i2) γ = 1 and there exists k ∈ {1, · · · ,n − 1} such that αkak,k+1ak+1,k > 0.
(i3) γ = 1 and ak,k+1 < 0, k = 1, · · · ,n − 1.

(ii) ak,k+1ak+1,k > 0 and 0 < αk ≤ 1, k = 1, · · · ,n − 1.

(iii) n ≥ 3, an,1 < 0, ak,k+1 < 0, 0 ≤ αk ≤ 1, k = 1, · · · ,n − 1.

Proof. By (i) of Corollary 3.30, (i), (ii1) and (ii3) in Theorem 3.26, (i) follows directly.
If (ii) holds, then by Lemma 3.60 A(8) is an irreducible L-matrix. Now, for 0 ≤ γ < 1 the condition (i)

of Theorem 3.6 is satisfied. By the definition of Q8, there exists some k0 ∈ {1, · · · ,n − 1} such that αk0 > 0.
Hence, for γ = 1, we can prove that (ii4) in Theorem 3.6 holds, since αk0 ak0+1,k0 ak0,k0+1 > 0.

When (iii) holds, the proof is completely same.

Obviously, from Lemma 3.60, if (ii) or (iii) holds, then the assumption that A is irreducible is redundant.
This theorem when (ii) holds is better than the results in [39]. The corresponding result in [19, Theorem

3.2] is problematic, because [19, Lemma 3.1] is wrong. In fact, Let

A =


1 −0.5 0 −1
−1 1 0 0

0 −1 1 0
0 0 −1 1

 .
Then it is easy to prove that A is an irreducible L-matrix and it satisfies the assumption of [19, Lemma 3.1].
But the iteration matrices of the preconditioned AOR methods are reducible when we choose α3 = 1.

The following result is easy to prove.

Theorem 3.62. Theorem D is valid for ν = 8, provided one of the conditions (i), (ii) and (iii) of Theorem 3.61 is
satisfied.

Different from Q5, a special Q is proposed as

Q9 =


0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
−α1an,1 + β1 −α2an,2 + β2 · · · −αn−1an,n−1 + βn−1 0


with αk ≥ 0, −αkan,k + βk ≥ 0, k = 1, · · · ,n − 1, and

∑n−1
k=1 (−αkan,k + βk) , 0. For αk = α ≥ 0, βk = β ≥ 0 and

α + β , 0, it is given in [18].
In this case, we have that

a(9)
i, j = ai, j, i = 1, · · · ,n − 1, j = 1, · · · ,n,

a(9)
n, j = (1 − α j)an, j + β j +

n−1∑
k=1
k, j

(−αkan,k + βk)ak, j, j = 1, · · · ,n − 1,

a(9)
n,n = 1 +

n−1∑
k=1

(−αkan,k + βk)ak,n,
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so that

q(9)
i, j = q(9)

n,n = 0, i = 1, · · · ,n − 1, j = 1, · · · ,n,

q(9)
n, j = −α jan, j + β j, j = 1, · · · ,n − 1

and

n∑
k=1
k,i

q(9)
i,k ak,i =


0, i = 1, · · · ,n − 1,
n−1∑
k=1

(−αkan,k + βk)ak,n, i = n.

Now, δ(1)
i, j (1) reduces to

δ(9)
i, j (1) =


j−1∑
k=1

(αkan,k − βk)ak, j, i = n, j = 2, · · · ,n;

0, otherwise.

Hence, by Corollaries 3.8-3.11, we can prove the following comparison theorems directly, where the
proof of Theorem 3.65 is similar to that of Theorem 3.42.

Theorem 3.63. Suppose that
∑n−1

k=1 (αkan,k − βk)ak,n < 1 and

(1 − α j)an, j + β j +

n−1∑
k=1
k, j

(−αkan,k + βk)ak, j ≤ 0, j = 1, · · · ,n − 1. (36)

Then Theorem A is valid for ν = 9.

Theorem 3.64. Suppose that (36) holds. Then Theorem B is valid for ν = 9.

The results given by Theorems 3.63 and 3.64 include the corresponding ones given in [18, Theorem 2.3],
where 1 ≤ j ≤ n should be 1 ≤ j ≤ n − 1.

Theorem 3.65. Suppose that
∑n−1

k=1 (αkan,k − βk)ak,n < 1 and

(1 − α j)an, j + β j +

n−1∑
k=1
k, j

(−αkan,k + βk)ak, j

{
≤ 0,
≲ 0 whenever an, j < 0, j = 1, · · · ,n − 1. (37)

Then Theorem C is valid for ν = 9, provided one of the following conditions is satisfied:

(i) 0 ≤ γ < 1.

(ii) γ = 1 and one of the following conditions holds:

(ii1) There exist i ∈ {2, · · · ,n} and j ∈ {1, · · · , i − 1} such that (α jan, j − β j)a j,i > 0.

(ii2) α1an,1 − β1 < 0.

(ii3) ak,k+1 < 0, k = 1, · · · ,n − 1.

(ii4) ak,n < 0, k = 1, · · · ,n − 1.

Theorem 3.66. Suppose that (37) holds. Then Theorem D is valid for ν = 9, provided one of the conditions (i) and
(ii) of Theorem 3.65 is satisfied.

From Theorems 3.63-3.66, the following results are directly.
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Corollary 3.67. Suppose that
∑n−1

k=1 (αkan,k − βk)ak,n < 1 and (1 − α j)an, j + β j ≤ 0, j = 1, · · · ,n − 1. Then Theorem
A is valid for ν = 9.

Corollary 3.68. Suppose that (1 − αk)an,k + βk ≤ 0, k = 1, · · · ,n − 1. Then Theorem B is valid for ν = 9.

Corollary 3.69. Suppose that
∑n−1

k=1 (αkan,k − βk)ak,n < 1 and

(1 − α j)an, j + β j

{
≤ 0,
≲ 0 whenever an, j < 0, j = 1, · · · ,n − 1. (38)

Then Theorem C is valid for ν = 9, provided one of the conditions (i) and (ii) of Theorem 3.65 is satisfied.

Corollary 3.70. Suppose that (38) holds. Then Theorem D is valid for ν = 9, provided one of the conditions (i) and
(ii) of Theorem 3.65 is satisfied.

Similarly, different from Q6, a special Q is proposed in [56] as

Q10 =


0 0 · · · 0

−α2a2,1 + β2 0 · · · 0
...

...
. . .

...
−αnan,1 + βn 0 · · · 0


with αk ≥ 0, −αkak,1 + βk ≥ 0, k = 2, · · · ,n, and

∑n
k=2(−αkak,1 + βk) , 0.

It is given in [9] for αk = 1, k = 2, · · · ,n, in [18] for αk = α ≥ 0, βk = β ≥ 0, k = 2, · · · ,n with α + β , 0, and
in [8] for the preconditioned SOR method, where αk = 1, k = 2, · · · ,n.

In this case, we have that

a(10)
i, j =


a1, j, i = 1, j = 1, · · · ,n,
(1 − αi)ai,1 + βi, i = 2, · · · ,n, j = 1,
ai, j + (−αiai,1 + βi)a1, j, i, j = 2, · · · ,n,

so that

q(10)
i,1 = −αiai,1 + βi, i = 2, · · · ,n,

q(10)
i, j = q(10)

1,1 = 0, i = 1, · · · ,n, j = 2, · · · ,n

and
n∑

k=1
k,i

q(10)
i,k ak,i =

{
0, i = 1,
(−αiai,1 + βi)a1,i, i = 2, · · · ,n.

Now, δ(1)
i, j (1) reduces to

δ(10)
i, j (1) =

{
(αiai,1 − βi)a1, j, i = 2, · · · ,n, j = 2, · · · , i;
0, otherwise.

Hence, by Corollaries 3.12-3.15, we can prove the following comparison theorems directly.

Theorem 3.71. Suppose that (1 − αk)ak,1 + βk ≤ 0 and (αkak,1 − βk)a1,k < 1, k = 2, · · · ,n. Then Theorem A is valid
for ν = 10.

Theorem 3.72. Suppose that (1 − αk)ak,1 + βk ≤ 0, k = 2, · · · ,n. Then Theorem B is valid for ν = 10.
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The results given by Theorems 3.71 and 3.72 include the corresponding ones given in [18, Theorem 3.3].
The result given by 3.72 is better than the corresponding one given in [56, Theorem 4.2], where the

condition that A is irreducible is unnecessary.
In order to give the Stein-Rosenberg Type Theorem II, we give a lemma, whose proof is completely same

as that of Lemma 3.50.

Lemma 3.73. Let A be an irreducible Z-matrix. Assume that 0 < −αkak,1 + βk ≤ −ak,1, k = 2, · · · ,n and A(10) has
the block form

A(10) =

(
1 ā1,2

ā(10)
2,1 A(10)

2,2

)
, A(10)

2,2 ∈ R(n−1)×(n−1).

Then

(i) A(10)
2,2 is an irreducible Z-matrix.

(ii) A(10) is an irreducible Z-matrix if and only if there exists k0 ∈ {2, · · · ,n} such that (1 − αk0 )ak0,1 + βk0 , 0.

Using this lemma, similar to the proof of Theorem 3.51 we prove the following theorem.

Theorem 3.74. Suppose that (1 − αk)ak,1 + βk ≤ 0 and (αkak,1 − βk)a1,k < 1, k = 2, · · · ,n. Then Theorem C is valid
for ν = 10, provided one of the following conditions is satisfied:

(i) 0 ≤ γ < 1 and (1 − αk)ak,1 + βk ≲ 0 whenever ak,1 < 0, k = 2, · · · ,n.

(ii) γ = 1 and (1 − αk)ak,1 + βk ≲ 0 whenever ak,1 < 0, k = 2, · · · ,n. And one of the following conditions holds:

(ii1) There exist i ∈ {2, · · · ,n} and j ∈ {2, · · · , i} such that (αiai,1 − βi)a1, j > 0.

(ii2) −αnan,1 + βn > 0.

(ii3) a1,2 < 0.

(iii) −αkak,1 + βk > 0, k = 2, · · · ,n.

Proof. By Theorem 3.6, we just need to prove (ii3) and (iii).
For (ii3), by the definition of Q10, there exists i0 ∈ {2, · · · ,n} such that −αi0 ai0,1 + βi0 > 0, so that (αi0 ai0,1 −

βi0 )a1,2 > 0, which implies that (ii1) holds for i = i0 and j = 2.
For (iii), since A is irreducible, then there exists j ∈ {2, · · · ,n} such that a1, j < 0, so that δ(10)

n, j (1) =
(αnan,1 − βn)a1, j > 0. Using Lemma 3.73, the rest of the proof is completely similar to that of (iii) and (iv1) in
Theorem 3.51.

When (iii) holds it includes [9, Theorem 3.1]. The result for γ = ω is better that the corresponding ones
given by [8, Theorem 3.1, Corollary 3.1].

Theorem 3.75. Suppose that (1 − αk)ak,1 + βk ≤ 0, k = 2, · · · ,n. Then Theorem D is valid for ν = 10, provided one
of the conditions (i), (ii) and (iii) of Theorem 3.74 is satisfied.

As a special case of Q9 and Q10, Q is proposed in [91] as

Q11 =


0 0 · · · 0
...

... · · ·
...

0 0 · · · 0
−

1
αan,1 − β 0 · · · 0


with α > 0 and an,1/α + β < 0. It is discussed in [51] for α = 1.
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Now, δ(10)
i, j (1) reduces to

δ(11)
i, j (1) =

{
( 1
αan,1 + β)a1, j, i = n, j = 2, · · · ,n;

0, otherwise.

By Theorems 3.71 and 3.72, the following comparison results are obtained, directly.

Theorem 3.76. Suppose that β ≥ (1 − 1/α)an,1 and (an,1/α + β)a1,n < 1. Then Theorem A is valid for ν = 11.

Theorem 3.77. Suppose that β ≥ (1 − 1/α)an,1. Then Theorem B is valid for ν = 11.

In order to give the Stein-Rosenberg Type Theorem II, completely similar to Lemma 3.55, we can prove
the following lemma.

Lemma 3.78. Let A be an irreducible Z-matrix. Assume that β ≥ (1 − 1/α)an,1 and A(11) has the block form

A(11) =

(
1 ā1,2

ā(11)
2,1 A(11)

2,2

)
, A(11)

2,2 ∈ R(n−1)×(n−1).

Then one of the following two mutually exclusive relations holds:

(i) A(11) is an irreducible Z-matrix.

(ii) A(11) is a reducible Z-matrix, but A(11)
2,2 is an irreducible Z-matrix and ak,1 = a(11)

k,1 = a(11)
n,1 = 0, k = 2, · · · ,n − 1.

Using this lemma, similar to the proof of Theorem 3.56, we prove the following theorem.

Theorem 3.79. Suppose that β ≥ (1 − 1/α)an,1 and (an,1/α + β)a1,n < 1. Then Theorem C is valid for ν = 11.

Proof. Since (an,1/α + β)a1,n < 1, then, by Lemma 3.78, A(11) is an L-matrix.
If A(11) is irreducible then it follows by (i) and (ii2) in Theorem 3.6 that Theorem C is valid, since

q(11)
n,1 = −an,1/α − β > 0.

For the case when A(11) is reducible, then the irreducibility of A ensures that there exists j ∈ {2, · · · ,n}
such that a1, j < 0 so that −(an,1/α + β)a1, j > 0. Now, using Lemma 3.78, the rest of the proof is completely
similar to that of (iii) and (iv1) in Theorem 3.51.

The result is better than [91, Theorem 1], where the condition 0 < a1,nan,1 < α(α > 1) is unnecessary. For
α = 1, it also better than the corresponding ones given by [51, Theorem 8, Corollaries 10, 11].

Theorem 3.80. Suppose that β ≥ (1 − 1/α)an,1. Then Theorem D is valid for ν = 11.

By the definition of Q11, an,1/α + β < 0. While in the comparison theorems above we need the condition
β ≥ (1 − 1/α)an,1. Hence it implies an,1 < 0.
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3.3. Upper triangular preconditioners

Corresponding to Q3, we let

αi, j = 0, i = 1, · · · ,n, j ≤ i.

Then Q2 reduces to

Q12 =


0 −α1,2a1,2 −α1,3a1,3 · · · −α1,na1,n
0 0 −α2,3a2,3 · · · −α2,na2,n
...

...
...

. . .
...

0 0 0 · · · −αn−1,nan−1,n
0 0 0 · · · 0


with αi, j ≥ 0, i = 1, · · · ,n − 1, j > i, and

n−1∑
i=1

n∑
j=i+1

αi, jai, j , 0.

In [37] it is proposed for the preconditioned Gauss-Seidel method, where αi, j = αi ≥ 0, i = 1, · · · ,n − 1.
In this case, for i, j = 1, · · · ,n, we have that

n∑
k=1
k,i, j

αi,kai,kak, j =

n∑
k=i+1

k, j

αi,kai,kak, j,

so that if j < i, then

(1 − αi, j)ai, j −

n∑
k=1
k,i, j

αi,kai,kak, j = ai, j −

n∑
k=i+1

αi,kai,kak, j ≤ ai, j.

Since αn, j = 0 for j = 1, · · · ,n, then δ(2)
i, j (γ) and δ(2)

i, j (1) reduce respectively to

δ(12)
i, j (γ) =



n∑
k=i+1

αi,kai,kak,i, i = j = 1, · · · ,n − 1;

(γ − 1)αi, jai, j + γ
j−1∑

k=i+1
αi,kai,kak, j, i = 1, · · · ,n − 1, j = i + 1, · · · ,n;

γ
n∑

k=i+1
αi,kai,kak, j, i = 2, · · · ,n − 1, j = 1, · · · , i − 1;

0, i = n, j = 1, · · · ,n

and

δ(12)
i, j (1) =



n∑
k=i+1

αi,kai,kak, j, i = 1, · · · ,n − 1, j = 1, · · · , i;

j−1∑
k=i+1

αi,kai,kak, j, i = 1, · · · ,n − 1, j = i + 2, · · · ,n;

0, i = 1, · · · ,n − 1, j = i + 1;
0, i = n, j = 1, · · · ,n.

In this case, the conditions (ii2), (ii8), (iv7), (iva) and (ivb) in Theorem 3.18 can be not satisfied. While the
inequality (22) or (23) is trivial because that A is irreducible and

(1 − αn, j)an, j −

n−1∑
k=1
k, j

αn,kan,kak, j = an, j.
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Completely similar to Theorems 3.24-3.27 and Corollaries 3.28-3.31, by Theorems 3.16-3.19, we can prove
the following comparison results, immediately.

Theorem 3.81. Suppose that
∑n

k=i+1 αi,kai,kak,i < 1, i = 1, · · · ,n − 1, and

(1 − αi, j)ai, j −

n∑
k=i+1

k, j

αi,kai,kak, j ≤ 0, i = 1, · · · ,n − 1, j > i. (39)

Then Theorem A is valid for ν = 12.

Theorem 3.82. Suppose that (39) holds. Then Theorem B is valid for ν = 12.

Theorem 3.83. Suppose that
∑n

k=i+1 αi,kai,kak,i < 1, i = 1, · · · ,n − 1. Then Theorem C is valid for ν = 12, provided
one of the following conditions is satisfied:

(i) 0 ≤ γ < 1 and

(1 − αi, j)ai, j −

n∑
k=i+1

k, j

αi,kai,kak, j ≲ 0 whenever ai, j < 0, i = 1, · · · ,n − 1, j > i. (40)

(ii) γ = 1, (40) holds and one of the following conditions holds:

(ii1) There exist i ∈ {1, · · · ,n − 1}, j ∈ {1, · · · , i} and k ∈ {i + 1, · · · ,n} such that αi,kai,kak, j > 0.

(ii2) There exist i ∈ {1, · · · ,n − 1}, j ∈ {i + 2, · · · ,n} and k ∈ {i + 1, · · · , j − 1} such that αi,kai,kak, j > 0.

(ii3) There exists k ∈ {1, · · · ,n − 1} such that ak,k+1 < 0 and αk,k+1 > 0.

(ii4) an,1 < 0 and ak,k+1 < 0, k = 1, · · · ,n − 1.

(ii5) an,1 < 0 and ak,n < 0, k = 2, · · · ,n − 1.

(ii6) ak,1 < 0, k = 2, · · · ,n.

(iii) 0 ≤ γ < 1 and (39) holds. For each i ∈ {1, · · · ,n − 1}, there exists j(i) ∈ {i + 1, · · · ,n} such that αi, j(i)ai, j(i) < 0.

(iv) γ = 1 and (39) holds. For each i ∈ {1, · · · ,n − 1}, one of the following conditions holds:

(iv1) There exist j(i) ∈ {1, · · · , i} and k(i) ∈ {i + 1, · · · ,n} such that αi,k(i)ai,k(i)ak(i), j(i) > 0.

(iv2) There exist j(i) ∈ {i + 2, · · · ,n} and k(i) ∈ {i + 1, · · · , j − 1} such that αi,k(i)ai,k(i)ak(i), j(i) > 0.

(iv3) ai,i+1 < 0 and αi,i+1 > 0.

Proof. By Theorem 3.18, we just need to prove (ii5), (ii6) and (iv).
By the definition of Q12, there exist i0 ∈ {1, · · · ,n − 1} and j0 ∈ {i + 1, · · · ,n} such that αi0, j0 ai0, j0 < 0.
When (ii5) holds, if j0 < n then αi0, j0 ai0, j0 a j0,n > 0, which implies that (ii2) holds for i = i0, j = n and k = j0.

If j0 = n then αi0,nai0,nan,1 > 0, which implies that (ii1) holds for i = i0, j = 1 and k = n.
When (ii6) holds, it gets that αi0, j0 ai0, j0 a j0,1 > 0, which implies that (ii1) holds for i = i0, j = 1 and k = j0.
By the irreducibility of A, there exists j ∈ {1, · · · ,n − 1} such that an, j < 0, which implies that (ivc) or (ivd)

in Theorem 3.18 holds because αn,k = 0, k = 1, · · · ,n−1. By (iv1) and (iv2) in Theorem 3.18 we derive (iv).

Theorem 3.84. Theorem D is valid for ν = 12, provided one of the following conditions is satisfied:

(i) One of the conditions (i)-(iv) of Theorem 3.83 holds.

(ii) The inequality (39) holds and one of the following conditions holds:

(ii1) There exist i ∈ {1, · · · ,n − 1} and j ∈ {i + 1, · · · ,n} such that αi, jai, ja j,i > 0.
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(ii2) γ > 0. There exist i ∈ {2, · · · ,n − 1}, j ∈ {1, · · · , i − 1} and k ∈ {i + 1, · · · ,n} such that αi,kai,kak, j > 0.

Proof. We just need to prove (ii). In fact, since αi, j = 0 for j ≤ i, then the result follows by (ii) of Theorem
3.19 directly.

Corollary 3.85. Suppose that 0 ≤ αi, j ≤ 1 and
∑n

k=i+1 αi,kai,kak,i < 1, i = 1, · · · ,n − 1, j > i. Then Theorem A is
valid for ν = 12.

Corollary 3.86. Suppose that 0 ≤ αi, j ≤ 1, i = 1, · · · ,n − 1, j > i. Then Theorem B is valid for ν = 12.

Corollary 3.87. Suppose that
∑n

k=i+1 αi,kai,kak,i < 1, i = 1, · · · ,n − 1. Then Theorem C is valid for ν = 12, provided
one of the following conditions is satisfied:

(i) For i = 1, · · · ,n − 1, j > i, 0 ≤ αi, j ≲ 1. One of the conditions 0 ≤ γ < 1 and (ii1)-(ii6) whenever γ = 1 in
Theorem 3.83 holds.

(ii) One of the conditions (iii) and (iv) of Theorem 3.83 holds, where the inequality (39) is replaced by 0 ≤ αi, j ≤ 1,
i = 1, · · · ,n − 1, j > i.

Corollary 3.88. Theorem D is valid for ν = 12, provided one of the following conditions is satisfied:

(i) One of the conditions (i) and (ii) of Corollary 3.87 holds.

(ii) For i = 1, · · · ,n − 1, j > i, 0 ≤ αi, j ≤ 1. One of the conditions (ii1) and (ii2) in Theorem 3.84 holds.

Many known corresponding results about the preconditioned AOR method proposed in the references
are the special cases of Theorems 3.81-3.84 and Corollaries 3.85-3.88, i.e., they can be derived from these
theorems, immediately.

When αi, j = α > 0, i = 1, · · · ,n − 1, j > i, the matrix Q12 reduces to

Q13 = αU,

which is proposed in [35] for the preconditioned Gauss-Seidel method. It is investigated in [97, 108] for the
preconditioned AOR method. For α = 1 it is proposed in [85] for the preconditioned Gauss-Seidel method
and in [63, 84] for the preconditioned SOR method.

Denote

δ(13)
i, j (γ) =



n∑
k=i+1

ai,kak,i, i = j = 1, · · · ,n − 1;

(γ − 1)ai, j + γ
j−1∑

k=i+1
ai,kak, j, i = 1, · · · ,n − 1, j = i + 1, · · · ,n;

γ
n∑

k=i+1
ai,kak, j, i = 2, · · · ,n − 1, j = 1, · · · , i − 1;

0, i = n, j = 1, · · · ,n

and

δ(13)
i, j (1) =



n∑
k=i+1

ai,kak, j, i = 1, · · · ,n − 1, j = 1, · · · , i;

j−1∑
k=i+1

ai,kak, j, i = 1, · · · ,n − 1, j = i + 2, · · · ,n;

0, i = 1, · · · ,n − 1, j = i + 1;
0, i = n, j = 1, · · · ,n.

By Theorems 3.81-3.84 and Corollaries 3.85-3.88, the following results are obtained.
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Theorem 3.89. Suppose that α
∑n

k=i+1 ai,kak,i < 1, i = 1, · · · ,n − 1, and

(1 − α)ai, j − α
n∑

k=i+1
k, j

ai,kak, j ≤ 0, i = 1, · · · ,n − 1, j > i. (41)

Then Theorem A is valid for ν = 13.

Theorem 3.90. Suppose that (41) holds. Then Theorem B is valid for ν = 13.

Theorem 3.91. Suppose that α
∑n

k=i+1 ai,kak,i < 1, i = 1, · · · ,n − 1. Then Theorem C is valid for ν = 13, provided
one of the following conditions is satisfied:

(i) 0 ≤ γ < 1 and

(1 − α)ai, j − α
n∑

k=i+1
k, j

ai,kak, j ≲ 0 whenever ai, j < 0, i = 1, · · · ,n − 1, j > i. (42)

(ii) γ = 1. The inequality (42) holds and one of the following conditions holds:

(ii1) There exist i ∈ {1, · · · ,n − 1}, j ∈ {1, · · · , i} and k ∈ {i + 1, · · · ,n} such that ai,kak, j > 0.

(ii2) There exist i ∈ {1, · · · ,n − 1}, j ∈ {i + 2, · · · ,n} and k ∈ {i + 1, · · · , j − 1} such that ai,kak, j > 0.

(ii3) There exists k ∈ {1, · · · ,n − 1} such that ak,k+1 < 0.

(ii4) an,1 < 0.

(iii) 0 ≤ γ < 1 and the inequality (41) holds. For each i ∈ {1, · · · ,n − 1}, there exists j(i) ∈ {i + 1, · · · ,n} such that
ai, j(i) < 0.

(iv) γ = 1 and the inequality (41) holds. For each i ∈ {1, · · · ,n − 1} one of the following conditions holds:

(iv1) There exist j(i) ∈ {1, · · · , i} and k(i) ∈ {i + 1, · · · ,n} such that ai,k(i)ak(i), j(i) > 0.

(iv2) There exist j(i) ∈ {i + 2, · · · ,n} and k(i) ∈ {i + 1, · · · , j − 1} such that ai,k(i)ak(i), j(i) > 0.

(iv3) ai,i+1 < 0.

Proof. We just need to prove (ii4). From the irreducibility of A, there exists i0 ∈ {1, · · · ,n − 1} such that
ai0,n < 0 so that ai0,nan,1 > 0, which implies that (ii1) holds for i = i0, j = 1 and k = n.

Theorem 3.92. Theorem D is valid for ν = 13, provided one of the following conditions is satisfied:

(i) One of the conditions (i)-(iv) of Theorem 3.91 holds.

(ii) The inequality (41) holds and one of the following conditions holds:

(ii1) There exist i ∈ {1, · · · ,n − 1} and j ∈ {i + 1, · · · ,n} such that ai, ja j,i > 0.

(ii1) γ > 0. There exist i ∈ {2, · · · ,n − 1}, j ∈ {1, · · · , i − 1} and k ∈ {i + 1, · · · ,n} such that ai,kak, j > 0.

Corollary 3.93. Suppose that 0 < α ≤ 1 and α
∑n

k=i+1 ai,kak,i < 1, i = 1, · · · ,n − 1. Then Theorem A is valid for
ν = 13.

The result improves the corresponding one given by [97, Theorem 3.6].

Corollary 3.94. Suppose that 0 < α ≤ 1. Then Theorem B is valid for ν = 13.
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Corollary 3.95. Suppose that α
∑n

k=i+1 ai,kak,i < 1, i = 1, · · · ,n − 1. Then Theorem C is valid for ν = 13, provided
one of the following conditions is satisfied:

(i) 0 ≤ γ < 1 and 0 < α ≲ 1.

(ii) γ = 1 and 0 < α ≲ 1. One of the conditions (ii1)-(ii4) in Theorem 3.91 is satisfied.

(iii) 0 ≤ γ < 1, 0 < α ≤ 1 and for each i ∈ {1, · · · ,n − 1}, there exists j(i) ∈ {i + 1, · · · ,n} such that ai, j(i) < 0.

(iv) γ = 1, 0 < α ≤ 1 and for each i ∈ {1, · · · ,n − 1} one of the conditions (iv1)-(iiv3) in Theorem 3.91 holds.

The result when (i) holds is better than the corresponding one given by [108, Theorem 3.3].
If

∑n
k=i+1 ai,kak,i > 0, i = 1, · · · ,n−1, then for each i ∈ {1, · · · ,n−1}, there exists k(i) ∈ {i+1, · · · ,n} such that

ai,k(i)ak(i),i > 0 and ai,k(i) < 0, which implies that (iii) of Theorem 3.91 holds for j(i) = k(i) and (iv1) in Theorem
3.91 holds for j(i) = i. Hence, Corollary 3.95 when (iii) and (iv) hold is better than [108, Theorems 3.1, 3.2,
3.4].

When α = 1, [63] studies the preconditioned SOR method. The main result [63, Theorem 3.1] presents a
Stein-Rosenberg type comparison theorem. But it is incorrect. Where the authors assume that A is strictly
diagonally dominant. Under this condition, by [4, Theorem 6-2.3], A is a nonsingular M-matrix. Then, by
[4, Theorem 7-5.24], it gets that ρ(Lω) < 1. Hence, with our sign, [63, Theorem 3.1] should be corrected
as follows: “If A is a strictly diagonally dominant Z-matrix such that 0 < ak,k+1ak+1,k < 1, k = 1, · · · ,n − 1 and
0 < ω < 1, then ρ(L (13)

ω ) < ρ(Lω) < 1”. While this result can be also derived directly from Corollary 3.96
below. In fact, the condition ak,k+1ak+1,k > 0, k = 1, · · · ,n − 1, implies that A is irreducible and ak,k+1 < 0,
k = 1, · · · ,n − 1. Therefore, the conditions (iii) and (iv2) in Theorem 3.91 are satisfied. By (i) of Corollary
3.96, it follows that ρ(L (13)

ω ) < ρ(Lω) < 1 holds for 0 < ω ≤ 1.

Corollary 3.96. Theorem D is valid for ν = 13, provided one of the following conditions is satisfied:

(i) One of the conditions (i)-(iv) of Corollary 3.95 holds.

(ii) 0 ≤ α ≤ 1 and one of the conditions (ii1) and (ii2) in Theorem 3.92 holds.

Corresponding to Q6, for r = 2, · · · ,n, in [92] the matrix Q is defined as

Q14 =



0 · · · 0 0 · · · 0
...

. . .
...

...
...

...
0 · · · 0 −αrar−1,r · · · −αnar−1,n
0 · · · 0 0 · · · 0
...

...
...

...
. . .

...
0 · · · 0 0 · · · 0


with αk ≥ 0, k = r, · · · ,n, and

n∑
k=r

αkar−1,k , 0.

In this case, δ(12)
i, j (γ) and δ(12)

i, j (1) reduce respectively to

δ(14)
i, j (γ) =



n∑
k=r
αkar−1,kak,r−1, i = j = r − 1;

(γ − 1)αrar−1, j + γ
j−1∑
k=r
αkar−1,kak, j, i = r − 1, j = r, · · · ,n;

γ
n∑

k=r
αkar−1,kak, j, whenever r ≥ 3, i = r − 1, j = 1, · · · , r − 2;

0, otherwise
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and

δ(14)
i, j (1) =



n∑
k=r
αkar−1,kak, j, i = r − 1, j = 1, · · · , r − 1;

j−1∑
k=r
αkar−1,kak, j, i = r − 1, j = r + 1, · · · ,n;

0, otherwise.

Clearly, the conditions (iii) and (iv) of Theorem 3.83 can be not satisfied.
From Theorems 3.81-3.84 and Corollaries 3.85-3.88, we have the following comparison results.

Theorem 3.97. Suppose that
∑n

k=r αkar−1,kak,r−1 < 1 and

(1 − α j)ar−1, j −

n∑
k=r
k, j

αkar−1,kak, j ≤ 0, j = r, · · · ,n. (43)

Then Theorem A is valid for ν = 14.

Theorem 3.98. Suppose that (43) holds. Then Theorem B is valid for ν = 14.

Theorem 3.99. Suppose that
∑n

k=r αkar−1,kak,r−1 < 1 and

(1 − α j)ar−1, j −

n∑
k=r
k, j

αkar−1,kak, j ≲ 0 whenever ar−1, j < 0, j = r, · · · ,n. (44)

Then Theorem C is valid for ν = 14, provided one of the following conditions is satisfied:

(i) 0 ≤ γ < 1.

(ii) γ = 1 and one of the following conditions holds:

(ii1) There exist i ∈ {1, · · · , r − 1} and j ∈ {r, · · · ,n} such that α jar−1, ja j,i > 0.

(ii2) There exist i ∈ {r + 1, · · · ,n} and j ∈ {r, · · · , i − 1} such that α jar−1, ja j,i > 0.

(ii3) ar−1,r < 0 and αr > 0.

(ii4) ak,1 < 0, k = r, · · · ,n.

(ii5) ak,r−1 < 0, k = r, · · · ,n.

(ii6) an,1 < 0 and ak,n < 0, k = r, · · · ,n − 1.

(ii7) an,1 < 0 and ak,k+1 < 0, k = r, · · · ,n − 1.

Proof. By Theorem 3.83 we just need to prove (ii4)-(ii7).
From the definition of Q14, there exists k0 ∈ {r, · · · ,n} such that αk0 ar−1,k0 < 0.
If (ii4) holds then αk0 ar−1,k0 ak0,1 > 0, which implies that (ii1) holds for i = 1 and j = k0.
Similarly, if (ii5) holds then we can prove that (ii1) holds for i = r − 1 and j = k0.
When (ii6) holds, if k0 < n then αk0 ar−1,k0 ak0,n > 0, which implies that (ii2) holds for i = n and j = k0. If

k0 = n then αnar−1,nan,1 > 0, which implies that (ii1) holds for i = 1 and j = n.
Similarly, when (ii7) holds we can prove that (ii2) holds.

Theorem 3.100. Theorem D is valid for ν = 14, provided one of the following conditions is satisfied:

(i) The inequality (44) and one of the conditions (i) and (ii) of Theorem 3.99 holds.

(ii) The inequality (43) holds and one of the following conditions holds:

(ii1) There exists k ∈ {r, · · · ,n} such that αkar−1,kak,r−1 > 0.
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(ii2) γ > 0 and there exist k ∈ {r, · · · ,n} and j ∈ {1, · · · , r − 2} such that αkar−1,kak, j > 0.

Corollary 3.101. Suppose that 0 ≤ αk ≤ 1, k = r, · · · ,n, and
∑n

k=r αkar−1,kak,r−1 < 1. Then Theorem A is valid for
ν = 14.

Corollary 3.102. Suppose that 0 ≤ αk ≤ 1, k = r, · · · ,n. Then Theorem B is valid for ν = 14.

The result includes the corresponding one given in [92, Corollary 2.3].

Corollary 3.103. Suppose that 0 ≤ αk ≲ 1, k = r, · · · ,n, and
∑n

k=r αkar−1,kak,r−1 < 1. Then Theorem C is valid for
ν = 14, provided one of the conditions (i) and (ii) of Theorem 3.99 is satisfied.

Corollary 3.104. Theorem D is valid for ν = 14, provided one of the following conditions is satisfied:

(i) 0 ≤ αk ≲ 1, k = r, · · · ,n, and one of the conditions (i) and (ii) of Theorem 3.99 holds.

(ii) 0 ≤ αk ≤ 1, k = r, · · · ,n, and one of the conditions (ii1) and (ii2) in Theorem 3.100 holds.

Similar to Q14, for r = 2, · · · ,n, the matrix Q is chosen as

Q15 =



0 · · · 0 −α1a1,r · · · 0
...

. . .
...

...
...

...
0 · · · 0 −αr−1ar−1,r · · · 0
0 · · · 0 0 · · · 0
...

...
...

...
. . .

...
0 · · · 0 0 · · · 0


with αk ≥ 0, k = 1, · · · , r − 1, and

r−1∑
k=1

αkak,r , 0.

It is proposed in [104] for r = n. When r = n and αi = 1, i = 2, · · · ,n, it is a special case in [66] for the
preconditioned Gauss-Seidel and Jacobi methods.

In this case, δ(12)
i, j (γ) and δ(12)

i, j (1) reduce respectively to

δ(15)
i, j (γ) =


αiai,rar,i, i = j = 1, · · · , r − 1;
(γ − 1)αiai,r, i = 1, · · · , r − 1, j = r;
γαiai,rar, j, i = 1, · · · , r − 1, j ∈ {1, · · · , i − 1} ∪ {r + 1, · · · ,n};
0, otherwise

and

δ(15)
i, j (1) =

{
αiai,rar, j, i = 1, · · · , r − 1, 1 ≤ j ≤ i, r + 1 ≤ j ≤ n;
0, otherwise.

From Corollaries 3.85 and 3.86, we have the following comparison results.

Theorem 3.105. Suppose that 0 ≤ αk ≤ 1 and αkak,rar,k < 1, k = 1, · · · , r − 1. Then Theorem A is valid for ν = 15.

Theorem 3.106. Suppose that 0 ≤ αk ≤ 1, k = 1, · · · , r − 1. Then Theorem B is valid for ν = 15.

In order to give the Stein-Rosenberg Type Theorem II, completely similar to Lemma 3.50, we can prove
the following lemma.
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Lemma 3.107. Let A be an irreducible Z-matrix. Assume that r = n, 0 < αk ≤ 1, k = 1, · · · ,n − 1 and A(15) has the
block form

A(15) =

(
A(15)

1,1 ā(15)
1,2

ā2,1 1

)
, A(15)

1,1 ∈ R(n−1)×(n−1).

Then

(i) A(15)
1,1 is an irreducible Z-matrix.

(ii) A(15) is an irreducible Z-matrix if and only if there exists j0 ∈ {1, · · · ,n − 1} such that (1 − α j0 )a j0,n , 0.

Theorem 3.108. Suppose that αkak,rar,k < 1, k = 1, · · · , r − 1. Then Theorem C is valid for ν = 15, provided one of
the following conditions is satisfied:

(i) 0 ≤ γ < 1 and 0 ≤ αk ≲ 1, k = 1, · · · , r − 1.

(ii) γ = 1, 0 ≤ αk ≲ 1, k = 1, · · · , r − 1. And one of the following conditions holds:

(ii1) There exist i ∈ {1, · · · , r − 1} and j ∈ {1, · · · , i} ∪ {r + 1, · · · ,n} such that αiai,rar, j > 0.

(ii2) ar−1,r < 0 and αr−1 > 0.

(ii3) ar,1 < 0.

(ii4) There exists k ∈ {r + 1, · · · ,n} such that ar,k < 0.

(iii) r = n, 0 ≤ γ < 1 and 0 < αk ≤ 1, k = 1, · · · ,n − 1.

(iv) r = n, γ = 1, 0 < αk ≤ 1, k = 1, · · · ,n − 1. And one of the following conditions holds:

(iv1) There exist i ∈ {1, · · · ,n − 1} and j ∈ {1, · · · , i} such that ai,nan, j > 0.

(iv2) an−1,n < 0.

(iv3) an,1 < 0.

Proof. We just need to prove (ii3), (ii4) and (iii) and (iv).
From the definition of Q15, there exists i0 ∈ {1, · · · , r − 1} such that αi0 ai0,r < 0. If (ii3) holds then

αi0 ai0,rar,1 > 0, which implies that (ii1) holds for i = i0 and j = 1. If (ii4) holds then we can prove that (ii1)
holds for i = i0 and j = k.

For (iii) and (iv), if A(15) is irreducible then the result is obvious.
Now, we consider the case when A(15) is reducible. Suppose that ρ = ρ(Lγ,ω) and x > 0 is its associated

eigenvector. By Theorem 3.105, ρ = 1 if and only if ρ(L (15)
γ,ω ) = 1.

By Lemma 3.1 we just need to consider the case when γ ≤ ω. Then, by Lemma 2.9 it follows that ρ > 0
and x≫ 0.

Let A have the block form

A =
(

A1,1 ā1,2
ā2,1 1

)
, A1,1 ∈ R(n−1)×(n−1).

Then, by Lemma 3.107, A(15) has the block form

A(15) =

(
A(15)

1,1 0
ā2,1 1

)
, A(15)

1,1 ∈ R(n−1)×(n−1),
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where A(15)
1,1 is an irreducible L-matrix, since a(15)

k,k = 1 − αkak,nan,k > 0, k = 1, · · · ,n − 1. Let A1,1 = M̂γ,ω − N̂γ,ω

and A(15)
1,1 = M̄γ,ω − N̄γ,ω be the AOR splittings of A1,1 and A(15)

1,1 , respectively. Then they are regular splittings
and

Mγ,ω =

(
M̂γ,ω 0
γ
ω ā2,1

1
ω

)
, Nγ,ω =

(
N̂γ,ω −ā1,2
γ−ω
ω ā2,1

1−ω
ω

)
,

M(15)
γ,ω =

(
M̄γ,ω 0
γ
ω ā2,1

1
ω

)
, N(15)

γ,ω =

(
N̄γ,ω 0
γ−ω
ω ā2,1

1−ω
ω

)
, [M(15)

γ,ω ]−1 =

(
M̄−1
γ,ω 0

−γā2,1M̄−1
γ,ω ω

)
,

L (15)
γ,ω =

(
M̄−1
γ,ωN̄γ,ω 0

ā2,1[(γ − ω)I − γM̄−1
γ,ωN̄γ,ω] 1 − ω

)
.

Let Ē2 and F̄2 be diagonal part and strictly lower triangular part of Q15L with block forms

Ē2 =

(
E1,1 0

0 e2,2

)
, F̄2 =

(
F1,1 0
f1,2 f2,2

)
, E1,1,F1,1 ∈ R(n−1)×(n−1).

Then e2,2 = f2,2 = 0 and f1,2 = 0. Let

Q15 =

(
Q1,1 q̄1,2

q̄2,1 q(15)
2,2

)
, Q1,1 ∈ R(n−1)×(n−1)

and

x =
(

x̄1
x̄2

)
, x̄1 ∈ Rn−1, x̄2 ∈ R.

Then Q1,1 = 0, q̄2,1 = 0, q(15)
2,2 = 0, q̄1,2 > 0, x̄1 ≫ 0 and x̄2 > 0. Now, by Lemma 3.2, we obtain

L (15)
γ,ω x − ρx

=

(
M̄−1
γ,ωN̄γ,ωx̄1 − ρx̄1

ā2,1[(γ − ω)I − γM̄−1
γ,ωN̄γ,ω]x̄1 + (1 − ω)x̄2 − ρx̄2

)
= (ρ − 1)[M(15)

γ,ω ]−1[Ē2 + γF̄2 +
ω
ρ

Q15Nγ,ω]x

= (ρ − 1)
(

M̄−1
γ,ω 0

−γā2,1M̄−1
γ,ω ω

) [(
E1,1 0

0 0

)
+ γ

(
F1,1 0
0 0

)
+
ω
ρ

(
0 q̄1,2
0 0

) (
N̂γ,ω −ā1,2
γ−ω
ω ā2,1

1−ω
ω

)] (
x̄1
x̄2

)
= (ρ − 1)

 M̄−1
γ,ω[(E1,1 + γF1,1 +

γ−ω
ρ q̄1,2ā2,1)x̄1 +

1−ω
ρ q̄1,2x̄2]

−γā2,1M̄−1
γ,ω[(E1,1 + γF1,1 +

γ−ω
ρ q̄1,2ā2,1)x̄1 +

1−ω
ρ q̄1,2x̄2]

 .
Hence, we have

M̄−1
γ,ωN̄γ,ωx̄1 − ρx̄1 = (ρ − 1)M̄−1

γ,ω[(E1,1 + γF1,1 +
γ − ω

ρ
q̄1,2ā2,1)x̄1 +

1 − ω
ρ

q̄1,2x̄2] (45)

and

(1 − ω)x̄2 − ρx̄2 (46)

= ā2,1[(ω − γ)I + γM̄−1
γ,ωN̄γ,ω]x̄1 − (ρ − 1)γā2,1M̄−1

γ,ω[(E1,1 + γF1,1 +
γ − ω

ρ
q̄1,2ā2,1)x̄1 +

1 − ω
ρ

q̄1,2x̄2].

For the case when (iii) holds, i.e., γ < 1, let A(15)
1,1 = D̆− L̆− Ŭ, where D̆, L̆ and Ŭ are respectively diagonal,

strictly lower and upper triangular matrices. Since A(15)
1,1 is an irreducible L-matrix and

M̄−1
γ,ωN̄γ,ω = D̆−1[(1 − ω)D̆ + ω(1 − γ)L̆ + ωŬ] + T ≥ 0
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with

T = ωγD̆−1L̆(D̆ − γL̆)−1[(1 − γ)L̆ + Ŭ] ≥ 0,

then it follows that M̄−1
γ,ωN̄γ,ω is irreducible, so that M̄−1

γ,ωN̄γ,ωx̄1 ≫ 0. The irreducibility of A ensures that
ā2,1 < 0. It is easy to see that

γ − ω

ρ
q̄1,2ā2,1x̄1 +

1 − ω
ρ

q̄1,2x̄2 > 0, ā2,1[(ω − γ)I + γM̄−1
γ,ωN̄γ,ω]x̄1 < 0.

When ρ < 1, from (45) and (46) it gets that

M̄−1
γ,ωN̄γ,ωx̄1 − ρx̄1 < 0, (1 − ω)x̄2 − ρx̄2 < 0,

which shows that ρ(M̄−1
γ,ωN̄γ,ω) < ρ and 1−ω < ρ. Therefore we have ρ(L (15)

γ,ω ) = max{1−ω, ρ(M̄−1
γ,ωN̄γ,ω)} < ρ.

When ρ > 1 then, from (45) it gets that M̄−1
γ,ωN̄γ,ωx̄1 − ρx̄1 > 0, which shows that ρ(M̄−1

γ,ωN̄γ,ω) > ρ > 1 and

hence, ρ(L (15)
γ,ω ) = max{1 − ω, ρ(M̄−1

γ,ωN̄γ,ω)} = ρ(M̄−1
γ,ωN̄γ,ω) > ρ.

When (iv) holds, i.e., γ = 1, then ω = 1 and the AOR method reduces to the Gauss-Seidel method. In
this case, we have

L (15) =

(
M̄−1

1,1N̄1,1 0
−ā2,1M̄−1

1,1N̄1,1 0

)
and therefore ρ(L (15)) = ρ(M̄−1

1,1N̄1,1). Now, (45) reduces to

M̄−1
1,1N̄1,1x̄1 − ρx̄1 = (ρ − 1)M̄−1

1,1(E1,1 + F1,1)x̄1.

Since A(15)
1,1 is irreducible, then the rest of the proof is completely similar to that of Theorem 3.51.

The result when (iii) and (iv) hold is better than [104, Theorem 3.16, Corollary 3.17], where the condition
that ak,n , 0 for k = 1, · · · ,n−1 is redundant. Again, the result when (i) and (ii) hold includes [104, Theorems
3.18, 3.19 and 3.20].

Theorem 3.109. Theorem D is valid for ν = 15, provided one of the following conditions is satisfied:

(i) One of the conditions (i)-(iv) of Theorem 3.108 holds.

(ii) 0 ≤ αk ≤ 1, k = 1, · · · , r − 1, one of the following conditions holds:

(ii1) There exists i ∈ {1, · · · , r − 1} such that αiai,rar,i > 0.

(ii2) γ > 0 and there exist i ∈ {2, · · · , r − 1} and j ∈ {1, · · · , i − 1} such that αiai,rar, j > 0.

As a special case, for some r < s with ar,s < 0 and α > 0, the matrix Q15 reduces to

Q16 =



0 · · · 0 · · · 0
...

. . .
... −

ar,s

α

...

0 · · · 0 · · ·
...

...
...

...
. . .

...
0 · · · 0 · · · 0


,

which is given in [53] for r = 1 and s = n. And for r = 1, s = n and α = 1 it is proposed in [14]. When r = 1
and s = n, it is given in [96] for the preconditioned Gauss-Seidel method. When α = 1 and s = r + 1, it is
proposed in [13] for the preconditioned MSOR method. It is given in [109] to replace −ar,s/αwith a constant
β.
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In this case, δ(15)
i, j (γ) and δ(15)

i, j (1) reduce respectively to

δ(16)
i, j (γ) =


1
αar,sas,r, i = j = r;
γ−1
α ar,s, i = r, j = s;
γ
αar,sas, j, i = r, 1 ≤ j ≤ r − 1, s + 1 ≤ j ≤ n;
0, otherwise

and

δ(16)
i, j (1) =

{
1
αar,sas, j, i = r, 1 ≤ j ≤ r, s + 1 ≤ j ≤ n;
0, otherwise.

Clearly, the conditions (iii) and (iv) of Theorem 3.108 can be not satisfied.
From Theorems 3.105 and 3.106, the following comparison results are immediately.

Theorem 3.110. Suppose that α ≥ 1 and α > ar,sas,r. Then Theorem A is valid for ν = 16.

Theorem 3.111. Suppose that α ≥ 1. Then Theorem B is valid for ν = 16.

In order to give the Stein-Rosenberg Type Theorem II, completely similar to Lemma 3.55, we can prove
the following lemma.

Lemma 3.112. Let A be an irreducible Z-matrix. Assume that r = 1 and s = n, α ≥ 1 and A(16) has the block form

A(16) =

(
A(16)

2,2 ā(16)
1,2

ā2,1 1

)
, A(16)

1,1 ∈ R(n−1)×(n−1).

Then one of the following two mutually exclusive relations holds:

(i) A(16) is an irreducible Z-matrix.

(ii) A(16) is a reducible Z-matrix, but A(16)
1,1 is an irreducible Z-matrix and a1,k = a(16)

1,k = a(16)
1,n = 0, k = 2, · · · ,n − 1.

Using this lemma, completely similar to the proof of Theorem 3.108, we can prove the following theorem.

Theorem 3.113. Suppose that α > ar,sas,r. Then Theorem C is valid for ν = 16, provided one of the following
conditions is satisfied:

(i) α ≳ 1. And one of the following conditions holds:

(i1) 0 ≤ γ < 1.

(i2) γ = 1 and there exists k ∈ {1, · · · , r} ∪ {s + 1, · · · ,n} such that as,k < 0.

(i3) γ = 1 and s = r + 1.

(ii) r = 1, s = n and α ≥ 1.

The result when (ii) holds is better than [53, Theorem 2]. Forα = 1, it is also better than the corresponding
ones given by [54, Theorem 2.2, Corollaries 2.1, 2.2], where the condition ak,k+1ak+1,k > 0, k = 1, · · · ,n − 1,
implies that A is irreducible and so that the condition a1,nan,1 > 0 is unnecessary.

Theorem 3.114. Theorem D is valid for ν = 16, provided one of the following conditions is satisfied:

(i) One of the conditions (i) and (ii) of Theorem 3.113 holds.

(ii) α ≥ 1 and one of the following conditions holds:

(ii1) as,r < 0.
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(ii2) γ > 0, r ≥ 2 and there exists k ∈ {1, · · · , r − 1} such that as,k < 0.

The result when (ii1) holds for (r, s) = (1,n) and α = 1, is better than [14, Theorem 2.3].
In [30], for the preconditioned Gauss-Seidel method, Q is chosen as

Q17 =


0 −α1a1,2 0 · · · 0
0 0 −α2a2,3 · · · 0
...

...
...

. . .
...

0 0 0 · · · −αn−1an−1,n
0 0 0 · · · 0


with αk ≥ 0, k = 1, · · · ,n − 1, and

n−1∑
k=1

αkak,k+1 , 0,

which is used to the preconditioned AOR method in [97, 104], to the preconditioned SOR method in [82]
and to the preconditioned Gauss-Seidel and Jacobi methods in [17]. For αk = 1, k = 1, · · · ,n − 1, it is
proposed in [15] for the preconditioned Gauss-Seidel method, in [40] for the preconditioned SOR method,
and in [12, 52] for the preconditioned AOR method.

In this case, δ(12)
i, j (γ) and δ(12)

i, j (1) reduce respectively to

δ(17)
i, j (γ) =


αiai,i+1ai+1,i, i = j = 1, · · · ,n − 1;
(γ − 1)αiai,i+1, i = 1, · · · ,n − 1, j = i + 1;
γαiai,i+1ai+1, j, i = 1, · · · ,n − 1, j = 1, · · · ,n, j , i, i + 1;
0, i = n, j = 1, · · · ,n

and

δ(17)
i, j (1) =

{
αiai,i+1ai+1, j, i = 1, · · · ,n − 1, j = 1, · · · ,n, j , i + 1;
0, otherwise.

From Corollaries 3.85 and 3.86 we can obtain the following comparison result, directly.

Theorem 3.115. Suppose that 0 ≤ αk ≤ 1 and αkak,k+1ak+1,k < 1, k = 1, · · · ,n − 1. Then Theorem A is valid for
ν = 17.

The result improves the corresponding one given by [97, Theorem 2.1] and includes [50, Theorem 4.1]
for the preconditioned Gauss-Seidel method. It is also better than [104, Theorem 3.6], where it is assumed
that A is irreducible.

Theorem 3.116. Suppose that 0 ≤ αk ≤ 1, k = 1, · · · ,n − 1. Then Theorem B is valid for ν = 17.

The result includes the corresponding one given by [97, Corollary 2.3]. For the Gauss-Seidel method
it is better than [31, Theorem 2] where the condition that the Gauss-Seidel methods are convergent is
redundant, [58, Theorem 28] where the assumption that A is irreducible is redundant, [34, Theorem 3.5]
and [69, Theorem 2.4] since an irreducibly diagonally dominant Z-matrix is a nonsingular M-matrix.

Completely similar to Lemma 3.60 we can prove the following lemma.

Lemma 3.117. Let A be a Z-matrix. Assume that n ≥ 3, a1,n < 0, ak+1,k < 0, 0 ≤ αk ≤ 1, k = 1, · · · ,n − 1. Then A
and A(17) are irreducible Z-matrices.

Theorem 3.118. Suppose that αkak,k+1ak+1,k < 1, k = 1, · · · ,n− 1. Then Theorem C is valid for ν = 17, provided one
of the following conditions is satisfied:

(i) 0 ≤ αk ≲ 1, k = 1, · · · ,n − 1.



Y. Song / Filomat 39:28 (2025), 9865–9946 9915

(ii) 0 < αk ≤ 1 and ak,k+1 < 0, k = 1, · · · ,n − 1.

(iii) n ≥ 3, 0 ≤ αk ≤ 1, a1,n < 0, ak+1,k < 0, k = 1, · · · ,n − 1.

Proof. By the definition of Q17, there exists k0 ∈ {1, · · · ,n − 1} such that ak0,k0+1 < 0
When (i) holds, the conditions (i) and (ii3) in Theorem 3.83 are satisfied, so that (i) of Corollary 3.87

holds.
Similarly, when (ii) holds, the conditions (iii) and (iv3) in Theorem 3.83 are satisfied for j(i) = i + 1, so

that (ii) of Corollary 3.87 holds.
When (iii) holds, then, by Lemma 3.117, A(17) is an irreducible L-matrix. From (i) we can prove (iii).
The proof is complete.

Obviously, from Lemma 3.117, if (iii) holds, then the assumption that A is irreducible is redundant.
The result when the condition (i) holds is better than [104, Theorems 3.4, 3.5] and [99, Theorem 2], where

γ < 1.
The result when the condition (ii) holds includes [104, Theorem 3.1, Corollaries 3.2, 3.3] and [50,

Theorem 4.2]. It is better than [12, Theorem 3.1, Corollary 3.1], [15, Theorem 4.1] and [40, Theorem 3], since
the condition ak,k+1ak+1,k > 0, k = 1, · · · ,n − 1, implies that A is irreducible and ak,k+1 < 0, k = 1, · · · ,n − 1.

The corresponding result given in [52, Theorem 2] is incorrect, which is pointed out by [107]. But the
corresponding one given in [107, Theorem 3.5] is also incorrect, which is pointed out by [99].

Similarly, from Corollary 3.88, we can obtain the following comparison result, directly.

Theorem 3.119. Theorem D is valid for ν = 17, provided one of the following conditions is satisfied:

(i) One of the conditions (i), (ii) and (iii) of Theorem 3.118 holds.

(ii) 0 ≤ αk ≤ 1, k = 1, · · · ,n − 1 and one of the following conditions holds:

(ii1) There exists i ∈ {1, · · · ,n − 1} such that αiai,i+1ai+1,i > 0.

(ii2) γ > 0 and there exist i ∈ {2, · · · ,n − 1} and j ∈ {1, · · · , i − 1} such that αiai,i+1ai+1, j > 0.

Different from Q15 and Q17, we define Q18 = (q(18)
i, j ) as

q(18)
i, j =

{
−αiai,si , i = 1, · · · ,n − 1, j = si,
0, otherwise,

where

si = min{s : s ∈ {k : |ai,k| is maximal for i + 1 ≤ k ≤ n}}

and
∑n−1

i=1 αiai,si , 0, which is proposed in [34] for the preconditioned Gauss-Seidel method and αk = 1,
k = 1, · · · ,n − 1. In [33] its convergence for H-matrix is discussed.

In this case, δ(12)
i, j (γ) and δ(12)

i, j (1) reduce respectively to

δ(18)
i, j (γ) =


αiai,si asi,i, i = j = 1, · · · ,n − 1;
(γ − 1)αiai,si , i = 1, · · · ,n − 1, j = si;
γαiai,si asi, j, i = 1, · · · ,n − 1, j ∈ {1, · · · , i − 1} ∪ {si + 1, · · · ,n};
0, otherwise

and

δ(18)
i, j (1) =


αiai,si asi, j, i = 1, · · · ,n − 1,

j ∈ {1, · · · , i} ∪ {si + 1, · · · ,n};
0, otherwise.

From Corollaries 3.85-3.88 we can obtain the following comparison result, directly.
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Theorem 3.120. Suppose that 0 ≤ αk ≤ 1 and αkak,sk ask,k < 1, k = 1, · · · ,n− 1. Then Theorem A is valid for ν = 18.

Theorem 3.121. Suppose that 0 ≤ αk ≤ 1, k = 1, · · · ,n − 1. Then Theorem B is valid for ν = 18.

The result for the case when ω = γ and αk = 1, k = 1, · · · ,n − 1, reduces to [47, Theorem 4.2].

Theorem 3.122. Suppose that αkak,sk ask ,k < 1, k = 1, · · · ,n− 1. Then Theorem C is valid for ν = 18, provided one of
the following conditions is satisfied:

(i) 0 ≤ γ < 1 and 0 ≤ αk ≲ 1, k = 1, · · · ,n − 1.

(ii) γ = 1, 0 ≤ αk ≲ 1, k = 1, · · · ,n − 1. And one of the following conditions holds:

(ii1) There exist i ∈ {1, · · · ,n − 1}, j ∈ {1, · · · , i} ∪ {si + 1, · · · ,n} such that αiai,si asi, j > 0.
(ii2) an,1 < 0 and ak,k+1 < 0, k = 1, · · · ,n − 1.
(ii3) an,1 < 0 and ak,n < 0, k = 2, · · · ,n − 1.
(ii4) ak,1 < 0, k = 2, · · · ,n.

(iii) 0 < αk ≤ 1 and ak,sk < 0, k = 1, · · · ,n − 1. For each i ∈ {1, · · · ,n − 1} one of the following conditions holds:

(iii1) 0 ≤ γ < 1.
(iii2) γ = 1 and there exists j(i) ∈ {1, · · · , i} ∪ {si + 1, · · · ,n} such that asi, j(i) > 0.

The result when (iii2) holds for αk = 1, k = 1, · · · ,n−1, is better than [47, Theorem 4.3], since its condition
insures that A is irreducible.

Theorem 3.123. Theorem D is valid for ν = 18, provided one of the following conditions is satisfied:

(i) One of the conditions (i), (ii) and (iii) of Theorem 3.122 holds.

(ii) 0 ≤ αk ≤ 1, k = 1, · · · ,n − 1 and one of the following conditions holds:

(ii1) There exists i ∈ {1, · · · ,n − 1} such that αiai,si asi,i > 0.
(ii2) γ > 0 and there exist i ∈ {2, · · · ,n − 1} and j ∈ {1, · · · , i − 1} such that αiai,si asi, j > 0.

Similar to Q10, Q can be defined as

Q19 =


0 · · · 0 −α1a1,n + β1
0 · · · 0 −α2a2,n + β2
...

. . .
...

...
0 · · · 0 −αn−1an−1,n + βn−1
0 · · · 0 0


with αk ≥ 0, −αkak,n + βk ≥ 0, k = 1, · · · ,n − 1, and

n−1∑
k=1

(−αkak,n + βk) , 0.

For αk = 1, it is given in [9] for the preconditioned AOR method, and in [8] for the preconditioned SOR
method.

In this case, δ(1)
i, j (γ) and δ(1)

i, j (1) reduce respectively to

δ(19)
i, j (γ) =


(αiai,n − βi)an,i, i = j = 1, · · · ,n − 1;
(γ − 1)(αiai,n − βi), i = 1, · · · ,n − 1, j = n;
γ(αiai,n − βi)an, j, i = 1, · · · ,n − 1, j = 1, · · · , i − 1;
0, otherwise
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and

δ(19)
i, j (1) =

{
(αiai,n − βi)an, j, i = 1, · · · ,n − 1, j = 1, · · · , i;
0, otherwise.

Similar to Lemma 3.107, we have the following lemma.

Lemma 3.124. Let A be an irreducible Z-matrix. Assume that 0 < −αkak,n + βk ≤ −ak,n, k = 1, · · · ,n − 1 and A(19)

has the block form

A(19) =

(
A(19)

1,1 ā(19)
1,2

ā2,1 1

)
, A(19)

1,1 ∈ R(n−1)×(n−1).

Then

(i) A(19)
1,1 is an irreducible Z-matrix.

(ii) A(19) is an irreducible Z-matrix if and only if there exists j0 ∈ {1, · · · ,n − 1} such that (1 − α j0 )a j0,n + β j0 , 0.

Similar to Theorems 3.105-3.109, we can prove the following comparison theorems.

Theorem 3.125. Suppose that 0 ≤ −αkak,n + βk ≤ −ak,n and (αkak,n − βk)an,k < 1, k = 1, · · · ,n − 1. Then Theorem
A is valid for ν = 19.

Theorem 3.126. Suppose that 0 ≤ −αkak,n + βk ≤ −ak,n, k = 1, · · · ,n − 1. Then Theorem B is valid for ν = 19.

Theorem 3.127. Suppose that (1 − αk)ak,n + βk ≤ 0 and (αkak,n − βk)an,k < 1, k = 1, · · · ,n − 1. Then Theorem C is
valid for ν = 19, provided one of the following conditions is satisfied:

(i) 0 ≤ γ < 1 and (1 − αk)ak,n + βk ≲ 0 whenever ak,n < 0, k = 1, · · · ,n − 1.

(ii) γ = 1 and (1− αk)ak,n + βk ≲ 0 whenever ak,n < 0, k = 1, · · · ,n− 1. And one of the following conditions holds:

(ii1) There exist i ∈ {1, · · · ,n − 1} and j ∈ {1, · · · , i} such that (αiai,n − βi)an, j > 0.

(ii2) −αn−1an−1,n + βn−1 > 0.

(ii3) an,1 < 0.

(iii) −αkak,n + βk > 0, k = 1, · · · ,n − 1.

Proof. By Theorem 3.6 and referring to the proof of Theorem 3.108, we just need to prove the case when
γ = 1 in (iii).

In fact, using Lemma 3.124, it is easy to prove that a sufficient condition similar with (iv) of Theorem
3.108 is that there exist i ∈ {1, · · · ,n − 1} and j ∈ {1, · · · , i} such that (αiai,n − βi)an, j > 0, which is equivalent
to that there exists j ∈ {1, · · · ,n − 1} such that an, j < 0, since −αiai,n + βi > 0. While, the irreducibility of A
ensures that it is true.

When (iii) holds, the result is better that the corresponding ones given by [8, Theorem 3.3, Corollary 3.3]
and [9, Theorem 3.2].

Theorem 3.128. Theorem D is valid for ν = 19, provided one of the following conditions is satisfied:

(i) One of the conditions (i), (ii) and (iii) of Theorem 3.127 holds.

(ii) 0 ≤ αk ≤ 1, k = 1, · · · ,n − 1 and one of the following conditions holds:

(ii1) There exists i ∈ {1, · · · ,n − 1} such that (αiai,n − βi)an,i > 0.

(ii2) γ > 0 and there exist i ∈ {2, · · · ,n − 1} and j ∈ {1, · · · , i − 1} such that (αiai,n − βi)an, j > 0.
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As a special of Q19, Q is proposed in [38] as

Q20 =


0 · · · 0 −

a1,n

α − β
0 · · · 0 0
...

...
...

...
0 · · · 0 0


with α > 0 and a1,n/α + β < 0, which is given in [51] for α = 1.

In this case, similar to δ(16)
i, j (1), we can derive δ(20)

i, j (1), whose all elements are zero except δ(20)
1,1 (1) =

(a1,n/α + β)an,1.

Theorem 3.129. Suppose that β ≥ (1 − 1/α)a1,n and (a1,n/α + β)an,1 < 1. Then Theorem A is valid for ν = 20.

Proof. Since(
1 −

1
α

)
a1,n ≤ β iff −

a1,n

α
− β ≤ −a1,n,

and the inequality (19) reduces to (a1,n/α+ β)an,1 < 1, then the condition of Corollary 3.12 is satisfied so that
Theorem A is valid.

It is easy to prove the following theorem.

Theorem 3.130. Suppose that β ≥ (1 − 1/α)a1,n. Then Theorem B is valid for ν = 20.

In order to give the Stein-Rosenberg Type Theorem II, completely similar to Lemma 3.112, we can prove
the following lemma.

Lemma 3.131. Let A be an irreducible Z-matrix. Assume that β ≥ (1 − 1/α)a1,n and A(20) has the block form

A(20) =

(
A(20)

1,1 ā(20)
1,2

ā2,1 1

)
, A(20)

1,1 ∈ R(n−1)×(n−1).

Then one of the following two mutually exclusive relations holds:

(i) A(20) is an irreducible Z-matrix.

(ii) A(20) is a reducible Z-matrix, but A(20)
1,1 is an irreducible Z-matrix and a1,k = a(20)

1,k = a(20)
1,n = 0, k = 2, · · · ,n − 1.

Using this lemma, completely similar to (ii) of Theorem 3.113, we can prove the following theorem.

Theorem 3.132. Suppose that β ≥ (1 − 1/α)a1,n and (a1,n/α + β)an,1 < 1. Then Theorem C is valid for ν = 20.

The result is better than [41, Theorem 6], where the condition 0 < a1,nan,1 < α(α > 1) is unnecessary.

Theorem 3.133. Suppose that β ≥ (1 − 1/α)a1,n. Then Theorem D is valid for ν = 20.

By the definition of Q20, a1,n/α + β < 0. While in the comparison theorems above we need the condition
β ≥ (1 − 1/α)a1,n. Hence it implies a1,n < 0.

For α = 1, the result is better than the corresponding ones given by [51, Theorem 9, Corollaries 10, 11],
where the condition a1,nan,1 > 0 is unnecessary.
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3.4. Combination preconditioners

In this subsection, when the matrix Q is composed of two different combinations of Qi and Q j, we
always assume Qi > 0 and Q j > 0. Otherwise, the corresponding situation has been discussed in the above
two subsections.

First, the matrix Q is chosen as

Q21 = Q5 +Q12,

i.e.,

Q21 =


0 −β1,2a1,2 · · · −β1,n−1a1,n−1 −β1,na1,n
0 0 · · · −β2,n−1a2,n−1 −β2,na2,n
...

...
. . .

...
...

0 0 · · · 0 −βn−1,nan−1,n
−α1an,1 −α2an,2 · · · −αn−1an,n−1 0


with αi ≥ 0, βi, j ≥ 0, i = 1, · · · ,n − 1, j = i + 1, · · · ,n, and

n−1∑
k=1

αkan,k , 0 and
n−1∑
i=1

n∑
j=i+1

βi, jai, j , 0,

where for simplicity we set r = n for Q5.
When αi = βi, j = 1, i = 1, · · · ,n − 1, j = i + 1, · · · ,n, it is proposed in [100] for the preconditioned

Gauss-Seidel method.
By Corollaries 3.20 and 3.21, the following two comparison theorems are directly.

Theorem 3.134. Suppose that 0 ≤ αi ≤ 1, 0 ≤ βi, j ≤ 1, i = 1, · · · ,n − 1, j = i + 1, · · · ,n and

n−1∑
k=1

αkan,kak,n < 1,
n∑

k=i+1

βi,kai,kak,i < 1, i = 1, · · · ,n − 1. (47)

Then Theorem A is valid for ν = 21.

Theorem 3.135. Suppose that 0 ≤ αi ≤ 1, 0 ≤ βi, j ≤ 1, i = 1, · · · ,n − 1, j = i + 1, · · · ,n. Then Theorem B is valid
for ν = 21.

In this case, δ(2)
i, j (γ) and δ(2)

i, j (1) reduce respectively to

δ(21)
i, j (γ) =



n∑
k=i+1

βi,kai,kak,i, i = j = 1, · · · ,n − 1;

n−1∑
k=1
αkan,kak,n, i = j = n;

(γ − 1)βi, jai, j + γ
j−1∑

k=i+1
βi,kai,kak, j, i = 1, · · · ,n − 1, j = i + 1, · · · ,n;

γ
n∑

k=i+1
βi,kai,kak, j, i = 2, · · · ,n − 1, j = 1, · · · , i − 1;

(γ − 1)α jan, j + γ
j−1∑
k=1
αkan,kak, j, i = n, j = 1, · · · ,n − 1
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and

δ(21)
i, j (1) =



n∑
k=i+1

βi,kai,kak, j, i = 1, · · · ,n − 1, j = 1, · · · , i;

j−1∑
k=i+1

βi,kai,kak, j, i = 1, · · · ,n − 2, j = i + 2, · · · ,n;

j−1∑
k=1
αkan,kak, j, i = n, j = 2, · · · ,n;

0, otherwise.

Using Corollary 3.22, we prove Stein-Rosenberg type comparison theorem.

Theorem 3.136. Suppose that (47) holds. Then Theorem C is valid for ν = 21, provided one of the following
conditions is satisfied:

(i) 0 ≤ γ < 1 and 0 ≤ αi ≲ 1, 0 ≤ βi, j ≲ 1, i = 1, · · · ,n − 1, j = i + 1, · · · ,n.

(ii) γ = 1 and 0 ≤ αi ≲ 1, 0 ≤ βi, j ≲ 1, i = 1, · · · ,n−1, j = i+1, · · · ,n. And one of the following conditions holds:

(ii1) There exist i ∈ {1, · · · ,n − 1}, j ∈ {1, · · · , i} and k ∈ {i + 1, · · · ,n} such that βi,kai,kak, j > 0.
(ii2) There exist i ∈ {1, · · · ,n − 2}, j ∈ {i + 2, · · · ,n} and k ∈ {i + 1, · · · , j − 1} such that βi,kai,kak, j > 0.
(ii3) There exist j ∈ {2, · · · ,n} and k ∈ {1, · · · , j − 1} such that αkan,kak, j > 0.
(ii4) There exists k ∈ {1, · · · ,n − 1} such that ak,k+1 < 0 and βk,k+1 > 0.
(ii5) an,1 < 0 and α1 > 0.
(ii6) ak,1 < 0, k = 2, · · · ,n.
(ii7) an,1 < 0 and ak,n < 0, k = 2, · · · ,n − 1.
(ii8) ak,n < 0, k = 1, · · · ,n − 1.
(ii9) ak,k+1 < 0, k = 1, · · · ,n − 1.

(iii) 0 ≤ γ < 1 and 0 ≤ αi ≤ 1, 0 ≤ βi, j ≤ 1, i = 1, · · · ,n− 1, j = i+ 1, · · · ,n. And for each i ∈ {1, · · · ,n− 1}, there
exists j(i) ∈ {i + 1, · · · ,n} such that βi, j(i)ai, j(i) < 0.

(iv) γ = 1 and 0 ≤ αi ≤ 1, 0 ≤ βi, j ≤ 1, i = 1, · · · ,n − 1, j = i + 1, · · · ,n. For each i ∈ {2, · · · ,n − 1}, one of the
following conditions holds:

(iv1) There exist j(i) ∈ {1, · · · , i} and k(i) ∈ {i + 1, · · · ,n} such that βi,k(i)ai,k(i)ak(i), j(i) > 0.
(iv2) There exist j(i) ∈ {i + 2, · · · ,n} and k(i) ∈ {i + 1, · · · , j − 1} such that βi,k(i)ai,k(i)ak(i), j(i) > 0.
(iv3) ai,i+1 < 0 and βi,i+1 > 0.

At the same time, one of the following conditions also holds:

(iva) There exist j ∈ {2, · · · ,n} and k ∈ {1, · · · , j − 1} such that αkan,kak, j > 0.

(ivb) an,1 < 0 and α1 > 0.
(ivc) There exists j ∈ {2, · · · ,n − 1} such that

(1 − α j)an, j −

n−1∑
k=1
k, j

αkan,kak, j < 0.

(ivd) One of the conditions (iv1)-(iv3) holds for i = 1 and

(1 − α1)an,1 −

n−1∑
k=2

αkan,kak,1 < 0.
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(ive) One of the conditions (iv1)-(iv3) holds for i = 1 and an,1 < 0.

Proof. When (i) or (iii) holds, then the condition (i) or (iii) of Theorem 3.18 is satisfied.
When one of (ii1), (ii2) and (ii3) holds, then δ(21)

i, j (1) > 0 or δ(21)
n, j (1) > 0, which implies that (ii1) in Theorem

3.18 is satisfied.
When (ii4) or (ii5) holds, then (ii3) or (ii2) in Theorem 3.18 is satisfied.
When one of (ii6) and (ii7) holds, then by the proof of Theorem 3.83 it follows that (ii1) is satisfied.
Similarly, when one of (ii8) and (ii9) holds, then by the proof of Theorem 3.42 it follows that (ii3) is

satisfied.
Exactly the same, we can prove that if (iv4) holds, then the condition (iv4) in Theorem 3.18 is satisfied.
By Corollary 3.22 the proof is complete.

Theorem 3.137. Theorem D is valid for ν = 21, provided one of the following conditions is satisfied:

(i) One of the conditions (i)-(iv) of Theorem 3.136 holds.

(ii) 0 ≤ αi ≤ 1, 0 ≤ βi, j ≤ 1, i = 1, · · · ,n − 1, j = i + 1, · · · ,n. For j = 1, · · · ,n − 1,

α jan, j +

n−1∑
k=1
k, j

αkan,kak, j ≥ 0.

And one of the following conditions holds:

(ii1) There exists i0 ∈ {1, · · · ,n − 1} such that
n∑

k=i0+1
βi0,kai0,kak,i0 > 0.

(ii2)
∑n−1

k=1 αkan,kak,n > 0.

(ii3) γ > 0 and there exist i0 ∈ {2, · · · ,n − 1}, j0 ∈ {1, · · · , i0 − 1} such that
∑n

k=i0+1 βi0,kai0,kak, j0 > 0.

(ii4) γ > 0 and there exists j0 ∈ {1, · · · ,n − 1} such that α j0 an, j0 +
∑n−1

k=1,k, j0 αkan,kak, j0 > 0.

Proof. We just need to prove (ii). It is easy to obtain that

a(21)
i, j =



1 −
n∑

k=i+1
αi,kai,kak,i, i = j = 1, · · · ,n − 1,

1 −
n−1∑
k=1
αkan,kak,n, i = j = n,

ai, j −
n∑

k=i+1
βkai,kak, j, i = 2, · · · ,n − 1, j = 1, · · · , i − 1,

(1 − α j)an, j −
n−1∑
k=1
αkan,kak, j, i = n, j = 1, · · · ,n − 1.

By Corollary 3.23 we can derive (ii1)-(ii4).

As a special case of Q21 for αk = 0, k = 2, · · · ,n − 1, it gets that

Q22 = Q7 +Q12,

i.e.,

Q22 =


0 −α1,2a1,2 −α1,3a1,3 · · · −α1,na1,n
0 0 −α2,3a2,3 · · · −α2,na2,n
...

...
...

. . .
...

0 0 0 · · · −αn−1,nan−1,n
−αan,1 0 0 · · · 0


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with an,1 < 0, α > 0, βi, j ≥ 0, i = 1, · · · ,n − 1, j = i + 1, · · · ,n, and
∑n−1

i=1
∑n

j=i+1 βi, jai, j , 0, where we set r = n
and s = 1 for Q7.

In this case, (ii5) and (ivb) in Theorem 3.136 are satisfied. While, (ii) of Theorem 3.137 can be not satisfied.
Hence, from Theorems 3.134-3.137, we can derive the following theorems, directly.

Theorem 3.138. Suppose that 0 < α ≤ 1, 0 ≤ βi, j ≤ 1, i = 1, · · · ,n − 1, j = i + 1, · · · ,n, and

αan,1a1,n < 1,
n∑

k=i+1

βi,kai,kak,i < 1, i = 1, · · · ,n − 1. (48)

Then Theorem A is valid for ν = 22.

Theorem 3.139. Suppose that 0 < α ≤ 1, 0 ≤ βi, j ≤ 1, i = 1, · · · ,n − 1, j = i + 1, · · · ,n. Then Theorem B is valid
for ν = 22.

Theorem 3.140. Suppose that (48) holds. Then Theorem C is valid for ν = 22, provided one of the following
conditions is satisfied:

(i) 0 < α ≲ 1, 0 ≤ βi, j ≲ 1, i = 1, · · · ,n − 1, j = i + 1, · · · ,n.

(ii) 0 ≤ γ < 1 and 0 < α ≤ 1, 0 ≤ βi, j ≤ 1, i = 1, · · · ,n − 1, j = i + 1, · · · ,n. And for each i ∈ {1, · · · ,n − 1}, there
exists j(i) ∈ {i + 1, · · · ,n} such that βi, j(i)ai, j(i) < 0.

(iii) γ = 1 and 0 < α ≤ 1, 0 ≤ βi, j ≤ 1, i = 1, · · · ,n − 1, j = i + 1, · · · ,n. For each i ∈ {2, · · · ,n − 1}, one of the
following conditions holds:

(iii1) There exist j(i) ∈ {1, · · · , i} and k(i) ∈ {i + 1, · · · ,n} such that βi,k(i)ai,k(i)ak(i), j(i) > 0.

(iii2) There exist j(i) ∈ {i + 2, · · · ,n} and k(i) ∈ {i + 1, · · · , j − 1} such that βi,k(i)ai,k(i)ak(i), j(i) > 0.

(iii3) ai,i+1 < 0 and βi,i+1 > 0.

Theorem 3.141. Theorem D is valid for ν = 22, provided one of the conditions (i), (ii) and (iii) of Theorem 3.140 is
satisfied.

Similar to Q21, the matrix Q is chosen as

Q23 = Q6 +Q12,

i.e.,

Q23 =


0 −β1,2a1,2 · · · −β1,n−1a1,n−1 −β1,na1,n

−α2a2,1 0 · · · −β2,n−1a2,n−1 −β2,na2,n
...

...
. . .

...
...

−αn−1an−1,1 0 · · · 0 −βn−1,nan−1,n
−αnan,1 0 · · · 0 0


with αi+1 ≥ 0, βi, j ≥ 0, i = 1, · · · ,n − 1, j = i + 1, · · · ,n, and

n∑
k=2

αkak,1 , 0 and
n−1∑
i=1

n∑
j=i+1

βi, jai, j , 0,

where we set r = 2 for Q6.
Similar to the Theorems 3.134 and 3.135, we have the following two comparison theorems.
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Theorem 3.142. Suppose that 0 ≤ αi+1 ≤ 1, 0 ≤ βi, j ≤ 1, i = 1, · · · ,n − 1, j = i + 1, · · · ,n and

αnan,1a1,n < 1,
n∑

k=2

β1,ka1,kak,1 < 1, αiai,1a1,i +

n∑
k=i+1

βi,kai,kak,i < 1, i = 2, · · · ,n − 1. (49)

Then Theorem A is valid for ν = 23.

Theorem 3.143. Suppose that 0 ≤ αi+1 ≤ 1, 0 ≤ βi, j ≤ 1, i = 1, · · · ,n− 1, j = i+ 1, · · · ,n. Then Theorem B is valid
for ν = 23.

In this case, δ(2)
i, j (γ) and δ(2)

i, j (1) reduce respectively to

δ(23)
i, j (γ) =



n∑
k=i+1

β1,ka1,kak,1, i = j = 1;

αiai,1a1,i +
n∑

k=i+1
βi,kai,kak,i, i = j = 2, · · · ,n − 1;

αnan,1a1,n, i = j = n;
(γ − 1)βi,i+1ai,i+1, i = 1, · · · ,n − 1, j = i + 1;

(γ − 1)βi, jai, j + γ
j−1∑

k=i+1
βi,kai,kak, j, i = 1, · · · ,n − 1, j = i + 2, · · · ,n;

(γ − 1)αiai,1 + γ
n∑

k=i+1
βi,kai,kak,1, i = 2, · · · ,n − 1, j = 1;

γαiai,1a1, j + γ
n∑

k=i+1
βi,kai,kak, j, i = 3, · · · ,n − 1, j = 2, · · · , i − 1;

(γ − 1)αnan,1, i = n, j = 1;
γαnan,1a1, j, i = n, j = 2, · · · ,n − 1

and

δ(23)
i, j (1) =



n∑
k=i+1

βi,kai,kak,1, i = 1, · · · ,n − 1, j = 1;

αiai,1a1, j +
n∑

k=i+1
βi,kai,kak, j, i = 2, · · · ,n − 1, j = 2, · · · , i;

j−1∑
k=i+1

βi,kai,kak, j, i = 1, · · · ,n − 1, j = i + 2, · · · ,n;

αnan,1a1, j, i = n, j = 2, · · · ,n;
0, otherwise.

Using Corollary 3.22, we prove Stein-Rosenberg type comparison theorem.

Theorem 3.144. Suppose that (49) holds. Then Theorem C is valid for ν = 23, provided one of the following
conditions is satisfied:

(i) 0 ≤ γ < 1 and 0 ≤ αi+1 ≲ 1, 0 ≤ βi, j ≲ 1, i = 1, · · · ,n − 1, j = i + 1, · · · ,n.

(ii) γ = 1 and 0 ≤ αi+1 ≲ 1, 0 ≤ βi, j ≲ 1, i = 1, · · · ,n − 1, j = i + 1, · · · ,n. And one of the following conditions
holds:

(ii1) There exist i ∈ {1, · · · ,n − 1}, j ∈ {1, · · · , i} and k ∈ {i + 1, · · · ,n} such that βi,kai,kak, j > 0.

(ii2) There exist i ∈ {1, · · · ,n − 2}, j ∈ {i + 2, · · · ,n} and k ∈ {i + 1, · · · , j − 1} such that βi,kai,kak, j > 0.

(ii3) There exist i ∈ {2, · · · ,n} and j ∈ {2, · · · , i} such that αiai,1a1, j > 0.

(ii4) There exists k ∈ {2, · · · ,n − 1} such that ak,k+1 < 0 and βk,k+1 > 0.

(ii5) an,1 < 0 and αn > 0.

(ii6) a1,2 < 0.
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(iii) 0 ≤ γ < 1 and 0 ≤ αi+1 ≤ 1, 0 ≤ βi, j ≤ 1, i = 1, · · · ,n − 1, j = i + 1, · · · ,n. And for each i ∈ {1, · · · ,n − 1},
αiai,1 < 0 (for i ≥ 2) or there exists j(i) ∈ {i + 1, · · · ,n} such that βi, j(i)ai, j(i) < 0.

(iv) γ = 1 and 0 ≤ αi+1 ≤ 1, 0 ≤ βi, j ≤ 1, i = 1, · · · ,n − 1, j = i + 1, · · · ,n. For each i ∈ {2, · · · ,n − 1}, one of the
following conditions holds:

(iv1) There exist j(i) ∈ {1, · · · , i} and k(i) ∈ {i + 1, · · · ,n} such that βi,k(i)ai,k(i)ak(i), j(i) > 0.

(iv2) There exist j(i) ∈ {i + 2, · · · ,n} and k(i) ∈ {i + 1, · · · , j − 1} such that βi,k(i)ai,k(i)ak(i), j(i) > 0.

(iv3) There exists j(i) ∈ {2, · · · , i} such that αiai,1a1, j(i) > 0.

(iv4) ai,i+1 < 0 and βi,i+1 > 0.

At the same time, one of the following conditions also holds:

(iva) an,1 < 0 and αn > 0.

(ivb) There exists j ∈ {2, · · · ,n − 1} such that an, j − αnan,1a1, j < 0.

(ivc) One of the conditions (iv1), (iv2) and (iv4) holds for i = 1 and an,1 < 0.

Proof. We only prove the case when (ii6) holds. The proof for all other cases is similar to that in Theorem
3.136.

Now, by the definition of Q23 there exists k ∈ {2, · · · ,n} such that αkak,1 < 0. If a1,2 < 0 then αkak,1a1,2 > 0,
so that δ(23)

k,2 (1) > 0. This shows that the condition (ii1) of Theorem 3.18 is satisfied. By Corollary 3.22 the
proof is complete.

Similar to the proof of Theorem 3.137 we can prove the following theorem.

Theorem 3.145. Theorem D is valid for ν = 23, provided one of the following conditions is satisfied:

(i) One of the conditions (i)-(iv) of Theorem 3.144 holds.

(ii) 0 ≤ αi+1 ≤ 1, 0 ≤ βi, j ≤ 1, i = 1, · · · ,n − 1, j = i + 1, · · · ,n. αnan,1 = 0 and αiai,1 +
∑n

k=i+1 βi,kai,kak,1 ≥ 0 for
i = 2, · · · ,n − 1. And one of the following conditions holds:

(ii1) There exists i0 ∈ {2, · · · ,n − 1} such that αi0 ai0,1a1,i0 +
∑n

k=i0+1 βi0,kai0,kak,i0 > 0.

(ii2)
∑n

k=2 β1,ka1,kak,1 > 0.

(ii3) γ > 0 and there exist i0 ∈ {3, · · · ,n−1}, j0 ∈ {2, · · · , i0−1} such that αi0 ai0,1a1,i0 +
∑n

k=i0+1 βi0,kai0,kak, j0 > 0

(ii4) γ > 0 and there exists i0 ∈ {2, · · · ,n − 1} such that αi0 ai0,1 +
∑n

k=i0+1 βi0,kai0,kak,1 > 0.

As a special case of Q23 for βi, j = 0, i = 1, · · · ,n − 2, j = i + 2, · · · ,n, except β1,n , 0, it gets that

Q24 = Q6 +Q16 +Q17,

i.e.,

Q24 =


0 −β1a1,20 0 · · · 0 −βna1,n

−α2a2,1 0 −β2a2,3 · · · 0 0
...

...
...

. . .
...

...
−αn−1an−1,1 0 0 · · · 0 −βn−1an−1,n
−αnan,1 0 0 · · · 0 0


with αi ≥ 0, i = 2, · · · ,n, β j ≥ 0, j = 1, · · · ,n, and

n∑
k=2

αkak,1 , 0 and βna1,n +

n−1∑
k=1

βkak,k+1 , 0,
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where we set r = 2 for Q6, r = 1 and s = n for Q16.
It is proposed in [1], where either αk = βk = βn = 1, k = 1, · · · ,n − 1 or αk = βn = 1, k = 1, · · · ,n − 1.
In this case, δ(23)

i, j (γ) and δ(23)
i, j (1) reduce respectively to

δ(24)
i, j (γ) =



β1a1,2a2,1 + β1a1,nan,1, i = j = 1;
αiai,1a1,i + βiai,i+1ai+1,i, i = j = 2, · · · ,n − 1;
αnan,1a1,n, i = j = n;
(γ − 1)αiai,1 + γβiai,i+1ai+1,1, i = 2, · · · ,n − 1, j = 1;
γαiai,1a1, j + γβiai,i+1ai+1, j, i = 3, · · · ,n − 1, j = 2, · · · , i − 1;
(γ − 1)αnan,1, i = n, j = 1;
γαnan,1a1, j, i = n, j = 2, · · · ,n − 1;
(γ − 1)βiai,i+1, i = 1, · · · ,n − 1, j = i + 1;
γβiai,i+1ai+1, j, i = 1, · · · ,n − 1, j = i + 2, · · · ,n

and

δ(24)
i, j (1) =



β1a1,2a2,1 + β1a1,nan,1, i = j = 1;
βiai,i+1ai+1,1, i = 2, · · · ,n − 1, j = 1;
αiai,1a1, j + βiai,i+1ai+1, j, i = 2, · · · ,n − 1, j = 2, · · · , i;
βiai,i+1ai+1, j, i = 1, · · · ,n − 1, j = i + 2, · · · ,n;
αnan,1a1, j, i = n, j = 2, · · · ,n;
0, otherwise.

Form Theorems 3.142-3.145, It is easy to prove the following theorem.

Theorem 3.146. Suppose that 0 ≤ β1 ≤ 1, 0 ≤ αk, βk ≤ 1, k = 2, · · · ,n and

αnan,1a1,n < 1, β1a1,2a2,1 + βna1,nan,1 < 1, αiai,1a1,i + βiai,i+1ai+1,i < 1, i = 2, · · · ,n − 1. (50)

Then Theorem A is valid for ν = 24.

Theorem 3.147. Suppose that 0 ≤ β1 ≤ 1, 0 ≤ αk, βk ≤ 1, k = 2, · · · ,n. Then Theorem B is valid for ν = 24.

Theorem 3.148. Suppose that (50) holds. Then Theorem C is valid for ν = 24, provided one of the following
conditions is satisfied:

(i) 0 ≤ γ < 1 and 0 ≤ β1 ≲ 1, 0 ≤ αk, βk ≲ 1, k = 2, · · · ,n.

(ii) γ = 1 and 0 ≤ β1 ≲ 1, 0 ≤ αk, βk ≲ 1, k = 2, · · · ,n. And one of the following conditions holds:

(ii1) There exists k ∈ {2, · · · ,n − 1} such that ak,k+1 < 0 and βk > 0.

(ii2) There exist i ∈ {2, · · · ,n} and j ∈ {2, · · · , i} such that αiai,1a1, j > 0.

(ii3) βna1,nan,1 > 0.

(ii4) an,1 < 0 and αn > 0.

(ii5) a1,2 < 0.

(iii) 0 ≤ γ < 1 and 0 ≤ β1 ≤ 1, 0 ≤ αi, βi ≤ 1, i = 2, · · · ,n. β1a1,2 + βna1,n < 0 and αiai,1 + βiai,i+1 < 0,
i = 2, · · · ,n − 1.

(iv) γ = 1 and 0 ≤ β1 ≤ 1, 0 ≤ αi, βi ≤ 1, i = 2, · · · ,n. For each i ∈ {2, · · · ,n − 1}, either βiai,i+1 < 0 or there exists
j(i) ∈ {2, · · · , i} such that αiai,1a1, j(i) > 0.

At the same time, one of the following conditions also holds:

(iva) an,1 < 0 and αn > 0.

(ivb) There exists j ∈ {2, · · · ,n − 1} such that an, j − αnan,1a1, j < 0.
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(ivc) β1a1,2an,1 + βna1,nan,1 > 0.

Clearly, the condition βna1,nan,1 > 0 implies that βna1,n < 0 so that β1a1,2 + βna1,n < 0. The condition
αiai,1a1,i + βiai,i+1ai+1,i > 0 implies that either αiai,1 < 0 or βiai,i+1 < 0 so that αiai,1 + βiai,i+1 < 0. This shows that
if βna1,nan,1 > 0 and αiai,1a1,i + βiai,i+1ai+1,i > 0 for i = 2, · · · ,n − 1, then the condition (iii) in Theorem 3.148 is
satisfied. Hence, the result here is far better than the corresponding ones given by [1, Theorems 2 and 4].

Theorem 3.149. Theorem D is valid for ν = 24, provided one of the following conditions is satisfied:

(i) One of the conditions (i)-(iv) of Theorem 3.148 holds.

(ii) 0 ≤ β1 ≤ 1, 0 ≤ αk, βk ≤ 1, k = 2, · · · ,n. αnan,1 = 0 and αkak,1 + βkak,k+1ak+1,1 ≥ 0 for k = 2, · · · ,n − 1. And
one of the following conditions holds:

(ii1) There exists i0 ∈ {2, · · · ,n − 1} such that αi0 ai0,1a1,i0 + βi0 ai0,i0+1ai0+1,i0 > 0.

(ii2) β1a1,2a2,1 + βna1,nan,1 > 0.

(ii3) γ > 0 and there exist i0 ∈ {3, · · · ,n − 1}, j0 ∈ {2, · · · , i0 − 1} such that αi0 ai0,1a1,i0 + βi0 ai0,i0+1ai0+1, j0 > 0

(ii4) γ > 0 and there exists i0 ∈ {2, · · · ,n − 1} such that αi0 ai0,1 + βi0 ai0,i0+1ai0+1,1 > 0.

Relative to Q21, the matrix Q is chosen as

Q25 = Q3 +Q17,

i.e.,

Q25 =


0 −β1a1,2 · · · 0 0

−α2,1a2,1 0 · · · 0 0
...

...
. . .

...
...

−αn−1,1an−1,1 −αn−1,2an−1,2 · · · 0 −βn−1an−1,n
−αn,1an,1 −αn,2an,2 · · · −αn,n−1an,n−1 0


with αi, j ≥ 0, i = 2, · · · ,n, j < i, and βi ≥ 0, i = 1, · · · ,n − 1, and

n∑
i=2

i−1∑
j=1

αi, jai, j , 0 and
n−1∑
i=1

βiai,i+1 , 0.

By Corollaries 3.20 and 3.21, the following two comparison theorems are directly.

Theorem 3.150. Suppose that 0 ≤ αi+1, j ≤ 1, 0 ≤ βi ≤ 1, i = 1, · · · ,n − 1, j = 1, · · · , i, and βiai,i+1ai+1,i +∑i−1
k=1 αi,kai,kak,i < 1, i = 1, · · · ,n. Then Theorem A is valid for ν = 25.

Theorem 3.151. Suppose that 0 ≤ αi+1, j ≤ 1, 0 ≤ βi ≤ 1, i = 1, · · · ,n − 1, j = 1, · · · , i. Then Theorem B is valid for
ν = 25.

In this case, δ(2)
i, j (γ) and δ(2)

i, j (1) reduce respectively to

δ(25)
i, j (γ) =



i−1∑
k=1
αi,kai,kak,i + βiai,i+1ai+1,i, i = j = 1, · · · ,n;

(γ − 1)βiai,i+1, i = 1, · · · ,n − 1, j = i + 1;
γβiai,i+1ai+1, j, i = 1, · · · ,n − 1, j = i + 2, · · · ,n;

(γ − 1)αi, jai, j + γ
j−1∑
k=1
αi,kai,kak, j + γβiai,i+1ai+1, j, i = 2, · · · ,n, j = 1, · · · , i − 1
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and

δ(25)
i, j (1) =


j−1∑
k=1
αi,kai,kak, j + βiai,i+1ai+1, j, i = 1, · · · ,n, j = 1, · · · , i;

βiai,i+1ai+1, j, i = 1, · · · ,n − 1, j = i + 2, · · · ,n;
0, otherwise.

Using Corollary 3.22, we prove Stein-Rosenberg type comparison theorem.

Theorem 3.152. Suppose that βiai,i+1ai+1,i +
∑i−1

k=1 αi,kai,kak,i < 1, i = 1, · · · ,n. Then Theorem C is valid for ν = 25,
provided one of the following conditions is satisfied:

(i) For i = 1, · · · ,n − 1, j = 1, · · · , i, 0 ≤ αi+1, j ≲ 1, 0 ≤ βi ≲ 1.

(ii) 0 ≤ γ < 1 and 0 ≤ αi+1, j ≤ 1, 0 ≤ βi ≤ 1, i = 1, · · · ,n − 1, j = 1, · · · , i. For each i ∈ {1, · · · ,n − 1}, βiai,i+1 < 0
or there exists j(i) ∈ {1, · · · , i − 1} such that αi, j(i)ai, j(i) < 0.

(iii) γ = 1 and 0 ≤ αi+1, j ≤ 1, 0 ≤ βi ≤ 1, i = 1, · · · ,n − 1, j = 1, · · · , i. For each i ∈ {2, · · · ,n − 1}, βiai,i+1 < 0 or
there exist j(i) ∈ {1, · · · , i} and k(i) ∈ {1, · · · , j(i) − 1} such that αi,k(i)ai,k(i)ak(i), j(i) > 0. At the same time, one of
the following conditions holds:

(iii1) There exist j ∈ {2, · · · ,n} and k ∈ {1, · · · , j − 1} such that αn,kan,kak, j > 0.
(iii2) an,1 < 0 and αn,1 > 0.
(iii3) There exists j ∈ {2, · · · ,n − 1} such that

(1 − αn, j)an, j −

n−1∑
k=1
k, j

αn,kan,kak, j < 0.

(iii4) a1,2 < 0, β1 > 0 and

(1 − αn,1)an,1 −

n−1∑
k=2

αn,kan,kak,1 < 0.

(iii5) a1,2 < 0, an,1 < 0 and β1 > 0.

Proof. Since
∑n−1

k=1 βkak,k+1 , 0, then there exists k ∈ {1, · · · ,n− 1} such that ak,k+1 < 0 and βk > 0, which shows
that the condition (ii3) in Theorem 3.18 is satisfied, so that the condition (i) of Corollary 3.22 is satisfied.
This shows (i).

When (ii) holds, then the condition (iii) of Theorem 3.18 is satisfied, so that the condition (ii) of Corollary
3.22 is satisfied.

When (iii) holds, it gets that δ(25)
i, j(i)(1) > 0. In this case δ(25)

1, j (1) = β1a1,2a2, j, j = 1, 3, · · · ,n. Since A is

irreducible, then there exists j ∈ {1} ∪ {3, · · · ,n} such that a2, j < 0, so that δ(25)
1, j (1) = β1a1,2a2, j > 0 whenever

β1 > 0 and a1,2 < 0. Hence, the conditions (iva)-(ive) in Theorem 3.18 reduce to (iii1)-(iii5), respectively. By
(ii) of Corollary 3.22 the proof of (iii) is complete.

Theorem 3.153. Theorem D is valid for ν = 25, provided one of the following conditions is satisfied:

(i) One of the conditions (i), (ii) and (iii) of Theorem 3.152 holds.

(ii) 0 ≤ αi+1, j ≤ 1, 0 ≤ βi ≤ 1, i = 1, · · · ,n − 1, j = 1, · · · , i. For i = 2, · · · ,n, j = 1, · · · , i − 1,

αi, jai, j +

i−1∑
k=1
k, j

αi,kai,kak, j + βiai,i+1ai+1, j ≥ 0.

And one of the following conditions holds:



Y. Song / Filomat 39:28 (2025), 9865–9946 9928

(ii1) There exists i0 ∈ {1, · · · ,n − 1} such that βi0 ai0,i0+1ai0+1,i0 > 0.

(ii2) There exist i0 ∈ {2, · · · ,n} and j0 ∈ {1, · · · , i0 − 1} such that αi0, j0 ai0, j0 a j0,i0 > 0.

(ii3) γ > 0 and α2,1a2,1 + β2a2,3a3,1 > 0.

(ii4) γ > 0 and there exist i0 ∈ {3, · · · ,n} and j0 ∈ {1, · · · , i0 − 1} such that

αi0, j0 ai0, j0 +

i0−1∑
k=1
k, j0

αi0,kai0,kak, j0 + βi0 ai0,i0+1ai0+1, j0 > 0.

Proof. We just need to prove (ii). It is easy to obtain

a(25)
i, j =


1 −

i−1∑
k=1
αi,kai,kak,i − βiai,i+1ai+1,i, i = j = 1, · · · ,n,

(1 − αi, j)ai, j −
i−1∑
k=1
αi,kai,kak, j − βiai,i+1ai+1, j, i = 2, · · · ,n, j = 1, · · · , i − 1.

By Corollary 3.23 we can derive (ii1)-(ii4).

As a special case, Q21 and Q25 reduce to

Q26 = Q5 +Q17 =


0 −β1a1,2 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 −βn−1an−1,n
−α1an,1 −α2an,2 · · · −αn−1an,n−1 0


with αk ≥ 0, βk ≥ 0, k = 1, · · · ,n − 1, and

n−1∑
k=1

αkan,k , 0 and
n−1∑
k=1

βkak,k+1 , 0,

where for simplicity we set r = n for Q5.
It is proposed in [69] for the preconditioned Gauss-Seidel method, where αk = βk = 1, k = 1, · · · ,n − 1.
In this case, δ(25)

i, j (γ) and δ(25)
i, j (1) reduce respectively to

δ(26)
i, j (γ) =



βiai,i+1ai+1,i, i = j = 1, · · · ,n − 1;
n−1∑
k=1
αkan,kak,n, i = j = n;

(γ − 1)βiai,i+1, i = 1, · · · ,n − 1, j = i + 1;
γβiai,i+1ai+1, j, i = 1, · · · ,n − 1, j = 1, · · · ,n, j , i, i + 1;

(γ − 1)α jan, j + γ
j−1∑
k=1
αkan,kak, j, i = n, j = 1, · · · ,n − 1

and

δ(26)
i, j (1) =


βiai,i+1ai+1, j, i = 1, · · · ,n − 1, j = 1, · · · ,n, j , i + 1;
j−1∑
k=1
αkan,kak, j, i = n, j = 1, · · · ,n.

From Theorems 3.150-3.153 the following comparison results are immediately.
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Theorem 3.154. Suppose that 0 ≤ αk, βk ≤ 1, k = 1, · · · ,n − 1, and

n−1∑
k=1

αkan,kak,n < 1, βiai,i+1ai+1,i < 1, i = 1, · · · ,n − 1. (51)

Then Theorem A is valid for ν = 26.

Theorem 3.155. Suppose that 0 ≤ αk, βk ≤ 1, k = 1, · · · ,n − 1. Then Theorem B is valid for ν = 26.

Theorem 3.156. Suppose that (51) holds. Then Theorem C is valid for ν = 26, provided one of the following
conditions is satisfied:

(i) For k = 1, · · · ,n − 1, 0 ≤ αk, βk ≲ 1.

(ii) 0 ≤ γ < 1, ak,k+1 < 0, 0 ≤ αk ≤ 1 and 0 < βk ≤ 1, k = 1, · · · ,n − 1.

(iii) γ = 1, ak,k+1 < 0, 0 ≤ αk ≤ 1 and 0 < βk ≤ 1, k = 1, · · · ,n − 1. One of the following conditions holds:

(iii1) There exist j ∈ {2, · · · ,n} and k ∈ {1, · · · , j − 1} such that αkan,kak, j > 0.

(iii2) an,1 < 0 and α1 > 0.

(iii3) There exists j ∈ {2, · · · ,n − 1} such that

(1 − α j)an, j −

n−1∑
k=1
k, j

αkan,kak, j < 0.

(iii4) a1,2 < 0, β1 > 0 and

(1 − α1)an,1 −

n−1∑
k=2

αkan,kak,1 < 0.

(iii5) a1,2 < 0, an,1 < 0 and β1 > 0.

Theorem 3.157. Theorem D is valid for ν = 26, provided one of the following conditions is satisfied:

(i) One of the conditions (i), (ii) and (iii) of Theorem 3.156 holds.

(ii) For j = 1, · · · ,n − 1, 0 ≤ α j, β j ≤ 1 and α jan, j +
∑n−1

k=1,k, j αkan,kak, j ≥ 0. One of the following conditions holds:

(ii1) There exists i0 ∈ {1, · · · ,n − 1} such that βi0 ai0,i0+1ai0+1,i0 > 0.

(ii2) There exists i0 ∈ {1, · · · ,n − 1} such that αi0 an,i0 ai0,n > 0.

(ii3) γ > 0 and there exist i0 ∈ {2, · · · ,n − 1} and j0 ∈ {1, · · · , i0 − 1} such that βi0 ai0,i0+1ai0+1, j0 > 0.

(ii4) γ > 0 and there exists j0 ∈ {1, · · · ,n − 1} such that

α j0 an, j0 +

n−1∑
k=1
k, j0

αkan,kak, j0 > 0.

Similarly, as a special case of Q24 and Q25, Q is proposed in [79] as

Q27 = Q6 +Q17 =


0 −β1a1,2 0 · · · 0

−α2a2,1 0 −β2a2,3 · · · 0
...

...
...

. . .
...

−αn−1an−1,1 0 0 · · · −βn−1an−1,n
−αnan,1 0 0 · · · 0


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with αk+1 ≥ 0, βk ≥ 0, k = 1, · · · ,n − 1, and

n∑
k=2

αkak,1 , 0 and
n−1∑
k=1

βkak,k+1 , 0,

where for simplicity we set r = 2 for Q6.
It is proposed in [68] for the preconditioned SOR method, where αk+1 = βk = 1, k = 1, · · · ,n − 1.
In this case, δ(25)

i, j (γ) and δ(25)
i, j (1) reduce respectively to

δ(27)
i, j (γ) =



β1a1,2a2,1, i = j = 1;
αiai,1a1,i + βiai,i+1ai+1,i, i = j = 2, · · · ,n − 1;
αnan,1a1,n, i = j = n;
(γ − 1)αiai,1 + γβiai,i+1ai+1,1, i = 2, · · · ,n − 1, j = 1;
γαiai,1a1, j + γβiai,i+1ai+1, j, i = 3, · · · ,n − 1, j = 2, · · · , i − 1;
(γ − 1)αnan,1, i = n, j = 1;
γαnan,1a1, j, i = n, j = 2, · · · ,n − 1;
(γ − 1)βiai,i+1, i = 1, · · · ,n − 1, j = i + 1;
γβiai,i+1ai+1, j, i = 1, · · · ,n − 1, j = i + 2, · · · ,n

and

δ(27)
i, j (1) =


βiai,i+1ai+1, j, i = 1, · · · ,n − 1, j ∈ {1} ∪ {i + 2, · · · ,n};
αiai,1a1, j + βiai,i+1ai+1, j, i = 2, · · · ,n − 1, j = 2, · · · , i;
αnan,1a1, j, i = n, j = 2, · · · ,n;
0, otherwise.

From Theorems 3.150-3.153, the following comparison results are directly.

Theorem 3.158. Suppose that 0 ≤ αk+1, βk ≤ 1, k = 1, · · · ,n − 1, and β1a1,2a2,1 < 1, αnan,1a1,n < 1, αkak,1a1,k +
βkak,k+1ak+1,k < 1, k = 2, · · · ,n − 1. Then Theorem A is valid for ν = 27.

Theorem 3.159. Suppose that 0 ≤ αk+1, βk ≤ 1, k = 1, · · · ,n − 1. Then Theorem B is valid for ν = 27.

Theorem 3.160. Suppose that β1a1,2a2,1 < 1, αnan,1a1,n < 1, αkak,1a1,k + βkak,k+1ak+1,k < 1, k = 2, · · · ,n − 1. Then
Theorem C is valid for ν = 27, provided one of the following conditions is satisfied:

(i) For k = 1, · · · ,n − 1, 0 ≤ αk+1, βk ≲ 1.

(ii) 0 ≤ γ < 1, 0 ≤ αk+1, βk ≤ 1, k = 1, · · · ,n − 1. β1 > 0, a1,2 < 0 and for each i ∈ {2, · · · ,n − 1}, βiai,i+1 < 0 or
αiai,1 < 0.

(iii) γ = 1, 0 ≤ αk+1, βk ≤ 1, k = 1, · · · ,n− 1. For each i ∈ {2, · · · ,n− 1}, βiai,i+1 < 0 or there exists j(i) ∈ {2, · · · , i}
such that αiai,1a1, j(i) > 0. At the same time, one of the following conditions holds:

(iii1) an,1 < 0 and αn > 0.

(iii2) There exists j ∈ {2, · · · ,n − 1} such that an, j − αnan,1a1, j < 0.

(iii3) a1,2 < 0, an,1 < 0 and β1 > 0.

It can be proved that if 0 < a1,2a2,1 < 1, 0 < an,1a1,n < 1 and 0 < ak,1a1,k + ak,k+1ak+1,k < 1, k = 2, · · · ,n − 1,
then A is irreducible. Hence, for the Gauss-Seidel method the result when (iii) holds is better than [79,
Theorems 2,3,4], where in Theorem 4 it should be that αk+1 > 0 and βk > 0, k = 1, · · · ,n − 1.
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All the corresponding results given in [68] are problematic, because [68, Theorem 3.1] is wrong. In fact,
let

A =



1 0 0 0 0 −0.5
−0.5 1 −0.5 0 0 0

0 −0.5 1 0 0 0
0 −0.5 0 1 0 0
0 0 0 0 1 −0.5

−0.5 −0.5 0 −0.5 −0.5 1


. (52)

Then it is easy to prove that A is an irreducible L-matrix and the assumption of [68, Theorem 3.1] is satisfied.
But the iteration matrix of the preconditioned SOR method is reducible.

Theorem 3.161. Theorem D is valid for ν = 27, provided one of the conditions (i), (ii) and (iii) of Theorem 3.160 is
satisfied.

As a special case of Q26 and Q27, Q is defined in [98] as

Q28 = Q7 +Q17 =


0 −β1a1,2 0 · · · 0
0 0 −β2a2,3 · · · 0
...

...
...

. . .
...

0 0 0 · · · −βn−1an−1,n
−αan,1 0 0 · · · 0


with an,1 < 0, α > 0, βk ≥ 0, k = 1, · · · ,n − 1, and

∑n−1
k=1 βkak,k+1 , 0, where we set r = n and s = 1 for Q7.

It is continued to study in [26] and it is proposed in [100, 105] for the preconditioned Gauss-Seidel
method, where α1 = βk = 1, k = 1, · · · ,n − 1 and αk = 0, k = 2, · · · ,n − 1.

In this case, δ(25)
i, j (γ) and δ(25)

i, j (1) reduce respectively to

δ(28)
i, j (γ) =



βiai,i+1ai+1,i, i = j = 1, · · · ,n − 1;
αan,1a1,n, i = j = n;
(γ − 1)βiai,i+1, i = 1, · · · ,n − 1, j = i + 1;
γβiai,i+1ai+1, j, i = 1, · · · ,n − 1, j = 1, · · · ,n, j , i, i + 1;
γαan,1a1, j, i = n, j = 2, · · · ,n − 1;
(γ − 1)αan,1 i = n, j = 1

and

δ(28)
i, j (1) =


βiai,i+1ai+1, j, i = 1, · · · ,n − 1, j = 1, · · · ,n, j , i + 1;
αan,1a1, j, i = n, j = 2, · · · ,n;
0, otherwise.

From Theorems 3.154 and 3.155 the following comparison results are immediately.

Theorem 3.162. Suppose that α ≤ 1, 0 ≤ βk ≤ 1, αan,1a1,n < 1, βkak,k+1ak+1,k < 1, k = 1, · · · ,n − 1. Then Theorem
A is valid for ν = 28.

Theorem 3.163. Suppose that α ≤ 1, 0 ≤ βk ≤ 1, k = 1, · · · ,n − 1. Then Theorem B is valid for ν = 28.

Completely similar to Lemma 3.117 we can prove the following lemma.

Lemma 3.164. Let A be a Z-matrix. Assume that n ≥ 3, a1,n < 0, ak+1,k < 0, α ≤ 1, 0 ≤ βk ≤ 1, k = 1, · · · ,n − 1.
Then A(28) is an irreducible Z-matrix.

Theorem 3.165. Suppose that αan,1a1,n < 1, βkak,k+1ak+1,k < 1, k = 1, · · · ,n−1. Then Theorem C is valid for ν = 28,
provided one of the following conditions is satisfied:



Y. Song / Filomat 39:28 (2025), 9865–9946 9932

(i) α ≲ 1 and 0 ≤ βk ≲ 1, k = 1, · · · ,n − 1.

(ii) α ≤ 1, 0 < βk ≤ 1, ak,k+1 < 0, k = 1, · · · ,n − 1.

(iii) n ≥ 3, α ≤ 1, 0 ≤ βk ≤ 1, a1,n < 0, ak+1,k < 0, k = 1, · · · ,n − 1.

Proof. By Theorem 3.156, we just need to prove (ii) and (iii).
When (ii) holds, since an,1 < 0 and α > 0, the condition (iii2) in Theorem 3.156 is satisfied.
When (iii) holds, by Lemma 3.164, A(28) is an irreducible Z-matrix. From (i) we can prove (iii).

For (ii) and (iii) the assumption that A is irreducible is redundant. Hence, [105, Theorem 3.1] can be
derived, directly.

All the corresponding results given in [98] are problematic, because [98, Lemmas 4.1, 4.3] are wrong. In
fact, let A be defined by (52). Then A is an irreducible L-matrix and it is easy to prove that the assumptions
of [98, Lemmas 4.1, 4.3] are satisfied. But the iteration matrices of the preconditioned AOR methods are
reducible when we choose β2 = 1.

In this case, (ii) of Theorem 3.157 can be not satisfied. Hence, from Theorems 3.157, the following
theorem is derived, directly.

Theorem 3.166. Theorem D is valid for ν = 28, provided one of the conditions (i), (ii) and (iii) of Theorem 3.165 is
satisfied.

Corresponding to Q28, in [26] Q is defined as

Q29 = Q8 +Q16 =


0 0 · · · 0 −βa1,n

−α1a2,1 0 · · · 0 0
0 −α2a3,2 · · · 0 0
...

...
. . .

...
...

0 0 · · · −αn−1an,n−1 0


with a1,n < 0, β > 0, αk ≥ 0, k = 1, · · · ,n − 1, and

n−1∑
k=1

αkak+1,k , 0,

where we set r = 1 and s = n for Q16

In this case, δ(2)
i, j (γ) and δ(2)

i, j (1) reduce respectively to

δ(29)
i, j (γ) =


βa1,nan,1, i = j = 1;
αi−1ai,i−1ai−1,i, i = j = 2, · · · ,n;
(γ − 1)βa1,n, i = 1, j = n;
(γ − 1)αi−1ai,i−1, i = 2, · · · ,n, j = i − 1;
0, otherwise

and

δ(29)
i, j (γ) =


βa1,nan,1, i = j = 1;
αi−1ai,i−1ai−1,i, i = j = 2, · · · ,n;
0, otherwise.

By Corollaries 3.20 and 3.21, the following comparison theorems are directly.

Theorem 3.167. Suppose that β ≤ 1, 0 ≤ αk ≤ 1, βa1,nan,1 < 1, αkak+1,kak,k+1 < 1, k = 1, · · · ,n − 1. Then Theorem
A is valid for ν = 29.

Theorem 3.168. Suppose that β ≤ 1, 0 ≤ αk ≤ 1, k = 1, · · · ,n − 1. Then Theorem B is valid for ν = 29.
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Completely similar to Lemma 3.164 we can prove the following lemma.

Lemma 3.169. Let A be a Z-matrix. Assume that n ≥ 3, an,1 < 0, β ≤ 1, ak,k+1 < 0, 0 ≤ αk ≤ 1, k = 1, · · · ,n − 1.
Then A(29) is an irreducible Z-matrix.

Theorem 3.170. Suppose that βa1,nan,1 < 1, αkak+1,kak,k+1 < 1, k = 1, · · · ,n−1. Then Theorem C is valid for ν = 29,
provided one of the following conditions is satisfied:

(i) 0 ≤ γ < 1, β ≲ 1 and 0 ≤ αk ≲ 1, k = 1, · · · ,n − 1.

(ii) γ = 1, β ≲ 1 and 0 ≤ αk ≲ 1, k = 1, · · · ,n − 1. One of the following conditions holds:

(ii1) an,1 < 0.

(ii2) There exists k ∈ {1, · · · ,n − 1} such that αkak+1,kak,k+1 > 0.

(ii3) ak,k+1 < 0, k = 1, · · · ,n − 1.

(iii) 0 ≤ γ < 1, β ≤ 1, 0 ≥ αn−1 ≤ 1, 0 < αk ≤ 1 and ak+1,k < 0, k = 1, · · · ,n − 2.

(iv) γ = 1, β ≤ 1, 0 ≤ αn−1 ≤ 1, 0 < αk ≤ 1 and ak+1,kak,k+1 > 0, k = 1, · · · ,n − 2. One of the following conditions
holds:

(iv1) an,1 < 0.

(iv2) αn−1 > 0 and an,n−1an−1,n > 0.

(v) n ≥ 3, an,1 < 0, ak,k+1 < 0, β ≤ 1, 0 ≤ αk ≤ 1, k = 1, · · · ,n − 1.

Proof. (i), (ii1) and (ii2) satisfy respectively (i), (ii1) in Theorem 3.18. Hence they satisfy the condition (i) of
Corollaries 3.22.

By the definition of Q29, there exists k0 ∈ {1, · · · ,n− 1} such that αk0 ak0+1,k0 < 0 so that αk0 ak0+1,k0 ak0,k0+1 > 0,
which implies that (ii2) holds for k = k0.

(iii) can be derived by (ii) of Corollaries 3.22.
(iv) satisfies the conditions (iv1), (ive) and (iva) in Theorem 3.18, so that it satisfies condition (ii) of

Corollaries 3.22.
When (v) holds, by Lemma 3.169, A(29) is an irreducible L-matrix. From (i) and (ii) we can prove (v),

where (ii1) is satisfied.

Obviously, for (v) the assumption that A is irreducible is redundant.
The following result is easy to prove.

Theorem 3.171. Theorem D is valid for ν = 29, provided one of the conditions (i)-(v) of Theorem 3.165 is satisfied.

As a special case of Q25, Q is defined in [42] for the preconditioned Gauss-Seidel method as

Q30 = Q8 +Q17 =


0 −β1a1,2 · · · 0 0

−α1a2,1 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 −βn−1an−1,n
0 0 · · · −αn−1an,n−1 0


with βk, αk ≥ 0, k = 1, · · · ,n − 1, and

n−1∑
k=1

βkak,k+1 , 0 and
n−1∑
k=1

αkak+1,k , 0.
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It is continued to be studied in [43] for the preconditioned Gauss-Seidel and Jacobi methods. It is given
in [87, 89] for the preconditioned GAOR method. In [88], it is used to preconditioned parallel multisplitting
USAOR method.

In this case, δ(25)
i, j (γ) and δ(25)

i, j (1) reduce respectively to

δ(30)
i, j (γ) =


αi−1ai,i−1ai−1,i + βiai,i+1ai+1,i, i = j = 1, · · · ,n;
(γ − 1)αi−1ai,i−1 + γβiai,i+1ai+1, j, i = 2, · · · ,n, j = i − 1;
(γ − 1)βiai,i+1, i = 1, · · · ,n − 1, j = i + 1;
γβiai,i+1ai+1, j, i = 1, · · · ,n − 1, j = 1, · · · ,n, j , i − 1, i, i + 1;
0, i = n, j = 1, · · · ,n − 2

and

δ(30)
i, j (1) =



β1a1,2a2,1 < 1, i = j = 1;
αi−1ai,i−1ai−1,i + βiai,i+1ai+1,i, i = j = 2, · · · ,n − 1;
αn−1an,n−1an−1,n < 1, i = j = n;
βiai,i+1ai+1, j, i = 1, · · · ,n − 1,

j = 1, · · · ,n, j , i, i + 1;
0, otherwise.

From Theorems 3.150 and 3.151, the following two comparison results are immediately.

Theorem 3.172. Suppose that 0 ≤ αk, βk ≤ 1, k = 1, · · · ,n − 1, and β1a1,2a2,1 < 1, αn−1an,n−1an−1,n < 1,
αk−1ak,k−1ak−1,k + βkak,k+1ak+1,k < 1, k = 2, · · · ,n − 1. Then Theorem A is valid for ν = 30.

Theorem 3.173. Suppose that 0 ≤ αk, βk ≤ 1, k = 1, · · · ,n − 1. Then Theorem B is valid for ν = 30.

Theorem 3.174. Suppose that β1a1,2a2,1 < 1, αn−1an,n−1an−1,n < 1, αk−1ak,k−1ak−1,k+βkak,k+1ak+1,k < 1, k = 2, · · · ,n−
1. Then Theorem C is valid for ν = 30, provided one of the following conditions is satisfied:

(i) For k = 1, · · · ,n − 1, 0 ≤ αk, βk ≲ 1.

(ii) 0 ≤ γ < 1, 0 ≤ αk, βk ≤ 1, k = 1, · · · ,n − 1. a1,2 < 0, β1 > 0 and for each i ∈ {2, · · · ,n − 1}, βiai,i+1 < 0 or
αi−1ai,i−1 < 0.

(iii) γ = 1, 0 ≤ αk, βk ≤ 1, k = 1, · · · ,n − 1. For each i ∈ {2, · · · ,n − 1}, βiai,i+1 < 0 or αi−1ai,i−1ai−1,i > 0. At the
same time, one of the following conditions holds:

(iii1) αn−1an,n−1an−1,n > 0.

(iii2) (1 − αn−1)an,n−1 < 0.

(iii3) There exists j ∈ {2, · · · ,n − 2} such that an, j − αn−1an,n−1an−1, j < 0.

(iii4) a1,2 < 0, β1 > 0 and an,1 − αn−1an,n−1an−1,1 < 0.

(iii5) a1,2 < 0, an,1 < 0 and β1 > 0.

Proof. We just need to prove (iii).
When αi−1ai,i−1ai−1,i > 0, the inequality αi,k(i)ai,k(i)ak(i), j(i) > 0 holds for j(i) = i and k(i) = j(i) − 1.
The conditions (iii1), (iii4) and (iii5) can be derived from corresponding ones in Theorem 3.152. While,

the conditions (iii2) and (iii3) can be derived by (iii3) in Theorem 3.152, directly.

The result for the Gauss-Seidel method is better than [42, Theorems 3.2-3.5], where in Theorem 3.5 it
should be that αk > 0 and βk > 0, k = 1, · · · ,n − 1.

Theorem 3.175. Theorem D is valid for ν = 30, provided one of the conditions (i), (ii) and (iii) of Theorem 3.174 is
satisfied.
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Another combination is given as

Q31 = Q5 +Q15 =


0 · · · 0 −β1a1,n
...

. . .
...

...
0 · · · 0 −βn−1an−1,n

−α1an,1 · · · −αn−1an,n−1 0


with αk ≥ 0, βk ≥ 0, k = 1, · · · ,n − 1, and

n−1∑
k=1

αkan,k , 0 and
n−1∑
k=1

βkak,n , 0,

where for simplicity we set r = n for Q5 and Q15.
In this case, δ(2)

i, j (γ) and δ(2)
i, j (1) reduce respectively to

δ(31)
i, j (γ) =



βiai,nan,i, i = j = 1, · · · ,n − 1;
n−1∑
k=1
αkan,kak,n, i = j = n;

(γ − 1)βiai,n, i = 1, · · · ,n − 1, j = n;
γβiai,nan, j, i = 2, · · · ,n − 1, j = 1, · · · , i − 1;

(γ − 1)α jan, j + γ
j−1∑
k=1
αkan,kak, j, i = n, j = 1, · · · ,n − 1;

0, otherwise

and

δ(31)
i, j (1) =


βiai,nan, j, i = 1, · · · ,n − 1, j = 1, · · · , i;
j−1∑
k=1
αkan,kak, j, i = n, j = 2, · · · ,n;

0, otherwise.

Using Corollaries 3.20 and 3.21, we can prove the following theorems, directly.

Theorem 3.176. Suppose that 0 ≤ αk, βk ≤ 1, k = 1, · · · ,n − 1, and

n−1∑
k=1

αkan,kak,n < 1, βiai,nan,i < 1, i = 1, · · · ,n − 1. (53)

Then Theorem A is valid for ν = 31.

Theorem 3.177. Suppose that 0 ≤ αk, βk ≤ 1, k = 1, · · · ,n − 1. Then Theorem B is valid for ν = 31.

Theorem 3.178. Suppose that (53) holds. Then Theorem C is valid for ν = 31, provided one of the following
conditions is satisfied:

(i) 0 ≤ γ < 1. For k = 1, · · · ,n − 1, 0 ≤ αk, βk ≲ 1.

(ii) γ = 1. For k = 1, · · · ,n − 1, 0 ≤ αk, βk ≲ 1. And one of the following conditions holds:

(ii1) There exist i ∈ {1, · · · ,n − 1} and j ∈ {1, · · · , i} such that βiai,nan, j > 0.

(ii2) There exist j ∈ {2, · · · ,n} and k ∈ {1, · · · , j − 1} such that αkan,kak, j > 0.

(ii3) an−1,n < 0 and βn−1 > 0.

(ii4) an,1 < 0.

(ii5) ak,n < 0, k = 1, · · · ,n − 1.
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(ii6) ak,k+1 < 0, k = 1, · · · ,n − 1.

(iii) ak,n < 0, 0 ≤ αk ≤ 1, 0 < βk ≤ 1, k = 1, · · · ,n − 1. And one of the following conditions holds:

(iii1) 0 ≤ γ < 1

(iii2) γ = 1 and for each i ∈ {1, · · · ,n − 1} there exists j(i) ∈ {1, · · · , i} such that an, j(i) < 0.

Proof. Since A is irreducible, then there exists j0 ∈ {1, · · · ,n − 1} such that an, j0 < 0.
By (i) of Corollary 3.22, (i) is obvious.
If (ii1) holds, then δ(31)

i, j (1) > 0 for i = 1, · · · ,n − 1 and j = 1, · · · , i. While if (ii2) holds, then δ(31)
n, j (1) ≥

αkan,kak, j > 0 for j ∈ {2, · · · ,n}. This shows that (ii1) in Theorem 3.18 holds, so that the required result follows
by (i) of Corollary 3.22, directly.

If (ii3) holds, then βn−1an−1,nan, j0 > 0, which implies that (ii1) holds for i = n − 1 and j = j0.
If (ii4) holds, by the definition of Q31, there exists i0 ∈ {1, · · · ,n − 1} such that βi0 ai0,n < 0, so that

βi0 ai0,nan,1 > 0, which implies that (ii1) holds for i = i0 and j = 1.
If (ii5) holds, by the definition of Q31, there exists k0 ∈ {1, · · · ,n − 1} such that αk0 an,k0 < 0, so that

αk0 an,k0 ak0,n > 0, which implies that (ii2) holds for k = k0 and j = n. While when (ii6) holds, it is easy to see
that (ii2) holds for k = k0 and j = k0 + 1.

When (iii) holds, for each i ∈ {1, · · · ,n − 1}, if γ < 1 then βiai,n < 0, i.e., (iii) of Theorem 3.18 is satisfied.
While, if γ = 1 then δ(31)

i, j(i)(1) = βiai,nan, j(i) > 0, i.e., (iv1) in Theorem 3.18 holds. If α j0 = 0 then (1−α j0 )an, j0 =

an, j0 < 0, which implies that (22) or (23) holds, so that (ivc) or (ivd) in Theorem 3.18 is satisfied. If α j0 > 0 then
α j0 an, j0 a j0,n > 0, which implies that (iva) in Theorem 3.18 is satisfied for k = j0 and j = n. This has proved
that the condition (iv) of Theorem 3.18 is satisfied.

By Corollary 3.22, (iii) is proved.

Similarly, by Corollary 3.23, we can prove the following result.

Theorem 3.179. Theorem D is valid for ν = 31, provided one of the following conditions is satisfied:

(i) One of the conditions (i), (ii) and (iii) of Theorem 3.178 holds.

(ii) For j = 1, · · · ,n − 1, 0 ≤ α j, β j ≤ 1 and

α jan, j +

n−1∑
k=1
k, j

αkan,kak, j > 0.

One of the following conditions holds:

(ii1) There exists i0 ∈ {1, · · · ,n − 1} such that βi0 ai0,nan,i0 > 0.

(ii2) There exists i0 ∈ {1, · · · ,n − 1} such that αi0 an,i0 ai0,n > 0.

(ii3) γ > 0. There exist i0 ∈ {2, · · · ,n − 1}, j0 ∈ {1, · · · , i0 − 1} such that βi0 ai0,nan, j0 > 0.

(ii4) γ > 0. There exists j0 ∈ {1, · · · ,n − 1} such that α j0 an, j0 +
∑n−1

k=1,k, j0 αkan,kak, j0 > 0.

Similar to Q31, we give a new combination preconditioner as

Q32 = Q6 +Q14 =


0 −β2a1,2 · · · −βna1,n

−α2a2,1 0 · · · 0
...

...
. . .

...
−αnan,1 0 · · · 0


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with αk ≥ 0, βk ≥ 0, k = 2, · · · ,n, and
n∑

k=2

αkak,1 , 0 and
n∑

k=2

βka1,k , 0,

where for simplicity we set r = 2 for Q6 and Q14.
It is proposed in [87] for the preconditioned GAOR method for weighted linear least squares problems.
In this case, δ(2)

i, j (γ) and δ(2)
i, j (1) reduce respectively to

δ(32)
i, j (γ) =



n∑
k=2
βka1,kak,1, i = j = 1;

αiai,1a1,i, i = j = 2, · · · ,n;

(γ − 1)β ja1, j + γ
j−1∑
k=2
βka1,kak, j, i = 1, j = 2, · · · ,n;

(γ − 1)αiai,1, i = 2, · · · ,n, j = 1;
γαiai,1a1, j, i = 3, · · · ,n, j = 2, · · · , i − 1;
0, otherwise

and

δ(32)
i, j (1) =



n∑
k=2
βka1,kak,1, i = j = 1;

j−1∑
k=2
βka1,kak, j, i = 1, j = 3, · · · ,n;

αiai,1a1, j, i = 2, · · · ,n, j = 2, · · · , i;
0, otherwise.

Using Corollaries 3.20 and 3.21, we can prove the following theorems.

Theorem 3.180. Suppose that 0 ≤ αi, βi ≤ 1, αiai,1a1,i < 1, i = 2, · · · ,n,
∑n

k=2 βka1,kak,1 < 1. Then Theorem A is
valid for ν = 32.

Theorem 3.181. Suppose that 0 ≤ αk, βk ≤ 1, k = 2, · · · ,n. Then Theorem B is valid for ν = 32.

Theorem 3.182. Suppose that
∑n

k=2 βka1,kak,1 < 1, αiai,1a1,i < 1, i = 2, · · · ,n. Then Theorem C is valid for ν = 32,
provided one of the following conditions is satisfied:

(i) 0 ≤ γ < 1. For k = 2, · · · ,n, 0 ≤ αk, βk ≲ 1.

(ii) γ = 1. For k = 2, · · · ,n, 0 ≤ αk, βk ≲ 1. One of the following conditions holds:

(ii1) There exists k ∈ {2, · · · ,n} such that βka1,kak,1 > 0.

(ii2) There exist j ∈ {3, · · · ,n} and k ∈ {2, · · · , j − 1} such that βka1,kak, j > 0.

(ii3) There exist i ∈ {2, · · · ,n} and j ∈ {2, · · · , i} such that αiai,1a1, j > 0.

(ii4) a1,2 < 0.

(ii5) an,1 < 0 and αn > 0.

(ii6) ak,1 < 0, k = 2, · · · ,n.

(ii7) an,1 < 0 and ak,n < 0, k = 2, · · · ,n − 1.

(ii8) an,1 < 0 and ak,k+1 < 0, k = 2, · · · ,n − 1.

(iii) 0 ≤ γ < 1. For k = 2, · · · ,n − 1, ak,1 < 0, 0 < αk ≤ 1, 0 ≤ αn ≤ 1, and for k = 2, · · · ,n, 0 ≤ βk ≤ 1.

(iv) γ = 1. 0 < αk ≤ 1, 0 ≤ βk ≤ 1, k = 2, · · · ,n. For each i ∈ {2, · · · ,n−1}, ai,1 < 0 and there exists j(i) ∈ {2, · · · , i}
such that a1, j(i) < 0.
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Proof. From (i) and (ii2) in Theorem 3.18, we can derive (i) and (ii5) directly.
If one of (ii1), (ii2) and (ii3) holds, then there exist i, j ∈ {1, · · · ,n} such that δ(32)

i, j (1) > 0, which implies that
(ii1) in Theorem 3.18 holds.

If (ii4) holds, then from the definition of Q32, there exists i0 ∈ {2, · · · ,n} such that αi0 ai0,1 < 0 so that
αi0 ai0,1a1,2 > 0. This has shown that the condition (ii3) is satisfied for i = i0 and j = 2.

From

n∑
k=2

βka1,kak,1 ≥ max
2≤k≤n
{ak,1}

n∑
k=2

βka1,k > 0,

n−1∑
k=2

βka1,kak,n + βna1,nan,1 ≥ max{an,1; ak,n : k = 2, · · · ,n − 1}
n∑

k=2

βka1,k > 0

and
n∑

j=3

β j−1a1, j−1a j−1, j + βna1,nan,1 ≥ max{an,1; ak,k+1 : k = 2, · · · ,n − 1}
n∑

j=2

β ja1, j > 0,

it is easy to see that if one of (ii6), (ii7) and (ii8) holds, then (ii1) or (ii2) is satisfied.
For (iii), by the definition of Q32 again, there exists j(1) ∈ {2, · · · ,n} such that β j(1)a1, j(1) < 0. For

i ∈ {2, · · · ,n − 1}, αiai,1 < 0. The condition (iii) follows by (iii) of Theorem 3.18, immediately.
If (iv) holds, then δ(32)

i, j(i)(1) > 0, which implies that (iv1) in Theorem 3.18 holds. From the irreducibility of

A, there exists j0 ∈ {1, · · · ,n − 1} such that an, j0 < 0. If j0 = 1 then (ivb) in Theorem 3.18 holds. If j0 ≥ 2 then
an, j0 − αnan,1a1, j0 ≤ an, j0 < 0, which shows that (22) holds for j = j0, i.e., the condition (ivc) in Theorem 3.18
holds. We have proved (iv).

Theorem 3.183. Theorem D is valid for ν = 32, provided one of the conditions (i)-(iv) of Theorem 3.182 is satisfied.

Unlike Q31 and Q32, we give Q as

Q33 = Q5 +Q14 =


0 −β2a1,2 · · · −βn−1a1,n−1 −βna1,n
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
−α1an,1 −α2an,2 · · · −αn−1an,n−1 0


with αk ≥ 0, βk=1 ≥ 0, k = 1, · · · ,n − 1, and

n−1∑
k=1

αkan,k , 0 and
n∑

k=2

βka1,k , 0.

It is proposed in [93] with α1 = 0.
In this case, δ(2)

i, j (γ) and δ(2)
i, j (1) reduce respectively to

δ(33)
i, j (γ) =



n∑
k=2
βka1,kak,1, i = j = 1;

n−1∑
k=1
αkan,kak,n, i = j = n;

(γ − 1)β ja1, j + γ
j−1∑
k=2
βka1,kak, j, i = 1, j = 2, · · · ,n;

(γ − 1)α jan, j + γ
j−1∑
k=1
αkan,kak, j, i = n, j = 1, · · · ,n − 1;

0, otherwise
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and

δ(33)
i, j (1) =



n∑
k=2
βka1,kak,1, i = j = 1;

j−1∑
k=2
βka1,kak, j, i = 1, j = 3, · · · ,n;

j−1∑
k=1
αkan,kak, j, i = n, j = 2, · · · ,n;

0, otherwise.

Using Corollaries 3.20-3.23, similar to Theorems 3.180-3.183, we can prove the following results.

Theorem 3.184. Suppose that 0 ≤ αk, βk+1 ≤ 1, k = 1, · · · ,n − 1, and

n∑
k=2

βka1,kak,1 < 1,
n−1∑
k=1

αkan,kak,n < 1. (54)

Then Theorem A is valid for ν = 33.

Theorem 3.185. Suppose that 0 ≤ αk, βk+1 ≤ 1, k = 1, · · · ,n − 1. Then Theorem B is valid for ν = 33.

The results given in Theorems 3.184 and 3.185 are better than the corresponding ones given in [93,
Theorem 2.2].

Theorem 3.186. Suppose that (54) holds and 0 ≤ αk, βk+1 ≲ 1, k = 1, · · · ,n−1. Then Theorem C is valid for ν = 33,
provided one of the following conditions is satisfied:

(i) 0 ≤ γ < 1.

(ii) γ = 1 and one of the following conditions holds:

(ii1) There exists k ∈ {2, · · · ,n} such that βka1,kak,1 > 0.

(ii2) There exist j ∈ {3, · · · ,n} and k ∈ {2, · · · , j − 1} such that βka1,kak, j > 0.

(ii3) There exist j ∈ {2, · · · ,n} and k ∈ {1, · · · , j − 1} such that αkan,kak, j > 0.

(ii4) an,1 < 0 and αn > 0.

(ii5) ak,1 < 0, k = 2, · · · ,n.

(ii6) ak,n < 0, k = 1, · · · ,n − 1.

(ii7) an,1 < 0 and ak,n < 0, k = 2, · · · ,n − 1.

(ii8) ak,k+1 < 0, k = 1, · · · ,n − 1.

(ii9) an,1 < 0 and ak,k+1 < 0, k = 2, · · · ,n − 1.

Theorem 3.187. Suppose that 0 ≤ αk, βk+1 ≲ 1, k = 1, · · · ,n− 1. Then Theorem D is valid for ν = 33, provided one
of (i) and (ii) of Theorem 3.186 is satisfied.

A combination is proposed in [92] as Q34 = Q5 +Q14, i.e.,

Q34 =



0 · · · 0 0 0 · · · 0
...

. . .
...

...
...

...
...

0 · · · 0 0 0 · · · 0
−α1ar,1 · · · −αr−1ar,r−1 0 −αr+1ar,r+1 · · · −αnar,n

0 · · · 0 0 0 · · · 0
...

...
...

...
...

. . .
...

0 · · · 0 0 0 · · · 0


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with 2 ≤ r ≤ n − 1, αk ≥ 0, k = 1, · · · ,n, k , r and

r−1∑
k=1

αkar,k , 0 and
n∑

k=r+1

αkar,k , 0.

In this case, δ(2)
i, j (γ) and δ(2)

i, j (1) reduce respectively to

δ(34)
i, j (γ) =



(γ − 1)α jar, j + γ
∑

1≤k≤ j−1
r+1≤k≤n

αkar,kak, j, i = r, j = 1, · · · , r − 1;

n∑
k=1
k,r

αkar,kak,r, i = j = r;

(γ − 1)α jar, j + γ
j−1∑

k=r+1
αkar,kak, j, i = r, j = r + 1, · · · ,n;

0, otherwise

and

δ(34)
i, j (1) =



∑
1≤k≤ j−1
r+1≤k≤n

αkar,kak, j, i = r, j = 1, · · · , r;

j−1∑
k=r+1

αkar,kak, j, i = r, j = r + 2, · · · ,n;

0, otherwise.

Similar to the proof of Theorems 3.42 and 3.99, we can prove corresponding comparison results, directly.

Theorem 3.188. Suppose that 0 ≤ αk ≤ 1, k = 1, · · · ,n, k , r, and
∑n

k=1,k,r αkar,kak,r < 1. Then Theorem A is valid
for ν = 34.

Theorem 3.189. Suppose that 0 ≤ αk ≤ 1, k = 1, · · · ,n, k , r. Then Theorem B is valid for ν = 34.

The results given in Theorems 3.188 and 3.189 are better than the corresponding ones given in [92,
Theorem 2.2].

Theorem 3.190. Suppose that 0 ≤ αk ≲ 1, k = 1, · · · ,n, k , r, and
∑n

k=1,k,r αkar,kak,r < 1. Then Theorem C is valid
for ν = 34, provided one of the following conditions is satisfied:

(i) 0 ≤ γ < 1.

(ii) γ = 1 and one of the following conditions holds:

(ii1) There exist i ∈ {1, · · · , r} and j ∈ {1, · · · , i − 1} ∪ {r + 1, · · · ,n} such that α jar, ja j,i > 0.

(ii2) There exist i ∈ {r + 2, · · · ,n} and j ∈ {r + 1, · · · , i − 1} such that α jar, ja j,i > 0.

(ii3) ar,r+1 < 0 and αr+1 > 0.

(ii4) ak,k+1 < 0, k = 1, · · · , r − 1.

(ii5) an,1 < 0 and ak,k+1 < 0, k = r + 1, · · · ,n − 1.

(ii6) ak,r < 0, k = 1, · · · , r − 1.

(ii7) ak,r < 0, k = r + 1, · · · ,n.

(ii8) an,1 < 0 and ak,n < 0, k = r + 1, · · · ,n − 1.

(ii9) ak,1 < 0, k = r + 1, · · · ,n.

Theorem 3.191. Suppose that 0 ≤ αk ≲ 1, k = 1, · · · ,n, k , r. Then Theorem D is valid for ν = 34, provided one of
the conditions (i) and (ii) of Theorem 3.190 is satisfied.
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Similarly, let Q35 = Q6 +Q15. Then we can propose a combination. For simplicity we set

Q35 =



0 · · · 0 −α1a1,r 0 · · · 0
...

. . .
...

...
...

...
...

0 · · · 0 −αr−1ar−1,r 0 · · · 0
0 · · · 0 0 0 · · · 0
0 · · · 0 −αr+1ar+1,r 0 · · · 0
...

...
...

...
...

. . .
...

0 · · · 0 −αnan,r 0 · · · 0


with 2 ≤ r ≤ n − 1, αk ≥ 0, k = 1, · · · ,n, k , r and

r−1∑
k=1

αkak,r , 0 and
n∑

k=r+1

αkak,r , 0.

It is proposed for the preconditioned Jacobi and Gauss-Seidel methods in [66].
In this case, δ(2)

i, j (γ) and δ(2)
i, j (1) reduce respectively to

δ(35)
i, j (γ) =


αiai,rar,i, i = j ∈ {1, · · · ,n} \ {r};
(γ − 1)αiai,r, i ∈ {1, · · · ,n} \ {r}, j = r;
γαiai,rar, j, i = 1, · · · , r − 1, j ∈ {1, · · · , i − 1} ∪ {r + 1, · · · ,n};
γαiai,rar, j, i = r + 2, · · · ,n, j = r + 1, · · · , i − 1;
0, otherwise

and

δ(35)
i, j (1) =


αiai,rar, j, i = 1, · · · , r − 1, j ∈ {1, · · · , i} ∪ {r + 1, · · · ,n};
αiai,rar, j, i = r + 1, · · · ,n, j = r + 1, · · · , i;
0, otherwise.

Since δ(35)
r, j (γ) = 0, j = 1, · · · ,n, then the condition (ii) of Theorem 3.18 can be not satisfied.

By Corollaries 3.20-3.23, we can prove the following results, directly.

Theorem 3.192. Suppose that 0 ≤ αk ≤ 1 and αkak,rar,k < 1, k = 1, · · · ,n, k , r. Then Theorem A is valid for
ν = 35.

Theorem 3.193. Suppose that 0 ≤ αk ≤ 1, k = 1, · · · ,n, k , r. Then Theorem B is valid for ν = 35.

Theorem 3.194. Suppose that 0 ≤ αk ≲ 1 and αkak,rar,k < 1, k = 1, · · · ,n, k , r. Then Theorem C is valid for
ν = 35, provided one of the following conditions is satisfied:

(i) 0 ≤ γ < 1.

(ii) γ = 1 and one of the following conditions holds:

(ii1) There exist i ∈ {1, · · · , r − 1} and j ∈ {1, · · · , i} ∪ {r + 1, · · · ,n} such that αiai,rar, j > 0.

(ii2) There exist i ∈ {r + 1, · · · ,n} and j ∈ {r + 1, · · · , i} such that αiai,rar, j > 0.

(ii3) ar−1,r < 0 and αr−1 > 0.

(ii4) ar,1 < 0.

(ii5) There exists k ∈ {r + 1, · · · ,n} such that ar,k < 0.
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Proof. We just need to prove (ii3), (ii4) and (iiv).
When (ii3) holds, from the irreducibility of A, there exists j0 ∈ {1, · · · ,n} \ {r} such that ar, j0 < 0, so that

αr−1ar−1,rar, j0 > 0, which implies that (ii1) holds for i = r − 1 and j = j0.
If (ii4) holds, then by the definition of Q35 there exists k0{1, · · · , r − 1} such that αk0 ak0,r < 0, so that

αk0 ak0,rar,1 > 0, which implies that (ii1) holds for i = k0 and j = 1.
For the case when (ii5) holds, the proof is completely same.

Theorem 3.195. Suppose that 0 ≤ αk ≲ 1, k = 1, · · · ,n, k , r. Then Theorem D is valid for ν = 35, provided one of
the conditions (i) and (ii) of Theorem 3.194 is satisfied.

Clearly, there exists a permutation matrix V such that VTQ35V = Q6 with q(6)
r,1 = α1a1,r, q(6)

k.1 = αkak,r,
k = 2, · · · ,n, k , r. It is easy to see that the matrices A and VTAV have the same irreducibility and
ρ(J (A)) = ρ(J (VTAV)), ρ(J (A(35))) = ρ(J (VTP35VVTAV)). Hence, by (iii) of Theorem 3.51, Theorems
3.194 and 3.195 for γ = 0 are valid whenever we set αk = 1, k = 1, · · · ,n, k , r. So from Theorem 3.195 it can
derive [66, Theorem 2.2].

At last, in [26], Q is chosen as

Q36 = Q11 +Q20 =



0 0 · · · 0 −
a1,n

α2
− β2

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
−

an,1

α1
− β1 0 · · · 0 0


with a1,n < 0, an,1 < 0, αi > 0, i = 1, 2, an,1/α1 + β1 < 0 and a1,n/α2 + β2 < 0.

It is proposed in [41] for αi = α, βi = β, i = 1, 2.
In this case, for n ≥ 3, the condition (ii) of Theorem 3.6 can be not satisfied.
By Corollaries 3.12-3.15, it can be prove the following comparison results.

Theorem 3.196. Suppose that

β1 ≥

(
1 −

1
α1

)
an,1, β2 ≥

(
1 −

1
α2

)
a1,n (55)

and

β1 >
1

a1,n
−

an,1

α1
, β2 >

1
an,1
−

a1,n

α2
. (56)

Then Theorem A is valid for ν = 36.

Theorem 3.197. Suppose that (55) holds. Then Theorem B is valid for ν = 36.

Theorem 3.198. Suppose that (56) holds and

β1 ≳
(
1 −

1
α1

)
an,1, β2 ≳

(
1 −

1
α2

)
a1,n. (57)

Then Theorem C is valid for ν = 36.

Proof. In this case, for i , j, the condition q(1)
i, j ≲ −ai, j reduces to (57).

On the other hand, since an,1/α1 + β1 < 0, then the condition (ii2) in Theorem 3.6 is satisfied. It follows
by Corollary 3.14 that Theorem C is valid.

Theorem 3.199. Suppose that (57) holds. Then Theorem D is valid for ν = 36.
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4. Conclusions

In this paper, we have investigated the preconditioned AOR method for solving linear systems. We
have studied two general preconditioners and proposed some lower triangular, upper triangular and
combination preconditioners. For A being an L-matrix, a nonsingular M-matrix, an irreducible L-matrix and
an irreducible nonsingular M-matrix, four types of comparison theorems are presented, respectively. They
contain a general comparison result, a strict comparison result and two Stein-Rosenberg type comparison
results. Our theorems include and are better than almost all known corresponding results. We also pointed
out some incorrect known results.

Of course, according to the construction of combination preconditioners, we can define more combina-
tion preconditioners.

When (γ,ω) is equal to (ω,ω), (1, 1) and (0, 1), from the results above, we can derive respectively the
corresponding comparison results about the preconditioned SOR method, Gauss-Seidel method and Jacobi
method directly.

Similar to [2, 7, 10, 12, 13] for the block preconditioned Jacobi, Gauss-Seidel, SOR methods and the block
preconditioned AOR method respectively, when A is partitioned by block, then Q can be chosen as a block
matrix, so that we can derive the same comparison results for the block preconditioned AOR method.

Similar to [3, 25, 27, 64, 87, 106, 112, 114] for the preconditioned AOR methods for solving linear least
squares problems, we can derive the corresponding comparison results as above.

The comparisons between either different preconditioners or different parameters of a same type pre-
conditioner have investigated by many authors in [1–3, 17, 18, 22, 23, 31, 32, 34, 38, 41, 43, 44, 47, 48, 59,
62, 66, 67, 69–72, 74, 76–78, 82, 90–93, 96, 100–102, 105, 108]. This is an important and interesting research
subject. Because of the length, this paper does not cover this topic.

In [19, 24, 33, 36, 55, 58, 60, 61, 65, 75, 83, 88, 94, 97, 101] and some related literatures, the preconditioned
iterative methods for H-matrix is studied.

Recently, in [5, 6, 21, 28, 49, 57, 73, 95], the preconditioned tensor splitting methods and the precondi-
tioned AOR (SOR) methods for solving multi-linear systems are proposed. These are new subjects to be
studied.
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[29] B. Karasözen, A.Y. Özban, Modified iterative methods for linear sustems of equations, Int. J. Comput. Math. 70 (1998), 179–196.
[30] T. Kohno, H. Kotakemori, H. Niki, M. Usui, Improving modified iterative methods for Z-matrices, Linear Algebra Appl. 267 (1997),

113–123.
[31] T. Kohno, H. Niki, A note on the preconditioner Pm = (I + Sm), J. Comput. Appl. Math. 225 (2009), 316–319.
[32] T. Kohno, H. Niki, Letter to the editor: A note on the preconditioned Gauss-Seidel (GS) method for linear systems, J. Comput. Appl. Math.

233 (2010), 2413–2421.
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