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On preconditioned AOR method for solving linear systems
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Abstract. In this paper, we investigate the preconditioned AOR method for solving linear systems. We
study two general preconditioners and propose some lower triangular, upper triangular and combination
preconditioners. For A being an L-matrix, a nonsingular M-matrix, an irreducible L-matrix and an irre-
ducible nonsingular M-matrix, four types of comparison theorems are presented, respectively. They contain
a general comparison result, a strict comparison result and two Stein-Rosenberg type comparison results.
Our theorems include and are better than almost all known corresponding results.

1. Introduction
Consider a system of n equations
Ax=Db, (1)

where A = (a;;) € #™", b, x € #" with b known and x unknown. In order to solve the system (1) with
iterative methods, the coefficient matrix A is split into

A=M-=N, ()

where M is nonsingular and N # 0. Then a linear stationary iterative method for solving (1) can be described
as

=Tk + M, k=0,1,2,---, (3)

where T = M~IN is the iteration matrix.
We decompose A into

A=D-L-1,

where D is a diagonal matrix, L and U are strictly lower and upper triangular matrices, respectively, as
usual.
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Forwe #Z\ {0} and y € Z, let
A= My,cu - Ny,m/ (4)

where

M, ., = %(D -yL), Ny o = % [Q1-w)D+(w—-y)L+wlU].
Then the AOR method for solving (1) is defined in [16] by
= FroD-yL)', k=0,12,...,
where
Ly =D-yL) ' [(1-w)D+(w-y)L+wU]

is the AOR iteration matrix. The splitting (4) is also called the AOR splitting of A.

When (y, w) is equal to (w, w), (1,1) and (0,1), the AOR method reduces respectively to the SOR method,
Gauss-Seidel method and Jacobi method, whose iteration matrices are represented by .%,,, £ and ¢.

In [16] it is pointed out that, for y # 0, the AOR method is an extrapolated SOR (ESOR) method with
overrelaxation parameter y and extrapolation one w/y, i.e.,

w w
Lo = (1— —)I+ -,
2 y Y7
and, hence, if 1] is an eigenvalue of .}, and A, the corresponding one of .7, then we have
w W
A=1-—+—n. (5)
V.oV 1

It is well known that, if A is nonsingular, then the iterative method (3) is convergent if and only if the
spectral radius p(T) of the iteration matrix T is less than 1. In this case, the matrix T is also called convergent.
However, if A is singular, then we have p(T) > 1, so that we can only require the semiconvergence of the
splitting. When the iterative method (semi)converges, the convergence speed is determined by p(T), and
the smaller it is, the faster the iterative method converges. Therefore p(T) is called convergence factor.

In order to decrease the spectral radius of the iteration matrix, an effective method is to precondition
the linear system (1). It is well known that the term preconditioning refers to transforming the system (1)
into another system with more favorable properties for iterative methods.

If P is a nonsingular matrix, then the preconditioned linear system

PAx = Pb

has the same solution as (1). Here P is called the preconditioner.
Generally speaking, preconditioning attempts to improve the spectral properties of the coefficient matrix.
A good preconditioner P should meet the following requirements:

e The preconditioned system should have more favorable properties for iterative methods, in particular,
the iterative methods can be convergent more faster.

e The preconditioner should be cheap to construct.

To choose a good preconditioner P is an interesting problem, which has been investigated widely. In a
large number of papers, in particular for the AOR method, a special preconditioner P is proposed by

P=1+Q, Q>0.
Then we define a matrix splitting as

PA=M-N.



Y. Song / Filomat 39:28 (2025), 9865-9946 9867
A preconditioned iterative method can be defined by
=T+ My, k=0,1,2,---,

where T = M~!N is the iteration matrix.

When A is an L-matrix, a nonsingular M-matrix, an irreducible L-matrix or an irreducible nonsingular
M-matrix, the preconditioned AOR, SOR, Gauss-Seidel and Jacobi methods are constructed, generalized
and applied by [1, 2, 7-9, 12, 14, 15, 17-20, 22-24, 26, 29-31, 3447, 50-56, 58-63, 6672, 74-76, 79, 82-85, 90—
94, 96-105, 107-111, 113, 114].

In this paper, we investigate the preconditioned AOR method for solving linear systems. We study
two general preconditioners and propose some lower triangular, upper triangular and combination pre-
conditioners. For A being an L-matrix, a nonsingular M-matrix, an irreducible L-matrix and an irreducible
nonsingular M-matrix, four types of comparison theorems are presented, respectively. They contain a
general comparison result, a strict comparison result and two Stein-Rosenberg type comparison results.
Our theorems include and are better than almost all known corresponding results. Some incorrect known
results are pointed out.

This paper is organized as follows. In Section 2 we give some concepts and results, which will applied in
the next section. In Section 3, we study two general preconditioners, some lower triangular, upper triangular
and combination preconditioners for the preconditioned AOR method. Four types of comparison results
are proved. In Section 4, we give some explanations and prospects.

2. Some concepts and lemmas

For convenience we recall and give some concepts and lemmas as follows.

A matrix B € ™ is called nonnegative, semi-positive, positive if each element of B is nonnegative,
nonnegative but at least a positive element, positive, which is denoted by B > 0, B > 0 and B > 0,
respectively. When B; — B, > (>, >)0, we denote B; > (>,>)B; or B; < (<, <)B;. Similarly, for y € #", by
identifying it with n X 1 matrix, we can also define y > (<)0, ¥ > (<)0 and y > (<)0. B € Z™" is called
monotone, if B is invertible and B! > 0. B = (bi;) € #™" is called a Z-matrix if b;; <0 fori,j=1,---,n,
i # j; an L-matrix if it is a Z-matrix with a;; > 0,7 = 1,--- , n; a nonsingular M-matrix if it is a Z-matrix and
is monotone. It is well known that a nonsingular M-matrix is an L-matrix.

A matrix B € ™" is called reducible if there is a permutation matrix V such that

Biq Bip }

T _
VBV _[ o' B

where B11 € Z™', By, € BX=1) with 1 < ¥ < n — 1. Otherwise, B is irreducible. The directed graph of
a matrix B = (b;;) € #™" is denoted by G(B). A path in G(B) which leads from the vertex V; to the vertex
V]' is denoted by Oij, ie., 0ij = (j(), j1, cee ,j1+1) withi = jo, ] = j1+1, [ >0and bjkjk+1 #0,k=0,---,1 Itis well
known that a matrix B is irreducible if and only if G(B) is strongly connected, which means that for any
i,j €{1,---,n} there exists a path g, ; € G(B).

Definition 2.1. The decomposition (2) is called a splitting of A if M is nonsingular. A splitting is called:
(i) Regular if M~ > 0 and N > 0 (cf. [86, Definition 3.28]);
(ii) Weak regular if M~ > 0 and M™'N > 0 (cf. [86, Definition 3.281);
(iii) Nonnegative if M~'N > 0 (cf. [80, Definition 1.1]).
Lemma 2.2. [86, Theorems 2.7 and 2.20]

(i) Let B> 0. Then B has a nonnegative eigenvalue equal to p(B), and there corresponds an eigenvector x > 0.
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(ii) Let B > 0 be irreducible. Then B has a positive eigenvalue equal to p(B), and there corresponds an eigenvector
x> 0.

Lemma 2.3. [4, Theorem 2-1.11] Let B > 0.
(i) If Bx > ax with x > 0, then p(B) > a.
(ii) If Bx < Bx with x > 0, then p(B) < B.
(iii) If B is irreducible and Bx > ax with x > 0, then p(B) > a.
(iv) If B is irreducible and Bx < Bx with x > O, then p(B) < f and x > 0.

Here we have made a minor modification to [4, Theorem 2-1.11]. In fact, for (iif), x > 0 cannot be
derived.

Lemma 2.4. Let B > 0and x > 0.
(i) If Bx > ax then p(B) > a.
(ii) If Bx << px then p(B) < B and x > 0.

Proof. Since B > 0, then there exists y > 0 such that BTy = p(B)y. Multiply y” on the left side of Bx > ax or
Bx < px respectively, we can obtain p(B)y'x > ay’x or p(B)yx < ByTx, which derives p(B) > a or p(B) <
directly. When Bx < fx, x > 0 is obvious. []

Lemma 2.5. [4, Theorem 6-2.7] Let B be an irreducible Z-matrix. Then B is a nonsingular M-matrix if and only if
B> 0.

Lemma 2.6. [4, Theorem 6-2.3] Let B be a Z-matrix. Then the following statements are equivalent:
(i) B is a nonsingular M-matrix.
(ii) There is a vector x > 0 such that Bx > 0.
(iii) The weak regular splitting of B is convergent.

Lemma 2.7. [86, Theorem 3.37] Any weak reqular splitting of B is convergent if and only if B is nonsingular with
B! >0.

Lemma 2.8. [86, Exerxise 3.3-6] Let A be an irreducible L-matrix. Then p(.£) > 0 and it has associated eigenvector
x> 0.

Lemma 2.9. Let A be an irreducible L-matrix, and let 0 < y < w < 1 and w > 0.

(i) Then p(%),,) > 0 holds.
(ii) Assume that x > 0 satisfies £, ,x = p(Z),w)x. Then x > 0.
(iii) Assume that y > 0 satisfies y' %), = p(Z),w)y". Then y'(D — yL)™ > 0.

Proof. Denote p = p(%),)-
Since A is an irreducible L-matrix, then (D — L)™' > 0 and
Ly =D =yL) ' [1-w)D+ (w-y)L+wl] = (1 -w)+w(D-yL)'[(1-y)L+ U] >0,

so that there exists u > 0 such that ., ,u = pu. Clearly, p = 0 if and only if N, ,u = 0. Because A is
irreducible L-matrix, it gets that N, , > U > 0.
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When w <1, we have N, ,u > (1 - w)/wu > 0. Whenw =1and y <1, we have thatN, , = (1-y)L+ U
is irreducible so that N, ,u > 0. Hence, for these two cases we obtain p > 0. When w = y = 1, by Lemma
2.8 we have also p > 0. We have proved (i).

If &£, ,x = px, then we obtain

[(w+p—-1)D—(w—-y+yp)L—-awl]x=0. (6)

Let A = (w+p—-1)D—(w-y+yp)L—wU. Since w > 0and w—y +yp > 0, then A is an irreducible Z-matrix.
If x has some zero elements, without loss of generality, then we can assume that

x=(2),92>>0€%’,1§r§n—1.

We divide A accordingly as

A= ( An A

= , Ao € ™.
Az Az,z) 22

Then A1, < 0. From (6) we derive A% = 0 so that A;, = 0, which implies that A is reducible. This is a
contradiction. Hence, x has no zero elements, i.e., x > 0. This has proved (ii).

When y'.%,,, = py”, letz" = y"(D — yL)™". Then z > 0. Further, we have z'[(1 — w)D + (w — y)L + wU] =
pz'(D - yL), so that [(w + p — 1)D = (w — y + yp)LT — wUT]z = 0. Since AT ia also an irreducible L-matrix,
then similar to the proof of (i) we can prove z > 0. Then (iii) is proved. [

Lemma 2.10. Let P > 0 be nonsingular, and let the splitting
PA=M-N )
be weak regular. Then the following three statements are equivalent:
(i) A7 >0.
(ii) (PA)™' > 0.
(ii1) The splitting (7) is convergent.

Proof. By Lemma 2.7, (ii) and (iii) are equivalent, immediately.
The splitting (7) can be rewritten into A = P~!M — P"'N. Clearly, this splitting is weak regular and
(P~'M) 1 (P7'N) = M~'N. The equivalence between (i) and (iii) follows directly by Lemma 2.7 again. [

From this lemma, the following lemma is obvious.

Lemma 2.11. Let A and PA be Z-matrices, where P > 0 is nonsingular. Then A is a nonsingular M-matrix if and
only if PA is a nonsingular M-matrix.

We prove two Stein-Rosenberg type comparison theorems.

Lemma 2.12. Let the splittings A = My — N1 = My — N, be respectively weak regular and nonnegative, and let
x> 0, y > 0 satisfy M;'Nox = p(M;*No)x, y"M;'Ny = p(M;'N1)y". Suppose that one of the following two
conditions is satisfied:

(1) MIl(Nz — Np)x > 0.

(i) y"M;' > 0and (N2 — N1)x > 0.

Then one of the following mutually exclusive relations holds:

(a) p(M;'N1) < p(M;'N2) < 1.
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(b) p(M;'N1) = p(M;'Nz) = 1.
(c) p(M;'N1) > p(M;'Ny) > 1.
Proof. Since Ax = (Mz — N)x = [1 — p(M;'N2)|Mzx, then by simple operation we have
M;'Nix — p(M;'Np)x = (M;'N1 — My'Np)x = (My'A — My A)x = My (M; — Mo)M; ' Ax
= [p(M;'Na) = 1IM; (M = My)x = [p(M;'Ny) = 1IM; ' (N2 = Ny)x (8)
and, therefore,
[p(M{'N) = p(M3 ' N2)ly"x = [p(M3'N2) — 11y M7 (N2 — Ny

When one the conditions (i) and (if) is satisfied, it derives that yTle(Nz — Np)x > 0. Since y'x > 0, then
we obtain

0, if pM;'Ny) <1,
0, if p(M;'Ny) =1,
0, if p(M;'Ny)> 1.

p(M;'Ny) — p(M;'Ny)

vV IilA

The proof is completed. [

By the definition of the AOR method, when w = y = 1in (4) we derive the Gauss-Seidel method, whose
iteration matrix is denoted by .Z. Now, let

PA=D-L-U=M;;-Ni,,

where D is a diagonal matrix, L and U are strictly lower and upper triangular matrices respectively
and My = D-1L, Niy = U. Then the preconditioned Gauss-Seidel iteration matrix can be defined as
= MKy, = (D - L)',

Lemma 2.13. Let A and PA be L-matrices, and let Lx = p(L)x with x > 0. Suppose that the second to nth
elements of M7} (N11 — Nu1)x are positive. Then one of the following mutually exclusive relations holds:

(@) p(2L)<p(ZL)<1.
(b) p(£L) =p(L) =1
(©) p(L) > p(L) > 1.
Proof. Consider the splittings
PA = My, — Nyy = PMy; — PNy .

Clearly, they are regular and nonnegative respectively.
Since the first column . is a zero vector, then it can be decomposed as

5> _ (0 12 (n—1)x(n—1)
g—(o ‘112/2)' W, >20eZx ,

so that p(£) = p(W2,).
Correspondingly, we decompose x and M| (N1,1 — Ni,1)x as

X ~_ ~ X ~ _
x=( x; ) M; (N1 —N1,1)x=( x; ) Xp, % € BV,

Then x, > 0 and X, > 0.
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Similar to the proof of Lemma 2.12, by (8) we can obtain that
[0 %2 (2 ) 3 )=toeer - i, - R =1t -11( 3 ).
so that
Wioxp — p(L)x2 = [p(L) — 1]%s.
Since W, > 0, then there exists z > 0 such that z' W, , = p(\Ifz,z)zT. Hence, we have
[p(W22) = p(D)]2" 2 = 2" Wo o, — p(L)2" 22 = [p(L) - 112" %,
Because of x, > 0, % > 0 and z > 0, we drives z'x, > 0 and z'%, > 0, so that

< 0, if p(&)<1,
p(W22) - p(£)q = 0, if p(L)=1,
> 0, if p(Z)>1
The proof is completed. [
Similar to [81, Theorem 3.4], we prove a strictly comparison result.

Lemma 2.14. Let the both splittings Ay = My — Ny and A, = M, — N, be nonnegative and convergent with Agl >0
and A1 > AT, Suppose that there exists x > 0 such that M;'Nox = p(M;*Np)x and Mox > Mix > 0. Then
p(Ml_lNl) < p(MElNz)
Proof. We have that

Ay'Mpx > AS'Mix > AT'Mx,

so that
1
———x = A"Mox > (I - M7'Ny) .
1 - p(M;'N) 2 ( )
Clearly, (I - M;'Ny)™! > 0. It follows by Lemma 2.4 that
1 1
—— > p(I-M;'N})) ) = ————.
1-pM, Ny~ ° ! 1- p(M'Ny)

The required result can be derived. 0O

3. Preconditioned AOR method and comparison results

In this section, without loss of generality, suppose that all of the diagonal elements of A are 1. In this
case, A is an L-matrix if and only if A is a Z-matrix.

For convenience, if the matrix Q is chosen as Q,, then we write P, =1+ Q,, Q, = (qf})) and AW =P ,A =
)
(al./j ). Let
A® =D, - L, - U, = M), - Ny, ©
with
VW

1 a1
M), = =(D, =yL), Ni = = [(1 = @)D, + (@ = )L, + wlL],

where D, = diag(A") is a diagonal matrix, L, and U, are strictly lower and upper triangular matrices
respectively. Then the corresponding preconditioned AOR method for solving (1) can be defined as

= 2V L oD, - yL,) ' Pb, k=0,1,2,...,

=2y



Y. Song / Filomat 39:28 (2025), 9865-9946 9872

where
2 = (Dy - yL) (1 = @)Dy + (@ = )Ly + wl,]

is the preconditioned AOR iteration matrix.

We will propose four types of comparison theorems. They contain a general comparison result, a strict
comparison result and two Stein-Rosenberg type comparison results.

We first give them as follows.

Theorem A (Stein-Rosenberg Type Theorem I)
Let A be an L-matrix. Then one of the following mutually exclusive relations is valid:

(i) p(L) < p(Ly0) < 1.
(ii) p(L)) = p(Ly0) = 1.
(iii) p(L) 2 p(Ly0) > 1.

Theorem B (General Comparison Theorem)
Let A be a nonsingular M-matrix. Then

p(LY) < p(L0) < 1.

Theorem C (Stein-Rosenberg Type Theorem II)
Let A be an irreducible L-matrix. Then one of the following mutually exclusive relations is valid:

(i) p(L) < p(L,0) < 1.
(ii) (L) = p(L0) = 1.
(iii) p(L)) > p(Ly0) > 1.

Theorem D (Strict Comparison Theorem)
Let A be an irreducible nonsingular M-matrix. Then

p(LY) < p(Ly,0) < 1.

Lemma 3.1. Suppose that £, > 0, XV‘Q, > 0. Assume that one of Theorems A, B, C and D is valid for 0 < y <

w<1w>0. Thenitisvalid for 0 < w <1and 0 <y < 1.

Proof. Assume that Theorem Cisvalidfor0<y <w <1, w > 0.
We just need to prove that it is also valid for 0 < w <y < 1. From (5), it is easy to prove that

@ @ [0V] @
(ZLw)=1-=+=p(Z), p(LY)=1-=1+=p(LM).
pZy y yP v)r P\Z, y yP )

Clearly,
<1 <1
P(Lw) =1 = p(Z) =1
>1 >1
and
<1 <1

P =1 = p")] =1
>1 >1
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Since Theorem C is valid for y < w, then we have that

<p(Z) if p(L)<1
p(L =p(Z) if p(Z) =1
>p(%) it p(&)>1,

so that

o[ PG i pB) <1
oL =p(Z0) i p(L) =1
>p(ZL)w) it p(ZL0) > 1.

When one of Theorems A, B and D is valid for 0 < y < w <1, w > 0, the proof is completely same.
The proof is completed. [

In the following, if there is no special explanation then we always assume that
O<w<l 0<y<L

We will construct some Q, (P,) to make the above four theorems hold. For simplicity, when we provide
the conditions for the establishment of Theorems A, B, C and D we always assume that A is an L-matrix, a
nonsingular M-matrix, an irreducible L-matrix and an irreducible nonsingular M-matrix, respectively. We
will not elaborate on this point one by one below.

3.1. General preconditioners

In [94] we have proposed some general preconditioners. A class of general constructions of Q is given

by
Qi =}
with

wm) =0, i=j=1,- M
qu{ZO, ij=1,- nz;t], and Zq #0.

i,j=1
i#f

Some comparison theorems have been proved.
By direct operation we have

(1)—a,]+qflj)+2qlkak], i,j=1,---,ni#] al(.,l —1+quak,, i=1,---,n. (10)
k#x

kﬂ \j

We define several decompositions as
Q=Q"+Q", QUU=E1+F+G;, QUL=E+F,+G,,

where E; and E, are diagonal matrices, Q¥), F; and F; are strictly lower triangular matrices, while Q®, G;
and G; are strictly upper triangular matrices. Then the three matrices in (9) are given by

Dy=1-E ~Ey, Li=L+F+F+Q"L-Q", U, =U+G; + Gy + QWU - Q.
Similar to the proof of [94, Theorem 2.6], we prove a lemma.

Lemma3.2. (i)

PN, =N}, = PiM,,, - M{), = [151 +Ex +y(F1 + F2) + (1 -9)QY + 0Q“M, .
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(ii) Assume that A is an eigenvalue of £, and x # 0 is its associated eigenvector. Then

LWx—Ax = (A= DIMOLIE; + B2+ p(F1 + ) + (1 - 9)QY + wQ®M, .
Proof. Since

P1A = M(l) Nj(/l,()u = PlM)/,w - PlNy,a)/

then by direct operation we have
m _ 1 0 4 oW
PlNy,w_Nya) p M}/w_My,m - 5[(I+Q +Q )(I_VL)_(Dl—VLl)]

= L[E 4 B R+ F2) + (1= )Q0 + QU - D]

which shows (i).
Similar to (8), we can get

LDx—Ax= (A= DM, (PIM,, — M),)x.
By (i), we derive (ii). O
Let
AD(y) = (E1 + E2) + yF1 + yF2 + yQUU + (1 = )Q = Ay + YAz + yAiz + YA + (1 - y)Q,
where Ay = E1 + E», Ay = F1, A1z = F>, Aiy = Q®U. Denote
AVG) = 00N, A= @), k=1,2,3,4.

By direct operation we can obtain that

SO0 _ngk“kw i=j=1,-,n
0, " otherwise,

§12 = { - Z oy, =3 m =2, i1,
0/ otherwise,

513 = {_ Z qflk)ak], i=2,-,n-1,j=1,---,i-1,

! 0, otherwise,

oM = { k_Zlqlkak,, i=1,,m=2,j=i+2,---,m,

0, otherwise,
so that
500 = & +yolP 4yl + 5l + (1= )]

_qukakir i:jzlr'“/n;
=1
k#i

(1- y)qflj) quzk”kf' i=1,---,n-1j=i+1,---,m;
-y -y Z ey, =200 =1 i

1+1 <k<n
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and
Yoqya, i=1 =10 ) # (1,1);
?ffiéi
65,1])(]‘): - Z qkak]/ Z.=1/'“/71_2/].:1'4_2/“'/n; (11)
0, i=1,---,n-1,j=i+1;
0, i=nj=1,

where the sum is taken to be zero when the upper limit is less than the lower limit.

Lemma 3.3. Let A be an L-matrix.

(i) Let0<y <1
(i1) Ifqglj) > 0 for some i # j, then (551].)()/) > 0.
(ip) Thereexisti,je{1,--- ,n},i# j, such that 651],)(y) > 0.

(ii) Lety =1.
(ii1) Suppose that there existi,j € {1,--- ,n} such that ql(.lj)a,-,i < 0. Then 61(.11.)(1) > 0.
(iiy) Suppose that there existi € {1,--- ,n—1}and j € {1,--- ,i} such that qgln)an,j < 0. Then 61(,1].)(1) > 0.
(ii3) Suppose that there existi € {1,--- ,n—1}and je {i+1,--- ,n} such that q(.l.)ajl < 0. Then 6(.1)(1) > 0.
(iiy) Suppose that there existi € {1,--- ,n}and j € {1,--- ,n — 1} such that q 11”+1 < 0. Then 6( +1(1) > 0.
(iis) Suppose that there existi € {2,--- ,n}and j € {2,--- ,i} such that ‘71-1”1,]‘ < 0. Then 61(,1].)(1) > 0.

In addition, suppose that A is irreducible.

(iig) Ifqz(lzi—l > 0 for somei € {1,---,n—1}, then there exists j € {1,--- ,n} \ {i + 1} such that 61(.1].)(1) > 0.
(iiz) Iquqli > 0, then there exists j € {2,--- ,n} such that 65}3(1) > 0.

(iig) Ifay1 <0and ayps1 <0,k =1,--- ,n—1, then there exist i, j € {1,--- ,n} such that 651].)(1) > 0.

Proof. Since A is an L-matrix, then 6(1]k) >0,k=1,2,3,4 and 6; 1)()/) > 0.
Assume that y < 1. If q( )>0,i% j, then 6 )(y) >(1- y)q( )'> 0, i.e., (i1) holds.

By the definition of Q, there existi,j € {1,--- ,n} and i # j, such that q;lj) > 0, it follows by (i1) that (i)
holds.
Now we prove (ii). From

6(1) = Zq‘”aki, =1 ,n,

k#l
(i) is obvious.
By (11), wheni =1,--- ,n — 1, then we have 651],)(1) > —qgln)an,j for j =1,---,i, which implies (ii;), while
6{)(1) = —q{)ajs, for j = i+1,--- ,n, which implies (iis).
Similarly, wheni =2,---,n,j=1,---,i—=landi=1,--- ,n-2,j=i+1,--- ,n -1, we get 651].)“(1) >
—qglj)a j,j+1, which implies (iiy).

While, wheni=2,--- ,nand j = ,i, then 5‘”(1) > —q'a1 j, which implies (iis).
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Assume that A is irreducible.
By the irreducibility of A, we have Z']-LL]-# 11 aiv1,j < 0. If q(.l.) > 0 then

1,i+1
za% z Y o, i 5 o,

=1 1sksj-1 =i+2 k=i+1
]¢z+1 i+1<k<n
Z i, 1+1a’+1] Z 1, z+1a’+1] _qz i+1 Z Aiv1,j > 0,

i+2
] /#H—l

which implies that there exists j € {1,---,n} \ {i + 1} such that 651].)(1) > 0. This proves (iig).

Similarly, we have }.7_, a1,; < 0. If ‘1511)1 > 0 then

n

Zé 0 = izan“kf 2 Zq —qffj Zﬂl,j >0,

=2 k=1 =2

which implies that there exists j € {2,--- , n} such that 6511;.(1) > 0. This proves (ii7).
At last, assume thata,; > 0and agp >0, k=1, ,n—1.
Fori=1,---,n—1,wehave

6(1) = Zq Bt = = 1.
k=i+1

Similarly, we have thatfori=1,--- ,n—-1,j=i+2,--- ,n,

i
@ _ o o
51‘,; 1) =- Z T j = =4 i 19j-1js

k=i+1

andfori=2,---,n,j=2,---,i,

© — ™ (OIS
o;; (1) =~ Z i j = =4 ;18j-1,j-

1<k<j-1
i+1<k<n
Hence it gets that
o ) . - .
67,,], 1) = —; 481, 1= 1,---,nj=2,---,nj#i+1l

Denote n = min{-a,1; —axi+1 :k=1,---,n—1}. Then n > 0. Now, we obtain

Z 5(1) = Z Z 87(1) + Z (1) > Z Z 501 + Z 5)(1)

- o =
DI IR IR 39 A oL
i=1 J= p i
j#i+1 e
n n-1 n
qu +Zq =anf.llj)>0
i=1 Jj=1 =
i i#j

which implies that there exist i, j € {1,--- 1} such that 55.1]?(1) >0, i.e., (iig) holds. [J

9876
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We first give the condition for the establishment of the Stein-Rosenberg Type Theorem 1.
Theorem 3.4. Suppose that P1A is an L-matrix. Then Theorem A is valid for v = 1.

Proof. Denote p = p(%),)-
Since A is an L-matrix, then it gets that E; >0, F; > 0,i =1, 2, M;lw > (0and

Ly =My ,Nyw = (1 =) +w(l - yL) ' [(1-p)L+ U] 20,
which shows that the splitting (4) is weak regular. By Lemma 2.2, p is an eigenvalue of .Z), ,, with associated
eigenvector x > 0.

Similarly, the AOR splitting P1A = Mg,lfu - N)(,1 3(, is weak regular, i.e., [Mg,l}u]’l > 0and .,?351“), > 0.
By Lemma 3.2 we obtain

M
Lyw

x = px = (p = DIMyLIEL + Ea + y(Fy + F) + (1-)Q" + wQ"M Jx. (12)
By Lemma 3.1 we just need to consider the case when y < w. In this case N, > 0.
When p > 1, then My, x = Ny, x/p > 0. Since [M{"),]™" > 0,Q®¥ > 0and Q® > 0, then from (12) it derives
that fy(la),x > px. It follows by Lemma 2.3 that p(fy(,la),) = p.
Assume that p < 1.
When A is irreducible, by Lemma 2.9, p > 0 and we can choose x > 0. Since M, ,x = N, ,x/p > 0, then

from (12) it derives that ,Z)fla),x < px. It follows by Lemma 2.3 that p(,i”)flla),) <p.
If A is reducible, then definite A = (d;,;) with

. { 0, if ai,j #0,

11, if a;; =0, ij=1,--,n

ai,j =

Let A(€) = A — €A with € > 0. Then A(e) is an irreducible L-matrix. From P1A(e) = P1A — eP1 4, it is easy to
see that P1A(€) is an L-matrix for sufficient small €, since the matrix P A is an L-matrix and P1A > 0. Denote
the AOR iteration matrices corresponding to A(e) and P1A(e) by %, ., (€) and ,Zy(la), (€), respectively. By the
proof above we have p(.,?gfla)) (€)) < p(Z),0(€)), so that

p(Z5) = lim p(Z\)(€)) < lim p(Z)(€)) = p.
! €e—0* ’ e—0* !

Now, we have proved that either p(.fy(,va))) <p(&)w) <lor p(.,?gf,va))) > p(Z)w) 2 1, which implies that one
of the three mutually exclusive relations (i), (if) and (iii) of Theorem A holds.
The proof is completed. [

This result is consistent with [94, Theorem 2.6].
Theorem 3.5. Suppose that P1A is a Z-matrix. Then Theorem B is valid for v = 1.

Proof. Since A is a nonsingular M-matrix, then the splitting (4) is weak regular. By Lemma 2.6, the AOR
method is convergent, i.e., p(.Z},) < 1.

On the other hand, by Lemma 2.11, P; A is a nonsingular M-matrix so that it is an L-matrix.

Now, it follows by Theorem 3.4 that Theorem B is valid. [

Next, we give the Stein-Rosenberg Type Theorem IL

Theorem 3.6. Suppose that P1A is an L-matrix. Then Theorem C is valid for v = 1, provided one of the following
conditions is satisfied:

(i) 0 <y < 1and P1A is irreducible.
(ii) v = 1 and P1A is irreducible. One of the following conditions holds:
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(iiy) There existi,j € {1, -+ ,n} such that 653)(1) > 0.
(iip) qf}i >0
(ii3) There existsk € {1,--- ,n — 1} such that qSZH > 0.
(iiy) There existi,j € {1,--- ,n} such that ql(.,l].)aj,i <0.
(iis) Thereexisti€{1,--- ,n—1}and j € {1,--- i} such that q(.l)an]- < 0.
(ii) Thereexistie (1,--- ,n—1}and je{i+1,--- ,n}such thutq a1 < 0.
(ii7) Thereexisti € {1,--- ,nyand j€{1,---,n — 1} such that qi,]. ajj+1 <0,
(iig) Thereexisti€ (2,--- ,n}and j € (2,--- i} such that q 1a1] <0.
(iig) an1 <0, a541 <0, k=1,--- ,n—-1
(iii) 0 <y < land foreachie {1, --- ,n — 1} there exists j(i) € {1,--- ,n} such that q (l)

(iv) y =1and foreachi € {2,--- ,n — 1} one of the following conditions holds:

(iv1) There exists j(i) € {1, -, n} such that 65,1]‘)(1‘)(1) > 0.
(iva) ql ) >

(iv3) There exists j; € {1,- -, n} such that ql(.,l]zajili <0.

(ivg) There exists j; € {1,--- , i} such that q(.l)anj. <0.

(ivs) There exists j; € {i+1,--- ,n} such that q ”11 1 <0.
(ive) There exists j; € {1,--- ,n — 1} such that qi,]-,.ﬂji,j,+1 <0.
(iv;) There exists j; € {2, ,i} such that qf,ll)al,jl <0.

At the same time, one of the following conditions also holds:

(iv") There exist j€{2,--- ,nyand k€ {1,---,j— 1} such that q kak] <0.
(") g} > 0.

(iv°) There exists j € {2,--- ,n — 1} such that

anj+ 40+ Z qa; <0 (13)
k;t]

(iv") One of the conditions (iv1)-(ive) holds for i = 1 and
an1 + qfqli + Z q(l)akl <0. (14)

(iv°) One of the conditions (ivq)-(ive) holds for i = 1 and a,; < 0.



Y. Song / Filomat 39:28 (2025), 9865-9946 9879

Proof. Denote p = p(%),.). Assume that x > 0 is its associated eigenvector.
Consider two splittings of P1A given by

PiA=M)), -N') = PiM,,,, - PN, .. (15)

Since A and P A are L-matrices, then the splittings are respectively weak regular and nonnegative, so that

[M{,,] 7! > 0.
By Lemma 3.1 we just need to consider the case when y < w. By Lemma 2.9 it follows that p > 0 and
x> 0.

Furthermore, we have 1/(w — y + yp) > 0. From N, ,x = pM,, ., %, it gets that

1
[x=—— [(+p-1) ol
w=y+yp P
so that
1
My,mx = m[(l - )/)I + )/U]x

By Lemma 3.2, we obtain

(P1Ny — NV))x = ! {El +Ex+y(F1+ F2) +(1-7)Q" + %Q(u)[(l -+ VU]}X

y+trp
= O(y, w)x, (16)

where
Y (w) L Ao 1 (1)
QWU+ (1-y)|=QY + Q™.
—ytyp y w w—=y+yp

Clearly, ®(y, w) = 0, A(l)()/) >0,A 20,k =1,2,3,4, and the positions of the positive elements of the
both matrices ®@(y, w) and AD(y) are completely same, since w > 0 and w —y + yp > 0.
Since P1A is an irreducible L-matrix, then, by Lemma 2.9, we can obtain p(,f)f,la),) > 0and y'(D;—yLy)™ >

1
q)()/, w) = 5(E1 +E, + )/Fl + )/Fz) =+

0 whenever y satisfies y > 0 and y".2'}), = p(Z D)y

We first prove (i).

In this case by (i) in Lemma 3.3 it follows that AM(y) > 0 so that ®(y,w) > 0. From (16), we can get
(P1Ny,» — N;lr)a,)x > 0. This shows that the condition (ii) of Lemma 2.12 is satisfied. The required result
follows by Lemma 2.12 directly.

We prove (ii).

Since y = 1, then w = 1. In this case, the AOR method reduces to the Gauss-Seidel method. The equality
(16) reduces to PiN1; — N\ = Ey + E» + F; + F, + QWU/p = d(1,1).

If one of the conditions (iip)-(ily) is satisfied, then by (ii) of Lemma 3.3 it is easy to prove that there exist
i,je€{l,---,n}such that 65};(1) > 0, which shows that (ii) is satisfied.

If (iiy) is satisfied, then ®(1,1) > 0, so that (P;N1; — N\))x > 0. This shows that the condition (ii) of
Lemma 2.12 is satisfied.
We prove (iii). Let

M1 1 ml 2 -
Mgl)w (m (1)) — , My, € Gn-Dx(n=1)
mn n
Then 715 = 0, 1131 = (m(l) . 511;)1 pandforj=1,---,n-1, milj) >0,

1) = fnj + ‘73; + Z q(lk“kj <0. (17)
k#/



Y. Song / Filomat 39:28 (2025), 9865-9946 9880

Furthermore, we have

W11 _ M 0
[M)/,m] - (mi,j) - }1) mZ 1]\/I m}l) > 0/
where 1y > 0, 11, > —mfj,)cmk,k / mﬁ,lzl, k=1,--- ,n—-1.
By (i1) in Lemma 3.3, foreachi e {1,--- ,n — 1}, Y ()/) > 0. Hence, in this case, the every row of ®(y, w)

i,j(i)
has positive elements except the last row, so that the first to (n — 1)th elements of ®(y, )x are positive. Since

[My a,] '>0and sy > 0fork=1,--- ,n— 1, then the first to (n — 1)th elements of [M w] 1d(y, w)x are also
positive.
Since A is irreducible, then there exists j, € {1,--- ,n — 1} such thata, ;, <0.

If q(l) > 0 then 6;1; »=@1- y)q’(};. > 0. This shows that the last row of ®(y, w) has positive elements,

so that the last element of ®(y, w)x is positive. From (16) we have proved that (P1N, ., — N§,1,i,)x > 0 and,
therefore,

[M(lgu 1(P1Ny,m - N;,l,zl,)x > 0. (18)

Whenq = O then from (17) m ; < ay,j, <0,sothat, ;, > 0. Hence the last element of [M 5,12”]‘1@()/, W)X
is positive, Wthh shows that (18) holds.

Now, we have proved that the condition (i) of Lemma 2.12 is satisfied for the splittings given in (15). By
Lemma 2.12 we can prove that Theorem C is valid.

At last, we prove (iv).

In this case, the AOR method reduces to the Gauss-Seidel method.

If one of (ivp)-(iv7) holds, then it follows by (ii1)-(iis) in Lemma 3.3 that (iv;) is satisfied.

When (iv1) holds, then the every row of ®(1,1) has positive elements except the first and last rows, so

that the second to (n — 1)th elements of ®(1,1)x and [M(lli]

If (iv") holds then 5,(11}(1) > —qfql,])(zzk,]' > 0. And if (iv’) is satisfied, then by (ii;) in Lemma 3.3 there exists
j€{2,---,n} such that 6;1,;(1) > 0. Hence, for these two cases the nth row of ®@(1, 1) has positive elements.
This has proved that the second to nth rows of ®(1,1) has positive elements, so that the second to nth
elements of ®(1,1)x and [M%i]‘lq)(l, 1)x are all positive.

If (iv°) holds, then mf}; <0, so that 7z, ; > 0. Hence the last element of [Mg,1 )w] 1d(1, 1)x is positive, which
shows that its second to nth elements are all positive.

~1d(1, 1)x are positive.

When (iv°) holds, if ‘71(411 > 0 then the proof is given above. If qf}; = ( then

1
a1 +qn1 +qu1,1ak1 <apn <0,

which implies that (iv?) is satisfied.
Now, we consider that (i) holds. Just as the proof above, the first row of ®(1, 1) has positive elements,
SO that the first to (n — 1)th elements of ®(1,1)x and [M(li]‘ld)(l, 1)x are positive. the inequality (14) shows

that m 1 <0,s0 thatiz,,1 > 0. Hence the last element of [M(l)] ld(1,1)x is positive, and therefore, its second
to nth elements are all positive.

We have proved that if one of (iv1)-(iv7) and one of (iv”")-(iv°) hold at the same time, then the condition
of Lemma 2.13 is satisfied. By Lemma 2.13 we can prove that Theorem C is valid.

The proof is completed. [

Theorem 3.7. Suppose that P1A is a Z-matrix. Then Theorem D is valid for v = 1, provided one of the following
conditions is satisfied:



Y. Song / Filomat 39:28 (2025), 9865-9946 9881

(i) One of the conditions (i)-(iv) of Theorem 3.6 holds.

(i)) Fori=2,---,n,j=1,---,i=1,a;; > al(.lj). And one of the following conditions holds:

(i1) There existsip € {1,--- ,n} such that al(.j)l.o <1.

(iiz) y > 0and there exist ig € {2,--- ,n}, jo € {1, ,io — 1} such that a;, j, > ”g)}’o'

Proof. By Lemma 2.11, PA ia a nonsingular M-matrix. Hence both AOR splittings A = M, , — N, ,, and

PiA=M), -

Denote p = p(%),,,) and x > 0 being its associated eigenvector. By Theorem 3.5, we have p(.Z] a),) <
p(Z)w) < 1.

When () holds, the proof is completely same as the proof of Theorem 3.5, by Theorem 3.6 we can prove
the required result.

Now, we prove (ii).

Since A is an irreducible nonsingular M-matrix, then, by Lemma 2.5, A7l > 0. While by Lemma 2.10,
(P1A)™! > 0. From A™! — (P1A)™! = (P A) 1Py — 1) = (P1A)1Q1 > 0, it gets that AL > (P A)™!

By Lemma 3.1 we just need to consider the case when y < w. Then N, ,, > 0 and N§,1 » = 0. By Lemma
29,p > 0and x > 0. Then it is easy to prove that M, , > My s 50 that M, ,x > My »X. Noticing that
Ax = (1/p = 1)N, ,x > 0, we have Mgl)wx = P1Ax + N)(,ll,)ux > 0. Now we have proved that the condition of

Lemma 2.14 is satisfied. By Lemma 2.14 it follows that p(.Z), (1)) <p(Zw) <1l O

Nf,lz, are weak regular.

By the definitions of L-matrix and Z-matrix, the following two corollaries can be derived from Theorems
3.4 and 3.5 directly.

Corollary 3.8. Suppose that zz )'>0, a ) <0,i, j=1,---,n,i# j. Then Theorem A is valid for v = 1.

Corollary 3.9. Suppose that al(.lj) <0,i,j=1,---,n,i# j. Then Theorem B is valid for v = 1.

In all of the following, for the case when A is irreducible, the symbol “<” (“2”) indicates “<” (“>") if
AW is irreducible even when it appears “=", otherwise it is “<” (“>").

Corollary 3.10. Suppose that a ) >0, a; 1) <0,4,j=1,---,n,i# j. Then Theorem C is valid for v = 1, provided
one of the following conditions is satzsﬁed

(i) Fori,j=1,---,n,i# ], aﬁlj) < 0 whenever a;j < 0. One of the conditions 0 < y < 1 and (iiy)-(iiy) whenever
y = 1in Theorem 3.6 holds.

(ii) One of the conditions (iii) and (iv) of Theorem 3.6 holds.

Proof. Clearly, the matrix P1A is an L-matrix. The condition a( ) < 0 whenever g; i < 0 ensures that P1A is

irreducible, since A is irreducible. This shows that the cond1t10n of Theorem 3.6 is satisfied, so that Theorem
Cisvalid. O

Similarly, the following corollary can be derived from Theorem 3.7 directly.

Corollary 3.11. Suppose that aflj) <0,i,j=1,---,n,i# j. Then Theorem D is valid for v = 1, provided one of the
conditions (ii) of Theorem 3.7, (i) and (ii) of Corollary 3.10 is satisfied.

Furthermore, noticing (10), from Corollaries 3.8-3.11, we give the following corollaries.
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Corollary 3.12. Suppose that qf.lj) < -apji,j=1,---,n,i# jand
1+Zq(1k)akl>0,i:1,~--,n. (19)
k#z

Then Theorem A is valid for v = 1.

Proof. Fori,j=1,--- ,n, we have

(1)—u,]+q(1)+2q(1k)ak]<u,]+q()<0 i#j
k;tz]

and

a) = 1+qu(1kl>0, i=j

kiz

This shows that the condition of Corollary 3.8 is satisfied. Therefore Theorem A is valid. [

By Corollary 3.9 and the proof of Corollary 3.12 we obtain the following corollary directly.
Corollary 3.13. Suppose that q](.lj) < -a;j i,j=1,---,n,i# j. Then Theorem B is valid for v = 1.

Corollary 3.14. Suppose that the condition of Corollary 3.12 is satisfied. Then Theorem C is valid for v = 1, provided
one of the following conditions is satisfied:

(i) Fori,j=1,--- ,n,i#j, qfl].) < —a;,; whenever a; j < 0. One of the conditions 0 < y < 1 and (iiy)-(iig) whenever
y =1 in Theorem 3.6 holds.

(ii) One of the conditions (iii) and (iv) of Theorem 3.6 holds, where the inequality (14) can be replaced by qS; < —ay,;.

Proof. Since A is irreducible, then there exists j € {1,--- ,n — 1} such that a,,; < 0. So we can choose Q; such
that q“; < —ay,; in (ii).

From the proof of Corollary 3.12 it is easy to prove that the condition of Corollary 3.10 is satisfied.
Therefore Theorem C is valid. [

Similarly, by Corollary 3.11 we can prove the following corollary directly.

Corollary 3.15. Suppose that qglj) < -aij,i,j=1,---,n,i# j. Then Theorem D is valid for v = 1, provided one of
the conditions (ii) of Theorem 3.7, (i) and (ii) of Corollary 3.14 is satisfied.

As a special case, in [94] we propose ‘71('2,‘) = —a; ja;; and get

Q2 = (—ajjai ;)
with

n
@i=0,a;;j20,4,j=1,---,n, i+ j and Zai,]-ai,j # 0.
i,i]:j]
Of course, when a;; = 0, the choice of a; ; is meaningless.
In [20], two special preconditioners are proposed for the preconditioned Gauss-Seidel method, where
oneis a;; = 1, the otheris a;j; = 1+afora >0,i,j=1,---,n,i # j. In[58, 90], for the preconditioned
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Gauss-Seidel and AOR methods respectively, the authors consider the case when a;; = a > 0 for i > j,
ajj=p=20fori<j,ij=1,---,n,witha+p+0.

Denote
n . .
Y. Qi kay i, i=j=1,---,n;
o
-1
5Py =1 =Dajaij+y L aiptiragj, i=1,-,n-1j=i+1,---n;
L] =i+1
(y-Dajjaij+y Y aigaigax;, i=2,---,nj=1,--,i-1
1<k<j-1
i+lgk]gn
and
kZ‘ ai,kai,kak,j; i= 1r Tt rn/j = 1/ T /ir (l/ ]) * (n/ 1)/
1<k<j-1
x‘+15k’sn
e =
6(1)2 Z aikaikakj/ i=1,"‘,n—2,j=i+2,"',7’l;
l,] k=i+1 % % 7 . . '
0, i=1---,n-1,j=i+1;
0, i=n,j=1.

Using Corollaries 3.8-3.11, we prove corresponding comparison theorems.

Theorem 3.16. Suppose that Y;_; \.; aipdixdi; <1,i=1,--- ,n, and

n
A —ajjai;— Z aijaijag; <0, 0,j=1,---,n, i #]. (20)
hory
Then Theorem A is valid for v = 2.
Proof. The inequality (20) shows that aﬁ) <0,4,j=1,---,n,i# j, and the inequality Z,’;Lk# Qi < 1

shows that aﬁ) >0,i=1,---,n.
It has proved that the condition of Corollary 3.8 is satisfied so that Theorem A is valid. [

Theorem 3.17. Suppose that (20) holds. Then Theorem B is valid for v = 2.

Proof. From the proof of Theorem 3.16 it can prove that the condition of Corollary 3.9 is satisfied. Therefore
Theorem B is valid. [

Theorem 3.18. Suppose that Y\, ; ixaixa; < 1,i=1,--- ,n. Then Theorem C is valid for v = 2, provided one
of the following conditions is satisfied:

(i) 0<y <land

"
1- ai,]')ai,]- - Z Qi kAikk,j S 0 whenever ajj < 0,i,j=1,---,n,i#] (21)

k=1
keij

(ii) y =1, the inequality (21) holds and one of the following conditions holds:

(iiy) There existi,j € {1,--- ,n} such that 65?(1) > 0.
(iiy) a1 <0and a1 > 0.

(ii3) There existsk € {1,--- ,n — 1} such that ayj1 < 0 and agpq > 0.
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(iiy) Thereexisti, j € {1,--- ,n} such that a; ja; ja;; > 0.

(its) Thereexisti€{1,--- ,n—1}and j€(1,--- i} such that a;,a;,a,,; > 0.
(iig) Thereexisti€{l,--- ,n—1}and j€{i+1,--- ,n} such that a; ja;ja;; > 0.
(i) Thereexisti€{1,--- ,nyand j€ {1, -+ ,n— 1} such that a; ja; ;a1 > 0.
(itg) Thereexisti € {2,--- ,n}and j € {2,--- i} such that a;1a;1a1,; > 0.

(ii9) ay1 <0and agp1 <0,k=1,--- ,n—1.

(iii) 0 < y < 1, the inequality (20) holds and for each i € {1,--- ,n — 1} there exists j(i) € {1,--- ,n} such that

(iv) y =1, the inequality (20) holds and for each i € {2,--- ,n — 1} one of the following conditions holds:

(iv1) There exists j(i) € {1,- -, n} such that 6(2(1)(1) > 0.

(iva) ajiv1 <0and a;jq > 0.

(iv3) There exists j; € {1,--- ,n} such that a; ja; ja;,; > 0.

(ivy) There exists j; € {1,--- i} such that a; ,a;,a,,j, > 0.

(ivs) There exists j; € {i +1,--- ,n} such that o, ja; a1 > 0.
(ive) There exists j; € {1,--- ,n — 1} such that a; ja; ja; j+1 > 0.
(iv7) There exists j; € {2,--- i} such that a;1a;1a1,j, > 0.

At the same time, one of the following conditions also holds:

(iv") Thereexist j€1{2,--- ,nfand k € {1,---, j — 1} such that a, xa, xax,; > 0.
(iv") a,1 <0and a,; > 0.
(iv°) There exists j € {2,--- ,n — 1} such that

n—1
o Z Qo kil kg, j < 0. (22)

kej

(iv") One of the conditions (iv1)-(ive) holds for i = 1 and
e
(I —an1)ant — ) angniirs < 0. (23)

2

—_

>~
||

(iv°) One of the conditions (ivq)-(ive) holds for i = 1 and a, 1 < 0.

Proof. The inequality Y, \.; aixaixdk; < 1 shows that aﬁ) >0,i=1,---,n. Now, 651].)()/) reduces to 652].)()/),
(13) and (14) reduce to (22) and (23), respectively.
Fori # j,if a;; = 0 then

(2) = Zazkaz KAk, j <0.

k#x}

When g;; < 0, the inequality (21) implies al(.zj) < 0.
Now, we have proved that the condition of Corollary 3.10 is satisfied. Hence Theorem C is valid. [

By Corollary 3.11 it is easy to prove the following theorem.
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Theorem 3.19. Theorem D is valid for v = 2, provided one of the following conditions is satisfied:

(i) One of the conditions (i)-(iv) of Theorem 3.18 holds.

(ii) The inequality (20) holds. Fori=2,--- ,n,j=1,---,i—1,

n

ai i+ Z ik, > 0.
k=1
ki j

And one of the following conditions holds:

(ii7) There exists iy € {1,- -+, n} such that

n

Z Qiy klig kfAk,ig > 0

k=1
keiy

(iiy) y > 0 and there exist ig € {2,--- ,n}, jo € {1,--- ,ip — 1} such that

n
Qi jo i jo + Z Qi JelTio kT jo > 0.
k=1
k#ig,jo
Since
n
(1- ai,j)ai,j - Z Qi ik, j < 1- ai,j)ai,j, ES j,

k=1
ki, j

then from Theorems 3.16-3.19, we can prove the following corollaries, directly.

Corollary 3.20. Suppose that 0 < a;; < 1,4,j=1,---,m, i # j, and Yy digigar; < 1,i=1,---,n. Then
Theorem A is valid for v = 2.

For the special case when a;; =a > 0fori > jand a;j = 2 0fori < j,i=1,---,n, the result is better
than the corresponding ones given by [90, Theorem 3.1, Corollaries 3.2, 3.3], where the assumption that A
is irreducible is redundant.

Corollary 3.21. Suppose that 0 < a;; <1,i,j=1,---,n,i# j. Then Theorem B is valid for v = 2.

The result is consistent with [94, Theorem 2.7] and it is better than the corresponding one given by [90,
Theorem 2.2], where there are problems in the expression.

Corollary 3.22. Suppose that Zzzl/k# aixaixagi < 1,i=1,---,n. Then Theorem C is valid for v = 2, provided one
of the following conditions is satisfied:

(i) Fori,j=1,---,n,i# j 0 < a;; <1 One of the conditions 0 < y < 1 and (iiy)-(iig) whenever y = 1 in
Theorem 3.18 holds.

(ii) One of the conditions (iii) and (iv) of Theorem 3.18 holds, where the inequality (20) is replaced by 0 < a; j < 1,
i,j=1,---,ni#].

Corollary 3.23. Theorem D is valid for v = 2, provided one of the conditions (i), (ii) of Corollary 3.22 and (ii) of
Theorem 3.19 is satisfied, where the inequality (20) is replaced by 0 < a;j < 1,i,j=1,--- ,n, i # .
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3.2. Lower triangular preconditioners
Let
Qij = 0,i=1,--- ,Tl,j> 1.

Then Q, reduces to

0 0 0 0

—Q21021 0 0 0

Qs =| ~@1831 —asaazp o 0 0
—dp10n,1 —&p20y2 —&pn-1n,n-1 0

withai,j20,i:2,---,n,j<i,and

n i-1
Qi F 0.

= j=1

Theorem 3.24. Suppose that Z}(;ll ixigag; <1,i=2,-+- ,n,and

i1
(1 —aijaij— Z Qipipay,; <0, i=2,--+ ,n,j<i (24)
k=1

kej

Then Theorem A is valid for v = 3.
Proof. Fori,j=1,--- ,n, we have

n i-1
Z Qi fAk,j = Z Qi ki Ok, j-
k=1 k=1

k#i,j k#j

If j > i then

n
(1= aijaij - Z Qi g j = Aij —

k=1 k=1
ki, j

i—1
Qi ki kA, j < aij <0.

This proves that the condition of Theorem 3.16 is satisfied, so that Theorem A is valid. O
Similarly, by Theorem 3.17 we can prove the following theorem.

Theorem 3.25. Suppose that (24) holds. Then Theorem B is valid for v = 3.

In this case, since a; j = 0 for i < j, then 6(12]).()/) =0,j=1,---,n,so that the conditions (ii3), (ii5), (iis), (iif),
(iv), (ivy), (ivs), (iv?) and (iv°) in Theorem 3.18 can be not satisfied.
Now, 61(.2].)(1) reduces to

-1
6(3)(1) - kzl ai,kai,kak,jl 1= 2/ Tty n/] = 2/ Tty Z;
i,j = .
0, otherwise.

Theorem 3.26. Suppose that ¥\ ajxaizar; < 1,i=2,--- ,n. Then Theorem C is valid for v = 3, provided one of
the following conditions is satisfied:
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(i) 0<y<1land

i-1
(1 —aijai;— Z ajxaixay; < 0 whenever a;;<0,i=2,---,n, j<i. (25)

k=1
k#j

(ii) y =1, (25) holds and one of the following conditions holds:

(iiy) Thereexisti€{2,--- ,n}, j€{2,--- ,itand k € {1,---, j — 1} such that a;a;rax,; > 0.
(iiy) a1 <0and o,y > 0.
(ii3) A k+1 < 0,k=1,---,n—1.
(iii) y = 1, the inequality (24) holds. Foreachi € {2,--- ,n—1} there exist j(i) € {2,--- ,i}and k(i) € {1,--- , j(i)—1}
such that a; xia; kiyax), ji) > 0. And one of the following conditions holds:
(itiy) Thereexist j € {2,--- ,n}andk € {1,---, j — 1} such that a, ya, rax; > 0.
(iiip) a1 <0and a1 > 0.
(iii3) There exists j € {2,--- ,n — 1} such that

n—1

(1 — (X«,,,j)an,]‘ — Z Oén,kbln,kak,j <0.

k=1
kej

Proof. By Theorem 3.18, (i) and (ii;) are obvious.
When (ii3) holds, we have 11?ax1{ak,k+1} < 0 and so that
<k<n-—

n i j-1 noi
Z Z Qi fk,j 2 Z Z @ j-1@ij-14j-1,j = mMax {agk1} a;jai; > 0,
- - - - 1<k<n-1 - -
i=2 j=2 k=1 i=2 j=2 i=2 j
which implies that (ii;) holds.
When (i71) holds we have that 61(,3],)(1) > ajra;xay; > 0, i.e., the condition (ii;) in Theorem 3.18 holds, so
that Theorem C is valid.
Now, we prove (iii). Clearly, o

=
T
[y

1l
—_

®)
i,j())
Theorem 3.18 holds. The required result follows by (iv"), (iv?) and (iv°) in Theorem 3.18, immediately. O

1) > Qi k(i) i k(i) k(i) (i) = 0, which implies that the condition (iv7) in

The later part of the condition (ii;) is equivalent to that there exist positive elements in lower triangular
part of the matrix QsU except the first column.

For (ii;) we can choose some special {i, j, k} to construct Q3, e.g., j=i,k=1,k=j—1, etc.

Similarly, by Theorem 3.19 we can prove the following result immediately.

Theorem 3.27. Theorem D is valid for v = 3, provided one of the conditions (i), (ii) and (iii) of Theorem 3.26 is
satisfied.

Similar to Corollaries 3.20-3.23, from Theorems 3.24-3.27 we have the following corollaries, immediately.

Corollary 3.28. Suppose that 0 < a;; < 1 and Z;;ll Qiplipdi <1,1=2,---,n, j <i. Then Theorem A is valid for
v=23.

Corollary 3.29. Suppose that 0 < a;j <1,i=2,---,n, j <i. Then Theorem B is valid for v = 3.

Corollary 3.30. Suppose that ¥;_> aixaipar; < 1,i=2,--- ,n. Then Theorem C is valid for v = 3, provided one of
the following conditions is satisfied:
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(i) Fori=2,---,n,j<i,0<a;; <1 Oneof the conditions 0 < y < 1 and (iiy), (ii2), (ii3) whenever y = 1 in
Theorem 3.26 holds.

(ii) The condition (iii) of Theorem 3.26 holds, where the inequality (24) is replaced by 0 < a;; < 1,1 =2,--- ,n,
j<i
Corollary 3.31. Theorem D is valid for v = 3, provided one of the conditions (i) and (ii) of Corollary 3.30 is satisfied.

Many known corresponding results about the preconditioned AOR method proposed in the references
are the special cases of Theorems 3.24-3.27 and Corollaries 3.28-3.31, i.e., they can be derived from these
theorems, immediately.

As a special case of Q3, let

ajj=a,i=2,--,n, j<li,
with @ > 0. Then in [90] Q is defined as
Qs =alL,
which is studied in [108]. When a = 1 it is given in [58] for the preconditioned Gauss-Seidel method.
From Theorems 3.24-3.27 and Corollaries 3.28-3.31, we have the following comparison results.
Theorem 3.32. Suppose that « Z;;ll aipag; <1,i=2,--- ,n,and

i-1

(1- o) —aZa,-,kak,j <0,i=2,,nj<i. (26)
k=1
kej

Then Theorem A is valid for v = 4.
Theorem 3.33. Suppose that (26) holds. Then Theorem B is valid for v = 4.

This theorem is better than the corresponding one given by [90, Theorem 2.1], where there are problems
in the expression.

Theorem 3.34. Suppose that o Z};ll aixag; <1,i=2,--- ,n. Then Theorem C is valid for v = 4, provided one of the
following conditions is satisfied:

(i) 0<y<1land

i-1
(1-aa;— aZai,kak,j < 0 whenever a;; <0, i=2,---,n, j<i. (27)

k=1
k#j

(ii) y =1, (27) holds and one of the following conditions holds:

(it1) Thereexisti € {2,--- ,n}, j€{2,--- ,itand k € {1,---, j— 1} such that a;xay; > 0.
(iip) ay1 < 0.
(ii3) a1 < 0.
(iii) v = 1 and (26) holds. For eachi € {2,--- ,n — 1} there exist j(i) € {2,--- ,i} and k(i) € {1,---, j(i) — 1} such
that a; ki ax,jo) > 0. And one of the following conditions holds:
(itiy) Thereexist j € {2,--- ,n}andk € {1,---, j — 1} such that a, xax; > 0.

(1112) ap1 < 0.
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(iii3) There exists j € {2,--- ,n — 1} such that

n—-1

1-a)a,;—a Z Ak, < 0.

k=1
k#j

Proof. By Theorem 3.26 we just need to prove (iiz). In fact, if 2,1 < 0 then (iip) holds. If a,; = 0 then, from
the irreducibility of A, 27;21 a;1 = Y., a1 < 0so that there exists iy € {2,--+,n — 1} such that a;,1 < 0. Hence
aj,1412 > 0. This shows that (ii;) holds fori =iy, j=2and k=1. O

Theorem 3.35. Theorem D is valid for v = 4, provided one of the conditions (i), (ii) and (iii) of Theorem 3.34 is
satisfied.

From Theorems 3.32-3.35, the following results are directly.
Corollary 3.36. Suppose that 0 < o < 1and a Z};ll A <1,i=2,--- ,n. Then Theorem A is valid for v = 4.
Corollary 3.37. Suppose that 0 < a < 1. Then Theorem B is valid for v = 4.

Corollary 3.38. Suppose that a Y\ ajar; < 1,1 =2,--- ,n. Then Theorem C is valid for v = 4, provided one of
the following conditions is satisfied:

(i) 0 < a < 1. One of the conditions 0 <y < 1 and (ii1), (iip), (ii3) whenever y = 1 in Theorem 3.34 holds.
(ii) The condition (iii) of Theorem 3.34 holds, where the inequality (26) is replaced by 0 < o < 1.

The result when (i) holds is better than the corresponding one given by [108, Theorem 4.2].

If ):;:1 aixag; > 0, i = 2,---,n, then for each i € {2,---,n}, there exists k(i) € {1,---,i — 1} such that
i k(iak(i),i > 0, which implies that (iif;) in Theorem 3.34 holds. Hence, Corollary 3.38 when (i) holds is better
than the corresponding one given by [108, Theorem 4.1].

Corollary 3.39. Theorem D is valid for v = 4, provided one of the conditions (i) and (ii) of Corollary 3.38 is satisfied.

Specially, for somer,2 <r<mn,a,;j=a;20,j=1,---,r—1,and a;; = 0 otherwise, in [92] the matrix Q
is defined as

0 0 0 0
0 e 0 0 0

Qs = —dr s TOr1lrr-1 0 Tt 0
0 .. 0 0o - 0
0 0 0 0

with

r—1

Z ey # 0

k=1

When r = n, it is proposed in [72] for the preconditioned Gauss-Seidel method.
In this case, fori =2,--- ,n,if i # r, then
i—
ik = 0
k=1
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and
i—1
(1 - 0(1‘,]‘)111‘,]‘ - Z Qi fk,j = dij, for ] <1

k=1
ke#i,j

Now, 653].)(1) reduces to

-1
Gy _ ) L Mlrklyj, 1=1,]=2,-,1;
51’;‘(1)_ = J

0, otherwise.

Hence, from Theorems 3.24-3.27 and Corollaries 3.28-3.31, we can obtain the following comparison
results, directly.

Theorem 3.40. Suppose that Y-} axa,iar, < 1and

r—=1

(1= aar;— Y aapag; <0, j=1,-,r=1. (28)
k=1
k#j

Then Theorem A is valid for v = 5.
Theorem 3.41. Suppose that (28) holds. Then Theorem B is valid for v = 5.

Whena;=1,j=1,---,r-1, theinequality (28) is trivial. Hence the result is better than [72, Theorem 2.9],
where the convergence hypothesis of two Gauss-Seidel methods is unnecessary and the proof is insufficient,
which is pointed out by [59]. While the condition p(.Z’) > 0 in [59, Theorem 3.2] is unnecessary.

Theorem 3.42. Suppose that Y|} aa,zay, < 1 and

r—1
1 -aja,;— Z arkay; S 0 whenever a,; <0, j=1,---,r—1 (29)

k=1
ke#j

Then Theorem C is valid for v = 5, provided one of the following conditions is satisfied:
(i) 0<y<1
(ii) 'y = 1 and one of the following conditions holds:

(it1) Thereexist j€1{2,--- ,rlandk € {1,---,j — 1} such that axa,ray; > 0.
(iiy) agps1 <0, k=1,--- ,r—1
(ii3) ax, <0, k=1,---,r=1.
(iiy) v =n,a,1 <0and a; > 0.
Proof. By (i) and (ii) of Theorem 3.26, (i), (ii1) and (iis) are derived directly.
By the definition of Qs, there exists kg € {1,--- , 7 — 1} such that aya,,, <O0.

If (ii) holds then ay,ay,ax, k,+1 > 0, which shows that (ii;) holds for j = ko + 1 and k = ko.
Similarly, if (ii3) holds then ay,a,k,ak,» > 0, which shows that (ii;) holds for j =rand k=k;. O

Theorem 3.43. Suppose that (29) holds. Then Theorem D is valid for v = 5, provided one of the conditions (i) and
(ii) of Theorem 3.42 is satisfied.

Corollary 3.44. Suppose that 0 < oy <1, k=1,---,r =1, and er{z axarkary < 1. Then Theorem A is valid for
v=>5.
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Corollary 3.45. Suppose that 0 < ay <1,k =1,---,r—1. Then Theorem B is valid for v = 5.
The result includes the corresponding one given in [92, Corollary 2.3].

Corollary 3.46. Suppose that 0 < aj <1,j=1,---,r—1, and Yoot axaniar, < 1. Then Theorem C is valid for
v =5, provided one of the conditions (i) and (ii) of Theorem 3.42 is satisfied.

Corollary 3.47. Suppose that 0 < ax <1, j=1,--- ,r = 1. Then Theorem D is valid for v = 5, provided one of the
conditions (i) and (ii) of Theorem 3.42 is satisfied.

Similarly, for somer,2 <r<n,a;,-1 =a; 20,i=71,--- ,n,and a;; = 0 otherwise, the matrix Q3 reduces

to
0 ... 0 0 0 ... 0
0 S 0 0 0 0
Qe = 0 .. 0 -aa,, O e 0
0 ... 0 —auty,1 O ... 0
with

When r = 2, it is investigated in [55, 60, 104], in [22] for the preconditioned SOR method and in [17]
for the preconditioned Gauss-Seidel and Jacobi methods, respectively. Whenr =2and a; =1,i=2,--- ,n,
it is a special case in [66] for the preconditioned Gauss-Seidel and Jacobi methods, and it is used to the
preconditioned AOR method in [52].

In this case, 61(.3].)(1) reduces to

6(6)(1) _ aiai,r—lar—l,]'/ l = 7’, Tty n/j = r/ Tty l/
ij 0, otherwise.

Theorem 3.48. Suppose that 0 < o <1 and oypay,—10,.1x <1,k =71,--- ,n. Then Theorem A is valid for v = 6.
Proof. 1t is easy to prove that the condition of Corollary 3.28 is satisfied, so that Theorem A is valid. [

The result includes the corresponding one given by [55, Theorem 2.2-(a)]. The result for w = y includes
the corresponding one given by [102, Theorem 3.3], where the condition is too strong.
Similarly, by Corollary 3.29 we can prove the following theorem.

Theorem 3.49. Suppose that 0 < ax <1,k =r,--- ,n. Then Theorem B is valid for v = 6.
In order to give the Stein-Rosenberg Type Theorem II, we prove a lemma.

Lemma 3.50. Let A be an irreducible Z-matrix. Assume thatr =2,0<ap <1,k=2,--- ,nand A® has the block
form

A(G) :( _(6) (’6) )/ A(é) c %(n—l)x(n—l)‘
21 Az,z 22
Then

(i) Ag is an irreducible Z-matrix.

(i) A© is an irreducible Z-matrix if and only if there exists iy € {2, -+ ,n} such that (1 — a;,)a;, 1 # 0.
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Proof. Since
aj, 1
al(,éj) ={ (1—ajaiq, i
aij — i, 1

then it is clearly that a(lél)( =a1;, <0, a,(f; =1 -aya1 <0fork=2,---,nand

6 .. . .
al(./],) =a;;—aiaina1; < a;;<0,6,j=2,--,n, i #]. (30)

Hence, A® and Ag are Z-matrices.

Foranyi,j € {2; -+ ,mn}, i # j,since A is irreducible, then there exists a path 0;; = (jo, j1,- - , ji+1) € G(A)
with i = jyand j = ji1.

If y €{2,--- ,n} fork =1,--- 1, then, by (30), it gets that a;f,)jm <aj.j,, <0and ai.g/)jl < aj,,j, <0, so that
0ij € G(AD).

For the case when there exists s € {1,---,l} such that js = 1, we have j;-1 > 1, jss1 > 1, 4,1 <0

and ay,, < 0. By (30), it gets that ”E’f_)l,jm = — Q@i 10, S~ aj, a1, < 0. It follows that
Gij = (o, s Js=1,Jst+1,° ", j141) € G(A(;,; .

We have proved (7).

The necessity of (ii) is obvious. Now we prove the sufficiency.

Foranyi,je{l,---,n},i# jifi,j€{2,---,n} then, by (i), there exists a path g, ; such that g, ; € G(Ag) c
G(A®). '

For the case when i = 1, since A is an irreducible Z-matrix, then there exists jy € {2,---,n} such that

af;.o = m,j, < 0. By (i), there exists a path ¢, j such that g, ; € G(A(g) so that (1,0,/) € G(A®).
6)

For the case when j = 1, there exists a path o;;, such that g;;, € G(A(2 »). Since af)l =1 -aj)ai,1 #0,it
follows that (0;;,, 1) € G(A©®).
We have proved (ii). O

This lemma improves [11, Theorem 3].

Theorem 3.51. Suppose that ayay,—1a,-1x <1,k =r1,--- ,n. Then Theorem C is valid for v = 6, provided one of the
following conditions is satisfied:

(l) 0S‘)/<1ﬂ71d0§aksllk:rl... .
(i) y=1land0<ax <1, k=r,--- ,n. And one of the following conditions holds:

(it1) Thereexisti€ {r,--- ,n}and j € {r,--- ,i} such that a;a;,1a,-1,; > 0.
(i) Ar-1,r < 0.
(iiz) r=2,a,1 <0and a,, > 0.
(iii) r=2,0<y <1land0 <o, <1, k=2,--- ,n
(iv) r=2,y=1and 0 < ay <1,k =2,--- ,n. And one of the following conditions holds:
(iv1) Thereexisti€{2,--- ,n}and j € {2,--- ,i} such that a; a,,; > 0.

(ivy) a15 < 0.

(iv3) a1 < 0.
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Proof. By Corollary 3.30, (i), (ii1) and (ii3) are obvious.

Assume that (iiz) holds. By the definition of Q, there exists ko € {r, - - - , n} such that ay,ax, ,—1 <0, so that
Qy Ay r—18r-1, > 0, which implies that (ii;) holds fori = kg and j = r.

We now prove (iif) and (iv).

If there exists iy € {2,---,n} such that (1 — a;,)a;,1 # 0, then, by Lemma 3.50, A® is irreducible. By
Corollary 3.22 and (i), (iig), (iiz) in Theorem 3.18 we can derive (iii), (iv1) and (iv3), directly. When (iv;) holds,
then from the irreducibility of A, there exists i; € {2,---,n} such that a;, 1 < 0, so that a;, 1412, > 0, which
implies that (iv;) holds for i = i; and j = 2.

For the case when (1 — ax)ax; = 0,k =2,--- ,n, then it gets that oy = 1 whenever a;; < 0. In this case the
matrix A©® can be partitioned as

1 aip
A(6) = ( (,6) )/
0 A2,2

where, by Lemma 3.50, Ag e Z=Dx(-1) g5 an irreducible Z-matrix, so that it is also an L-matrix, since
al(flz =1-apax1a14 >0fork=2,--- ,n.

Denote p = p(.%),.,). Let x > 0 be its associated eigenvector.

By Lemma 3.1 we just need to consider the case when y < w. By Lemma 2.9 it follows that p > 0 and

x> 0.
Let

A(26; =My0 =Ny

be the AOR splitting of A(;;. Then

1 1w _
© _[| o 0 © _[ o —f1,2
My,a) ( 0 M)/,w )/ Ny,w ( 0 N%w )

and
B 0 1-w —wda1
MO 1=( w 0 ),92”(625( —o, )
[My ] 0 M;, Vs 0 M;N,, .

Let E; and F; be diagonal part and strictly lower triangular part of Q¢U with block forms
- €11 0 - fi1 0 (n1=1)x(n-1)
Er=| ¢« , Fi=| " , Eop, Fop € V7700,
1 ( 0 Es» ) 1 ( fia Fa» ) 22,522
Then €11 = fl,l =0and f1,2 =0. Let

6) =
Qo= N1 T2 ) 0y, e gD 5= [ Y1) 3 R, 3 e 2.
fo1 Q22 ’ X

Then qﬂ =0,512=0,421 >0, Q22 =0, % > 0and %, > 0. Now, by Lemma 3.2, we obtain

6. [ Q- —wlhpl—pX | _ s _ B
"%hwx px = ( M)_/,lmNy,(uXZ _ pxz ) - (P 1)[E1 + VFl + (1 V)Q6]x
B ©w 0 0 0 0 0 0 0\|(®m
=0-0( 5w (o e )oo(o s )ran (S ))(%)

0
=(p- 1)( ML [(Eap + YF2p)% + (1 = Y)i2a%1] )
Hence, we have

(1 - a))fcl — pX1 = WA 2X> (31)
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and
M, Ny, %2 = pa = (p = DM [(Eap + yFa2)To + (1= )%l (32)

Since A is an irreducible L-matrix, then 41, < 0 so that wa; %, < 0. From (31), it gets that 1 —w < p.

When (iii) holds, i.e., y < 1, since AM is an irreducible L-matrix, then it can derive that M), wNy w>0
is irreducible. Furthermore, M),{U[(EM + yE0)% + (1 = Y)goax1] = (1 - )/)Myrqu,lxl > 0, since g1 > 0 and
x> 0.

Now, Theorem 3.48 has shown that p = 1 if and only if p(.,?gfi,) = 1. If p < 1 then, from (32), it gets that

M)/ wNV wXy < pXy so that p(MV wNyw) < p. Hence, we derive p(.i”yéa), = max{l — p(M), wNy o)} < p. If
p > 1 then, from (32) it gets that M, 1N, %2 > pX; so that p(M,,ley ») > p. Hence, we derive p(ﬁy?} =

max{l — w, (M SNy = (M)/,wN)/,m) > p.
When (iv) holds, then w = 1 and the AOR method reduces to the Gauss-Seidel method. In this case, we
have

0 —a
6) — 2
2=(0 i, )
and therefore p(-£®) = p(M; N1 ,).
Above we have proved that A(z(’) is an irreducible L-matrix. By Lemma 2.9 it gets that yTM I'>0

whenever j satisfies 7 > 0 and y"M; N1 = p(M;1N11)§". Multiply 7" on the left side of (32), we can
derive ' '

P(Ml 1N1 1)]/ X = P]/ X = (P 1).1/TM}/ m(EZ,Z + FZ,Z)J_CZ

When (iv1) holds, i.e., there existi € {2,--- ,n} and j € {2,---,i} such that a;1a;; > 0, it is easy to prove that
Ezp > 0or Fyp > 0so that (Exp + Fy, 2)x2 > 0 and yTM),w(Ezlz + Fap)%; > 0. Since 7%, > 0, then we can get
<p, it p<1
p(L9) = pM1N11){ =p, if p=1
>p, it p>1.

When (ivp) holds, the irreducibility of A or the definition of Q¢ ensures that there exists i € {2,--- ,n}
such that a;; < 0, we have a;141, > 0, which implies that (iv;1) holds.

Similarly, when (iv3) holds, the irreducibility of A ensures that there exists j € {2,--- ,n} such thata; ; <0,
we have a,,1a41,; > 0, which also implies that (iv1) holds. [

The result for the case when r = 2 is better than the corresponding ones given by [52, Theorem 1,
Corollary 1], [60, Theorems 3.3, 3.4, 3.5] and [104, Theorems 3.11, 3.13, 3.14 and 3.15]. The proof of [52,
Theorem 1] is insufficient, which is pointed out by [107] and [11]. When r = 2 and y = w, the result is
better than [22, Theorems 2.1 and 2.2], where the condition ay j410k+1% > 0,k =1,--- ,n =1, implies that A is
irreducible. While the proofs in [22] are insufficient, which is pointed out by [102]. The comparison result
[55, Theorem 2.2-(b)] is problematic, because [55, Lemma 2.1] is wrong, which has been shown by [107,
Example 3.1].

From Theorem 3.51, we can prove the following theorem.

Theorem 3.52. Theorem D is valid for v = 6, provided one of the conditions (i)-(iv) of Theorem 3.51 is satisfied.

Whenr=2,a,=1,k=2,---,n, theresults given in Theorems 3.49 and 3.52 are better than [74, Theorem
3.4] and [76, Theorem 3.4].
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As a special case of Q4(Qs), for some ¥ > s with a,s < 0 and a > 0, the matrix Qs(Qs) reduces to

0O - 0 - 0
Qr=|: e 0 -0 |
_ae
0 T 0

9895

which is proposed in [23, 53, 104] for r = nand s = 1. And for¥ =n,5 =1and @ = 1in [14]. It is given in

[109] to replace —a,s/a with a constant g.
Now, 61(.6].)(1) reduces to

5(7)(1) _ iansas,j, i=r,j=s+1,---,1;
ij 0, otherwise.

From Theorems 3.48 and 3.49, we can obtain the following comparison results, directly.

Theorem 3.53. Suppose that o > 1 and o > a,sa,,. Then Theorem A is valid for v =7.

This result is better than that given by [104, Theorem 3.7], where A is assumed to be irreducible.

Theorem 3.54. Suppose that o > 1. Then Theorem B is valid for v =7.

This result includes [105, Theorem 3.4] and the corresponding one given in [45, Theorem 3.1].

In order to give the Stein-Rosenberg Type Theorem II, we prove a lemma.

Lemma 3.55. Let A be an irreducible Z-matrix. Assume that r = n, a > 1 and A7) has the block form

1 a_l’z 7 _ _
A7 :( ﬁ(;i A(27; )/ A;; € Fn=Dxn-1)

Then one of the following two mutually exclusive relations holds:

(i) A7) is an irreducible Z-matrix.

B )
n,

(ii) A is a reducible Z-matrix, but Ag; is an irreducible Z-matrix and a; = a, =

Proof. Since

- aij, i=1---n-1,j=1,---n,
1 M M

a;j; = (1= 2)an, i=n,j=1,

g 1 M M
Anj = 50nadnj, 1=n,]=2,---,n,

then it is clearly that, af.? =a;;<0fori=1,---,n-1,j=1,--- ,ni#]j, a”) = 1-1/a)a,1 <0and

n,1

@) _ 1 -
) =g ,'—aanllal,jSan,jSO, j=2,---,m.

Hence, A”) and Ag; are Z-matrices.
Let '

a A A a A A (e
A= B L2 ) 4o Y2 ) 4, e gk,
an1 drp 0 drp

=0,k=2,---,n—1.

(33)

(34)

Clearly, if A is irreducible then A is irreducible, since A is irreducible. When a > 1 then A? is also

irreducible.
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Assume that A? is reducible. Then A is reducible and a = 1. The latter implies ag; = 0. In this case,

there must be *, j* € {1,- -+, n} such that there is no path from i* to j* in G(A?).

It is easy to see that, for any i,j € {1,--- ,n}, 0i; = (jo, j1, - , jiu1) &€ G(A?D) with i = jo and j = ji,q if and
only if thereiss € {0, - -+, [} such that i; = n and i;11 = 1.

Since A is irreducible, then there exists 0} - = (io, i1, -+ ,it+1) € G(A) with i* = ig and j* = if41.

If j* > 1 then there is u € {0,--- ,t — 1} such that i, = n and 7,41 = 1, which implies M., < 0. Hence,
by (34), we have ale),w = iy — A1y, < —0p101,0,, < 0,50 that o = (io, -+ , 11,1, 1ys2, -+, ipr1) € G(AD).
This is a contradiction. Therefore, j* = 1. This shows that, forany k € {2, - -+ ,n—1}, there exists 0 x € G(AM).
If a,(zl) < 0 then 6; j = (0i-x, 1) € G(A"). This is also a contradiction. Therefore, a;{? =ag; = 0.

Now, let us prove the irreducibility of Ag. For any i,j € {2,--- ,n}, i # ], since A is irreducible, then
there exists a path 0;; = (o, 71, -+, Tv+1) € G(A) withi = 79 and j = Ty41.

Iftp€{2,--- ,njfork=1,--- ,v, thenit gets that ; ; € G(Ag;).

For the case when there exists s € {1,--- , v} such that 7, = 1, wehavea,,_,1 <0anda; ., <0. By (33), 7;-1
mustben, sinceay; = ag =0fork =2,---,n-1. By (34), it gets that “;7,)1,-“ =l — 010,10 < —Anidr,, < 0.
This shows that 0ij = (To, "+ , Ts—2, M, Ts41," "+ , Tp+1) € G(A(;; .
This has proved that G(Ag) is irreducible.

We have proved (ii). O

Using this lemma, completely similar to the proof of Theorem 3.51, we can prove the following theorem.

Theorem 3.56. Suppose that a > a,sa;,. Then Theorem C is valid for v = 7, provided one of the following conditions
is satisfied:

(i) a 2 1. And one of the following conditions holds:

(i1) 0<y <1
(i) y = 1and there existsk € {s+1,---,r} such that as; < 0.

(ii) r=n,s=1land a > 1.

The result when (ii) holds includes [104, Theorems 3.8 and 3.9] and [53, Theorem 1], where the proof is
insufficient, which is pointed out by [103]. We also have to point out that there exist some mistakes in [23,
Theorems 4 and 5]. For a = 1, the result is better than the corresponding ones given by [54, Theorem 2.1,
Corollaries 2.1, 2.2], where the condition ay g+1ax+1% > 0,k =1,--- ,n — 1, implies that A is irreducible and so
that the condition a5 4,1 > 0 is unnecessary.

From Theorem 3.56, we can prove the following theorem.

Theorem 3.57. Theorem D is valid for v = 7, provided one of the conditions (i) and (ii) of Theorem 3.56 is satisfied.

For the case when (ii) in Theorem 3.56 is satisfied, Theorem 3.57 is better than [14, Theorem 2.2] and the
corresponding ones given in [45, Theorem 3.1, Corollaries 3.1, 3.2, 3.3]. In [14, Theorem 2.2], the condition
Ajs1dk+1k > 0,k =1,--- ,n -1, implies that A is irreducible and p(.Z,,,) < 1 implies that A is a nonsingular
M-matrix. The condition 4,141, > 0 is unnecessary.

In [61], for the preconditioned Gauss-Seidel method, a special case of the matrix Q3 is proposed as

0 0 . 0 0
—102,1 0 cee 0 0
QS — 0 —a37 0 0

0 0 e —&p-10p,n-1 0
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withay >0,k=1,--- ,n—1,and

[y

.
axe1x # 0.
1

It is used to the preconditioned AOR method in [19, 39].
In this case, fori=2,--- ,n,

o~
Il

i,
Qi ki ki = Xi-144,i-10i-1,i-
k=

[y

Now, 61(.3;.)(1) reduces to

®) 1y _ ) Qic1@ii—18io1i, 1=]=2,---,1;
61’1’ 1= { 0, otherwise.

When n > 3, the conditions (ii;) and (iii,) in Theorem 3.26 can be not satisfied. By Corollaries 3.28 and
3.29, it is easy to prove the following comparison results.

Theorem 3.58. Suppose that 0 < ay < 1and axay 10k <1,k =1,--- ,n—1. Then Theorem A is valid for v = 8.
Theorem 3.59. Suppose that 0 < ay <1,k =1,--- ,n—1. Then Theorem B is valid for v = 8.
In order to give the Stein-Rosenberg Type Theorem II, we prove a lemma.

Lemma 3.60. Let A be a Z-matrix. Then A and A® are irreducible Z-matrices, provided one of the following
conditions is satisfied:

(i) A1t p >0,0<ar <1, k=1,--- ,n-1
(i) n23,a,1 <0, 04441 <0,0< 0, <1, k=1,--- ,n—-1.

Proof. The condition (i) implies a1 < 0 and a1 > 0,k =1,--- ,n — 1. Hence, if one of (i) and (i7) holds,
then it is easy to prove that A is irreducible.

Since
m; <0, i=1,j=2,--'n,
®) '] = :
a0 =4 (L=ai)aig <0, i=2,-,m,j=i-1, (35)
ai,j - ai—lai,i—lai—l,j < ai,j < 0/ 1= 2/ ,7’[,] = 1/ ot rn/j F i/i_ 1/

then A® is a Z-matrix.

When (i) holds, for any i,j € {1,---,n}, i # j, since A is irreducible, then there exists a path ¢;; =
(o jay -+ jarry) € G(A) with i = j) and j = jas).

By (35), it is obviously that either if there is no jy+1) = jo — 1, k € {0,1,--- 1}, or if there exists some
s€{0,1,---, 1} such that j41) = j — 1 but @j, -1 < 1, then g;; € G(A®).

For the case when js.1) = ji — 1 and aj,-1 = 1 for some s € {0,1,---,1}, then g;; ¢ G(A®), since
()]

® — ,® — ; ; =g . — g . . o

Biovieny = Favio-1 T 0. If jiy < n, then it gets that Aot = oo+l = Aje,jo=14jo=1jy+1 < Bjgjort < 0
8 = 0 ot — s Ao ds —i i di ile, if 7o = i =

and 4+Ljn-1 = Yo+tlio-1 = Yiehjo+lie%jejo-1 < =@+ jo-1 < 0. While, if j) = 1, then jii1) =

. . 8 8
n — 1. In this case it gets that a; ,)1_2 = App-2 — Apn-10n-11-2 < —Apn-10n-11—2 < 0 and aSF)ZJH = Ap_op-1 —

’ 1 . . . . .
E,j) = (](0),"' e Je) T L Jeey, e ,](1+1))

whenever j) < n or al(,l],) = (joy s je-1) = 2,1 =1, ji2),+ , jg+1)) Whenever j; = n. To continue this

Qn-30n-2,1-30n-3n-1 < Ap—2 -1 < 0. Now we can construct a path o

process, we can eventually construct a path ogt]),, t <1, such that GE? € G(A®). We have proved that A® is
irreducible.
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When (ii) holds, then by (35) we can obtain a) = a1 < 0, 4%}, | < agk — A 1Gek 101401 S Beprn < 0,
k=2,---,n—-1, afﬁ < 1 — Quo18yn-1y-11 < ay1 < 0. From this it is easy to see that A® is irreducible. [

Theorem 3.61. Suppose that ayay 10k < 1,k =1,--- ,n—1. Then Theorem C is valid for v = 8, provided one
of the following conditions is satisfied:

(i) 0<ar <51, k=1,---,n—1. And one of the following conditions holds:

(i) 0<y <1
(i) v = 1and there exists k € {1,--- ,n — 1} such that axay 1041 % > 0.
(i3) y=Tland agys1 <0,k=1,--- ,n—1.

(ii) agp1r1p >0and0 <o <1, k=1,--- ,n—-1
(iii) n23,a,1 <0,a0041 <0,0< <1, k=1,--- ,n-1

Proof. By (i) of Corollary 3.30, (i), (ii1) and (ii3) in Theorem 3.26, (i) follows directly.

If (i) holds, then by Lemma 3.60 A® is an irreducible L-matrix. Now, for 0 < y < 1 the condition (i)
of Theorem 3.6 is satisfied. By the definition of Qs, there exists some kg € {1,--- ,n — 1} such that o, > 0.
Hence, for y = 1, we can prove that (ii4) in Theorem 3.6 holds, since a,a,+1,k,k, k,+1 > 0.

When (iii) holds, the proof is completely same. [

Obviously, from Lemma 3.60, if (ii) or (iii) holds, then the assumption that A is irreducible is redundant.
This theorem when (i) holds is better than the results in [39]. The corresponding result in [19, Theorem
3.2] is problematic, because [19, Lemma 3.1] is wrong. In fact, Let

1 -05 0 -1
-1 1 0 O
o -1 1 0
0 0 -1 1

A=

Then it is easy to prove that A is an irreducible L-matrix and it satisfies the assumption of [19, Lemma 3.1].
But the iteration matrices of the preconditioned AOR methods are reducible when we choose a3 = 1.
The following result is easy to prove.

Theorem 3.62. Theorem D is valid for v = 8, provided one of the conditions (i), (ii) and (iii) of Theorem 3.61 is
satisfied.

Different from Qs, a special Q is proposed as

0 0 e 0 0

Qo = : : - : :
0 0 ‘.- 0 0

—1dp1 + 1 —Qldup + P2 —Qu_1lpu—1 +Pu—1 O

with o > 0, —agane +pr 20, k=1,--- ,n—-1,and Z,’(:ll(—akan,k +Pk)#0. Foray =a >0, =p=0and
a+p #0,itis given in [18].
In this case, we have that

2

ij :ai,j/ izl/"'/n_l/ jzlr'“/n/

n-1
O _ o
an,j =(1- aj)lln,j + ,Bj + kZ(_aku”'k + ,Bk)ﬂk,j, j=1,--,n-1,
=1

k#j

n—-1
9
a,(q}l =1+ E (—Ofkﬂn,k + ﬁk)ak,n,
k=1
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so that
Qfgj)=qg}z:0/ i:1,"',1’l—1, j=1/"'/n/

O _

qn,f _aja”/j—i_ﬁ]"]:l’“"n_l

and

n o 0, i=1---,n-1,
_ )
ki = n .
; Tix i Y (—axan + Bi)agn, i=mn.
” k=1

ki
Now, 61(,1].)(1) reduces to

j-1

Oy - ) L@k —Brax, i=n,j=2,--,n;
5:‘,]' 1= k=1 " P ! ]
0, otherwise.

Hence, by Corollaries 3.8-3.11, we can prove the following comparison theorems directly, where the
proof of Theorem 3.65 is similar to that of Theorem 3.42.
Theorem 3.63. Suppose that ¥}~ (axadnx — Br)ax, < 1 and
n—1
(L= @+ B+ ) (s + pa; <0, j=1,-- n—1. (36)
k=1
k#j

Then Theorem A is valid for v = 9.
Theorem 3.64. Suppose that (36) holds. Then Theorem B is valid for v = 9.

The results given by Theorems 3.63 and 3.64 include the corresponding ones given in [18, Theorem 2.3],
where 1 < j<nshouldbel <j<n-1.

Theorem 3.65. Suppose that ¥} (axadny — Br)ax, < 1 and

<0

< 0 whenever <0, j=1em=1. (37)

n-1
(1 -aj)a; +Bj+ Z(—akﬂn,k + Bi)a,j {
k=1

k#j

Then Theorem C is valid for v = 9, provided one of the following conditions is satisfied:
(i) 0<y <1
(ii) y =1 and one of the following conditions holds:

(iiy) Thereexisti € {2,--- ,nyand j€{1,--- ,i— 1} such that (aja,; — pj)a;; > 0.
(i) anau1 —p1 < 0.

(ii3) Agpe1 <0, k=1,--- ,n—1.

(iiy) ay, <0,k=1,--- ,n—1.

Theorem 3.66. Suppose that (37) holds. Then Theorem D is valid for v = 9, provided one of the conditions (i) and
(ii) of Theorem 3.65 is satisfied.

From Theorems 3.63-3.66, the following results are directly.
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Corollary 3.67. Suppose that Y} =+ (ayx — Pr)ag, < 1 and (1 - aj)an;+p;i<0,j=1,--- ,n—1. Then Theorem
Ais valid forv =9

Corollary 3.68. Suppose that (1 — ax)ayx + px <0,k =1,--- ,n — 1. Then Theorem B is valid for v = 9.

n-1

Corollary 3.69. Suppose that Y.~ (Qkn i — Px)akn < 1 and

<0, ,
Then Theorem C is valid for v = 9, provided one of the conditions (i) and (ii) of Theorem 3.65 is satisfied.

Corollary 3.70. Suppose that (38) holds. Then Theorem D is valid for v = 9, provided one of the conditions (i) and
(ii) of Theorem 3.65 is satisfied.

Similarly, different from Qs, a special Q is proposed in [56] as

—ap 1 + ﬂz 0 v 0
Quo = i
—ply1 + P 0 e 0

with o > 0, —apigy + P = 0,k=2,---,n,and ZZ:z(_akak,l + ‘Bk) #0.

Itisgivenin [9]foray =1,k=2,--- ,n,in[18]foray =a >0, =20,k=2,--- ,nwitha+$ # 0, and
in [8] for the preconditioned SOR method, where ay =1, k=2,--- ,n

In this case, we have that

al,jl i= 1/] 1 n,
1(1]0) (1 —-apa;1 +pi, i= 2, n,j=1,
aij + (—aaig + Piarj, i,j= -,m,
so that
10 .
qz('l) = -1+ Pi, i=2,--,m,
10) —qglf) 0,i=1,---,n,j=2,---,n
and

Z q(m) o =1,
’ aall+ﬁ)a11/ :2/
k#z

Now, 61(,1].)(1) reduces to

10) 4\ _ ) (iain —Biarj, i=2,---,n,j=2,---,i;
61}1’ @)= { 0, otherwise.

Hence, by Corollaries 3.12-3.15, we can prove the following comparison theorems directly.

Theorem 3.71. Suppose that (1 — ax)ax: + fr < 0 and (axar1 — P)arx <1,k =2,--- ,n. Then Theorem A is valid
forv =10.

Theorem 3.72. Suppose that (1 — ax)ax, + P <0,k =2,---,n. Then Theorem B is valid for v = 10.
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The results given by Theorems 3.71 and 3.72 include the corresponding ones given in [18, Theorem 3.3].

The result given by 3.72 is better than the corresponding one given in [56, Theorem 4.2], where the
condition that A is irreducible is unnecessary.

In order to give the Stein-Rosenberg Type Theorem II, we give a lemma, whose proof is completely same
as that of Lemma 3.50.

Lemma 3.73. Let A be an irreducible Z-matrix. Assume that 0 < —ayaxq + P < —ax1, k =2,--- ,nand A1) pgs
the block form

A0 _ &O) ‘731%) AQ0) ¢ gpn-Dx(n-1)
dz,1 Az,z e

Then
(1) A(zllg) is an irreducible Z-matrix.
(ii) A1 s an irreducible Z-matrix if and only if there exists kg € {2,--- ,n} such that (1 — ay,)ax,1 + Pr, # 0.
Using this lemma, similar to the proof of Theorem 3.51 we prove the following theorem.

Theorem 3.74. Suppose that (1 — ay)axy + pr < 0 and (axax; — P)arx <1,k =2,--- ,n. Then Theorem C is valid
for v =10, provided one of the following conditions is satisfied:

(i) 0<y <land (1 — ap)axs + Pk < 0 whenever ax, <0,k =2,--- ,n.
(ii) y = 1and (1 — ax)ag; + i < O whenever ag; < 0,k =2, ,n. And one of the following conditions holds:
(ity) Thereexisti € {2,--- ,n}and j € {2,--- ,i} such that (v;a;1 — p;)a1,j > 0.
(ily) —nny + Pu > 0.
(ii3) ap < 0.
(iii) —ogagy +Pe>0,k=2,--- ,n.

Proof. By Theorem 3.6, we just need to prove (ii3) and (iif).

For (ii3), by the definition of Qyo, there exists iy € {2,-- -, n} such that —a;,a;,1 + i, > 0, so that (a;,ai,1 —
Bi,)a12 > 0, which implies that (ii1) holds for i = iy and j = 2.

For (iii), since A is irreducible, then there exists j € {2,---,n} such that a;; < 0, so that 61(11,?)(1) =
(nn — Pn)ar,j > 0. Using Lemma 3.73, the rest of the proof is completely similar to that of (iii) and (iv;) in
Theorem 3.51. O

When (iii) holds it includes [9, Theorem 3.1]. The result for y = w is better that the corresponding ones
given by [8, Theorem 3.1, Corollary 3.1].

Theorem 3.75. Suppose that (1 — ax)ags + fx <0,k =2,--- ,n. Then Theorem D is valid for v = 10, provided one
of the conditions (i), (ii) and (iii) of Theorem 3.74 is satisfied.

As a special case of Q¢ and Q19, Q is proposed in [91] as

Q — : : :
t 0 0 - 0
_iﬂn,l_ﬂ 0 0

witha > 0and a,1/a + < 0. Itis discussed in [51] for a = 1.
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Now, 651].(»(1) reduces to

6(11)(1) _ (ian,l +P)ay, i=nj=2,---,n
ij 0, otherwise.

By Theorems 3.71 and 3.72, the following comparison results are obtained, directly.
Theorem 3.76. Suppose that f > (1 —1/a)a, and (a,1/a + B)ai, < 1. Then Theorem A is valid for v = 11.
Theorem 3.77. Suppose that p > (1 —1/a)a,. Then Theorem B is valid for v = 11.

In order to give the Stein-Rosenberg Type Theorem 1I, completely similar to Lemma 3.55, we can prove
the following lemma.

Lemma 3.78. Let A be an irreducible Z-matrix. Assume that > (1 — 1/a)a,1 and AV has the block form

1 aip
A = ( _(11) a1
a Az,z

)/ AS;) c %(n—l)x(n—l).
2,1 ’

Then one of the following two mutually exclusive relations holds:
(i) AW is an irreducible Z-matrix.

(ii) AW is g reducible Z-matrix, but A(2121) is an irreducible Z-matrix and ar; = a]((lll) = ai}}) =0,k=2,---,n—1.

Using this lemma, similar to the proof of Theorem 3.56, we prove the following theorem.
Theorem 3.79. Suppose that p > (1 —1/a)a, and (a,1/a + B)ar, < 1. Then Theorem C is valid for v = 11.

Proof. Since (a,1/a + B)ar, < 1, then, by Lemma 3.78, A is an L-matrix.

If A is irreducible then it follows by (i) and (ii») in Theorem 3.6 that Theorem C is valid, since

qfﬁ) =—ay1/a—pB>0.

For the case when A is reducible, then the irreducibility of A ensures that there exists j € {2,--- ,n}

such that a;; < 0 so that —(a,,1/a + B)ay,; > 0. Now, using Lemma 3.78, the rest of the proof is completely
similar to that of (iif) and (iv1) in Theorem 3.51. [

The result is better than [91, Theorem 1], where the condition 0 < a5 ,a,1 < a(a > 1) is unnecessary. For
a =1, it also better than the corresponding ones given by [51, Theorem 8, Corollaries 10, 11].

Theorem 3.80. Suppose that > (1 —1/a)a,. Then Theorem D is valid for v = 11.

By the definition of Q11, a4,1/a + p < 0. While in the comparison theorems above we need the condition
B> (1-1/a)a,;. Hence it implies a,,1 < 0.
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3.3. Upper triangular preconditioners

Corresponding to Qs, we let

(X,',]‘=0, i=1--,nj<i

Then Q, reduces to

0
0
Qu=| :
0
0

—Q12012 —d13013 ¢ —Qa1,n01,n
0 —n3r3 - — 2,
0 0 —On-1,nln-1,n

0 0

0

witha;; >20,i=1,--- ,n-1,j>1i,and

n-1 n
Z Z &, jdi,j # 0.

In [37] it is proposed for the preconditioned Gauss-Seidel method, where a;j = a; > 0,i=1,--- ,n - 1.

i=1 j=i+1

In this case, fori,j=1,---,n, we have that

n n
Z Qi fAilk,j = Z Qi ki Ak, js

k=1
ki, j

k=i+1
k#j

so that if j < i, then

n n
(1 - aij)aij - Z Qi jk,j = Qij — Z Qijifk,j < ijj-
k=1

ki j

k=i+1

Since a,j = 0for j=1,---,n, then 652].)()/) and 61(.2],)(1) reduce respectively to

and

5 2(y) =

(12) 1y —
502 (1) =

n

Y O ki Ak, is
k=i+1

i=j=1,-,n-1;

j-1

Oy —Dajjaij+y Y aippaiparj, i=1,---,n-1j=i+1,---,n
k=it

n
Y X Qi
k=i+1

7

n

Y ik, jr
k=i+1

j-1

Y ik, jr
k=i+1
0,
0,

=i+
i=2-,n=1,j=1,--,i-1;

i=n,j=1,---,n

i=1,"',n_1,j=1/"'/i;

i=l n—=1,j=i+2,--,n

i=1---,n-1,j=i+1;
i=n,j=1,---,n.

9903

In this case, the conditions (ii»), (ii), (iv7), (iv") and (iv*) in Theorem 3.18 can be not satisfied. While the
inequality (22) or (23) is trivial because that A is irreducible and

n—=1

(1 — an,]‘)lln,j — Z an,kan,kak,j = lln/]‘.

k=1
k#j
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Completely similar to Theorems 3.24-3.27 and Corollaries 3.28-3.31, by Theorems 3.16-3.19, we can prove
the following comparison results, immediately.
Theorem 3.81. Suppose that Y.;_;,q dixaixar; <1,i=1,--- ,n—1, and

n

(- aia;— Y gty <0, i=1, ,n—1,j>i. (39)
k=i+1
k#j

Then Theorem A is valid for v = 12.
Theorem 3.82. Suppose that (39) holds. Then Theorem B is valid for v = 12.

Theorem 3.83. Suppose that ¥;_;,q ixdixax; < 1,i=1,--- ,n— 1. Then Theorem C is valid for v = 12, provided
one of the following conditions is satisfied:

(i) 0<y<1land

n
1- ai,]')ai,]- - Z Qi Ak, < 0 whenever a;,j < 0,i=1,---,n-1, ] > 1. (40)

k=i+1
k)

(ii) y =1, (40) holds and one of the following conditions holds:

(ii1) Thereexisti€{1,--- ,n—1},j€{l,--- ,itandk € {i+1,--- ,n} such that a;a;ay; > 0.

(iiy) Thereexisti€{1,--- ,n—1},j€{i+2,--- ,nlandk € {i+1,---,j— 1} such that a;a;xar,; > 0.
(ii3) There existsk € {1,--- ,n — 1} such that ayj1 < 0 and agpq > 0.

(iis) ay1 <0and agp <0,k=1,--- ,n—1.

(ii5) ayy <O0andar, <0,k=2,--- ,n—-1

(iig) a1 <0, k=2,--- ,n.

(iii) 0 <y <1and (39) holds. For each i € {1,--- ,n — 1}, there exists j(i) € {i + 1,--- ,n} such that ; j;a; ji) < 0.
(iv) y = 1and (39) holds. Foreachi € {1,--- ,n — 1}, one of the following conditions holds:
(iv1) There exist ](Z) S {1, ceey, l} and k(l) (S {1 +1,---, 1’1} such that O k(i) Ai k(i) k(i) (i) > 0.

(ivy) There exist j@) € {i+2,--- ,nfand k(i) el{i+1,--- , = 1} such that QG (i) k(i) k(i) (i) > 0.
(iZJg,) Ajiy1 < 0 and At > 0.
Proof. By Theorem 3.18, we just need to prove (iis), (ii¢) and (iv).
By the definition of Q1, there exist iy € {1,--- ,n—1}and jo € {i +1,--- , n} such that a;, ja;,,;, < 0.
When (iis) holds, if jo < n then a;, j,a;, j,aj,» > 0, which implies that (ii;) holds for i = iy, j = nand k = jo.
If jo = n then &, nai,na,1 > 0, which implies that (ii1) holds for i = iy, j = 1 and k = n.
When (ii) holds, it gets that a;, j,a;,,j,aj,1 > 0, which implies that (ii;) holds fori =iy, j = 1 and k = jj.
By the irreducibility of A, there exists j € {1,--- ,n — 1} such that 4, ; < 0, which implies that (iv°) or (iv?)
in Theorem 3.18 holds because ;s =0,k =1,--- ,n—1. By (iv1) and (iv;) in Theorem 3.18 we derive (iv). O

Theorem 3.84. Theorem D is valid for v = 12, provided one of the following conditions is satisfied:
(i) One of the conditions (i)-(iv) of Theorem 3.83 holds.
(ii) The inequality (39) holds and one of the following conditions holds:

(i) Thereexisti€{l,--- ,n—1tand je{i+1,--- ,n} such that a;ja;ja;; > 0.
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(i) y > 0. Thereexisti € {2,--- ,n—1},je{l,--- ,i—=1}andk € {i +1,--- ,n} such that a;ra;xa,; > 0.

Proof. We just need to prove (ii). In fact, since @;; = 0 for j < i, then the result follows by (i) of Theorem
3.19 directly. O

Corollary 3.85. Suppose that 0 < a;; < 1and Yp_;,q aigaixax; < 1,i=1,--- ,n =1, j > i. Then Theorem A is
valid for v = 12.

Corollary 3.86. Suppose that 0 < a;j<1,i=1,---,n—1, j > i Then Theorem B is valid for v = 12.

Corollary 3.87. Suppose that Y ;_..; aixaixar; <1,i=1,--- ,n—1. Then Theorem C is valid for v = 12, provided
one of the following conditions is satisfied:

(i) Fori=1,---,n—=1,j>1i,0 < a;; <1. One of the conditions 0 <y < 1 and (iiy)-(iis) whenever y = 1 in
Theorem 3.83 holds.

(ii) One of the conditions (iii) and (iv) of Theorem 3.83 holds, where the inequality (39) is replaced by 0 < a; ; < 1,
i=1---,n-1,j>1i

Corollary 3.88. Theorem D is valid for v = 12, provided one of the following conditions is satisfied:

(i) One of the conditions (i) and (ii) of Corollary 3.87 holds.
(i)) Fori=1,--- ,n=1,j>1,0 < a;; < 1. One of the conditions (ii) and (iiy) in Theorem 3.84 holds.

Many known corresponding results about the preconditioned AOR method proposed in the references
are the special cases of Theorems 3.81-3.84 and Corollaries 3.85-3.88, i.e., they can be derived from these
theorems, immediately.

Whena;j=a>0,i=1,---,n -1, j> i, the matrix Q1> reduces to

Q13 = (Xu,

which is proposed in [35] for the preconditioned Gauss-Seidel method. It is investigated in [97, 108] for the
preconditioned AOR method. For a = 1 it is proposed in [85] for the preconditioned Gauss-Seidel method
and in [63, 84] for the preconditioned SOR method.

Denote
n
r a;i ki, i=j=1,---,n-1;
k=i+1
j-1
6(13)(7/): (7/—1)111‘,]‘+)/ Z ai/kak/]’, 1:1/-“/71—1,]:14.1’...’71;
ij " k=i+1
Yy Y aixay, i=2, n-1,j=1,,i—1;
k=i+1
0, i:n/j:l’-../n
and
n
Z aixagj, i=1,--,n=1,j=1,---,i;
k=i+1
13) i
51.,]- 1) = Y, A kA, js i=1,"',n—1,j=i+2,'--,n;
k=i+1
O’ izl/"'/n_1/j=i+1;
0, i=nj=1,n

By Theorems 3.81-3.84 and Corollaries 3.85-3.88, the following results are obtained.
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Theorem 3.89. Suppose that a Y _..q aixax; <1,i=1,--- ,n—1,and

n
(1- o) —azai,kak,j <0,i=1,,n-1,j>1i (41)

k=i+1
k#j

Then Theorem A is valid for v = 13.
Theorem 3.90. Suppose that (41) holds. Then Theorem B is valid for v = 13.

Theorem 3.91. Suppose that a Y}, aixar; < 1,i=1,--- ,n— 1. Then Theorem C is valid for v = 13, provided
one of the following conditions is satisfied:

(i) 0<y <land

n
1-a)j—a Z aixax,j < 0 whenever a;; <0,i=1,--- ,n-1,j>1i (42)

k=i+1
k#j

(ii) y = 1. The inequality (42) holds and one of the following conditions holds:

(ii1) Thereexisti€{1,--- ,n—1},j€{l,--- ,itandk € {i+1,--- ,n} such that a;ay,; > 0.
(iiy) Thereexisti€ {1,--- ,n—1},je(i+2,--- ,nlandk € {i+1,---,j— 1} such that a;xay; > 0.
(ii3) There existsk € {1,--- ,n — 1} such that ayj41 < 0.

(114) apy < 0.

(iii) 0 <y < 1 and the inequality (41) holds. For eachi € {1,--- ,n — 1}, there exists j(i) € {i + 1,--- ,n} such that
i, (i) <0.

(iv) y =1 and the inequality (41) holds. For eachi € {1,--- ,n — 1} one of the following conditions holds:
(iv1) There exist j(i) € {1,--- ,i} and k(i) € {i + 1,--- ,n} such that a;xax,ji) > 0.

(ivy) There exist j(i) € {i +2,--- ,n}and k(i) € {i +1,--- , j — 1} such that a; x;ar,j¢) > 0.

(iv3) a;i41 < 0.

Proof. We just need to prove (iiy). From the irreducibility of A, there exists iy € {1,---,n — 1} such that
ai,» < 0so that a;, ,a,1 > 0, which implies that (ii;) holds fori =iy, j=landk=n. O

Theorem 3.92. Theorem D is valid for v = 13, provided one of the following conditions is satisfied:
(i) One of the conditions (i)-(iv) of Theorem 3.91 holds.
(ii) The inequality (41) holds and one of the following conditions holds:

(ity) Thereexisti€{l,--- ,n—1}and je{i+1,--- ,n} such that a;a;; > 0.
(i) y > 0. Thereexisti € {2,--- ,n—1}, je{l,--- ,i—=1}and k € {i + 1,--- ,n} such that a;ay; > 0.

Corollary 3.93. Suppose that 0 < a < 1and a Y, ;1 aixax; <1,i=1,---,n—1. Then Theorem A is valid for
v=13.

The result improves the corresponding one given by [97, Theorem 3.6].

Corollary 3.94. Suppose that 0 < a < 1. Then Theorem B is valid for v = 13.
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Corollary 3.95. Suppose that a);_; 1 aixa; < 1,i=1,--- ,n — 1. Then Theorem C is valid for v = 13, provided
one of the following conditions is satisfied:

(i) 0<y<landO0<a 1.

(ii) v =1and 0 < a < 1. One of the conditions (ii1)-(iiy) in Theorem 3.91 is satisfied.
(iti) 0<y <1,0<a<landforeachi€{l,--- ,n—1}, thereexists j(i) € {i +1,--- ,n} such that a; j; < 0.
(iv) y=1,0<a <1andforeachiec{l,---,n— 1} one of the conditions (iv1)-(itvs) in Theorem 3.91 holds.

The result when (i) holds is better than the corresponding one given by [108, Theorem 3.3].

If Yy o1 @ixai; >0, i=1,--- ,n—1,thenforeachie {1,--- ,n—1}, there exists k(i) € {i+1,--- , n} such that
i k(i) ak(i),i > 0 and a;;) < 0, which implies that (iif) of Theorem 3.91 holds for j(i) = k(i) and (iv;) in Theorem
3.91 holds for j(i) = i. Hence, Corollary 3.95 when (iii) and (iv) hold is better than [108, Theorems 3.1, 3.2,
34].

When a = 1, [63] studies the preconditioned SOR method. The main result [63, Theorem 3.1] presents a
Stein-Rosenberg type comparison theorem. But it is incorrect. Where the authors assume that A is strictly
diagonally dominant. Under this condition, by [4, Theorem 6-2.3], A is a nonsingular M-matrix. Then, by
[4, Theorem 7-5.24], it gets that p(.Z,) < 1. Hence, with our sign, [63, Theorem 3.1] should be corrected
as follows: “If A is a strictly diagonally dominant Z-matrix such that 0 < agg1agx <1, k=1,--- ,n—1and
0<w<1,then p(ﬁa(,m) < p(Z,) < 17. While this result can be also derived directly from Corollary 3.96
below. In fact, the condition ayx1ak+14 > 0, k = 1,--- ,n — 1, implies that A is irreducible and a1 < 0,
k=1,---,n—1. Therefore, the conditions (iii) and (iv;) in Theorem 3.91 are satisfied. By (i) of Corollary

3.96, it follows that p(,?a()m)) < p(Z,) <lholdsfor0<w<1.

Corollary 3.96. Theorem D is valid for v = 13, provided one of the following conditions is satisfied:
(i) One of the conditions (i)-(iv) of Corollary 3.95 holds.
(ii) 0 < a <1 and one of the conditions (ii1) and (iip) in Theorem 3.92 holds.

Corresponding to Qg, for r = 2,- -+, n, in [92] the matrix Q is defined as

0 0 0 0

Qu = 0 0 —Qrlr-1r 0 TOpldr-1n
14 = 0 0 0 0
0 0 0 0

withay >0,k=7r,---,n,and

n

Z app_qx # 0.

k=r

In this case, 61(,1].2)()/) and 651].2)(1) reduce respectively to

n
Y. k1 fk -1, i=j=r-1;
k=r
j-1
Wey_ ) =Daarj+y X axarapar;, i=r=1,j=r1--,n
o (V) = k=r

ij
n
Y ) Qkfr_1xa, Wheneverr >3, i=r-1,j=1,---,r=2;

=r
0, otherwise
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and

n
Yoo jay, i=r—=1,j=1,--,r=1;
k=r
14) i—1
sMWay=1{ 1 . .
ij Zakar_l,kak,j, i=r=1,j=r+1,---,m;
k=r
0, otherwise.

Clearly, the conditions (iii) and (iv) of Theorem 3.83 can be not satisfied.
From Theorems 3.81-3.84 and Corollaries 3.85-3.88, we have the following comparison results.

Theorem 3.97. Suppose that Y;_, oxy_1 kg1 < 1 and

n
(1= aj)ar,;— Z i xg; <0, j=71,0 1

k=r
k#j

Then Theorem A is valid for v = 14.
Theorem 3.98. Suppose that (43) holds. Then Theorem B is valid for v = 14.

Theorem 3.99. Suppose that Y _, axdy—1 xag,—1 < 1 and

n

1 -aj)a,-,;— Z axr_1xax,; < 0 whenever a,1; <0, j=71,---,n.
k=r
ke

Then Theorem C is valid for v = 14, provided one of the following conditions is satisfied:
(i) 0<y<1
(ii) y =1 and one of the following conditions holds:

(ii1) Thereexisti€{1,--- ,r—1}and j € {r,--- ,n} such that a;a,_1ja;; > 0.
(ity) Thereexisti€ {r+1,--- ,n}and j € {r,--- ,i — 1} such that aja, 1,ja;; > 0.
(iiz) a,—1, <0and a, > 0.
(iiy) a1 <0, k=1,--- ,n
(ii5) axp1 <0, k=7,--- ,n.
(iig) an1 <O0anday, <0, k=vr,--- ,n—-1
(ii7) a1 <0and agpr1 <0, k=71,--- ,n—1
Proof. By Theorem 3.83 we just need to prove (iiy)-(iiz).
From the definition of Qy4, there exists kg € {r,--- ,n} such that ay,a,_1 ¢, <O0.

If (ii4) holds then ay,a,-1 k,ak,1 > 0, which implies that (ii;) holds fori = 1 and j = ko.
Similarly, if (iis) holds then we can prove that (ii;) holds for i = r — 1 and j = k.

9908

(43)

(44)

When (iig) holds, if kg < n then aya,-1x,ax,» > 0, which implies that (ii;) holds for i = n and j = ko. If

ko = n then a,a,_1 44,1 > 0, which implies that (ii;) holds fori = 1 and j = n.
Similarly, when (ii7) holds we can prove that (i) holds. [J

Theorem 3.100. Theorem D is valid for v = 14, provided one of the following conditions is satisfied:
(i) The inequality (44) and one of the conditions (i) and (ii) of Theorem 3.99 holds.
(ii) The inequality (43) holds and one of the following conditions holds:

(iiy) There exists k € {r,--- ,n} such that aya,_q a1 > 0.
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(i) y > 0and there existk € {r,--- ,n}and j € {1,--- ,r — 2} such that axa, 1 yax,; > 0.

Corollary 3.101. Suppose that 0 < ay <1,k =r,--- ,n, and Y,;_, axdy_1xax,—1 < 1. Then Theorem A is valid for
v=14.

Corollary 3.102. Suppose that 0 < ax <1,k =r,--- ,n. Then Theorem B is valid for v = 14.
The result includes the corresponding one given in [92, Corollary 2.3].

Corollary 3.103. Suppose that 0 < ay <1, k=1,--- ,n,and ¥,;_, oaxar_1 xax,—1 < 1. Then Theorem C is valid for
v = 14, provided one of the conditions (i) and (ii) of Theorem 3.99 is satisfied.

Corollary 3.104. Theorem D is valid for v = 14, provided one of the following conditions is satisfied:

(i) 0<ax 1, k=rv---,n and one of the conditions (i) and (ii) of Theorem 3.99 holds.

(i) 0<ar<1,k=r,---,n, and one of the conditions (ii) and (iiy) in Theorem 3.100 holds.

Similar to Qu4, for r = 2,--- ,n, the matrix Q is chosen as

0 . 0 —a1a1, - 0
_ 0 e 0 —Or—10r-1,r 0
Qis = 0 0 0 o 0

withay >0,k=1,--- ,r—1,and

Juny

—
axay, # 0.
1

o~
Il

It is proposed in [104] for r = n. Whenr =nand a; =1,i = 2,---,n, it is a special case in [66] for the
preconditioned Gauss-Seidel and Jacobi methods.
In this case, 6§1j2>(y) and (551].2>(1) reduce respectively to

il Qri, l:]:l/ /r_l,'
5(15)( )= (y-Daiai,, i=1,---,r=1,j=r;
ij V yaaia,  i=1--,r=1je{l, -, i-1JUf{r+1,--- ,n};
0, otherwise
and

6(15)(1) _ | aisia, i=1--,r=1,1<j<ir+1<j<m
ij 0, otherwise.

From Corollaries 3.85 and 3.86, we have the following comparison results.
Theorem 3.105. Suppose that 0 < oy <1 and agag,a,; <1,k =1,--- ,r—1. Then Theorem A is valid for v = 15.
Theorem 3.106. Suppose that 0 < ax <1,k =1,---,r— 1. Then Theorem B is valid for v = 15.

In order to give the Stein-Rosenberg Type Theorem II, completely similar to Lemma 3.50, we can prove
the following lemma.
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Lemma 3.107. Let A be an irreducible Z-matrix. Assume thatr =n,0 <o <1, k=1,--- ,n—1and A® has the
block form

(15) ~(15)
A15) — Al a, A1) ¢ gpln=Dx(n-1)
5_12,1 1 711 .

Then
(1) Aglls) is an irreducible Z-matrix.
(ii) A" is an irreducible Z-matrix if and only if there exists jo € {1,--- ,n — 1} such that (1 — a;j))aj,» # 0.

Theorem 3.108. Suppose that axay,a,x <1,k =1,--- ,v— 1. Then Theorem C is valid for v = 15, provided one of
the following conditions is satisfied:

(i) 0<y<land0<o <1, k=1,---,r—1
(i) y=1,0<ax <1,k=1,--- ,r — 1. And one of the following conditions holds:

(iiy) Thereexisti€(1,---,r—=1yand je(1,--- i} U{r+1,---,n} such that a;a;,a,; > 0.
(iiy) ar-1, < 0and a,_q > 0.
(ii3) ap < 0.

(iig) Thereexistsk € {r +1,--- ,n} such that a,; < 0.

(iii)) r=n,0<y<land0<ap <1, k=1,--- ,n—-1
(iv) r=n,y=10<a<1,k=1,--- ,n—1. And one of the following conditions holds:

(iv1) Thereexisti€{1,--- ,n—1}and j € {1,--- i} such that a; ,a,; > 0.
(ivy) ay-1, <O.

(iv3) ay1 <0.

Proof. We just need to prove (ii3), (iis) and (iii) and (iv).

From the definition of Qis, there exists iy € {1,---,r — 1} such that a;a;,, < 0. If (ii3) holds then
ai,ai, 4ar1 > 0, which implies that (ii;) holds for i = iy and j = 1. If (ii4) holds then we can prove that (ii;)
holds fori =iy and j = k.

For (iii) and (iv), if A is irreducible then the result is obvious.

Now, we consider the case when A" is reducible. Suppose that p = p(.%),,) and x > 0 is its associated
eigenvector. By Theorem 3.105, p = 1 if and only if p(of}f}(f)) =1

By Lemma 3.1 we just need to consider the case when y < w. Then, by Lemma 2.9 it follows that p > 0
and x > 0.

Let A have the block form

A= ( 1‘_11,1 a2 )/ Ay € BDX-D),
az1 1 .

Then, by Lemma 3.107, A"® has the block form

(15)
A05) ( Al,l 0 ), A(llf) e Zn-Dx(n-1)
1 1 ¢
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where A(15) is an irreducible L-matrix, since a;}ks ) =1 Qg nan r>0k=1,---,n—-1. LetAj1 = M%m - NWL,

and A(15) =M, — N, be the AOR splittings of A;; and Al respectively. Then they are regular splittings

1 1 4
and
M 0 N, —a12
M B ( o ) N B ( - 2 :
V@ Y = 1 7 V. VW — 1— 7
o1 S
M 0 N, 0 _ M} 0
O O PR I O GO T (R Y
a1 5 R S yaaM,, @
P15 _ Myley 0 0
V@ a1y —w)l - yM;’le%w] 1-w

Let E; and F, be diagonal part and strictly lower triangular part of Q;5L with block forms

= Ell 0 = Fll 0 -1 -
E, = / ,E=| , E11,F11 € 0~ Dx0-1),
2 ( 0 e2n ) 2 ( fiz fo2 ) 11,511

Then €2 = fz,z =0and f1,2 =0. Let

Q15 =( 91’1 11(1152 )/ Qi1 € Z XD
D1 4y,

X _ 1 -
x:( 321 ),xle%” % €.
2

Then Q11 =0,421 =0, qg) =0, 412 >0, % > 0and %, > 0. Now, by Lemma 3.2, we obtain

D%Ef)x - px
— MylmNy wX1 — pX1
aal(y — @)l = yM, N, 1% + (1 — )% — pX,

=(p- 1)[M§1§?1-1[E2 +yFs + %ng,N},,w]x

_ M71 0 El,l 0 F1,1 0 w
‘(P_l)(—yalew a))[( o o) 0o o7,

0
0
_ ( _ 1) ya)[(El 1+ ‘)/Fl 1+ y_ql 2a2 1).X'1 + —E]l 2x2]
P —yi, 1My (.)[(El 1+yFi1 + —q1 22 1)1 +1 ql 2%5]

Hence, we have

- _ - _ _ - _
M, N, o1 = p%1 = (p = )M, L [(Evq + yFi1 + ! J1202,1)%1 + J12%2] (45)

'}/,(A}
and
(1 - a))fz — pX; (46)

w_
J12%2].

— B B B 1 —
J12821)%1 +

= i [(w = Y + yM, | N, )51 = (p = D)yaz M, [(E1x + yFia + 4

15)

For the case when (iii) holds, i.e.,y < 1,let A}’ = D—L—U, where D, L and U are respectively diagonal,

strictly lower and upper triangular matrices. Smce A(llf) is an irreducible L-matrix and

M, )Ny =D'[(1 - @)D+ w1 -y)L+wl]+T20
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with
T =wyD LD -yL)'[1-y)L+ Ul >0,

then it follows that M;! N, , is irreducible, so that M} N, % > 0. The irreducibility of A ensures that

Y. Y@
a1 < 0. Itis easy to see that

-—w_ _ _ l-w_ _ _ _
J,2021%1 + J12%2 >0, dal(w - ) + VMy,lm

Ny,wlxl < 0.

When p < 1, from (45) and (46) it gets that
M71 N},,wfl - ‘Dfl <0, (1 - a))fz - pfz <0,

V@

which shows that p(M;} N, ,) < pand 1-w < p. Therefore we have p(.,?éf}f)) = max{l-w, p(M;5N,,.)} < p.

VW Y,
When p > 1 then, from (45) it gets that M;}wN),,wicl — px1 > 0, which shows that p(M;}wN}/,m) > p > 1and
hence, p(Z}},)) = max{1 - @, p(¥;!,N,,0)} = p(WV;LN, ) > p.

When (iv) holds, i.e., y = 1, then @ = 1 and the AOR method reduces to the Gauss-Seidel method. In
this case, we have

D‘Z(ls) _ Ml_,llNl,l 0 )

—ﬁz,lMHNM 0
and therefore p(£19) = p(M;1N1,1). Now, (45) reduces to
MillN1,13?1 -pxX = (p— 1)MH(E1,1 + Fi1)%1.
Since Aﬁ’ ) is irreducible, then the rest of the proof is completely similar to that of Theorem 3.51. O

The result when (iii) and (iv) hold is better than [104, Theorem 3.16, Corollary 3.17], where the condition
thatay, # Ofork =1,--- ,n—1isredundant. Again, the result when (i) and (i7) hold includes [104, Theorems
3.18, 3.19 and 3.20].

Theorem 3.109. Theorem D is valid for v = 15, provided one of the following conditions is satisfied:

(i) One of the conditions (i)-(iv) of Theorem 3.108 holds.
(i) 0<ax <1,k=1,---,r =1, one of the following conditions holds:

(iiy) There existsi € {1,--- ,r — 1} such that aa;,a.; > 0.

(i) y > 0and thereexisti € {2,--- ,r =1} and j € {1,--- ,i — 1} such that a;a; ra,; > 0.

As a special case, for some r < s with a,; < 0 and a > 0, the matrix Q15 reduces to

0 0 0
Qi =| o 0 Py
0o - 0 .- 0

which is given in [53] forr =1 and s = n. And forr =1, s = nand a = 1 it is proposed in [14]. Whenr =1
and s = n, it is given in [96] for the preconditioned Gauss-Seidel method. When @« = 1 and s = r + 1, it is
proposed in [13] for the preconditioned MSOR method. Itis given in [109] to replace —a,s/a with a constant

B.
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In this case, 651].5)()/) and (SfljS)(l) reduce respectively to

1 Ca .
Ea{,sas,r/ 1= ] =71
)/— . . .
6(16)(,)/) — o ar,sr Z - 7’,] - S,
ij Lapaagj, i=1r1<j<r-1s+1<j<m

0, otherwise
and

509(1) = a0, i=r1<j<rs+1<j<m
ij 10, otherwise.

Clearly, the conditions (iii) and (iv) of Theorem 3.108 can be not satisfied.
From Theorems 3.105 and 3.106, the following comparison results are immediately.

Theorem 3.110. Suppose that o > 1 and o > a,sa,,. Then Theorem A is valid for v = 16.
Theorem 3.111. Suppose that a > 1. Then Theorem B is valid for v = 16.

In order to give the Stein-Rosenberg Type Theorem 1I, completely similar to Lemma 3.55, we can prove
the following lemma.
Lemma 3.112. Let A be an irreducible Z-matrix. Assume thatr = 1and s = n, a > 1 and A9 has the block form

(16) ~(16)
A2 ) a

A(16) — ( 12 ) A(1116) c %(n—l)x(n—l).
1 )7L

a1

Then one of the following two mutually exclusive relations holds:

(i) A19 s an irreducible Z-matrix.

(1e) _ (16) _ —
9 =al¥=0,k=2-,n-1.

(ii) A9 is g reducible Z-matrix, but Aglf) is an irreducible Z-matrix and ay ;. = a
Using this lemma, completely similar to the proof of Theorem 3.108, we can prove the following theorem.

Theorem 3.113. Suppose that a > a,sas,. Then Theorem C is valid for v = 16, provided one of the following
conditions is satisfied:

(i) a 2 1. And one of the following conditions holds:

(i1) 0<y<l
(in) y = 1and there exists k € {1,--- , ¥} U{s +1,--- ,n} such that as; < 0.
(i) y=1lands=r+1.

(ii)) r=1,s=nand a > 1.

The result when (ii) holds is better than [53, Theorem 2]. For a = 1, itis also better than the corresponding
ones given by [54, Theorem 2.2, Corollaries 2.1, 2.2], where the condition ay k1416 > 0,k =1,--- ,n -1,
implies that A is irreducible and so that the condition a1 44,1 > 0 is unnecessary.

Theorem 3.114. Theorem D is valid for v = 16, provided one of the following conditions is satisfied:

(i) One of the conditions (i) and (ii) of Theorem 3.113 holds.

(ii) a > 1 and one of the following conditions holds:

(ii1) as, < 0.
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(iiy) y > 0, v > 2 and there exists k € {1,--- ,r — 1} such that as; < 0.

The result when (ii1) holds for (r,s) = (1,n) and a = 1, is better than [14, Theorem 2.3].
In [30], for the preconditioned Gauss-Seidel method, Q is chosen as

0 —1a1,2 0 s 0
0 0 —Qd33 0
Q7 = : : :
0 0 0 o —ap-1an-1,n
0 0 0 e 0

withay >0,k=1,--- ,n—1,and

n—1
Z aragis1 7 0,
=1

which is used to the preconditioned AOR method in [97, 104], to the preconditioned SOR method in [82]
and to the preconditioned Gauss-Seidel and Jacobi methods in [17]. For a = 1, k = 1,--- ,n -1, it is
proposed in [15] for the preconditioned Gauss-Seidel method, in [40] for the preconditioned SOR method,
and in [12, 52] for the preconditioned AOR method.

In this case, 65,1].2) (y) and 65,1].2)(1) reduce respectively to

aibiiaiv,i,  t=j=1,---,n-1;

507y = (= Dajajipr, i=1,---,n-1,j=i+1;

ij y )/Ufiai,iﬂaiﬂ,jr i= 1/ = 1/] = 1/ /n/j * l/l+ 1/
O, izn/jzl,"‘,l’l

and

6(17)(1) _ aiai,i+1ai+1,jr l: 1/ In_llj: 1/ ,f’l,j # l+1/
i,j 10, otherwise.

From Corollaries 3.85 and 3.86 we can obtain the following comparison result, directly.

Theorem 3.115. Suppose that 0 < ax < 1 and a1k x <1, k=1,---,n—1. Then Theorem A is valid for
v=17.

The result improves the corresponding one given by [97, Theorem 2.1] and includes [50, Theorem 4.1]
for the preconditioned Gauss-Seidel method. It is also better than [104, Theorem 3.6], where it is assumed
that A is irreducible.

Theorem 3.116. Suppose that 0 < ax <1,k =1,--- ,n—1. Then Theorem B is valid for v = 17.

The result includes the corresponding one given by [97, Corollary 2.3]. For the Gauss-Seidel method
it is better than [31, Theorem 2] where the condition that the Gauss-Seidel methods are convergent is
redundant, [58, Theorem 28] where the assumption that A is irreducible is redundant, [34, Theorem 3.5]
and [69, Theorem 2.4] since an irreducibly diagonally dominant Z-matrix is a nonsingular M-matrix.

Completely similar to Lemma 3.60 we can prove the following lemma.

Lemma 3.117. Let A be a Z-matrix. Assume thatn > 3,41, <0, aj14 <0, 0<ax <1, k=1,--- ,n—1. Then A
and A7) are irreducible Z-matrices.

Theorem 3.118. Suppose that axay g1k, <1,k =1,--- ,n—1. Then Theorem C is valid for v = 17, provided one
of the following conditions is satisfied:

(i) 0<ar<l,k=1,---,n—1.
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(i) O<ay<landaypy <0, k=1,--- ,n—-1.
(iii) n23,0<ax<1,a1, <0, 84414, <0, k=1,--- ,n-1

Proof. By the definition of Qy7, there exists kg € {1,--- ,n — 1} such that ay,x,+1 <0

When (i) holds, the conditions (i) and (ii3) in Theorem 3.83 are satisfied, so that (i) of Corollary 3.87
holds.

Similarly, when (i7) holds, the conditions (iii) and (iv3) in Theorem 3.83 are satisfied for j(i) = i + 1, so
that (if) of Corollary 3.87 holds.

When (iii) holds, then, by Lemma 3.117, A7) is an irreducible L-matrix. From (i) we can prove (iii).

The proof is complete. [

Obviously, from Lemma 3.117, if (iif) holds, then the assumption that A is irreducible is redundant.

The result when the condition (i) holds is better than [104, Theorems 3.4, 3.5] and [99, Theorem 2], where
y <L

The result when the condition (i7) holds includes [104, Theorem 3.1, Corollaries 3.2, 3.3] and [50,
Theorem 4.2]. It is better than [12, Theorem 3.1, Corollary 3.1], [15, Theorem 4.1] and [40, Theorem 3], since
the condition ag 1116 > 0,k =1,--- ,n — 1, implies that A is irreducible and ay 441 <0,k=1,--- ,n—1.

The corresponding result given in [52, Theorem 2] is incorrect, which is pointed out by [107]. But the
corresponding one given in [107, Theorem 3.5] is also incorrect, which is pointed out by [99].

Similarly, from Corollary 3.88, we can obtain the following comparison result, directly.

Theorem 3.119. Theorem D is valid for v = 17, provided one of the following conditions is satisfied:
(i) One of the conditions (i), (ii) and (iii) of Theorem 3.118 holds.
(ii) 0<ar<1,k=1,---,n—1and one of the following conditions holds:

(iiy) There existsi € {1,--- ,n — 1} such that aa; ;41811 > 0.

(i) y > 0and thereexisti € {2,--- ,n—1}and j € {1,--- ,i — 1} such that a;a;;1a;11,; > 0.
Different from Qi5 and Q7, we define Qg = (qglis)) as
(18) _ —Qilis;, i= 1/ e, 1/] =5,
Tj = 0, otherwise,
where
s; =min{s : s € {k : |a;x| is maximal for i + 1 < k < n}}

and Z;:ll aiais, # 0, which is proposed in [34] for the preconditioned Gauss-Seidel method and a; = 1,
k=1,---,n-1. In[33] its convergence for H-matrix is discussed.
In this case, 651.2 >(y) and 6(1.2>(1) reduce respectively to
ol ij

Qs s, i, i= ] =1,---,n—-1;
6(18)(,)/) — (7/ - 1)aiﬂl‘,si, 1 = ]_, e /71 —_ 1,] — Si;
B yailisds,j,  i=1 n=1,je{l,- i1} Ulsi+ 1, n;
0, otherwise
and
a8) Qilis s, i, i=1--,n-1,
18 i : ‘
(51',]' 1= jef(l, -, iUlsi+1,---,n);

0, otherwise.

From Corollaries 3.85-3.88 we can obtain the following comparison result, directly.
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Theorem 3.120. Suppose that 0 < ay < 1and opags as,x <1,k =1,--- ,n—1. Then Theorem A is valid for v = 18.
Theorem 3.121. Suppose that 0 < ax <1,k=1,--- ,n— 1. Then Theorem B is valid for v = 18.
The result for the case whenw = yand ay =1,k=1,--- ,n -1, reduces to [47, Theorem 4.2].

Theorem 3.122. Suppose that axays as,x <1,k =1,--- ,n—1. Then Theorem C is valid for v = 18, provided one of
the following conditions is satisfied:

(i) 0<y<land0<o <l k=1,---,n—-1.
(ii)) y=1,0<ar 1, k=1,--- ,n—1. And one of the following conditions holds:

(ii1) Thereexisti€{1,--- ,n—1},j€(1,---,i} Uls; +1,--- ,n} such that aa;sas,; > 0.
(iiy) ay1 <0andagp1 <0,k=1,--- ,n—1
(ii3) a1 <0anday, <0,k=2,--- ,n—1.
(114) g1 < 0, k= 2, 1.
(ii)) 0 <ap <landay, <0,k=1,--- ,n—=1. Foreachi € {1,---,n — 1} one of the following conditions holds:
(iiip) 0<y <L
(itiy) y = 1 and there exists j(i) € {1,--- ,i} U {s; +1,--- ,n} such that as, j; > 0.

The result when (iii;) holds foray = 1,k = 1,--- ,n—1, is better than [47, Theorem 4.3], since its condition
insures that A is irreducible.

Theorem 3.123. Theorem D is valid for v = 18, provided one of the following conditions is satisfied:
(i) One of the conditions (i), (ii) and (iii) of Theorem 3.122 holds.
(ii) 0<ax <1,k=1,--- ,n—1and one of the following conditions holds:

(iiy) Thereexistsi € {1,---,n — 1} such that a,a;sas,; > 0.
(i) y > 0and thereexisti € {2,--- ,n—1}and j € {1,--- ,i — 1} such that a;a;sas,; > 0.

Similar to Q19, Q can be defined as

0 . 0 —1a1,, + .81
0 . 0 —Qpdyy + 52
Qo = : :
0 - 0 —(y1dy1n+Pur
0 - 0 0

with oy >0, —aar, + fr >20,k=1,--- ,n—1,and

n—1
Z(—akﬂk,n +Bx) # 0.
=1

For ay = 1, it is given in [9] for the preconditioned AOR method, and in [8] for the preconditioned SOR
method.

In this case, 61(,,1].) (y) and (51(./1].)(1) reduce respectively to

(aiai,n _‘Bi)an,il i= j= o n— 1
5094y =) - D@ain=pi), =100 n=1j=m
i y V(aiai,n - ﬁi)an,j/ i= 1/ RS (e 1/] = 1/ Yy i— 1/

0, otherwise
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and

519(1) = (itin = Bi)anj, i=1,-,n=1,j=1,---,i
ij “10, otherwise.

Similar to Lemma 3.107, we have the following lemma.

Lemma 3.124. Let A be an irreducible Z-matrix. Assume that 0 < —axag, + px < —axn, k=1,--- ,n—1and AW®)
has the block form

(19) +(19)
Al a, ), A(ll? € n-Dx(n-1)_

A9 =
531 1

Then
(i) A(1119) is an irreducible Z-matrix.
(ii) A is an irreducible Z-matrix if and only if there exists jo € {1,--- ,n — 1} such that (1 — a;))aj, . + Bj, # 0.

Similar to Theorems 3.105-3.109, we can prove the following comparison theorems.

Theorem 3.125. Suppose that 0 < —axay, + Px < —ak, and (g, — Pr)ank <1,k =1,--- ,n = 1. Then Theorem
A is valid for v = 19.

Theorem 3.126. Suppose that 0 < —oyag, + Px < —axn, k=1,---,n —1. Then Theorem B is valid for v = 19.

Theorem 3.127. Suppose that (1 — ay)ax, + P < 0 and (axax, — Pr)any <1,k =1,--- ,n — 1. Then Theorem C is
valid for v = 19, provided one of the following conditions is satisfied:

(i) 0<y <land (1 - ax)ax, + pr < 0 whenever ar, <0,k=1,--- ,n—-1.
(ii) v = 1and (1 — ax)ax,, + Pr < 0 whenever a,, <0,k =1,--- ,n—1. And one of the following conditions holds:

(ii1) Thereexisti€{l1,--- ,n—1}and j € {1,--- i} such that (xa;, — Pi)as,; > 0.

(112) _an—lan—l,n + ﬁn—l > 0.

(ii3) ay1 < 0.

(iii) — Qg +ﬁk >0,k=1,---,n—1.
Proof. By Theorem 3.6 and referring to the proof of Theorem 3.108, we just need to prove the case when
y = 1in (iii).
In fact, using Lemma 3.124, it is easy to prove that a sufficient condition similar with (iv) of Theorem

3.108 is that there existi € {1,--- ,n — 1} and j € {1,--- i} such that (a;, — Bi)a,; > 0, which is equivalent

to that there exists j € {1,--- ,n — 1} such that a,; < 0, since —a;a;, + f; > 0. While, the irreducibility of A
ensures that it is true. [

When (iii) holds, the result is better that the corresponding ones given by [8, Theorem 3.3, Corollary 3.3]
and [9, Theorem 3.2].

Theorem 3.128. Theorem D is valid for v = 19, provided one of the following conditions is satisfied:
(i) One of the conditions (i), (ii) and (iii) of Theorem 3.127 holds.
(ii)) 0<ar<1,k=1,---,n—1and one of the following conditions holds:

(ii1) There exists i € {1,--- ,n — 1} such that (a;a;, — Bi)an; > 0.

(i) y > 0and thereexisti € {2,--- ,n—1}and j € {1,--- ,i — 1} such that (a;a;, — fi)an,; > 0.
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As a special of Q19, Q is proposed in [38] as

0 0 _’%ﬂ_ﬁ

0 0 0
QZO: . . . .

0 0 0

with @ > 0 and a1,/ + < 0, which is given in [51] for & = 1.
In this case, similar to 651].6)(1), we can derive 67(.2],0)(1), whose all elements are zero except 6(12;))(1) =
(a1,n/ + B)an,1.

Theorem 3.129. Suppose that f > (1 —1/a)ar, and (a1,/a + B)as1 < 1. Then Theorem A is valid for v = 20.

Proof. Since

1n

1 . a
(1—a)a1,n§ﬁ iff -

- ,B < —A1,n,

and the inequality (19) reduces to (a1,,/a + B)an1 < 1, then the condition of Corollary 3.12 is satisfied so that
Theorem A is valid. [

It is easy to prove the following theorem.
Theorem 3.130. Suppose that f > (1 —1/a)ay,. Then Theorem B is valid for v = 20.

In order to give the Stein-Rosenberg Type Theorem II, completely similar to Lemma 3.112, we can prove
the following lemma.

Lemma 3.131. Let A be an irreducible Z-matrix. Assume that B > (1 — 1/a)ay , and A has the block form

A0 720
1,1

A(ZO) — ( 12 ) A(12;)) c (@(n—l)x(n—l)'
1 T

2,1
Then one of the following two mutually exclusive relations holds:
(i) AP is an irreducible Z-matrix.

@) = q® =0, k=2,---,n-1

(ii) A@Y s q reducible Z-matrix, but AP is an irreducible Z-matrix and Mr=a =
11 . 1k 1,n

Using this lemma, completely similar to (i7) of Theorem 3.113, we can prove the following theorem.
Theorem 3.132. Suppose that f > (1 —1/a)ay, and (a1,,/a + B)any < 1. Then Theorem C is valid for v = 20.

The result is better than [41, Theorem 6], where the condition 0 < a1,4,,1 < a(a > 1) is unnecessary.
Theorem 3.133. Suppose that § > (1 — 1/a)ay .. Then Theorem D is valid for v = 20.

By the definition of Q», a41,,/a + p < 0. While in the comparison theorems above we need the condition
B > (1 -1/a)as,,. Hence it implies a;, < 0.

For a = 1, the result is better than the corresponding ones given by [51, Theorem 9, Corollaries 10, 11],
where the condition a1 ,4,,1 > 0 is unnecessary.
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3.4. Combination preconditioners

In this subsection, when the matrix Q is composed of two different combinations of Q; and Qj, we
always assume Q; > 0 and Q; > 0. Otherwise, the corresponding situation has been discussed in the above
two subsections.

First, the matrix Q is chosen as

Q21 = Qs + Q12,

ie.,
0 —Bipa1p o —Pru—141,n-1 —B1,nl1,n
0 0 <o —PBon-1A2,n-1 —Bonon
Qo1 = : : - : :
0 0 e 0 _,Bn—l,nan—l,n
-1y —Q20p2 v —Op-_10pn-1 0

witha; 20,8,;20,i=1,--- ,n-1,j=i+1,--- ,n,and

n-1 n
Ak # 0 and Z Z ,Bi,]-ai,j #0,

1 i=1 j=i+1

=
—_

=~
1l

where for simplicity we set 7 = n for Qs.

When a; = g =1,i=1,---,n-1,j=i+1,---,n, it is proposed in [100] for the preconditioned
Gauss-Seidel method.

By Corollaries 3.20 and 3.21, the following two comparison theorems are directly.

Theorem 3.134. Suppose that0 < a; <1,0<p;;<1,i=1,---,n-1,j=i+1,--- ,nand

—_

n—

n
Aty i < 1, Z Bixaixar; <1,i=1,--- ,n—1. (47)
1 K=it1

>~
I

Then Theorem A is valid for v = 21.

Theorem 3.135. Suppose that0 < a; <1,0<p;;<1,i=1,--- ,n—1,j=i+1,---,n. Then Theorem B is valid
forv =21.

In this case, 61(? (y) and 61(.,2].)(1) reduce respectively to

n
L Bi ki ki, i=j=1,---,n-1;
k=i+1
n71 . .
Y Akl kA, 1=]=mn
k=1
@) it
61‘]‘ (V) =q (y- 1),81',]'“1',]' + ykZ ﬁi,kll,‘,kak,]', i=1,---,m-1,j=i+1,---,m
’ =i+1
n
y L Bi ki Ak, j, i=2,---,n-1,j=1,---,i-1;
k=i+1
-1
(y = Dajay,; +y Y. axanax,, i=nj=1,---,n-1
k=1
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n

Z ﬁi,kai,kak,j/ i:]-/"'/n_]-/j:]-/"'/i;
k=i+1

j-1

5@ (1) = kzjrlﬁi,kai,kak,j/ i=1,-,n=2,j=i+2,--,n
ij =i

j-1

Z akan,kak,j/ Z = n/j = 2/ e /n;
k=1
0, otherwise.

Using Corollary 3.22, we prove Stein-Rosenberg type comparison theorem.

Theorem 3.136. Suppose that (47) holds. Then Theorem C is valid for v = 21, provided one of the following
conditions is satisfied:

() 0<y<land0<a;<1,0<B;;<1,i=1,---,n=-1,j=i+1,---,n

(i) y=1and0<a; $1,0<6;;<1,i=1,--- ,n=1,j=i+1,--- ,n. And one of the following conditions holds:

(iii)

(iv)

(ii1) Thereexisti€{1,--- ,n—1},j€{l,--- ,ifandk € {i+1,--- ,n} such that p;sa;rax,; > 0.

(iiy) Thereexisti€ {1,--- ,n=2},je(i+2,--- ,nlandk € {i+1,---,j— 1} such that B;xa;xa,; > 0.
(ii3) There exist j € {2,--- ,nyand k € {1,--- , j — 1} such that axa, rax,; > 0.

(iiy) There exists k € {1,--- ,n — 1} such that ayj41 < 0 and i1 > 0.

(ii5) a1 < 0and ap > 0.

(iig) a1 <0,k=2,--- ,n.

(ii7) ay1 <O0anday, <0,k=2,--- ,n—1.

(iig) ax, <0,k=1,---,n—1

(ii9) g1 <0,k=1,--- ,n—1.

0<y<land0<a;<1,0<p;;<1,i=1,---,n=1,j=i+1,--- ,n. Andforeachi € {1,--- ,n—1}, there
exists ](Z) € {i+ 1,--- ,Tl} such that ﬁi,]-(,-)ai,]'(i) <0.

y=1and0<a;<1,0<p;;<1,i=1,---,n-1,j=i+1,---,n Foreachie€ {2,---,n— 1}, one of the
following conditions holds:

(iUl) There exist ](Z) S {1, cee, l} and k(l) S {1 +1,---, 1’1} such that ﬁi,k(,-)ai,k(,-)ak(i),j(i) > 0.
(ivy) There exist ](l) ef{i+2,---,n}and k(l) efi+1,---, ] — 1} such that ﬁi,k(,-)ai,k(i)ak(i),j(,-) > 0.
(iv3) ;i1 <0and Bijq > 0.

At the same time, one of the following conditions also holds:

(iv") Thereexist j€{2,--- ,nfandk € {1,---, j — 1} such that aya,xax; > 0.
(iv’) a1 < 0and aq > 0.
(iv°) There exists j € {2,--- ,n — 1} such that

(iv") One of the conditions (iv1)-(ivs) holds for i = 1 and

(1 -a)any— ) axappary <0.
2

=~
|



Y. Song / Filomat 39:28 (2025), 9865-9946 9921
(iv°) One of the conditions (ivq)-(iv3) holds for i = 1 and a, 1 < 0.

Proof. When (i) or (iii) holds, then the condition (i) or (iii) of Theorem 3.18 is satisfied.

When one of (iiy), (ii») and (ii;) holds, then 555.”(1) >0 or 53?(1) > 0, which implies that (ii;) in Theorem
3.18 is satisfied.
When (ii4) or (iis) holds, then (ii3) or (iiz) in Theorem 3.18 is satisfied.
When one of (iig) and (ii7) holds, then by the proof of Theorem 3.83 it follows that (ii;) is satisfied.

Similarly, when one of (iig) and (iig) holds, then by the proof of Theorem 3.42 it follows that (ii3) is
satisfied.

Exactly the same, we can prove that if (iv4) holds, then the condition (ivs) in Theorem 3.18 is satisfied.
By Corollary 3.22 the proof is complete. [

Theorem 3.137. Theorem D is valid for v = 21, provided one of the following conditions is satisfied:
(i) One of the conditions (i)-(iv) of Theorem 3.136 holds.
(i) 0<a;<1,0<Bj<li=1,--,n=1,j=i+1,---,m Forj=1,---,n—1,

n—-1

jdy,i + E Qkly Ak, j >0.
=
kj

And one of the following conditions holds:

n
(iiy) There exists ig € {1,--- ,n — 1} such that Y, Bi, i, xki, > 0.
k=ip+1

(ii) T4o) Qi > 0.
(ii3) y > 0 and there exist ip € {2,--- ,n =1}, jo € {1,--- ,ip — 1} such that ZZ::'OH Bio iy kA, j, > 0.

(ity) y > 0 and there exists jo € {1,--+ ,n — 1} such that aj,a, j, + Z,’::_ll/k;tjo Qkfn xar,j, > 0.

Proof. We just need to prove (if). It is easy to obtain that

n
1= Y aixixa, i=j=1,--,n-1,
k=i+1
n-1
1 - Y. axp g, 1=]=mn,
(21) _ k=1
4;;" = n ‘
aij— Y. Prikk,, i=2,---,m-1,j=1,---,i-1,
k=i+1
n—-1
(1- a]-)an,j -y Ml flxj, 1=1,]= 1, ,n—1.
k=1

By Corollary 3.23 we can derive (iiy)-(iiy).

As a special case of Qo1 foray =0,k =2,--- ,n—1, it gets that
Q2 = Q7+ Q12,

i.e.,
0 —pd12  —aizd3 c e —1,n1,n
0 0 —3dr3 - — 2,
Qxn = : :
0 0 0 —dp—1nln-1n

-y 1 0 0 e 0
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witha,; <0,>0,6,;>20,i=1,---,n=1,j=i+1,---,n,and 2?2—11 Z;’:,Hﬁ,;ja,-,j # 0, where we setr = n
and s =1 for Q5.

In this case, (ii5) and (iv") in Theorem 3.136 are satisfied. While, (i) of Theorem 3.137 can be not satisfied.
Hence, from Theorems 3.134-3.137, we can derive the following theorems, directly.

Theorem 3.138. Suppose that0 <a <1,0<p;;<1,i=1,---,n-1,j=i+1,--- ,n,and

n
ady 101, < 1, Z ﬁi,kui,kak,i < 1, i= 1,' e, n = 1. (48)
k=i+1

Then Theorem A is valid for v = 22.

Theorem 3.139. Suppose that0 < a <1,0 < Bij<li=1--,n-1j=i+1,-,n Then Theorem B is valid
forv =22,

Theorem 3.140. Suppose that (48) holds. Then Theorem C is valid for v = 22, provided one of the following
conditions is satisfied:

() 0<as1,0<Bjsli=1-,n=1j=i+1,---,n

(i) 0<y<land0<a<1,0<p;<1,i=1,---,n=-1,j=i+1,--- ,n. Andforeachi€ {1,--- ,n—1}, there
exists ji) € {i+1,--- ,n} such that ﬁi,j(i)ai,j(i) <0.

(iii) y=1and 0 <a <1,0<B;;<1,i=1,--- ,n-1,j=i+1,--- ,n. Foreachi€ {2,--- ,n—1}, one of the
following conditions holds:

(iii1) There exist ](Z) € {1, cee, l} and k(l) (S {1 +1,---, 71} such that ﬂ,‘/k(,‘)aj/k(i)llk(i)/]'(,‘) > 0.
(itiy) There exist j(i) € {i +2,--- ,n} and k(i) € {i +1,---, j — 1} such that B; ki@ k)kG),ji) > 0.

(1113) Aji+1 < 0 and ﬁi,i+1 > 0.

Theorem 3.141. Theorem D is valid for v = 22, provided one of the conditions (i), (ii) and (iii) of Theorem 3.140 is
satisfied.

Similar to Q,1, the matrix Q is chosen as

Q23 = Qs + Q12,

ie.,
0 —P12t12 o —Pru—141u-1 —B1,nl1,n
—an 1 0 s —Pon-1d2,u-1 —Banlon
Qs = : : :
—dp—10n-1,1 0 e 0 _ﬁn—l,nan—l,n
—Quln 0 .- 0 0

withajy1 20,6;;20,i=1,--- ,n-1,j=i+1,--- ,n,and

n n-1 n
Zakak,l #0 and Z Z ﬁi,jﬂi,j #0,

k=2 i=1 j=i+1

where we set r = 2 for Q.
Similar to the Theorems 3.134 and 3.135, we have the following two comparison theorems.
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Theorem 3.142. Suppose that0 < a;1 <1,0<6;;<1,i=1,---,n-1,j=i+1,--- ,nand

n n
Auln 11, <1, Zﬁl,kﬂl,kﬂk,l <1, ajaj a1, + Z Bixaixar; <1,1=2,--- ,n—1 (49)
k=2 k=i+1

Then Theorem A is valid for v = 23.

Theorem 3.143. Supposethat0 < a1 <1,0<p;;<1,i=1,---,n-1,j=i+1,---,n. Then Theorem B is valid
forv =23,

In this case, 652].) (y) and 61(,2].)(1) reduce respectively to

n

Y. Bixdi ki, i=j=1,
k=i+1
n . .
Qiaiia; + Y, Pikdikiki, i=j=2,---,n-1;
k=i+1 . .
Aplu,101,n, 1=]=n
(O = DBiindiin, i=1-,n=-1,j=i+1;
(23) =
o, M= -DBijaij+y L Pirdipaj, i=1---,n=1j=i+2,---,n;
5 k=i+1
n
(y=Daigin+y Y, Bixdixax1, i=2,---,n=1,j=1
k=i+1
n
yaiaiaay;+y Y, Pikdikdyj, i=3,---,n-1,j=2,---,i-1;
k=i+1
(y = Danana, i=nj=1;
Y0l 14,j, i=nj=2,---,n-1
and
n . .
Y. Bikixaka, i=1---,n-1,j=1;
k=i+1
n . . .
aaipay;+ Y, Pixdixaxj, 1=2,,m=1,7=2,- i
@3)4r _ k=i+1
61‘,]‘ (1) - j-1
L Pikikax,j, i=1- n=1j=i+2,-,n
k=i+1 ) )
Qnfly,101,j, i=nj=2,--,n
0, otherwise.

Using Corollary 3.22, we prove Stein-Rosenberg type comparison theorem.

Theorem 3.144. Suppose that (49) holds. Then Theorem C is valid for v = 23, provided one of the following
conditions is satisfied:

(i) 0<y<land0<a@j;1$1,0<6;;<1,i=1,--- ,n-1,j=i+1,---,n

(i) y=1and 0 < ajy1 $1,0<6;;<1,i=1,---,n-1,j=i+1,---,n And one of the following conditions
holds:
(iiy) Thereexisti€{1,--- ,n—1},j€{l,--- ,ifandk € {i+1,--- ,n} such that p;sa;ay,; > 0.
(iiy) Thereexisti€{1,--- ,n—=2},jel{i+2,--- ,nlandk €{i+1,---,j— 1} such that B;xa;xar,; > 0.
(it3) There existi € {2,--- ,n}and j € {2,--- ,i} such that aja;1a1,; > 0.
(iis) There exists k € {2,--- ,n — 1} such that ay .1 < 0 and i1 > 0.
(iis) ay1 <0and ay, > 0.

(iig) ap < 0.
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(iii) 0<y<land0<a@jy1 <1,0<6;;<1,i=1,--- ,n=1,j=i+1,--- ,n Andforeachie(l,--- ,n—1},
aia;y <0 (for i > 2) or there exists j(i) € {i + 1,--- ,n} such that B; j;a; i) < 0.

(iv) y=1land0<a;1 <1,0<p;;<1,i=1,--- ,n—1,j=i+1,--- ,n Foreachi€ {2,--- ,n—1}, one of the
following conditions holds:
(iv1) There exist j(i) € {1,--- ,i} and k(i) € {i + 1,--- ,n} such that B; xu) @ xi)ax,ji) > 0-
(ivp) There exist j(i) € {i +2,--- ,n}and k(i) € {i +1,--- , j — 1} such that B; k@ xi)ax),ji) > 0
(iv3) There exists j(i) € {2,- -+, i} such that a;a;1a1,jGy > 0.
(iv4) ;i1 <0and Bijq > 0.

At the same time, one of the following conditions also holds:

(iv") ayy <0and a, > 0.
(iv?) There exists j€1{2,-++ ,n—1} such that a, j — aya,1a1,; < 0.
(iv°) One of the conditions (iv1), (ivy) and (ivg) holds for i = 1 and a,, ;1 < 0.

Proof. We only prove the case when (iig) holds. The proof for all other cases is similar to that in Theorem
3.136.

Now, by the definition of Q3 there exists k € {2,--- ,n} such that aja,1 < 0. If a1, < 0 then axaxia12 > 0,

so that (5,(323)(1) > 0. This shows that the condition (ii;) of Theorem 3.18 is satisfied. By Corollary 3.22 the
proof is complete. [J

Similar to the proof of Theorem 3.137 we can prove the following theorem.
Theorem 3.145. Theorem D is valid for v = 23, provided one of the following conditions is satisfied:
(i) One of the conditions (i)-(iv) of Theorem 3.144 holds.

(i) 0< a1 <1,0<B;;<1,i=1,-,n=1,j=i+1,---,n aua,1 = 0and aiaiy + Yi_; 1 Pixixar: = 0 for
i=2,---,n—1. And one of the following conditions holds:
(iiy) There exists iy € {2,--- ,n — 1} such that aj,a;, 101 5, + ZZ::‘O +1 Bio kg kk iy > 0.
(iiz) Yi—p P1xrkak1 > 0.
(ii3) y > Oand there existiy € {3,--- ,n—=1}, jo € {2, ,io— 1} such that o a;, 141 , +ZZ:1'0+1 Bio iy kA, j, > 0

(iis) y > 0 and there exists iy € {2,--- ,n — 1} such that aj a1 + Zzzioﬂ Bio kig kxk1 > 0.

As a special case of Q3 for §;; =0,i=1,--- ,n—2,j=i+2,--- ,n,except f1,, # 0, it gets that
Q24 = Qs + Q16 + Q17,

ie.,
0 —ﬁllleO 0 s 0 —ﬁnaLn
—an 1 0 —Padrz -+ 0 0
Qu = : : : :
—0p-10n-1,1 0 0 - 0 _,Bn—lan—l,n
— Q1 0 0 - 0 0

witha,-ZO,i:2,---,n,ﬁij,jzl,---,n,and

n n—-1

Z a1 # 0 and Br1n + Zﬂkuk,kﬂ #0,

k=2 k=1
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where we set ¥ = 2 for Qg, ¥ = 1 and s = n for Qqe.

It is proposed in [1], where either oy = =B, =1, k=1,--- ,n—-lorar =, =1,k=1,---

In this case, 652].3) (y) and 652].3)(1) reduce respectively to

B1a12a2,1 + P1a1,nln1,
Qa1 + B is18i1,i,
anan,lal,nr

(y = Dajaix + yPiaiini@is 1,

i=j=1
i=j=2,---,n-1;
i=j=mn;

i=2,,n-1,j=1;

9925

,n—1.

55?4)()/) =< yaiaipay,j + YPidiiv1air1,), i=3,---,n=-1,j=2,---,i-1;
(7/ - 1)al’la7‘l,1/ i= nrj =1;
YQny1m,j, i=nj=2,--,n-1
(y = DBiaijs1, i=1---,n-1j=i+1;
)/ﬁz'llil,'+1a,‘+1,j, i:1,-~-,n—l,j:i+2,--~,n

and

Biaipa21 + Praiuan,, 1=j=1;
Bitiiv18ix1,1, i=2,---,n-1,j=1,

5291 = Qii1a1,; + Piliiv18iv1,j, 1=2,000 10— 1,]: = 2, A

ij Biftii+1i+1,j, i=1,--,n-1,j=i+2,---,m;

Unfly,101,j, i=n,j=2,--,n
0, otherwise.

Form Theorems 3.142-3.145, It is easy to prove the following theorem.

Theorem 3.146. Suppose that 0 < p1 <1,0< oy, fr <1, k=2,--- ,nand

Anln101n <1, B1a12021 + Puldindny < 1, aiaiiay; + Bidtijs1aiv1; <1, i=2,--- ,n—1. (50)

Then Theorem A is valid for v = 24.
Theorem 3.147. Suppose that 0 < p1 <1,0 < ay,fr <1,k =2,--- ,n. Then Theorem B is valid for v = 24.

Theorem 3.148. Suppose that (50) holds. Then Theorem C is valid for v = 24, provided one of the following
conditions is satisfied:

() 0<y<1and0<p1 <L, 0<apfrs1l k=2, ,n
(i) y=1and0< 1 <1, 0<ar, s 1, k=2,--- ,n. And one of the following conditions holds:

(ii1) There exists k € {2,--- ,n — 1} such that a1 < 0 and i > 0.
(i) Thereexisti€{2,--- ,n}and j€{2,--- i} such that a;a;1a1; > 0.
(113) ﬁnal,nan,l > 0.
(iiy) a1 <0and a, > 0.
(115) a1y < 0.
(i) 0 <y <1land 0 < p1 <1, 0< a,Bi <1, i=2,---,n Pudip+ Puirn < 0 and ajaiy + Bidijr < 0,
i=2,---,n—1.
(iv) y=1and0<p1<1,0<a;,pi<1,i=2,--- ,n. Foreachi € {2,--- ,n—1}, either fia;ir1 < 0 or there exists
](Z) € {2, cee, l} such that Qi 1a1,j() > 0.

At the same time, one of the following conditions also holds:

(iv") a1 <0and ay, > 0.
(iv?) There exists j€12,--+ ,n—1} such that ay j — aya,1a1,; <O0.
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(iv°) ﬁlal,zan,l + ﬁnal,nan,l > 0.

Clearly, the condition f,a1,,4,1 > 0 implies that 8,41, < 0 so that fia12 + fua1» < 0. The condition
a;aia,; + ﬁiui,mamri >0 implies that either aiail < Oor ﬂiai,i_'_l < 0so that aiail + ﬁiai,m < 0. This shows that
if Bua1 nany > 0 and aja;qa1,; + Pidiiv1aiv1,; > 0fori = 2,--- ,n — 1, then the condition (iii) in Theorem 3.148 is
satisfied. Hence, the result here is far better than the corresponding ones given by [1, Theorems 2 and 4].
Theorem 3.149. Theorem D is valid for v = 24, provided one of the following conditions is satisfied:

(i) One of the conditions (i)-(iv) of Theorem 3.148 holds.

(i) 0<p1 <1, 0<ap, B <1, k=2, ,n aya,1 = 0and ogagy + Praxxs1dk11 = 0fork=2,--- ,n—1. And
one of the following conditions holds:
(iiy) There exists iy € {2,--- ,n — 1} such that avjya; 1013, + BiyBio,ig+1%ig+1,ip > O-
(iiy) B1a1202,1 + Budindn1 > 0.
(it3) y > 0 and there exist ig € {3,--- ,n =1}, jo € {2,--+ ,io — 1} such that a;,ai,101,i, + Biyig,ig+1%ig+1,j, > 0

(iiy) y > 0 and there exists ig € {2,--- ,n — 1} such that a;,ai,1 + Biyiy,ip+18i+1,1 > 0.

Relative to Q»1, the matrix Q is chosen as

Q25 = Q3 + Q17,

ie.,
0 —ﬁlam 0 0
—x2,102,1 0 cee 0 0
Qs = :
—0p-110p-11 —Op-120p-12 °°° 0 _ﬁn—lan—l,n
—Qy10n1 —Qp 2042 o T n-1nn-1 0

witha;; >0,i=2,--- ,n,j<i,andf; 20,i=1,--- ,n—-1,and

iy

n—1

a;idij * 0 and Z Bittiiv1 # 0.

i=1

nooi-

i=2 j

I
—_

By Corollaries 3.20 and 3.21, the following two comparison theorems are directly.

Theorem 3.150. Suppose that 0 < a1 < 1,0 < ;< 1, i=1,---,n=1,]j=1,---,i, and Bia;i11ai11,; +
Z};ll Qi <1,i=1,---,n. Then Theorem A is valid for v = 25.

Theorem 3.151. Suppose that 0 < ;1 <1,0<8;<1,i=1,--- ,n—1,j=1,---,i. Then Theorem B is valid for
v =25.

In this case, 61(,,2],) (y) and 6;2].)(1) reduce respectively to

i-1

Y Qikfi ki + Bidi i1 i1, i=j=1,---,nm;
k=1
5@)y) = (y = DBiaiis1, i=1---,n-1,j=i+1;
i )= it i=1-- n—17i=i+2,--- 1
/] ‘yﬁl 1,i+1 l+1,]/ 7 7 /] 7 7'ty
-1

(y = Dayjaij +y ¥ aipixarj + yPidijiaivt,j, i=2,---,n,j=1,-,i-1
k=1
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and
j-1
Y Qipixayj + Bitiiaivrj, =1, ,m,j=1,--,3
8P 1) ={ k=1 . .
v Bittii+1i+1,j, i=1-,n=-1j=i+2,-- 1
0, otherwise.

Using Corollary 3.22, we prove Stein-Rosenberg type comparison theorem.
Theorem 3.152. Suppose that Bia;ii14i+1,i + Z;:l i <1,i=1,---,n. Then Theorem C is valid for v = 25,
provided one of the following conditions is satisfied:
(i) Fori=1,---,n—1,j=1,---,i,0<a;;1; $1,0<B; S 1.
(i) 0<y<land0<ai1;<1,0<B;<1,i=1,---,n=-1,j=1,---,i. Foreachi€ {1,--- ,n =1}, Bia;i1 <0
or there exists j(i) € {1,--- ,i — 1} such that a; j;a; ji) < 0.

(iii) y=1and 0 < @1, <1,0<p;<1,i=1,---,n-1,j=1,--- ,i. Foreachi € {2,--- ,n =1}, Biaj;+1 <0 or
there exist j(i) € {1,--- ,i} and k(i) € {1,-- -, j(i) — 1} such that a; k)@ xiax),j) > 0. At the same time, one of

the following conditions holds:

(iiiy) Thereexist j € {2,--- ,n}andk € {1,---, j — 1} such that a, ya, yax,; > 0.
(1112) ap1 < 0 and ap1 > 0.

(iii3) There exists j € {2,--- ,n — 1} such that

n—=1
o Z Uk kak,j < 0.
k=1
k#j
(iiiy) ap < 0, ‘31 > 0and
n-1
(1 - an,l)an,l - an,kan,kak,l <0.
k=2

(1115) a1p < 0, ap1 < 0 and ‘81 > 0.
Proof. Since Z,’Z;ll Braki+1 # 0, then there exists k € {1,--- ,n — 1} such that a1 < 0 and fx > 0, which shows
that the condition (ii3) in Theorem 3.18 is satisfied, so that the condition (i) of Corollary 3.22 is satisfied.

This shows (7).
When (i) holds, then the condition (iii) of Theorem 3.18 is satisfied, so that the condition (ii) of Corollary

3.22 is satisfied.
When (iii) holds, it gets that 652].?1.))(1) > 0. In this case 5(12?(1) = a2, j = 1,3,--- ,n. Since A is

irreducible, then there exists j € {1} U {3,--- ,n} such that a, ; < 0, so that 5(12],5)(1) = Piaia2,; > 0 whenever
B1 > 0 and a1, < 0. Hence, the conditions (iv*)-(iv°) in Theorem 3.18 reduce to (iii;)-(iiis), respectively. By
(ii) of Corollary 3.22 the proof of (iii) is complete. [

Theorem 3.153. Theorem D is valid for v = 25, provided one of the following conditions is satisfied:

(i) One of the conditions (i), (ii) and (iii) of Theorem 3.152 holds.
(i) 0<@j1,;<1,0<B;<1,i=1,--- ,n-1,j=1,--- ,i. Fori=2,---,n,j=1,--- ,i—1,
i~1

;i + Z Qikfliflk,j + Bifti i1, = 0.

k=1
k#j

And one of the following conditions holds:
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(ii1) There exists ig € {1,--- ,n — 1} such that B a;, i +1%iy+1,i, > 0.
(ity) There exist ig € {2,--- ,n}and jo € {1,--- iy — 1} such that a;, ;,aiy j,@jy iy > 0.
(ii3) y > 0and ay1a1 + Paazzasy > 0.
(iiy) y > 0 and there exist ig € {3, ,n}and jo € {1, ,ip — 1} such that
io—1
iy, jolig,jo + Z Qi kg kAk,jo T ﬁioﬂio,io+1ﬂio+1,jo > 0.

k=1
k#jo

Proof. We just need to prove (ii). It is easy to obtain

i-1
1= Y aixaixar; — Bitiiv10iv1,i, i=j=1,---,n,
/2 _ P
ij i-1 . . .
(I —aipai; — X aipdixdyj — Pitii1liv1,j, =2, ,n,j=1,-,i-1
k=1

By Corollary 3.23 we can derive (iiy)-(iiy). O

As a special case, Q1 and Qys reduce to

0 —ﬂlaLz s 0 0

0 0 .- 0 0

Q2 =05+ Q17 = : - : :
0 0 tee 0 _ﬁn—lan—l,n

-1 —Qlpp  cc —Qp_1lpu-1 0

withaxy >0, >0,k=1,--- ,n—1,and

[y

n-1

axnr # 0 and Z Brakik+1 # 0,
1 k=1

n—

=~
I

where for simplicity we set 7 = n for Qs.

It is proposed in [69] for the preconditioned Gauss-Seidel method, where ay =fr=1,k=1,---

In this case, 6§§5)(y) and 65,2].5)(1) reduce respectively to

Bitiir18i1,i, i=j=1,---,n-1;
n-1 ) )
)y Akl kAf,n, 1=]=mn
k=1
61(.2],6)()/) ={ (y = DBiaiis1, i=1,--,nm-1j=i+1;
VBifiiv18i+1,j, i=1,---,mn-1,j=1,---,n,j+ii+1;
-1
(r = Dajan,j + ngl ki, i=n,j=1,--- ,n-1

and

ﬁiai,f+1ai+l,]'/ i=1,-“,n—l,j=1,---,n,j¢i+1,‘
26) 1y — ) j-1
oy (D= Y oaxangax;, i=nj=1,--,n
Kk kK, js /] ’ ’
k=1

From Theorems 3.150-3.153 the following comparison results are immediately.

9928
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Theorem 3.154. Suppose that 0 < oy, B <1,k=1,--- ,n—1,and
n—1
akan,kak,n < 1/ ﬁiai,i+1ui+1,i < 1/ l = 1/ IRy l (51)
k=1

Then Theorem A is valid for v = 26.
Theorem 3.155. Suppose that 0 < ay,fx <1,k=1,--- ,n —1. Then Theorem B is valid for v = 26.

Theorem 3.156. Suppose that (51) holds. Then Theorem C is valid for v = 26, provided one of the following
conditions is satisfied:

(i) Fork=1,---,n=1,0<axpc s 1
(i) 0<y <1, a441 <0,0<a <1and0< B <1, k=1,--- ,n—-1
(i) y=1,0a5041 <0,0< s <1and 0 < B <1,k =1,--- ,n—1. One of the following conditions holds:

(itiy) Thereexist j € {2,--- ,n}andk € {1,---, j — 1} such that aya, xax; > 0.
(iiip) an1 < 0and aq > 0.
(iii3) There exists j € {2,--- ,n — 1} such that
n—1
(1 —a)pay; - Z kldy kay,j < 0.
o
(iiig) a12 <0, B1 > 0and

-1

(1 —a1)any — Z Qg1 < 0.
=)

=

(iiis) @12 <0,a,1 <0and B > 0.
Theorem 3.157. Theorem D is valid for v = 26, provided one of the following conditions is satisfied:
(i) One of the conditions (i), (ii) and (iii) of Theorem 3.156 holds.
(ii)) Forj=1,---,n=1,0<a;,B; < 1land aja,; + Z,’(’;ll,k;tj axanxay,; = 0. One of the following conditions holds:

(iiy) There exists iy € {1,--- ,n — 1} such that B a;, i +1iy+1,i, > 0.

(iiy) There exists iy € {1,--- ,n — 1} such that o a, ;,ai,» > 0.

(ii3) y > 0 and there exist ig € {2,--- ,n— 1} and jo € {1,--- ,ig — 1} such that B;,a;, i,+14iy+1,j, > 0.
(iiy) y > 0 and there exists jo € {1,--- ,n — 1} such that

n—-1

Ajyln,jo + Z kAl j, > 0.
k=1
k#jo

Similarly, as a special case of Q4 and Qys, Q is proposed in [79] as

0 _ﬁlal,z 0 ce 0

—adn | 0 —Padoz - 0

Q7 =Qe+ Q17 = : : :
—dp—14n-1,1 0 0 e _ﬁn—lan—l,n

—Qyln 0 0 e 0
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with agy1 20,6 20,k=1,--- ,n—1,and

n n-1
Z aragy # 0 and Z Braki+1 # 0,
k=2 k=1

where for simplicity we set r = 2 for Qs.
It is proposed in [68] for the preconditioned SOR method, where a1 =fr=1,k=1,--- ,n—-1.

In this case, 652].5>(y) and 652].5>(1) reduce respectively to

B1a1,202,1, i=j=1
;101 + Pifii+10i41,is i=j=2,---,n-1;
&nlp 11,0, i= ] =n;
(y = Dajaix + ypidijinaivig, i=2,---,n-1,j=1,
(5557)(7/) =< yaiaipay,j + yPidiiv1air1,j, i=3,---,n=-1,j=2,---,i-1;
(7/ - Danana, i= nj=1,
)/anﬂn,lﬂl,j/ i= Tl,] = 2/ . N 1/
(r = DBitiin1, i=1,-,n-1,j=i+1;
yﬁia,-,,v+1a,-+1,j, i= 1, ,n— 1,] =i+ 2, N
and
Bitii+14i+1,), i=1,---,m-1,je{l}Ufi+2,---,n};
521 = @ii101,j + Pitii+10i41,j, l =2, = 1,j=2,---,1;
ij A4, i=n,j=2,---,n
0, otherwise.

From Theorems 3.150-3.153, the following comparison results are directly.

Theorem 3.158. Suppose that 0 < a1, fr <1, k=1,--- ,n =1, and fiaipa01 < 1, apaniai, < 1, axaxiaix +
Bk i1+, < 1, k=2,--+ ,n—1. Then Theorem A is valid for v = 27.

Theorem 3.159. Suppose that 0 < a1, pr <1, k=1,--- ,n—1. Then Theorem B is valid for v = 27.

Theorem 3.160. Suppose that p1a12a21 < 1, ananiar, < 1, axariai + Prakksrdisir < 1, k=2,--- ,n—1. Then
Theorem C is valid for v = 27, provided one of the following conditions is satisfied:

(i) Fork=1,--- ,n—=1,0 < aps1, B S 1.

(ii)) 0<y<1,0< a1, pr <1, k=1,--- ,n—=1. B1 >0,a12 <0and foreachi € {2,--- ,n—1}, Biatij+1 < 0 or
a,-ai,1<0.

(i) y=1,0< 41, P <1, k=1,--- ,n—1. Foreachi € {2,--- ,n—1}, Biai;s1 < 0 or there exists j(i) € {2,--- ,i}
such that a;a;1ay,j) > 0. At the same time, one of the following conditions holds:

(iiiy) a1 <0and ay, > 0.
(itiy) There exists j € {2,--+ ,n — 1} such that a, ; — a,a,1a1,; < 0.
(1113) ap < 0, Ay < 0 and ﬁl > 0.
It can be proved thatif 0 < a1pa21 < 1,0 < ay1a1, <1and 0 < agqa1f + kg1 p <1, k=2,--- ,n—-1,

then A is irreducible. Hence, for the Gauss-Seidel method the result when (iii) holds is better than [79,
Theorems 2,3,4], where in Theorem 4 it should be that ay,1 >0and >0, k=1,--- ,n - 1.
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All the corresponding results given in [68] are problematic, because [68, Theorem 3.1] is wrong. In fact,
let

1 0 0 0 0 -05
05 1 -05 0 0 0
0 05 1 0 0 0

A=l 9 205 0 1 0 0 (52)
0O 0 0 0 1 -05
05 -05 0 -05 -05 1

Then it is easy to prove that A is an irreducible L-matrix and the assumption of [68, Theorem 3.1] is satisfied.
But the iteration matrix of the preconditioned SOR method is reducible.

Theorem 3.161. Theorem D is valid for v = 27, provided one of the conditions (i), (ii) and (iii) of Theorem 3.160 is
satisfied.

As a special case of Q and Qay, Q is defined in [98] as

0 —ﬁ1a1,2 0 cee 0

0 0 —,82{12,3 s 0

Qs =Q7+Q17 = : : :
0 0 0 o =Bu1ln-1m

—Qy 0 0 e 0

witha,; <0, >0, 20,k=1,---,n—-1,and Z,’Z;ll Brari+1 # 0, where we set r = n and s = 1 for Qy.

It is continued to study in [26] and it is proposed in [100, 105] for the preconditioned Gauss-Seidel
method, wherea; =8, =1,k=1,--- ,n—-landay=0,k=2,--- ,n—1.

In this case, 65,2].5) (y) and 65,2].5)(1) reduce respectively to

Bitijv1din,i,  i=j=1--,n-1
ady 1010, 1=]=n,

5%9() = (y - DBiaijy1, i=1,---,n=-1,j=i+1;

Zi s Yﬁiai,i+1ai+1,j/ i=1- n-1j=1--,nj#ii+l;
yam, 1y, i=nj=2,,n-1;
(y — Daay i=n,j=1

and
ﬁiai,i+1ai+1,jr l: 1/ In_llj = 1/ /n/j * l+ 1/

0, otherwise.

From Theorems 3.154 and 3.155 the following comparison results are immediately.

Theorem 3.162. Suppose that < 1,0 < B <1, aayia1, <1, Bragir1k+1x <1, k=1,--- ,n—1. Then Theorem
A is valid for v = 28.

Theorem 3.163. Suppose that o <1,0<fr<1,k=1,--- ,n—1. Then Theorem B is valid for v = 28.
Completely similar to Lemma 3.117 we can prove the following lemma.

Lemma 3.164. Let A be a Z-matrix. Assume thatn > 3,41, <0, 414 <0, <1, 0< <L k=1,--- ,n-1
Then A®® is an irreducible Z-matrix.

Theorem 3.165. Suppose that aa, 101, <1, Brakks1dk+1k <1, k=1,--- ,n—1. Then Theorem C is valid for v = 28,
provided one of the following conditions is satisfied:
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(i) as1land0<pfrs1,k=1,--,n-1
(i) a<1,0<Pr <1, 441 <0,k=1,--- ,n—-1
(i) n>23,a<1,0<Bc<1,a1, <0, 114 <0, k=1,--- ,n-1

Proof. By Theorem 3.156, we just need to prove (ii) and (iii).

When (i) holds, since a,,1 < 0 and a > 0, the condition (iii;) in Theorem 3.156 is satisfied.
When (iii) holds, by Lemma 3.164, A®® is an irreducible Z-matrix. From (i) we can prove (iii). [

9932

For (ii) and (iii) the assumption that A is irreducible is redundant. Hence, [105, Theorem 3.1] can be

derived, directly.

All the corresponding results given in [98] are problematic, because [98, Lemmas 4.1, 4.3] are wrong. In
fact, let A be defined by (52). Then A is an irreducible L-matrix and it is easy to prove that the assumptions
of [98, Lemmas 4.1, 4.3] are satisfied. But the iteration matrices of the preconditioned AOR methods are

reducible when we choose 5, = 1.

In this case, (if) of Theorem 3.157 can be not satisfied. Hence, from Theorems 3.157, the following

theorem is derived, directly.

Theorem 3.166. Theorem D is valid for v = 28, provided one of the conditions (i), (ii) and (iii) of Theorem 3.165 is

satisfied.

Corresponding to Qyg, in [26] Q is defined as

0 0 . 0 —Ba1,
—a14az,1 0 s 0 0
Qa9 = Qs+ Q16 = 0 T2z 0 0
0 0 o T 0n-1p,n-1 0

witha;,, <0,>0,0¢,>20,k=1,--- ,n—1,and

=
—_

s i # 0,
1

o~
L

where we set = 1 and s = n for Q16
In this case, 61(,,2],) (y) and 6;2].)(1) reduce respectively to

‘Bal,l’laﬂ,ll i= ] = 1,'
9 i-10;i-18i-1,i, i=j=2,---,m
61',]' () = (y- 1)5“1,71/ 1 =1j=mn o
(y — Daiaaji-, i=2,---,n,j=i-1;
0, otherwise
and
29 ‘Bal,l’laﬂ,ll i= ] = 1,'
5,(~,]« )(7/) =4 Qi18ii18i-1i, 1=]=2,---,1;
0, otherwise.

By Corollaries 3.20 and 3.21, the following comparison theorems are directly.

Theorem 3.167. Suppose that f < 1,0 < ay <1, a1 nan1 <1, i1 pkpr1 <1, k=1,--- ,n—1. Then Theorem

A is valid for v = 29.

Theorem 3.168. Suppose that $<1,0<a, <1,k=1,---,n—1. Then Theorem B is valid for v = 29.
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Completely similar to Lemma 3.164 we can prove the following lemma.

Lemma 3.169. Let A be a Z-matrix. Assume thatn > 3,a,1 <0, <1, aps1 <0, 0<ax <L, k=1,--- ,n—-1.
Then A®) is an irreducible Z-matrix.

Theorem 3.170. Suppose that fainan1 <1, axdksi ik <1, k=1,--- ,n—1. Then Theorem C is valid for v = 29,
provided one of the following conditions is satisfied:

(i) 0<y<1,B<1land0<oy <1, k=1,--- ,n-1
(ii) y=1,<51and0<ar <1, k=1,--- ,n—1. One of the following conditions holds:

(ii1) an1 <O0.
(iiy) There exists k € {1,--- ,n — 1} such that axag.1 xax i1 > 0.

(ii3) Ak k+1 <0,k=1,---,n—-1.
(i) 0<y<1,8<1,0>ay1<1,0<ar<landag;<0,k=1,--,n—2.

(iv) y=1,<1,0<a,-1 <1,0<ap <1and ag1paxps1 >0,k =1,--- ,n—2. One of the following conditions
holds:

(iv1) a1 <O0.

(ivy) ay—1 > 0and ayn_10,-1, > 0.
() 123,a,1 <0,akk+1 <0,<1,0< <L k=1,--- ,n-1

Proof. (i), (ii1) and (i) satisfy respectively (i), (ii1) in Theorem 3.18. Hence they satisfy the condition (i) of
Corollaries 3.22.

By the definition of Q»9, there exists kg € {1,--- ,n—1} such that ay,ax,+1, < 0so that ax,ak,+1k 3, k+1 > 0,
which implies that (iiz) holds for k = k.

(iif) can be derived by (ii) of Corollaries 3.22.

(iv) satisfies the conditions (iv1), (iv°) and (iv") in Theorem 3.18, so that it satisfies condition (ii) of
Corollaries 3.22.

When (v) holds, by Lemma 3.169, A®” is an irreducible L-matrix. From (i) and (ii) we can prove (v),
where (i) is satisfied. [

Obviously, for (v) the assumption that A is irreducible is redundant.
The following result is easy to prove.

Theorem 3.171. Theorem D is valid for v = 29, provided one of the conditions (i)-(v) of Theorem 3.165 is satisfied.

As a special case of Q»s, Q is defined in [42] for the preconditioned Gauss-Seidel method as

0 —ﬁlaLz s 0 0

—a14dz,1 0 ce 0 0

Q30 = Qs+ Q17 = : - : :
0 0 e 0 —Br-1an-1

0 0 R 7R [T | 0

with fr,ax >0,k=1,--- ,n—1,and

=
[y
[y

e
Braki+1 # 0 and a1 # 0.
1

=~
I

1

=~
]
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It is continued to be studied in [43] for the preconditioned Gauss-Seidel and Jacobi methods. It is given
in [87, 89] for the preconditioned GAOR method. In [88], it is used to preconditioned parallel multisplitting
USAOR method.

In this case, 6f§5)(y) and 65,2].5)(1) reduce respectively to

Qi 18ii18i-1,; + Biliir18i+1,is =7
(y = Dajaaiio1 + yBitijn8iv1,j, 1=2,---,n,j=i-1;

00 =1 (v = Dpidiisa, i=1,---,n-1,j=i+1;
yﬁ,-ai,,-ﬂa”l,]-, i=1---,n=-1,j=1,--- ,n,j#i-1,i,i+1;
0, i=n,j=1,---,n-2

and

Piaipazy <1, i=j
Qi10; ;101 + Piflijiv18iv1i, 1=]=2,--- ,n—1;
i=j

6(30)(1) _ Ap-1nn-10n-1n < 1, =]=n
b Biftiiv14i+1,j, i=1,---,n-1,
j=1- mj#ii+ ]
0, otherwise.

From Theorems 3.150 and 3.151, the following two comparison results are immediately.

Theorem 3.172. Suppose that 0 < ay,pr < 1, k = 1,---,n =1, and Pimpars < 1, an1ann-1ap-1n < 1,
Q10 j-10k-1 % + Prk 11 < 1, k=2,--+ ,n = 1. Then Theorem A is valid for v = 30.

Theorem 3.173. Suppose that 0 < oy, B <1,k=1,--- ,n —1. Then Theorem B is valid for v = 30.

Theorem 3.174. Suppose that ‘31611/2&2,1 <1, Ap-10nn-10n-1n < 1, ak_lak,k_lak_llk+ﬁkak,k+1ak+1,k <1l,k=2,--,n—
1. Then Theorem C is valid for v = 30, provided one of the following conditions is satisfied:

(i) Fork=1,--- ,n=1,0<a B s L

(i) 0<y<1,0<appe<lk=1--,n-1 a1p <0, p1 >0and foreachi € (2,--- ,n—1}, Biaii1 <0or
ai1aii—1 < 0.

(i) y=1,0<aypr <1, k=1,--- ,n—1. Foreachi € {2,--- ,n — 1}, Biaiis1 < 0 or @j_1a;1ai-1; > 0. At the
same time, one of the following conditions holds:
(iii) ap-18pn-18n-1, > 0.
(iiiy) (1 — an—l)an,n—l <0.
(iti3) There exists j € {2,--- ,n — 2} such that a, j — ay-1a5n-10n-1,j < 0.
(iiiy) a12 <0, p1 > 0and a1 — ay1ay,-1a5-11 < 0.

(1115) a1 < 0, apy < 0 and ‘31 > 0.

Proof. We just need to prove (iii).

When ;14 i-14i-1,i > 0, the inequality Q4 k(i) A k() Ak (i), (i) > 0 holds for ](l) =iand k(l) = ](l) -1

The conditions (iiiy), (iiiy) and (iiis) can be derived from corresponding ones in Theorem 3.152. While,
the conditions (iii;) and (iii3) can be derived by (iii3) in Theorem 3.152, directly. [

The result for the Gauss-Seidel method is better than [42, Theorems 3.2-3.5], where in Theorem 3.5 it
should be that ¢y > 0and ¢ >0,k=1,--- ,n—-1.

Theorem 3.175. Theorem D is valid for v = 30, provided one of the conditions (i), (ii) and (iii) of Theorem 3.174 is
satisfied.
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Another combination is given as

0 ... 0 —Bi1ay,
Q31 =Qs5+ Q15 = : - : :
0 s 0 _ﬁnflan—l,n
—1dy,1 e —&p—10n,n-1 0

withax >0, >20,k=1,--- ,n—1,and

—_

n-1

axanr #0 and Z Brakn # 0,
1 k=1

=

>~
I

where for simplicity we set 7 = n for Qs and Q5.
In this case, 652],) (y) and 652].)(1) reduce respectively to

,Blal',ﬂa‘ﬂ,i/ l = ] =1,---,n- 1[
nil ‘ ‘
p Al kA i=j=mn
=1
6(31)( ) = (r = DBiin, i=1--,n=-1,j=m
i )T yBitinn, i=2-,n=1j=1,--,i-1;
-1
()/ - 1)0(]'11,1,]' +y Z Ak flgj, 1=MN,]= 1,---,n—-1;
k=1
0, otherwise
and
Bittinln,j, i=1,--,n-1,j=1,---,i
31 i
61-’]- (1) = Z lean,kﬂk,j, i= n,]‘ = 2, R
k=1
0, otherwise.

Using Corollaries 3.20 and 3.21, we can prove the following theorems, directly.

Theorem 3.176. Suppose that 0 < oy, fr <1, k=1,--- ,n—1,and

n-1

Y aunplin <1, Pitintn; <1i=1,-,n—1. (53)
k=1

Then Theorem A is valid for v = 31.
Theorem 3.177. Suppose that 0 < oy, fx <1,k=1,--- ,n — 1. Then Theorem B is valid for v = 31.

Theorem 3.178. Suppose that (53) holds. Then Theorem C is valid for v = 31, provided one of the following
conditions is satisfied:

(i) 0<y<lFork=1,--- ,n=1,0<a4pc s 1L

(ii) y=1 Fork=1,--- ,n=1,0 < ax, fx < 1. And one of the following conditions holds:
(iiy) Thereexisti€{1,--- ,n—1}and j € {1,--- i} such that Ba; ,a,; > 0.
(ity) Thereexist j € {2,--- ,nyand k € {1,--- , j — 1} such that axa, yay,; > 0.
(113) Ap-1n < 0 and ﬁn—l > 0.

(iiy) a,1 <0.

(ii5) ar, <0,k=1,--- ,n—1
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(ii6) agpe1 <0, k=1,--- ,n—1.
(ii]) agy <0,0<ax <1,0<Br <1, k=1,---,n—1. And one of the following conditions holds:

(iiip) 0<y <1
(itiy) y = 1and for eachi € {1,--- ,n — 1} there exists j(i) € {1,--- , i} such that a, j; < 0.

Proof. Since A is irreducible, then there exists jo € {1,--- ,n — 1} such that 4, j, <0.

By (i) of Corollary 3.22, (i) is obvious.

If (ii1) holds, then 5531)(1) >0fori=1,---,n—1and j = 1,---,i. While if (iiy) holds, then 5‘5?(1) >
axaayxay; > 0 for j € {2,---,n}. This shows that (ii;) in Theorem 3.18 holds, so that the required result follows
by (i) of Corollary 3.22, directly.

If (ii3) holds, then f,,_14,-1,45,j, > 0, which implies that (ii1) holds for i = n — 1 and j = jo.

If (iiy) holds, by the definition of Qs;, there exists iy € {1,---,n — 1} such that jai,» < 0, so that
Biy@ipnfn1 > 0, which implies that (ii;) holds for i = iy and j = 1.

If (ii5) holds, by the definition of Q31, there exists kg € {1,---,n — 1} such that aya,x, < 0, so that
Ay An o Ok,,n > 0, which implies that (iiz) holds for k = ky and j = n. While when (iig) holds, it is easy to see
that (ii;) holds for k = kg and j = ko + 1.

When (iii) holds, for eachi € {1,--- ,n =1}, if y < 1 then Bia;, <0, i.e., (iii) of Theorem 3.18 is satisfied.

While, if y = 1 then 61(.,3].2)(1) = Bitinfn,jiy > 0,1i.e., (fv1) in Theorem 3.18 holds. If aj, = 0 then (1 —a; )a,,j, =
ay,j, < 0, which implies that (22) or (23) holds, so that (iv°) or (iv?) in Theorem 3.18 is satisfied. If o jo > 0then
®jyln,jojon > 0, which implies that (iv") in Theorem 3.18 is satisfied for k = jo and j = n. This has proved
that the condition (iv) of Theorem 3.18 is satisfied.

By Corollary 3.22, (iii) is proved. [

Similarly, by Corollary 3.23, we can prove the following result.
Theorem 3.179. Theorem D is valid for v = 31, provided one of the following conditions is satisfied:
(i) One of the conditions (i), (ii) and (iii) of Theorem 3.178 holds.
(i)) Forj=1,---,n=1,0<a;,f; < land

n—1
a]-an,j + Z akan,kak,j > 0.

k=1
k#j

One of the following conditions holds:

(ii1) There exists iy € {1,--+ ,n — 1} such that B ai, nani, > 0.
(iiy) There existsip € {1,--- ,n — 1} such that ajay, i,ai, . > 0.
(ii3) y > 0. There exist ig € {2,--- ,n =1}, jo € {1,-- i — 1} such that B aj, uan,j, > 0.
(iiy) y > 0. There exists jo € {1,--- ,n — 1} such that a,a, j, + 22;11,1#]'0 Qxlt xax, j, > 0.
Similar to Qz1, we give a new combination preconditioner as
0 —Padip o+ —PBulin
_0(2512’1 0 e 0

Q=06+ Qs =

_ananJ O e O
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withax >0, >20,k=2,--- ,n,and

n n
Z ) F 0 and Z‘Bkﬂl’k +0,
k=2 k=2

where for simplicity we set r = 2 for Qs and Q14.
It is proposed in [87] for the preconditioned GAOR method for weighted linear least squares problems.

In this case, 652].) (y) and 61(,2].)(1) reduce respectively to

o) =

and

(B2) 1y —
572 (1) =

n

Y. Bk ka1,
k=2
aiai1a,i,

(y = DBjar +y kZZZ Brar k. j,

(7/ - 1)aiai,1/
yaidiaai,j,
0,

n

Y. B ka1,
k=2
i1

Bk, j,
k=2
aidi1ai,j,
0,

1:j:1,

i=j=2,,1
-1

i=1,j=2,---,m

i=2,---,m,j=1;

i=3,---,n,j=2

otherwise

i=j=1;

i=1,j=3,,m

i=2,-,mj=2,,i
otherwise.

9937

Using Corollaries 3.20 and 3.21, we can prove the following theorems.

Theorem 3.180. Suppose that 0 < &, fi < 1, aiajaan; < 1,i=2,---,n, Yy_, Pearxaky < 1. Then Theorem A is

valid for v = 32.

Theorem 3.181. Suppose that 0 < oy, fx <1,k =2,--- ,n. Then Theorem B is valid for v = 32.

Theorem 3.182. Suppose that Y.;_, Bra1xax1 < 1, aiaipar; <1,i=2,--- ,n. Then Theorem C is valid for v = 32,
provided one of the following conditions is satisfied:

(i) 0<y<1 Fork=2,---,n0<o,pcs1

(ii)) y=1. Fork=2,--- ,n,0 < ay, Bx < 1. One of the following conditions holds:

(iiy) There exists k € {2,--- ,n} such that Bay xax1 > 0.

(iiy) There exist j € {3, ,nyand k€ {2,---

,J — 1} such that Bray ray,; > 0.

(it3) There existi € {2,--- ,n}and j € {2,--- ,i} such that a;a;1a1,; > 0.

(ii4) a1 < 0.

(ii5) a1 <0and a, > 0.

(116) g1 <0,k=2,---,n.

(ii7) a1 <0andag, <0,k=2,--- ,n—-1.

(iig) ay1 <0and axp <0,k=2,--- ,n—1.

(iii) 0<y <l Fork=2,--- ,n—-1,41<0,0<q<1,0<a,<landfork=2,--- ,n,0< B <1

(iv) y=1.0<ar<1,0< B <1,k=2,--- ,n Foreachi € {2,--- ,n—1}, a;1 < 0and there exists j(i) € {2,--- , 1}
such that ay ;) < 0.
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Proof. From (i) and (iiy) in Theorem 3.18, we can derive (i) and (ii5) directly.

If one of (ii1), (ii) and (ii3) holds, then there exist 7, j € {1,-- -, n} such that 653},2)(1) > 0, which implies that
(ii1) in Theorem 3.18 holds. ,

If (iis) holds, then from the definition of Qs,, there exists iy € {2,---,n} such that a;a;,; < 0 so that
a;,ai,1412 > 0. This has shown that the condition (ii3) is satisfied for i = iy and j = 2.

From

n n
Z Bra1 kx> max{ag} Z Brarx >0,
Py 2<k<n =

n-1 n
Z Bravkin + Purnfny = maxian; agn k=2, ,n—1) Z Pravx >0
k=2 k=2

and

n n
Zﬁj—lal,j—lﬂj—l,j + Bn1nln1 = max{a, ; agger ck=2,--- ,n—1} Zﬁjﬂl,j >0,
j=3 =2
it is easy to see that if one of (iig), (iiy) and (iig) holds, then (ii1) or (ii2) is satisfied.

For (iii), by the definition of Q3 again, there exists j(1) € {2,---,n} such that Bjqa1jq) < 0. For
i€ef2,---,n—1}, aa;; <0. The condition (iii) follows by (iii) of Theorem 3.18, immediately.

If (iv) holds, then 653]%7))(1) > 0, which implies that (iv;) in Theorem 3.18 holds. From the irreducibility of
A, there exists jo € {1,--- ,n — 1} such that 4, j, < 0. If jo = 1 then (iv") in Theorem 3.18 holds. If jo > 2 then
An,jy = Anfly101,j, < anj, < 0, which shows that (22) holds for j = jy, i.e., the condition (iv°) in Theorem 3.18
holds. We have proved (iv). O

Theorem 3.183. Theorem D is valid for v = 32, provided one of the conditions (i)-(iv) of Theorem 3.182 is satisfied.

Unlike Q31 and Qs;, we give Q as

0 —Boa1p ot —Pu-1fiu-1  —Pulin
0 0 .- 0 0
Q3 =05+Qu= : - : :
0 0 .- 0 0
-1y —Qlyn —Qp-1nn-1 0

withax >0, =1 20,k=1,--- ,n—1,and

=
—_

n
aranr # 0 and Z Brar i # 0.
1 k=2

=~
I

It is proposed in [93] with a; = 0.
In this case, 61(,2].) (y) and (51(.2].)(1) reduce respectively to

n

Y. Prai a1, i=j=1;

k=2

n—1 . .

Z Ay ki, 1=]=mn

k=1

8 = Ut , .
i ) (y=Dpjay;+y X Pargar;, i=1,j=2,---,n;

k=2
-1

(y = Dajay; +y Y axappar, i=nj=1,---,n-1;
k=1

0, otherwise
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and

n . .
Y Bravpaky, i=j=1;
k=2
-1

543 (1) = Y Bravparj, i=1,j=3,---,m;

i,j ( )_ k=2

-1
Y gy, i=n,j=2,--,1;
k=1
0, otherwise.

Using Corollaries 3.20-3.23, similar to Theorems 3.180-3.183, we can prove the following results.

Theorem 3.184. Suppose that 0 < oy, fre1 <1, k=1,--- ,n—1,and

n—-1

n
Z Brarxaxy < 1, Qlly kg, < 1. (54)
=2 k=1

Then Theorem A is valid for v = 33.
Theorem 3.185. Suppose that 0 < a, fx+1 <1, k=1,--- ,n—1. Then Theorem B is valid for v = 33.

The results given in Theorems 3.184 and 3.185 are better than the corresponding ones given in [93,
Theorem 2.2].

Theorem 3.186. Suppose that (54) holds and 0 < oy, fxs1 <1, k=1,--- ,n—1. Then Theorem C is valid for v = 33,
provided one of the following conditions is satisfied:

(i) 0<y<1
(ii) y =1 and one of the following conditions holds:

(iiy) There exists k € {2,--- ,n} such that Bray xax1 > 0.

(iiy) Thereexist j € {3,--- ,n}and k € {2,--- , j — 1} such that Bray xax; > 0.
(ii3) Thereexist j € {2,--- ,nyand k € {1,--- , j — 1} such that axa, rax,; > 0.
(iiy) ayy <0and o, > 0.

(ii5) a1 <0,k=2,--- ,n.

(iig) ar, <0,k=1,--- ,n—-1

(ii;) ayy <O0andag, <0,k=2,--- ,n—-1

(iig) axps1 <0, k=1,--- ,n—-1

(iig) ay1 <0and agpr1 <0,k=2,--- ,n—1.

Theorem 3.187. Suppose that 0 < oy, frs1 S 1, k=1,--- ,n—1. Then Theorem D is valid for v = 33, provided one
of (i) and (ii) of Theorem 3.186 is satisfied.

A combination is proposed in [92] as Q34 = Qs + Qu4, i.e,,

0 . 0 0 0 . 0
0 s 0 0 0 . 0
Qu=| —aa, -+ —ar1brr-1 0 —Qpalrpn -0 —Qulpy
0 . 0 0 0 .. 0
0 0 0 0 0
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with2<r<n-1,a¢>0,k=1,--- ,n,k #rand

<
—_

n
axarx #0 and Z axayx # 0.
1 k=r+1

>~
I

In this case, 652].) (y) and 61(,2].)(1) reduce respectively to

(r—Daja;+y Y. apagar;, i=rj=1,-,r-1
1<k<j-1
v+lslign

n

38) Y. QkfAr kg, i=j=r1
—_ k=
61',]' (7/) - k#1
-1
(y=Dajarj+y Y axapar;, i=rtrj=r+1,-,n
k=r+1
0, otherwise

and

Y apappay, i=1,j=1,---,1;
1<ks<j-1
r+l<k<n

58y =4 o
ij Y, pdyj, L=T,j=r+2,00 1

k=r+1 .

0, otherwise.

Similar to the proof of Theorems 3.42 and 3.99, we can prove corresponding comparison results, directly.

Theorem 3.188. Suppose that 0 < ay <1,k=1,--- ,n,k #r,and ZZ:l,k;w Ak, < 1. Then Theorem A is valid
forv =234

Theorem 3.189. Suppose that 0 < ay <1,k =1,---,n, k # r. Then Theorem B is valid for v = 34.

The results given in Theorems 3.188 and 3.189 are better than the corresponding ones given in [92,
Theorem 2.2].

Theorem 3.190. Suppose that 0 < ay <1,k =1,--- ,n,k #7,and Y[, ;, axarxar, < 1. Then Theorem C is valid
for v = 34, provided one of the following conditions is satisfied:

(i) 0<y<1
(ii) y =1 and one of the following conditions holds:

(ii1) Thereexisti€{1,--- ,rland je{l,--- ,i—=1}U{r+1,--- ,n} such that aja,;a;; > 0.
(ity) Thereexisti€ {r+2,--- ,nyand j € {r+1,--- ,i— 1} such that a;a,a;; > 0.

(ii3) appp1 <0and a1 > 0.

(iig) Agpe1 <0, k=1,--- ,r—1

(ii5) ayy <0and agp <0, k=r+1,--- ,n-1

(iig) ax, <0,k=1,---,r=1

(ii7) ag, <0, k=r+1,--- ,n

(iig) any <O0anday, <0, k=r+1,--- ,n-1

(iig) a1 <0, k=r+1,--- ,n

Theorem 3.191. Suppose that0 < oy <1, k=1,---,n,k # r. Then Theorem D is valid for v = 34, provided one of
the conditions (i) and (ii) of Theorem 3.190 is satisfied.
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Similarly, let Q35 = Q¢ + Q15. Then we can propose a combination. For simplicity we set

0 - 0 -amm, 0 - 0
0 .. 0 -a,1a,1, O .. 0
Qi =| 0 0 0 0 - 0
0 - 0 —&mbs, O - 0
0 - 0 -amy, 0 - 0

with2<r<n-1,0¢20,k=1,---,n,k#rand

—_

r— n
arag, #0 and Z axayy # 0.

1 k=r+1

=~
I

It is proposed for the preconditioned Jacobi and Gauss-Seidel methods in [66].
In this case, 652].) (y) and 61(.2].)(1) reduce respectively to

@il Ay, i=je { o, mh\ {r
(y = Daia;,, i€{l, } \{r},j=
00 () =4 yai,  i=1 r=1j el Qs 1} Ufr+1,---,n};
Vil ay,j, i=r+ 2 M, j=r+1,- -1;
0, otherwzse

and

aiai,rar,j/ i= 1/ = 1/] € {1/ /Z}U {7’+1,"' ,7’1},'
65,3].5)(1) =3 aii iy, i=r+1,,nj=r+1,--,i
0, otherwise.

Since 653].5)(7/) =0,j=1,---,n, then the condition (i) of Theorem 3.18 can be not satisfied.
By Corollaries 3.20-3.23, we can prove the following results, directly.

Theorem 3.192. Suppose that 0 < ay < 1 and oyayx,a, <1,k =1,---,n, k # r. Then Theorem A is valid for
v = 3b.

Theorem 3.193. Suppose that 0 < ay <1,k =1,---,n, k # r. Then Theorem B is valid for v = 35.

Theorem 3.194. Suppose that 0 < ay < 1 and axaxa, < 1,k =1,---,n, k # r. Then Theorem C is valid for
v = 35, provided one of the following conditions is satisfied:

(i) 0<y<1

(ii) y =1 and one of the following conditions holds:
(ii1) Thereexisti€{1,--- ,r—1}and je{1,---,i} U {r+1,--- ,n} such that a;a;,a,; > 0.
(iiy) Thereexisti€ {r+1,--- ,nyand j € {r+1,--- i} such that a;a;,a,; > 0.
(iiz) ar_1, < 0and a,1 > 0.

(iiy) a,1 < 0.

(ii5) There existsk € {r +1,--- ,n} such that a,; < 0.
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Proof. We just need to prove (ii3), (iis) and (ii,).

When (ii3) holds, from the irreducibility of A, there exists jo € {1,---,n}\ {r} such that a,;, <0, so that
@-18,-1,45,j, > 0, which implies that (i) holds fori = r — 1 and j = jo.

If (iis) holds, then by the definition of Qs5 there exists ko{l,---,r — 1} such that ayax,, < 0, so that
Qi Ak, r31 > 0, which implies that (ii;) holds fori = kg and j = 1.

For the case when (ii5) holds, the proof is completely same. [

Theorem 3.195. Suppose that 0 < ay <1,k =1,---,n, k # r. Then Theorem D is valid for v = 35, provided one of
the conditions (i) and (ii) of Theorem 3.194 is satisfied.

Clearly, there exists a permutation matrix V such that VTQs5V = Qs with q£61)

= Maiy, 5]5(61) = Ok,
k=2--,nk# r Itiseasy to see that the matrices A and VTAV have the same irreducibility and
p( Z(A)) = p(_Z(VTAV)), p(_Z (A®)) = p(_# (VIP35VVTAV)). Hence, by (iii) of Theorem 3.51, Theorems
3.194 and 3.195 for y = 0 are valid whenever wesetay =1,k=1,---,n, k # r. So from Theorem 3.195 it can
derive [66, Theorem 2.2].

At last, in [26], Q is chosen as

a1,
0 0 -+ 0 —;—z—ﬁz
0 0 -+ 0 0
Q36 = Qu1 + Qo = : : : :
0 0 0 0
_l g0 0 0

23]
with a1y < 0, Ay < 0,a,>0,1=1,2, ﬂn,1/a’1 +ﬁ1 <0and lZLn/CYZ + ﬁz < 0.
Itis proposed in [41] fora; = a0, B; = B, i =1,2.
In this case, for n > 3, the condition (ii) of Theorem 3.6 can be not satisfied.
By Corollaries 3.12-3.15, it can be prove the following comparison results.

Theorem 3.196. Suppose that

1 1
>|1-— , >(1-— 55
prz ( aq )ﬂn,l p2 ( Oéz)al'n (55)
and
1 an1 1 a1n
> —-—, > — - —=. 56
b My P2 ng 2 o0

Then Theorem A is valid for v = 36.
Theorem 3.197. Suppose that (55) holds. Then Theorem B is valid for v = 36.

Theorem 3.198. Suppose that (56) holds and

1 1
2(1=—)an1, B2 |1 ——|ain. 57
ﬁlN( (Xl)a'l P2 ( (Xz)al' (57)
Then Theorem C is valid for v = 36.

Proof. In this case, for i # j, the condition qf,lj) < —a;,; reduces to (57).

On the other hand, since a,,1/a1 + f1 < 0, then the condition (i) in Theorem 3.6 is satisfied. It follows
by Corollary 3.14 that Theorem C is valid. [

Theorem 3.199. Suppose that (57) holds. Then Theorem D is valid for v = 36.
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4. Conclusions

In this paper, we have investigated the preconditioned AOR method for solving linear systems. We
have studied two general preconditioners and proposed some lower triangular, upper triangular and
combination preconditioners. For A being an L-matrix, a nonsingular M-matrix, an irreducible L-matrix and
an irreducible nonsingular M-matrix, four types of comparison theorems are presented, respectively. They
contain a general comparison result, a strict comparison result and two Stein-Rosenberg type comparison
results. Our theorems include and are better than almost all known corresponding results. We also pointed
out some incorrect known results.

Of course, according to the construction of combination preconditioners, we can define more combina-
tion preconditioners.

When (y, w) is equal to (w, w), (1, 1) and (0, 1), from the results above, we can derive respectively the
corresponding comparison results about the preconditioned SOR method, Gauss-Seidel method and Jacobi
method directly.

Similar to [2, 7, 10, 12, 13] for the block preconditioned Jacobi, Gauss-Seidel, SOR methods and the block
preconditioned AOR method respectively, when A is partitioned by block, then Q can be chosen as a block
matrix, so that we can derive the same comparison results for the block preconditioned AOR method.

Similar to [3, 25, 27, 64, 87, 106, 112, 114] for the preconditioned AOR methods for solving linear least
squares problems, we can derive the corresponding comparison results as above.

The comparisons between either different preconditioners or different parameters of a same type pre-
conditioner have investigated by many authors in [1-3, 17, 18, 22, 23, 31, 32, 34, 38, 41, 43, 44, 47, 48, 59,
62, 66, 67, 69-72, 74, 76-78, 82, 90-93, 96, 100-102, 105, 108]. This is an important and interesting research
subject. Because of the length, this paper does not cover this topic.

In [19, 24, 33, 36, 55, 58, 60, 61, 65, 75, 83, 88, 94, 97, 101] and some related literatures, the preconditioned
iterative methods for H-matrix is studied.

Recently, in [5, 6, 21, 28, 49, 57, 73, 95], the preconditioned tensor splitting methods and the precondi-
tioned AOR (SOR) methods for solving multi-linear systems are proposed. These are new subjects to be
studied.
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