

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

The *m*-MP weak core inverse and its applications

Xin Tana, Xiaoji Liub, Hongwei Jinc,*

^aSchool of Mathematical Sciences, Guangxi Minzu University, 530006, Nanning, PR China ^bSchool of Education, Guangxi Vocational Normal University, 530007, Nanning, PR China ^cSchool of Mathematical Sciences; Center for Applied Mathematics of Guangxi, Guangxi Minzu University, 530006, Nanning, PR China

Abstract. Based on the *m*-core-nilpotent decomposition, we introduce a generalized inverse named the *m*-MP weak core inverse, which unifies the CMP inverse and the MP weak core inverse. Some properties, characterizations and representations of this generalized inverse are shown. Then, the relationship between the *m*-MP weak core inverse and a nonsingular bordered matrix is established. A variant of the successive squaring computational iterative scheme is given for calculating the *m*-MP weak core inverse. An equivalent condition for the continuity for the *m*-MP weak core inverse is also studied. In the final, the *m*-MP weak core inverse is used in solving a system of linear equations.

1. Introduction

Let \mathbb{Z}^+ and $\mathbb{C}_{m\times n}$ denote the sets of all positive integers and all $m\times n$ complex matrices, respectively. The symbols * means the conjugate transpose of a matrix. The notations A^* , R(A), N(A), rank(A) and $\rho(A)$ denote the conjugate transpose, range, null space, rank and spectral radius of $A\in\mathbb{C}_{m\times n}$, respectively. The notation $\|\cdot\|$ stands for the matrix norm. Let $A\{2\}=\{X\in\mathbb{C}_{n\times m}|XAX=X\}$. If $X\in A\{2\}$, we call X an outer inverse of A, which is denoted by $A^{(2)}$. If an outer inverse X of A satisfies $R(X)=\mathcal{T}$ and $N(X)=\mathcal{S}$, then X is called the outer inverse with the prescribed range \mathcal{T} and null space \mathcal{S} , which is denoted by $A^{(2)}_{\mathcal{T},\mathcal{S}}$. We define that $A^0=I_n$, where $A\in\mathbb{C}_{n\times n}$ and I_n is the identity matrix of order n. And, 0 denotes the null matrix of an appropriate size. For an $n\times n$ matrix A, the index of A is the smallest non-negative integer k such that $\operatorname{rank}(A^{k+1})=\operatorname{rank}(A^k)$, which is denoted as $\operatorname{Ind}(A)$. Notice that $\operatorname{Ind}(A)=0$ if and only if A is invertible. For subspaces \mathcal{T} and \mathcal{S} satisfying their direct sum as $\mathbb{C}_{n\times 1}$, i.e., $\mathcal{S}\oplus\mathcal{T}=\mathbb{C}_{n\times 1}$, the projector onto \mathcal{T} along \mathcal{S} is indicated by $P_{\mathcal{T},\mathcal{S}}$. Particularly, the orthogonal projector onto \mathcal{T} is $P_{\mathcal{T}}=P_{\mathcal{T},\mathcal{T}^\perp}$, where \mathcal{T}^\perp presents the orthogonal complement of \mathcal{T} .

The Moore Penrose inverse denoted by $A^{\dagger} = X \in \mathbb{C}_{n \times m}$ of $A \in \mathbb{C}_{m \times n}$ is the unique matrix satisfying the following matrix equations [21]

(1)
$$AXA = A$$
, (2) $XAX = X$, (3) $(AX)^* = AX$, (4) $(XA)^* = XA$.

Email addresses: xtan9911@126.com (Xin Tan), xiaojiliu72@126.com (Xiaoji Liu), jhw_math@126.com (Hongwei Jin)
ORCID iDs: https://orcid.org/0009-0002-7977-9637 (Xin Tan), https://orcid.org/0000-0003-3499-3947 (Xiaoji Liu),
https://orcid.org/0000-0001-9009-591X (Hongwei Jin)

²⁰²⁰ Mathematics Subject Classification. Primary 15A24; Secondary 15A09, 15A10, 15A21, 65F05.

Keywords. CMP inverse, MP weak core inverse, m-MP weak core inverse, Bordered matrix, Linear equation.

Received: 03 December 2024; Revised: 26 July 2025; Accepted: 04 September 2025

Communicated by Dijana Mosić

Research supported by the National Natural Science Foundation of China (No.12061015) and the Guangxi Natural Science Foundation (2024GXNSFAA010503).

^{*} Corresponding author: Hongwei Jin

The Drazin inverse denoted by $A^D = X \in \mathbb{C}_{n \times n}$ of $A \in \mathbb{C}_{n \times n}$ with Ind(A) = k is the unique matrix satisfying the following matrix equations [3]

(1)
$$A^{k+1}X = A^k$$
, (2) $XAX = X$, (3) $AX = XA$.

When k = 1, A^D is called the group inverse of A and is denoted by $A^{\#}$.

The CMP inverse denoted by $A^{c,\dagger} = X \in \mathbb{C}_{n \times n}$ of $A \in \mathbb{C}_{n \times n}$ with $\operatorname{Ind}(A) = k$ is the unique matrix satisfying the following matrix equations [15]

(1)
$$XAX = X$$
, (2) $AXA = AA^{D}A$, (3) $XA = A^{\dagger}AA^{D}A$, (4) $AX = AA^{D}AA^{\dagger}$.

Notice that $A^{c,\dagger} = A^{\dagger}AA^{D}AA^{\dagger}$.

The core-EP inverse denoted by $A^{\oplus} = X \in \mathbb{C}_{n \times n}$ of $A \in \mathbb{C}_{n \times n}$ with $\operatorname{Ind}(A) = k$ is the unique matrix satisfying the following matrix equations [14]

(1)
$$XAX = X$$
, (2) $XA^{k+1} = A^k$, (3) $(AX)^* = AX$, (4) $R(X) \subseteq R(A^k)$.

Notice that $A^{\oplus} = A^D A^k (A^k)^{\dagger}$.

The weak group inverse denoted by $A^{\otimes} = X \in \mathbb{C}_{n \times n}$ of $A \in \mathbb{C}_{n \times n}$ with $\operatorname{Ind}(A) = k$ is the unique matrix satisfying the following matrix equations [28]

(1)
$$AX^2 = X$$
, (2) $AX = A^{\oplus}A$.

Notice that $A^{\textcircled{1}} = (A^{\textcircled{1}})^2 A$.

The MP weak core inverse denoted by $A^{\bigcirc} = X \in \mathbb{C}_{n \times n}$ of $A \in \mathbb{C}_{n \times n}$ with $\operatorname{Ind}(A) = k$ is the unique matrix satisfying the following matrix equations [12]

(1)
$$XAX = X$$
, (2) $AX = AA^{\otimes}AA^{\dagger}$, (3) $XA = A^{\dagger}AA^{\otimes}A$.

Notice that $A^{\bigcirc} = A^{\dagger}AA^{\textcircled{0}}AA^{\dagger}$.

The *m*-weak group inverse denoted by $A^{\bigotimes_m} = X \in \mathbb{C}_{n \times n}$ of $A \in \mathbb{C}_{n \times n}$ with $\operatorname{Ind}(A) = k$ is the unique matrix satisfying the following matrix equations [9]

(1)
$$AX^2 = X$$
, (2) $AX = (A^{\oplus})^m A^m$, where $m \in \mathbb{Z}^+$.

Notice that $A^{\textcircled{m}_m} = \left(A^{\textcircled{\tiny{\dagger}}}\right)^{m+1} A^m$.

The *m*-weak group MP inverse denoted by $A^{\bigotimes_{m},\dagger} = X \in \mathbb{C}_{n \times n}$ of $A \in \mathbb{C}_{n \times n}$ with $\operatorname{Ind}(A) = k$ is the unique matrix satisfying the following matrix equations [8]

(1)
$$XAX = X$$
, (2) $AX = AA^{\Theta_m}AA^{\dagger}$, (3) $XA = A^DAA^{\Theta_m}A$, where $m \in \mathbb{Z}^+$.

Notice that $A^{\bigotimes_{m},\dagger} = A^{\bigotimes_{m}} A A^{\dagger}$.

Let $A, B, C \in \mathbb{C}_{n \times n}$. The (B, C)-inverse of A is the unique matrix $Y \in \mathbb{C}_{n \times n}$ satisfying the following matrix equations [1, 22]

(1)
$$YAB = B$$
, (2) $CAY = C$, (3) $N(C) \subseteq N(Y)$, (4) $R(Y) \subseteq R(B)$.

Lemma 1.1. [26] Let $A \in \mathbb{C}_{n \times n}$ with $\operatorname{Ind}(A) = k$. Then

(1)
$$R(A^{\dagger}) = R(A^*), N(A^{\dagger}) = N(A^*);$$

(2)
$$AA^{\dagger} = P_{R(A),N(A^*)};$$

(3)
$$A^{\dagger}A = P_{R(A^*),N(A)}$$
.

Lemma 1.2. [9] Let $A \in \mathbb{C}_{n \times n}$ with $\operatorname{Ind}(A) = k$ and $m \in \mathbb{Z}^+$. Then

$$(1) A^{\bigotimes_m} A A^{\bigotimes_m} = A^{\bigotimes_m};$$

(1)
$$A^{\bigotimes_m} A A^{\bigotimes_m} = A^{\bigotimes_m};$$

(2) $A^{\bigotimes_m} = A^{(2)};$
 $R(A^k), N((A^k)^*A^m)';$

$$(3) AA^{\bigotimes_m} = P_{R(A^k),N((A^k)^*A^m)};$$

$$(4) A^{\otimes_m} A = P_{R(A^k), N((A^k)^* A^{m+1})}.$$

Lemma 1.3. [8] Let $A \in \mathbb{C}_{n \times n}$ with $\operatorname{Ind}(A) = k$ and $m \in \mathbb{Z}^+$. Then (1) $A^{\bigotimes_{m}, \dagger} = A^{(2)}_{R(A^k), N((A^k)^*A^{m+1}A^+)}$;

$$(1) A^{\bigotimes_{m}, \dagger} = A_{R(A^k) N((A^k)^* A^{m+1} A^{\dagger})}^{(2)}$$

$$(2) AA^{\bigotimes_{m},\dagger} = P_{R(A^k),N((A^k)^*A^{m+1}A^{\dagger})};$$

(3)
$$A^{\bigotimes_{m},\dagger}A = P_{R(A^k),N((A^k)^*A^{m+1})}$$
.

Lemma 1.4. [26] Let $A \in \mathbb{C}_{n \times n}$. Let L and M be complementary subspaces of \mathbb{C}_n , i.e., $L \oplus M = \mathbb{C}_n$. Then,

(1)
$$P_{L,M}A = A \Leftrightarrow R(A) \subseteq L$$
;

(2)
$$A = AP_{L,M} \Leftrightarrow M \subseteq N(A)$$
.

2. The *m*-MP weak core inverse

In this section, we introduce a generalized inverse named m-MP weak core inverse. In order to do this, we firstly recall the *m*-core-nilpotent decomposition. Then we consider a system of equations.

Lemma 2.1. [8] Let $A \in \mathbb{C}_{n \times n}$ with $\operatorname{Ind}(A) = k$ and $m \in \mathbb{Z}^+$. Let $A = A_1 + A_2$ be the m-core-nilpotent decomposition of A. Then

$$A_1 = AA^{\otimes_m}A \text{ and } A_2 = A - AA^{\otimes_m}A.$$

Notice that if $m \ge k-1$, then A_1 coincides with $\widetilde{A}_1 = AA^DA$ which is the core part in the core-nilpotent decomposition. If m = 1, then A_1 coincides with $C = AA^{\otimes}A$ which is the weak core part of A.

Definition 2.2. [16] Let $A \in \mathbb{C}_{n \times n}$ with $\operatorname{Ind}(A) = k$ and $m \in \mathbb{Z}^+$. Let A_1 be the form of Lemma 2.1. The following matrix equations

$$XAX = X, AX = A_1A^{\dagger}, XA = A^{\dagger}A_1$$
 (1)

have the unique solution $A^{\dagger}AA^{\otimes_m}AA^{\dagger}$. We term $A^{\otimes_m, \bigcirc} = A^{\dagger}AA^{\otimes_m}AA^{\dagger}$ as the m-MP weak core inverse (in short, the m-MPWC inverse) of A.

Remark 2.3. From the definitions of CMP inverse and MP weak core inverse, it is easy to infer that:

- (1) If m = 1, then $A^{\bigotimes_m, \bigcirc} = A^{\bigcirc}$;
- (2) If $m \ge k 1$, then $A^{\bigotimes_m, \bigcirc} = A^{c,\dagger}$.

Hence, the m-MPWC inverse is actually a generalization of the CMP inverse and the MP weak core inverse. It is also a special case of the weak CMP inverse introduced in [16].

Example 2.4. Let

$$A = \begin{pmatrix} I_4 & I_4 \\ 0 & N \end{pmatrix}, where \ N = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Then Ind(A) = 4, and

$$A^{\dagger} = \begin{pmatrix} H_1 & -N^{\dagger} \\ I - H_1 & N^{\dagger} \end{pmatrix}, \ A^D = \begin{pmatrix} I_4 & H_2 \\ 0 & 0 \end{pmatrix}, \ A^{c,\dagger} = \begin{pmatrix} H_1 & H_5 \\ I_4 - H_1 & H_6 \end{pmatrix},$$

$$A^{\oplus} = \begin{pmatrix} I_4 & 0 \\ 0 & 0 \end{pmatrix}, \ A^{\textcircled{N}} = \begin{pmatrix} I_4 & I_4 \\ 0 & 0 \end{pmatrix}, \ A^{\textcircled{N}_2} = \begin{pmatrix} I_4 & H_3 \\ 0 & 0 \end{pmatrix},$$

$$A^{\bigcirc} = \begin{pmatrix} H_1 & H_7 \\ I_4 - H_1 & I_4 - H_1 \end{pmatrix}, \ A^{\textcircled{N}_2, \dagger} = \begin{pmatrix} I_4 & H_4 \\ 0 & 0 \end{pmatrix} \ \text{and} \ A^{\textcircled{N}_2, \bigcirc} = \begin{pmatrix} H_1 & H_8 \\ I_4 - H_1 & H_9 \end{pmatrix},$$

where

This shows that m-MPWC inverse is different from some known generalized inverses.

3. Characterizations of the *m*-MP weak core inverse

More characterizations for the Moore-Penrose inverse, the CMP inverse, the core-EP inverse, the weak group inverse, and the *m*-weak group inverse can be found in [5, 10, 11, 17–19, 29, 30], and we now present characterizations for the *m*-MP weak core inverse.

Lemma 3.1. [16] Let $A \in \mathbb{C}_{n \times n}$ with Ind(A) = k and $m \in \mathbb{Z}^+$. Then (1) $R(A^{\bigotimes_{m} \bigcirc}) = R(A^{\dagger}A^{k});$ (2) $N(A^{\bigotimes_{m} \bigcirc}) = N((A^{k})^* A^{m+1}A^{\dagger});$

(2)
$$N(A^{\bigotimes_{m}, \bigcirc}) = N((A^k)^* A^{m+1} A^{\dagger});$$

(3) $A^{\bigotimes_{m}, \bigcirc} = A^{(2)}_{R(A^{\dagger}A^k), N((A^k)^* A^{m+1} A^{\dagger})}.$

Theorem 3.2. Let $A \in \mathbb{C}_{n \times n}$ with $\operatorname{Ind}(A) = k$ and $m \in \mathbb{Z}^+$. Then

$$A^{\bigotimes_{m},\bigcirc} = A^{(2)}_{R(A^{\dagger}A^{k}(A^{k})^{*}A^{m+1}A^{\dagger}),N(A^{\dagger}A^{k}(A^{k})^{*}A^{m+1}A^{\dagger})}.$$

Proof. From Theorem 5.3 of [8], we get that

$$R(A^{k}) = R\left(A^{k}\left(A^{k}\right)^{*}A^{m+1}A^{\dagger}\right), \qquad rank(A^{k}) = rank\left(\left(A^{k}\right)^{*}A^{m+1}A^{\dagger}\right).$$

Hence, we can deduce that

$$R(A^{\dagger}A^k) = A^{\dagger}R(A^k) = A^{\dagger}R\left(A^k\left(A^k\right)^*A^{m+1}A^{\dagger}\right) = R\left(A^{\dagger}A^k\left(A^k\right)^*A^{m+1}A^{\dagger}\right),$$

which implies

$$rank(A^{\dagger}A^{k}) = rank\left(A^{\dagger}A^{k}\left(A^{k}\right)^{*}A^{m+1}A^{\dagger}\right).$$

We can also infer directly that

$$rank(A^{\dagger}A^{k}) \leq rank(A^{k}) = rank(A^{k+1}) = rank(AA^{k}) = rank(AA^{\dagger}AA^{k})$$
$$\leq rank(A^{\dagger}A^{k+1}) \leq rank(A^{\dagger}A^{k}),$$

which implies

$$rank\left(\left(A^{k}\right)^{*}A^{m+1}A^{\dagger}\right)=rank(A^{k})=rank(A^{\dagger}A^{k})=rank\left(A^{\dagger}A^{k}\left(A^{k}\right)^{*}A^{m+1}A^{\dagger}\right).$$

Since
$$N((A^k)^*A^{m+1}A^\dagger) \subseteq N(A^\dagger A^k (A^k)^*A^{m+1}A^\dagger)$$
, it follows that

$$N\left(\left(A^{k}\right)^{*}A^{m+1}A^{\dagger}\right)=N\left(A^{\dagger}A^{k}\left(A^{k}\right)^{*}A^{m+1}A^{\dagger}\right).$$

Combine with Lemma 3.1, we get
$$A^{\textcircled{0}_{m}, \bigcirc} = A^{(2)}_{R(A^{\dagger}A^{k}(A^{k})^{*}A^{m+1}A^{\dagger}), N(A^{\dagger}A^{k}(A^{k})^{*}A^{m+1}A^{\dagger})}$$
.

Theorem 3.3. Let $A \in \mathbb{C}_{n \times n}$ with $\operatorname{Ind}(A) = k$ and $m \in \mathbb{Z}^+$. Let A_1 be as in Lemma 2.1. Then

(1)
$$A^{\bigotimes_{m},\bigcirc}$$
 is a reflexive g-inverse of A_1 ;

(2)
$$A_1 A^{\bigotimes_{m}, \bigcirc} = A_1 A^{\dagger}; A^{\bigotimes_{m}, \bigcirc} A_1 = A^{\dagger} A_1.$$

Proof. (1). It is easy to see that

$$A^{\bigotimes_{m}, \bigcirc} A_1 A^{\bigotimes_{m}, \bigcirc} = A^{\dagger} A A^{\bigotimes_{m}} A A^{\dagger} A A^{\bigotimes_{m}} A A^{\dagger} A A^{\bigotimes_{m}} A A^{\dagger} = A^{\dagger} A A^{\bigotimes_{m}} A A^{\dagger} = A^{\bigotimes_{m}, \bigcirc},$$

$$A_1 A^{\bigotimes_m, \bigcirc} A_1 = A A^{\bigotimes_m} A A^{\dagger} A A^{\bigotimes_m} A A^{\dagger} A A^{\bigotimes_m} A = A A^{\bigotimes_m} A = A_1.$$

So, $A^{\bigotimes_{m}, \bigcirc}$ is a reflexive g-inverse of A_1 .

(2). It is obvious that

$$A_1A^{\otimes_m,\bigcirc} = AA^{\otimes_m}AA^{\dagger}AA^{\otimes_m}AA^{\dagger} = AA^{\otimes_m}AA^{\dagger} = A_1A^{\dagger},$$

$$A^{\bigotimes_{m} \cap \bigcirc} A_1 = A^{\dagger} A A^{\bigotimes_m} A A^{\dagger} A A^{\bigotimes_m} A = A^{\dagger} A A^{\bigotimes_m} A = A^{\dagger} A_1.$$

This completes the proof. \Box

Theorem 3.4. Let $A \in \mathbb{C}_{n \times n}$ with $\operatorname{Ind}(A) = k$ and $m \in \mathbb{Z}^+$. Then the following statements are equivalent: (1) $X = A^{\bigotimes_{m} \bigcirc}$;

(1)
$$X = X^{\dagger}$$

(2) $N(X) = N((A^{k})^{*} A^{m+1} A^{\dagger}), XA = A^{\dagger} A_{1};$

(3)
$$N(X) = N((A^k)^* A^{m+1} A^{\dagger}), XA^k = A^{\dagger} A^k;$$

$$(4) N(X) = N((A^k)^* A^{m+1} A^{\dagger}), XAA^{\mathfrak{M}_m} = A^{\dagger} AA^{\mathfrak{M}_m}.$$

Proof. (1) \Rightarrow (2). It is easily obtained by (1) and Lemma 3.1.

(2) \Rightarrow (3). Post-multiplying $XA = A^{\dagger}A_1$ by A^{k-1} , we have

$$XA^{k} = A^{\dagger}A_{1}A^{k-1} = A^{\dagger}AA^{\otimes_{m}}AA^{k-1} = A^{\dagger}AA^{\otimes_{m}}A^{k} = A^{\dagger}A^{k}$$

where the last equality follows from Lemma 1.2 and Lemma 1.4.

 $(3) \Rightarrow (4)$. It follows from the fact $A(A^{\bigotimes_m})^2 = A^{\bigotimes_m}$ that

$$XAA^{\Theta_m} = XA^k (A^{\Theta_m})^k = A^{\dagger}A^k (A^{\Theta_m})^k = A^{\dagger}AA^{\Theta_m}.$$

 $(4) \Rightarrow (1)$. From Lemma 1.3 and Lemma 1.4, we have

$$N(X) = N\left(\left(A^k\right)^*A^{m+1}A^\dagger\right) = N(AA^{\textcircled{m}_m,\dagger}) = N(AA^{\textcircled{m}_m}AA^\dagger),$$

which implies

$$X = XAA^{\bigotimes_m}AA^{\dagger}.$$

Applying $XAA^{\otimes_m} = A^{\dagger}AA^{\otimes_m}$ to $X = XAA^{\otimes_m}AA^{\dagger}$, we have

$$X = XAA^{\otimes_m}AA^{\dagger} = A^{\dagger}AA^{\otimes_m}AA^{\dagger} = A^{\otimes_m}$$
.

This finishes the proof. \Box

Theorem 3.5. Let $A \in \mathbb{C}_{n \times n}$ with $\operatorname{Ind}(A) = k$ and $m \in \mathbb{Z}^+$. Then the following statements are equivalent:

- (1) $X = A^{\bigotimes_m, \bigcirc}$;
- (2) XAX = X, $R(X) = R(A^{\dagger}A^{k})$, $N(X) = N((A^{k})^{*}A^{m+1}A^{\dagger})$;
- (3) XAX = X, $AX = A_1A^{\dagger}$, $R(XA) = R(A^{\dagger}A^{k})$;
- (4) XAX = X, $AX = A_1A^{\dagger}$, $XA^k = A^{\dagger}A^k$;
- (5) XAX = X, $XA = A^{\dagger}A_1$, $N(AX) = N((A^k)^*A^{m+1}A^{\dagger})$.

Proof. The item (1) implies items (2), (3), (5) can be checked directly using (1) and Lemma 3.1.

 $(1) \Rightarrow (4)$. It is obvious by (1) that

$$XAX = X$$
, $AX = A_1A^{\dagger}$.

From Lemma 1.2 and Lemma 1.4, we have

$$R(AA^{\Theta_m}) = R(A^k)$$
 and $AA^{\Theta_m}A^k = A^k$.

As a consequence, we can infer that

$$XA^{k} = XAA^{k-1} = A^{\dagger}A_{1}A^{k-1} = A^{\dagger}AA^{\otimes_{m}}AA^{k-1} = A^{\dagger}AA^{\otimes_{m}}A^{k} = A^{\dagger}A^{k}.$$

- $(2) \Rightarrow (1)$. Is is clear by Lemma 3.1 (3).
- (3) \Rightarrow (1). Because $R(A^{\dagger}AA^{\otimes_m}) = A^{\dagger}R(AA^{\otimes_m}) = A^{\dagger}R(A^k) = R(A^{\dagger}A^k) = R(XA)$ from Lemma 1.2, we have $XAA^{\dagger}AA^{\otimes_m} = A^{\dagger}AA^{\otimes_m}$, i.e., $XAA^{\otimes_m} = A^{\dagger}AA^{\otimes_m}$.

Applying $AX = A_1A^{\dagger}$ and $XAA^{\bigotimes_m} = A^{\dagger}AA^{\bigotimes_m}$ to XAX = X, we get that

$$X = XAX = XA_1A^{\dagger} = XAA^{\otimes_m}AA^{\dagger} = A^{\dagger}AA^{\otimes_m}AA^{\dagger} = A^{\otimes_m, \bigcirc}.$$

 $(4) \Rightarrow (1)$. Since AA^{\bigotimes_m} is an idempotent, it follows that

$$X = XAX = XA_1A^{\dagger} = XAA^{\bigotimes_m}AA^{\dagger} = XA^k (A^{\bigotimes_m})^k AA^{\dagger}$$
$$= A^{\dagger}A^k (A^{\bigotimes_m})^k AA^{\dagger} = A^{\dagger}AA^{\bigotimes_m}AA^{\dagger} = A^{\bigotimes_m, \bigcirc}.$$

(5) \Rightarrow (1). Since $N(AX) = N((A^k)^* A^{m+1} A^{\dagger}) = N(A^{\Theta_m, \bigcirc})$, it follows that

$$X = XAX = A^{\dagger}A_1X = A^{\dagger}AA^{\otimes_m}AX = A^{\dagger}AA^{\otimes_m}AA^{\dagger}AX = A^{\otimes_{m}}AX = A^{\otimes_{$$

This finishes the proof. \Box

Theorem 3.6. Let $A \in \mathbb{C}_{n \times n}$ with $\operatorname{Ind}(A) = k$ and $m \in \mathbb{Z}^+$. Then the following statements are equivalent: (1) $X = A^{\Theta_m, \bigcirc}$;

- (2) $A^{\dagger}A_1X = X$, $AX = A_1A^{\dagger}$, $XA = A^{\dagger}A_1$;
- (3) $XA_1X = X$, $A_1X = A_1A^{\dagger}$, $XA_1 = A^{\dagger}A_1$;
- (4) $XA_1X = X$, $A^{\Theta_m}AX = A^{\Theta_m,\dagger}$, $XAA^{\Theta_m} = A^{\dagger}AA^{\Theta_m}$.

Proof. (1) \Rightarrow (2). From (1), we have that

$$XAX = X$$
, $AX = A_1A^{\dagger}$ and $XA = A^{\dagger}A_1$.

Post-multiplying $XA = A^{\dagger}A_1$ by X, we have

$$A^{\dagger}A_1X = XAX = X.$$

(2) \Rightarrow (1). Post-multiplying $XA = A^{\dagger}A_1$ by X, we have

$$XAX = A^{\dagger}A_1X = X.$$

Since $AX = A_1A^{\dagger}$ and $XA = A^{\dagger}A_1$, we know $X = A^{\bigotimes_{m} \bigcirc}$ by Definition 2.2.

- $(1) \Rightarrow (3)$. It is obvious by Theorem 3.3.
- (3) \Rightarrow (4). Pre-multiplying $A_1X = A_1A^{\dagger}$ by A^{\otimes_m} , we have

$$A^{\otimes_m}A_1X = A^{\otimes_m}A_1A^{\dagger} = A^{\otimes_m}AA^{\otimes_m}AA^{\dagger} = A^{\otimes_m}AA^{\dagger} = A^{\otimes_m,\dagger}.$$

Post-multiplying $XA_1 = A^{\dagger}A_1$ by A^{\bigotimes_m} , we have

$$XA_1A^{\otimes_m} = XAA^{\otimes_m}AA^{\otimes_m} = XAA^{\otimes_m} = A^{\dagger}A_1A^{\otimes_m} = A^{\dagger}AA^{\otimes_m}AA^{\otimes_m} = A^{\dagger}AA^{\otimes_m}.$$

(4) \Rightarrow (1). Applying $A^{\otimes_m}AX = A^{\otimes_m,\dagger}$ and $XAA^{\otimes_m} = A^{\dagger}AA^{\otimes_m}$ to $X = XA_1X$, we get that

$$X = XA_1X = XAA^{\otimes_m}AX = A^{\dagger}AA^{\otimes_m}AX = A^{\dagger}AA^{\otimes_m,\dagger} = A^{\dagger}AA^{\otimes_m}AA^{\dagger} = A^{\otimes_m,\bigcirc}.$$

This finishes the proof. \Box

Theorem 3.7. Let $A \in \mathbb{C}_{n \times n}$ and $m \in \mathbb{Z}^+$. Then $A^{\bigotimes_{m}, \bigcirc}$ is the $(A^{\dagger}A_1A^*, A^*A_1A^{\dagger})$ -inverse of A, where A_1 has the same form as in Lemma 2.1.

Proof. It is easy to check that

$$A^{\bigotimes_{m}, \bigcirc}AA^{\dagger}A_{1}A^{*} = A^{\dagger}AA^{\bigotimes_{m}}AA^{\dagger}AA^{\dagger}AA^{\bigotimes_{m}}AA^{*} = A^{\dagger}AA^{\bigotimes_{m}}AA^{*} = A^{\bigotimes_{m}}AA^{*} = A^{\bigotimes_{m}}AA^{*} = A^{\bigotimes_{m}}AA^{\bigotimes_{m}}AA^{*} = A^{\bigotimes_{m}}AA^{\bigotimes_{m}}AA^{*} = A^{\bigotimes_{m}}AA^{\bigotimes_{m}}AA^{*} = A^{\bigotimes_{m}}AA^{\bigotimes_{m}}AA^{\bigotimes_{m}}AA^{*} = A^{\bigotimes_{m}}AA^{\bigotimes_{m}}AA^{\bigotimes_{m}}AA^{\bigotimes_{m}}AA^{\bigotimes_{m}}AA^{\bigotimes_{m}}AA^{\bigotimes_{m}}AA^{\bigotimes_{m}}AA^{\bigotimes_{m}}AA^{\bigotimes_{m}}AA^{\bigotimes_{m}}AA^{\bigotimes_{m}}AA^{\bigotimes_{m}}AA^{\bigotimes_{m}}AA^{\bigotimes_{m}}AA^{\bigotimes_{m}}AA^{\bigotimes_{m}}AA^{\bigotimes_{m$$

$$A^*A_1A^{\dagger}AA^{\otimes_m,\bigcirc} = A^*AA^{\otimes_m}AA^{\dagger}AA^{\dagger}AA^{\dagger}AA^{\otimes_m}AA^{\dagger} = A^*AA^{\otimes_m}AA^{\otimes_m}AA^{\dagger} = A^*AA^{\otimes_m}AA^{\dagger} = A^*AA^{\otimes_m}AA^{\dagger} = A^*AA^{\otimes_m}AA^{\dagger}$$

In addition, if $x \in N(A^*A_1A^{\dagger})$, then we can infer

$$A^{\bigotimes_{m},\bigcirc} x = A^{\dagger} A_{1} A^{\dagger} x = A^{\dagger} A A^{\dagger} A_{1} A^{\dagger} x = A^{\dagger} \left(A^{\dagger}\right)^{*} A^{*} A A^{\dagger} A A^{\bigotimes_{m}} A A^{\dagger} x = A^{\dagger} \left(A^{\dagger}\right)^{*} A^{*} A_{1} A^{\dagger} x = 0,$$

implying $x \in N(A^{\Theta_m, \bigcirc})$. Hence, we obtain $N(A^*A_1A^{\dagger}) \subseteq N(A^{\Theta_m, \bigcirc})$. Also, from

$$A^{\otimes_m,\bigcirc} = A^\dagger A_1 A^\dagger = A^\dagger A_1 A^\dagger A A^\dagger = A^\dagger A_1 A^\dagger A A^* \left(A^\dagger\right)^* A^\dagger = A^\dagger A_1 A^* \left(A^\dagger\right)^* A^\dagger,$$

we know that $R(A^{\bigotimes_{m}, \bigcirc}) \subseteq R(A^{\dagger}A_1A^*)$. Thus, $A^{\bigotimes_{m}, \bigcirc}$ is the $(A^{\dagger}A_1A^*, A^*A_1A^{\dagger})$ -inverse of A by the definition of the (B, C)-inverse. \square

4. Two canonical forms of the *m*-MP weak core inverse

Lemma 4.1. [27] Every matrix $A \in \mathbb{C}_{n \times n}$ with $\operatorname{Ind}(A) = k$ and $\operatorname{rank}(A^k) = r$ has a core-EP decomposition $A = \widehat{A_1} + \widehat{A_2}$, and has the following matrix form

$$A = U \begin{pmatrix} T & S \\ 0 & N \end{pmatrix} U^*, \tag{2}$$

where $\operatorname{Ind}(\widehat{A_1}) \leq 1$, $\widehat{A_2}^k = 0$, $A_1^*A_2 = A_2A_1 = 0$, and $U \in \mathbb{C}_{n \times n}$ is unitary. Furthermore,

$$\widehat{A_1} = U \begin{pmatrix} T & S \\ 0 & 0 \end{pmatrix} U^*, \ \widehat{A_2} = U \begin{pmatrix} 0 & 0 \\ 0 & N \end{pmatrix} U^*,$$

where $T \in \mathbb{C}_{r \times r}$ is nonsingular, $S \in \mathbb{C}_{r \times (n-r)}$, $N \in \mathbb{C}_{(n-r) \times (n-r)}$ is nilpotent, and $N^k = 0$. The Moore Penrose inverse of A is given as [2]:

$$A^{\dagger} = U \begin{pmatrix} T^* \triangle & -T^* \triangle SN^{\dagger} \\ (I - N^{\dagger}N)S^* \triangle & N^{\dagger} - (I - N^{\dagger}N)S^* \triangle SN^{\dagger} \end{pmatrix} U^*, \tag{3}$$

where $\triangle = \left(TT^* + S(I - N^{\dagger}N)S^*\right)^{-1}$.

From [9], we gather

$$A^{\bigotimes_{m}} = U \begin{pmatrix} T^{-1} & \left(T^{m+1}\right)^{-1} T_{m} \\ 0 & 0 \end{pmatrix} U^{*},$$

$$A^{k} = U \begin{pmatrix} T^{k} & T_{k} \\ 0 & 0 \end{pmatrix} U^{*},$$

$$A^{m} = U \begin{pmatrix} T^{m} & T_{m} \\ 0 & N^{m} \end{pmatrix} U^{*},$$

$$AA^{\dagger} = U \begin{pmatrix} I & 0 \\ 0 & NN^{\dagger} \end{pmatrix} U^{*},$$

$$AA^{\dagger} = U \begin{pmatrix} I & 0 \\ 0 & NN^{\dagger} \end{pmatrix} U^{*},$$

$$A(A) = U \begin{pmatrix} I & 0 \\ 0 & NN^{\dagger} \end{pmatrix} U^{*},$$

$$A(A) = U \begin{pmatrix} I & 0 \\ 0 & NN^{\dagger} \end{pmatrix} U^{*},$$

$$A(A) = U \begin{pmatrix} I & 0 \\ 0 & NN^{\dagger} \end{pmatrix} U^{*},$$

where $m \in \mathbb{Z}^+$, $T_k = \sum_{j=0}^{k-1} T^j SN^{k-1-j}$ and $T_m = \sum_{j=0}^{m-1} T^j SN^{m-1-j}$.

Lemma 4.2. [7] Every matrix $A \in \mathbb{C}_{n \times n}$ with rank(A) = r > 0 has a Hartwig-Spindelböck decomposition:

$$A = U \begin{pmatrix} \Sigma K & \Sigma L \\ 0 & 0 \end{pmatrix} U^*, \tag{5}$$

where $U \in \mathbb{C}_{n \times n}$ is a unitary matrix, $\Sigma = diag(\sigma_1 I_{k_1}, \sigma_2 I_{k_2}, \dots, \sigma_t I_{k_t})$ is a diagonal matrix, the elements on the diagonal $\sigma_1 > \sigma_2 > \dots > \sigma_t > 0$ being the singular values of the matrix A, $k_1 + k_2 + \dots + k_t = r = rank(A)$, and $K \in \mathbb{C}_{r \times r}$ and $L \in \mathbb{C}_{r \times (n-r)}$ satisfy $KK^* + LL^* = I_r$.

The MP inverse of A is given as [13]:

$$A^{\dagger} = U \begin{pmatrix} K^* \Sigma^{-1} & 0 \\ L^* \Sigma^{-1} & 0 \end{pmatrix} U^*. \tag{6}$$

The core-EP inverse of A is given as [4]:

$$A^{\oplus} = U \begin{pmatrix} (\Sigma K)^{\oplus} & 0 \\ 0 & 0 \end{pmatrix} U^*. \tag{7}$$

The matrix A^m , where $m \in \mathbb{Z}^+$, is given as:

$$A^{m} = U \begin{pmatrix} (\Sigma K)^{m} & (\Sigma K)^{m-1} \Sigma L \\ 0 & 0 \end{pmatrix} U^{*}. \tag{8}$$

Theorem 4.3. Let $A \in \mathbb{C}_{n \times n}$ with $\operatorname{Ind}(A) = k$ be of the form (2) and $m \in \mathbb{Z}^+$. Then

$$A^{\otimes_m, \bigcirc} = U \begin{pmatrix} T^* \triangle & T^* \triangle T^{-m} T_m N N^\dagger \\ (I - N^\dagger N) S^* \triangle & (I - N^\dagger N) S^* \triangle T^{-m} T_m N N^\dagger \end{pmatrix} U^*,$$

where
$$\triangle = (TT^* + S(I - N^{\dagger}N)S^*)^{-1}$$
 and $T_m = \sum_{j=0}^{m-1} T^j SN^{m-1-j}$.

Proof. From (2), (3), (4), and the fact that $A^{\bigotimes_m, \bigcirc} = A^{\dagger}AA^{\bigotimes_m}AA^{\dagger}$, we can determine the result directly. \square

Theorem 4.4. Let $A \in \mathbb{C}_{n \times n}$ with $\operatorname{Ind}(A) = k$ be of the form (5) and $m \in \mathbb{Z}^+$. Then

$$A^{\mathfrak{S}_m} = U \begin{pmatrix} (\Sigma K)^{\mathfrak{S}_m} & ((\Sigma K)^{\mathfrak{T}})^{m+1} (\Sigma K)^{m-1} \Sigma L \\ 0 & 0 \end{pmatrix} U^*, \tag{9}$$

and

$$A^{\mathfrak{S}_m, \mathfrak{O}} = U \begin{pmatrix} K^* K(\Sigma K)^{\mathfrak{S}_m} & 0 \\ L^* K(\Sigma K)^{\mathfrak{S}_m} & 0 \end{pmatrix} U^*. \tag{10}$$

Proof. From (7), we have

$$\left(A^{\oplus}\right)^{m+1} = U \begin{pmatrix} \left((\Sigma K)^{\oplus}\right)^{m+1} & 0\\ 0 & 0 \end{pmatrix} U^*. \tag{11}$$

From (8), (11), and the fact that

$$A^{\mathfrak{S}_m} = \left(A^{\oplus}\right)^{m+1} A^m,$$

we get that (9) holds. Using (5), (6), (9), and $A^{\bigotimes_{m} \bigcirc} = A^{\dagger}AA^{\bigotimes_{m}}AA^{\dagger}$, we obtain (10). \square

Theorem 4.5. Let $A \in \mathbb{C}_{n \times n}$ with $\operatorname{Ind}(A) = k$ and $m \in \mathbb{Z}^+$. Then $A^{\bigotimes_{m} \bigcirc}$ is an EP matrix if and only if the following conditions hold:

- $(1) K^* \nabla K = (K(\Sigma K)^{\otimes_m})^{\dagger} K(\Sigma K)^{\otimes_m};$
- (2) $\nabla K = 0$;
- $(3) L^* \nabla K = 0,$

where $\nabla = K(\Sigma K)^{\Theta_m} (K(\Sigma K)^{\Theta_m})^{\dagger}$.

Proof. Let *A* be of the form (5). It is easy to check that

$$\left(A^{\mathfrak{G}_m, \mathcal{O}}\right)^{\dagger} = U \begin{pmatrix} \left(K(\Sigma K)^{\mathfrak{G}_m}\right)^{\dagger} K & \left(K(\Sigma K)^{\mathfrak{G}_m}\right)^{\dagger} L \\ 0 & 0 \end{pmatrix} U^*. \tag{12}$$

Using (10), (12), and $KK^* + LL^* = I_r$, we can get

$$\left(A^{\otimes_m, \bigcirc}\right)^\dagger A^{\otimes_m, \bigcirc} = U \begin{pmatrix} (K(\Sigma K)^{\otimes_m})^\dagger K(\Sigma K)^{\otimes_m} & 0 \\ 0 & 0 \end{pmatrix} U^*,$$

and

$$A^{\otimes_{m},\bigcirc}\left(A^{\otimes_{m},\bigcirc}\right)^{\dagger} = U\begin{pmatrix} K^{*}K(\Sigma K)^{\otimes_{m}}\left(K(\Sigma K)^{\otimes_{m}}\right)^{\dagger}K & K^{*}K(\Sigma K)^{\otimes_{m}}\left(K(\Sigma K)^{\otimes_{m}}\right)^{\dagger}L \\ L^{*}K(\Sigma K)^{\otimes_{m}}\left(K(\Sigma K)^{\otimes_{m}}\right)^{\dagger}K & L^{*}K(\Sigma K)^{\otimes_{m}}\left(K(\Sigma K)^{\otimes_{m}}\right)^{\dagger}L \end{pmatrix}U^{*}.$$

Since $A^{\bigotimes_{m},\bigcirc}$ is an EP matrix if and only if $(A^{\bigotimes_{m},\bigcirc})^{\dagger}A^{\bigotimes_{m},\bigcirc} = A^{\bigotimes_{m},\bigcirc}(A^{\bigotimes_{m},\bigcirc})^{\dagger}$, then we have

$$K^*K(\Sigma K)^{\mathfrak{G}_m} \left(K(\Sigma K)^{\mathfrak{G}_m}\right)^{\dagger} K = \left(K(\Sigma K)^{\mathfrak{G}_m}\right)^{\dagger} K(\Sigma K)^{\mathfrak{G}_m}; \tag{13}$$

$$K^*K(\Sigma K)^{\Theta_m} \left(K(\Sigma K)^{\Theta_m}\right)^{\dagger} L = 0; \tag{14}$$

$$L^*K(\Sigma K)^{\mathfrak{G}_m} \left(K(\Sigma K)^{\mathfrak{G}_m}\right)^{\dagger} K = 0; \tag{15}$$

$$L^*K(\Sigma K)^{\mathfrak{G}_m} \left(K(\Sigma K)^{\mathfrak{G}_m}\right)^{\dagger} L = 0. \tag{16}$$

Pre-multiplying (14) by *K*, pre-multiplying (16) by *L*, and adding the results, we have

$$K(\Sigma K)^{\mathfrak{Q}_m} \left(K(\Sigma K)^{\mathfrak{Q}_m} \right)^{\dagger} L = 0. \tag{17}$$

So, if $A^{\Theta_m, \bigcirc}$ is an EP matrix, then (13), (15), (17) hold, i.e.,

$$K^* \nabla K = (K(\Sigma K)^{\otimes_m})^{\dagger} K(\Sigma K)^{\otimes_m}, L^* \nabla K = 0 \text{ and } \nabla K = 0,$$

where $\nabla = K(\Sigma K)^{\otimes_m} (K(\Sigma K)^{\otimes_m})^{\dagger}$. On the contrary, if

$$K^* \nabla K = (K(\Sigma K)^{\Theta_m})^{\dagger} K(\Sigma K)^{\Theta_m}, L^* \nabla K = 0 \text{ and } \nabla K = 0,$$

then items (13)-(16) hold. This implies $A^{\textcircled{0}_m, \bigcirc}$ is an EP matrix. \square

Theorem 4.6. Let $A \in \mathbb{C}_{n \times n}$ with $\operatorname{Ind}(A) = k$ and $m \in \mathbb{Z}^+$. If $A^{\bigoplus_{m}, \bigcirc}$ is an EP matrix, then the following statements hold:

- (1) $[LL^*, \nabla] = 0$;
- (2) $[KK^*, \nabla] = 0$;
- $(3) \nabla K = K (K(\Sigma K)^{\otimes_m})^{\dagger} K(\Sigma K)^{\otimes_m},$

where [A B] = AB - BA and $\nabla = K(\Sigma K)^{\bigotimes_m} (K(\Sigma K)^{\bigotimes_m})^{\dagger}$.

Proof. According to Theorem 4.5, if $A^{\bigotimes_{m}, \bigcirc}$ is an EP matrix, we have items (13)-(16) hold. Pre-multiplying by K and post-multiplying by L^* on (14), and pre-multiplying by L and post-multiplying by K^* on (15), we have

$$KK^*K(\Sigma K)^{\otimes_m} (K(\Sigma K)^{\otimes_m})^{\dagger} LL^* = 0$$
, and $LL^*K(\Sigma K)^{\otimes_m} (K(\Sigma K)^{\otimes_m})^{\dagger} KK^* = 0$.

By $KK^* + LL^* = I_r$, we have

$$(I_r - LL^*)K(\Sigma K)^{\bigotimes_m} (K(\Sigma K)^{\bigotimes_m})^{\dagger} LL^* = 0$$
, and $(I_r - KK^*)K(\Sigma K)^{\bigotimes_m} (K(\Sigma K)^{\bigotimes_m})^{\dagger} KK^* = 0$,

which can be also written as

$$K(\Sigma K)^{\bigotimes_{m}} (K(\Sigma K)^{\bigotimes_{m}})^{\dagger} LL^{*}$$

$$= LL^{*}K(\Sigma K)^{\bigotimes_{m}} (K(\Sigma K)^{\bigotimes_{m}})^{\dagger} LL^{*}$$

$$= LL^{*}K(\Sigma K)^{\bigotimes_{m}} (K(\Sigma K)^{\bigotimes_{m}})^{\dagger} LL^{*} + LL^{*}K(\Sigma K)^{\bigotimes_{m}} (K(\Sigma K)^{\bigotimes_{m}})^{\dagger} KK^{*}$$

$$= LL^{*}K(\Sigma K)^{\bigotimes_{m}} (K(\Sigma K)^{\bigotimes_{m}})^{\dagger},$$

$$K(\Sigma K)^{\bigotimes_{m}} (K(\Sigma K)^{\bigotimes_{m}})^{\dagger} KK^{*}$$

$$= KK^{*}K(\Sigma K)^{\bigotimes_{m}} (K(\Sigma K)^{\bigotimes_{m}})^{\dagger} KK^{*}$$

$$= KK^{*}K(\Sigma K)^{\bigotimes_{m}} (K(\Sigma K)^{\bigotimes_{m}})^{\dagger} KK^{*} + KK^{*}K(\Sigma K)^{\bigotimes_{m}} (K(\Sigma K)^{\bigotimes_{m}})^{\dagger} LL^{*}$$

$$= KK^{*}K(\Sigma K)^{\bigotimes_{m}} (K(\Sigma K)^{\bigotimes_{m}})^{\dagger}.$$

So we obtain that

$$\left[LL^*, K(\Sigma K)^{\textcircled{\mathfrak{M}_m}} \left(K(\Sigma K)^{\textcircled{\mathfrak{M}_m}}\right)^{\dagger}\right] = 0, \text{ and } \left[KK^*, K(\Sigma K)^{\textcircled{\mathfrak{M}_m}} \left(K(\Sigma K)^{\textcircled{\mathfrak{M}_m}}\right)^{\dagger}\right] = 0.$$

Pre-multiplying (13) by *K* and pre-multiplying (15) by *L*, and adding the results, then we have

$$K(\Sigma K)^{\bigotimes_m} (K(\Sigma K)^{\bigotimes_m})^{\dagger} K = K (K(\Sigma K)^{\bigotimes_m})^{\dagger} K(\Sigma K)^{\bigotimes_m}.$$

This finishes the proof. \Box

5. Representations of the *m*-MP weak core inverse

Lemma 5.1. [31] Let $A \in \mathbb{C}_{m \times n}$, $X \in \mathbb{C}_{n \times p}$ and $Y \in \mathbb{C}_{p \times m}$. If $A_{R(XY),N(XY)}^{(2)}$ exists, then

$$A_{R(XY),N(XY)}^{(2)} = \lim_{\lambda \to 0} X(\lambda I_p + YAX)^{-1} Y.$$

Lemma 5.2. [6, 23] Let $A \in \mathbb{C}_{m \times n}$ with $\operatorname{Ind}(A) = k$. Then

(1)
$$A^{\dagger} = \int_{0}^{\infty} A^{*} \exp(-AA^{*}t) dt;$$

(2) $A^{\dagger} = \lim_{t \to 0} (tI_{n} + A^{*}A)^{-1}A^{*}.$

Lemma 5.3. [26] Let $A \in \mathbb{C}_{m \times n}$ with $\operatorname{Ind}(A) = k$. If $A = B_1C_1$ is a full-rank decomposition and $C_iB_i = B_{i+1}C_{i+1}$, $(i = B_1C_1)$ $1, 2, \ldots, k-1$) are also full-rank decompositions. Then

(1)
$$C_k B_k$$
 is invertible;
(2) $A^{\dagger} = C_1^* \left(C_1 C_1^* \right)^{-1} \left(B_1^* B_1 \right)^{-1} B_1^*.$

Lemma 5.4. [9] Let $A \in \mathbb{C}_{n \times n}$ with $\operatorname{Ind}(A) = k$ and $m \in \mathbb{Z}^+$. Let A be the full-rank decomposition as in Lemma 5.3, then

$$A^{\bigotimes_m} = B \left(B(C_k B_k)^{m+1} \right)^{\dagger} (B_1 C_1)^m$$

= $B(C_k B_k)^{-m-1} (B^* B)^{-1} B^* (B_1 C_1)^m$,

where $B = B_1 B_2 \dots B_k$.

Theorem 5.5. Let $A \in \mathbb{C}_{n \times n}$ with $\operatorname{Ind}(A) = k$ and $m \in \mathbb{Z}^+$. Let A be the full-rank decomposition as in Lemma 5.3, then

$$A^{\bigotimes_{m}, \bigcirc} = C_1^* \left(C_1 C_1^* \right)^{-1} C_1 B \left(B (C_k B_k)^{m+1} \right)^{\dagger} (B_1 C_1)^m B_1 \left(B_1^* B_1 \right)^{-1} B_1^*$$

$$= C_1^* \left(C_1 C_1^* \right)^{-1} B_2 \dots B_k (C_k B_k)^{-m} (B^* B)^{-1} B^* (B_1 C_1)^m B_1 \left(B_1^* B_1 \right)^{-1} B_1^*,$$

$$(18)$$

where $B = B_1 B_2 \dots B_k$.

Proof. Using Lemma 5.3 and Lemma 5.4, we have

$$A^{\bigotimes_{m},\bigcirc} = C_{1}^{*} \left(C_{1} C_{1}^{*} \right)^{-1} \left(B_{1}^{*} B_{1} \right)^{-1} B_{1}^{*} B_{1} C_{1} B (C_{k} B_{k})^{-m-1} \left(B^{*} B \right)^{-1} B^{*} \left(B_{1} C_{1} \right)^{m} B_{1} C_{1} C_{1}^{*} \left(C_{1} C_{1}^{*} \right)^{-1} \left(B_{1}^{*} B_{1} \right)^{-1} B_{1}^{*}$$

$$= C_{1}^{*} \left(C_{1} C_{1}^{*} \right)^{-1} C_{1} B (C_{k} B_{k})^{-m-1} \left(B^{*} B \right)^{-1} B^{*} \left(B_{1} C_{1} \right)^{m} B_{1} \left(B_{1}^{*} B_{1} \right)^{-1} B_{1}^{*}$$

$$= C_{1}^{*} \left(C_{1} C_{1}^{*} \right)^{-1} B_{2} \dots B_{k} C_{k} B_{k} (C_{k} B_{k})^{-m-1} \left(B^{*} B \right)^{-1} B^{*} \left(B_{1} C_{1} \right)^{m} B_{1} \left(B_{1}^{*} B_{1} \right)^{-1} B_{1}^{*}$$

$$= C_{1}^{*} \left(C_{1} C_{1}^{*} \right)^{-1} B_{2} \dots B_{k} \left(C_{k} B_{k} \right)^{-m} \left(B^{*} B \right)^{-1} B^{*} \left(B_{1} C_{1} \right)^{m} B_{1} \left(B_{1}^{*} B_{1} \right)^{-1} B_{1}^{*} .$$

We can get (18) in the same way as above. \Box

Theorem 5.6. Let $A \in \mathbb{C}_{n \times n}$ with $\operatorname{Ind}(A) = k$ and $m \in \mathbb{Z}^+$. Let A be the full-rank decomposition as in Lemma 5.3, then

$$A^{\bigotimes_{m},\bigcirc} = C_1^* \left(C_1 C_1^* \right)^{-1} C_1 B \int_0^\infty \left(B \left(C_k B_k \right)^{m+1} \right)^* \exp \left(-B \left(C_k B_k \right)^{m+1} \left(B \left(C_k B_k \right)^{m+1} \right)^* v \right) dv (B_1 C_1)^m B_1 \left(B_1^* B_1 \right)^{-1} B_1^*.$$

Proof. Using Lemma 5.2(1), we can see

$$\left(B\left(C_{k}B_{k}\right)^{m+1}\right)^{\dagger} = \int_{0}^{\infty} \left(B\left(C_{k}B_{k}\right)^{m+1}\right)^{*} \exp\left(-B\left(C_{k}B_{k}\right)^{m+1}\left(B\left(C_{k}B_{k}\right)^{m+1}\right)^{*}v\right) dv,$$

The rest can be proved by (18). \Box

Theorem 5.7. Let $A \in \mathbb{C}_{n \times n}$, $l \ge k = \operatorname{Ind}(A)$ and $m \in \mathbb{Z}^+$. Then

$$A^{\bigotimes_{m},\bigcirc} = \int_0^\infty A^* \exp(-AA^*t) \, dt \int_0^\infty A^{l+1} \left(A^{l+m+1}\right)^* \exp\left(-A^{l+m+1} \left(A^{l+m+1}\right)^* u\right) \, du \int_0^\infty A^{m+1} A^* \exp(-AA^*t) \, dt.$$

Proof. From Theorem 2.1 of [20], i.e., $A^{\textcircled{M}_m} = A^l \left(A^{l+m+1}\right)^{\dagger} A^m$, we gather a new representation of the *m*-MP weak core inverse

$$A^{\otimes_{m},\bigcirc} = A^{\dagger} A^{l+1} \left(A^{l+m+1} \right)^{\dagger} A^{m+1} A^{\dagger}.$$

It follows from Lemma 5.2(1) that

$$(A^{l+m+1})^{\dagger} = \int_{0}^{\infty} (A^{l+m+1})^{*} \exp(-A^{l+m+1}(A^{l+m+1})^{*}u) du.$$

The proof can be completed. \Box

Theorem 5.8. Let $A \in \mathbb{C}_{n \times n}$ with $\operatorname{Ind}(A) = k$ and $m \in \mathbb{Z}^+$. Let A be the full-rank decomposition as in Lemma 5.3, then

$$A^{\bigotimes_{m},\bigcirc} = \lim_{\lambda \to 0} C_1^* \left(C_1 C_1^* \right)^{-1} C_1 B \left(\lambda I_n + \left(B \left(C_k B_k \right)^{m+1} \right)^* B \left(C_k B_k \right)^{m+1} \right)^{-1} \left(B \left(C_k B_k \right)^{m+1} \right)^* \left(B_1 C_1 \right)^m B_1 \left(B_1^* B_1 \right)^{-1} B_1^*.$$

Proof. Using Lemma 5.2(2), we have

$$\left(B\left(C_{k}B_{k}\right)^{m+1}\right)^{+} = \lim_{\lambda \to 0} \left(\lambda I_{n} + \left(B\left(C_{k}B_{k}\right)^{m+1}\right)^{*} B\left(C_{k}B_{k}\right)^{m+1}\right)^{-1} \left(B\left(C_{k}B_{k}\right)^{m+1}\right)^{*}.$$

The rest can be demonstrated by (18). \Box

Theorem 5.9. Let $A \in \mathbb{C}_{n \times n}$, $l \ge k = \operatorname{Ind}(A)$ and $m \in \mathbb{Z}^+$. Then

$$A^{\bigotimes_{m},\bigcirc} = \lim_{t \to 0} (tI_n + A^*A)^{-1} A^* \lim_{t \to 0} A^{l+1} \left(\alpha I_n + \left(A^{l+m+1}\right)^* A^{l+m+1}\right)^{-1} \left(A^{l+m+1}\right)^* A^{m+1} \lim_{t \to 0} (tI_n + A^*A)^{-1} A^*.$$

Proof. It follows from Lemma 5.2(2) that

$$\left(A^{l+m+1}\right)^{\dagger} = \lim_{\alpha \to 0} \left(\alpha I_n + \left(A^{l+m+1}\right)^* A^{l+m+1}\right)^{-1} \left(A^{l+m+1}\right)^*.$$

Since $A^{\bigotimes_{m},\bigcirc} = A^{\dagger}A^{l+1} \left(A^{l+m+1}\right)^{\dagger} A^{m+1}A^{\dagger}$, the proof can be finished. \square

Theorem 5.10. Let $A \in \mathbb{C}_{m \times n}$ with $\operatorname{Ind}(A) = k$. Then

$$(1) A^{\bigotimes_{m}, \bigcirc} = \lim_{\lambda \to 0} (\lambda I_n + A^*A)^{-1} A^*A^k \left(\lambda I_n + \left(A^k\right)^* A^{m+k}\right)^{-1} \left(A^k\right)^* A^{m+1} (\lambda I_n + A^*A)^{-1} A^*;$$

$$(2) A^{\bigotimes_{m}, \bigcirc} = \lim_{\lambda \to 0} (\lambda I_n + A^*A)^{-1} A^*A^k \left(A^k\right)^* \left(\lambda I_n + A^{m+k} \left(A^k\right)^*\right)^{-1} A^{m+1} (\lambda I_n + A^*A)^{-1} A^*;$$

$$(3) A^{\bigotimes_{m}, \bigcirc} = \lim_{\lambda \to 0} (\lambda I_n + A^*A)^{-1} A^*A^k (A^k)^* A^{m+1} (\lambda I_n + (\lambda I_n + A^*A)^{-1} A^*A^k (A^k)^* A^{m+1})^{-1} (\lambda I_n + A^*A)^{-1} A^*;$$

$$(4) A^{\bigotimes_{m}} = \lim_{\lambda \to 0} \left(\lambda I_n + (\lambda I_n + A^*A)^{-1} A^*A^k \left(A^k \right)^* A^{m+1} \right)^{-1} \left(\lambda I_n + A^*A \right)^{-1} A^*A^k \left(A^k \right)^* A^{m+1} \left(\lambda I_n + A^*A \right)^{-1} A^*.$$

Proof. Firstly, we have $A^{\bigotimes_{m},\bigcirc} = A^{(2)}_{R(A^{\dagger}A^{k}(A^{k})^{*}A^{m+1}A^{\dagger}),N(A^{\dagger}A^{k}(A^{k})^{*}A^{m+1}A^{\dagger})}$ by Theorem 3.2. Combining Lemma 5.1 and Lemma 5.2 (2), we have the following proof.

(1) If
$$X = A^{\dagger}A^{k}$$
, $Y = (A^{k})^{*}A^{m+1}A^{\dagger}$. Then

$$A^{\bigotimes_{m},\bigcirc} = \lim_{\lambda \to 0} A^{\dagger} A^{k} \left(\lambda I_{n} + \left(A^{k} \right)^{*} A^{m+1} A^{\dagger} A A^{\dagger} A^{k} \right)^{-1} \left(A^{k} \right)^{*} A^{m+1} A^{\dagger}$$

$$= \lim_{\lambda \to 0} A^{\dagger} A^{k} \left(\lambda I_{n} + \left(A^{k} \right)^{*} A^{m+k} \right)^{-1} \left(A^{k} \right)^{*} A^{m+1} A^{\dagger}$$

$$= \lim_{\lambda \to 0} \left(\lambda I_{n} + A^{*} A \right)^{-1} A^{*} A^{k} \left(\lambda I_{n} + \left(A^{k} \right)^{*} A^{m+k} \right)^{-1} \left(A^{k} \right)^{*} A^{m+1} \left(\lambda I_{n} + A^{*} A \right)^{-1} A^{*}.$$

- (2) If $X = A^{\dagger}A^{k}(A^{k})^{*}$, $Y = A^{m+1}A^{\dagger}$, then we can get the result by similar computation.
- (3) If $X = A^{\dagger}A^{k}(A^{k})^{*}A^{m+1}$, $Y = A^{\dagger}$, then we can get the result.
- (4) If $X = I_n$, $Y = A^{\dagger}A^k \left(A^k\right)^* A^{m+1}A^{\dagger}$, then we can get the result. \square

6. Successive matrix squaring algorithm for the *m*-MP weak core inverse

Inspired by the successive matrix squaring (SMS) algorithm for general outer inverses given in [24], we infer SMS algorithm for computing the *m*-MP weak core inverse in the section. Since

$$(A^{k})^{*} A^{m+1} A^{\bigotimes_{m}, \bigcirc} = (A^{k})^{*} A^{m+1} A^{\dagger} A A^{\bigotimes_{m}} A A^{\dagger}$$

$$= (A^{k})^{*} A^{m+1} (A^{\oplus})^{m+1} A^{m+1} A^{\dagger}$$

$$= (A^{k})^{*} A^{m+1} (A^{D} A^{k} (A^{k})^{\dagger})^{m+1} A^{m+1} A^{\dagger}$$

$$= (A^{k})^{*} A^{m+1} (A^{D})^{m+1} A^{k} (A^{k})^{\dagger} A^{m+1} A^{\dagger}$$

$$= (A^{k})^{*} A^{k} (A^{k})^{\dagger} A^{m+1} A^{\dagger}$$

$$= (A^{k})^{*} A^{m+1} A^{\dagger} ,$$

we have that

$$A^{\bigotimes_{m},\bigcirc} = A^{\bigotimes_{m},\bigcirc} - \beta \left(\left(A^k \right)^* A^{m+1} A^{\bigotimes_{m},\bigcirc} - \left(A^k \right)^* A^{m+1} A^{\dagger} \right)$$
$$= \left(I - \beta \left(A^k \right)^* A^{m+1} \right) A^{\bigotimes_{m},\bigcirc} + \beta \left(A^k \right)^* A^{m+1} A^{\dagger}.$$

Observe the following matrices

$$P = I - \beta (A^k)^* A^{m+1}, \ Q = \beta (A^k)^* A^{m+1} A^{\dagger}, \ \beta > 0.$$

It is obvious that $A^{\bigotimes_{m},\bigcirc}$ is the unique solution of X = PX + Q. Then an iterative procedure for computing $A^{\bigotimes_{m},\bigcirc}$ can be defined as follows

$$\begin{cases} X_1 = Q \\ X_{m+1} = PX_m + Q. \end{cases}$$
 (20)

This algorithm can be implemented in parallel by considering the block matrices

$$T = \begin{pmatrix} P & Q \\ 0 & I \end{pmatrix}, \ T^m = \begin{pmatrix} P^m & \sum_{i=0}^{m-1} P^i Q \\ 0 & I \end{pmatrix}.$$

The upper right block of T^m defines the mth approximation X_m to $A^{\bigoplus_{m, \mathcal{O}}}$, i.e., $X_m = \sum_{i=0}^{m-1} P^i Q$. The matrix power T^m can be computed by the successive squaring, i.e.,

$$T_0 = T$$
, $T_{i+1} = T_i^2$, $i = 0, 1, ..., j$,

where the integer *j* satisfies $2^j \ge m$.

The following theorem gives the sufficient condition for the convergence of the iterative process (20).

Theorem 6.1. Let $m \in \mathbb{Z}^+$, $A \in \mathbb{C}_{n \times n}$ with $\operatorname{Ind}(A) = k$ and $\operatorname{rank}(A^k) = r$. Then the approximation

$$X_{2^{m}} = \sum_{i=0}^{2^{m}-1} \left(I - \beta \left(A^{k} \right)^{*} A^{m+1} \right)^{i} \beta \left(A^{k} \right)^{*} A^{m+1} A^{\dagger},$$

generated by (20), converges to $A^{\bigotimes_{m} \bigcirc}$ if the spectral radius $\rho(I-X_1A) \le 1$. In addition, the following error estimation holds

$$\frac{\|A^{\bigotimes_{m'}\bigcirc} - X_{2^m}\|}{\|A^{\bigotimes_{m'}\bigcirc}\|} \le \|(I - X_1 A)^{2^m}\|.$$

Besides,

$$\lim_{m \to \infty} \sup \sqrt[2^m]{\|A^{\bigotimes_{m}, \bigcirc} - X_{2^m}\|} \leq \rho(I - X_1 A).$$

Proof. It is known that $A^{\bigotimes_{m}, \bigcirc} A A^{\bigotimes_{m}, \bigcirc} = A^{\bigotimes_{m}, \bigcirc}$. Next, we prove that $X_{2^m} A A^{\bigotimes_{m}, \bigcirc} = X_{2^m}$. We can see that

$$X_{2^{m}}AA^{\bigotimes_{m},\bigcirc} = \sum_{i=0}^{2^{m}-1} \left(I - \beta \left(A^{k}\right)^{*} A^{m+1}\right)^{i} \beta \left(A^{k}\right)^{*} A^{m+1}A^{\dagger}AA^{\bigotimes_{m},\bigcirc}$$

$$= \sum_{i=0}^{2^{m}-1} \left(I - \beta \left(A^{k}\right)^{*} A^{m+1}\right)^{i} \beta \left(A^{k}\right)^{*} A^{m+1}A^{\bigotimes_{m},\bigcirc}$$

$$= \sum_{i=0}^{2^{m}-1} \left(I - \beta \left(A^{k}\right)^{*} A^{m+1}\right)^{i} \beta \left(A^{k}\right)^{*} A^{m+1}A^{\dagger}$$

$$= X_{2^{m}}.$$

By the mathematical induction, we can get

$$I - X_{2^m}A = (I - X_1A)^{2^m}$$
.

Therefore,

$$||A^{\bigotimes_{m}, \bigcirc} - X_{2^{m}}|| = ||A^{\bigotimes_{m}, \bigcirc} - X_{2^{m}}AA^{\bigotimes_{m}, \bigcirc}|| = ||(I - X_{2^{m}}A)A^{\bigotimes_{m}, \bigcirc}||$$

$$\leq ||(I - X_{2^{m}}A)||||A^{\bigotimes_{m}, \bigcirc}||$$

$$= ||(I - X_{1}A)^{2^{m}}||||A^{\bigotimes_{m}, \bigcirc}||.$$

On the basis of $\lim_{n\to\infty} ||B^n||^{\frac{1}{n}} = \rho(B)$ for any square matrix B and any norm, it can be concluded that

$$\lim_{m \to \infty} \sup \sqrt[2^m]{||A^{\textcircled{m}_m \bigcirc} - X_{2^m}||} \leq \lim_{m \to \infty} \sup \sqrt[2^m]{||(I - X_1 A)^{2^m}||||A^{\textcircled{m}_m \bigcirc}||} = \rho(I - X_1 A).$$

If β is a real parameter such that $\max_{1 \le i \le s} |1 - \beta \lambda_i| \le 1$, where λ_i (i = 1, 2, ..., s) are the nonzero eigenvalues of $\left(A^k\right)^* A^{m+1}$, then

$$\rho(I - X_1 A) = \rho\left(I - \beta\left(A^k\right)^* A^{m+1}\right) < 1.$$

This finishes the proof. \Box

Example 6.2. *Consider the following matrix:*

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Then, k = Ind(A) = 3. Let

$$m = 2$$
, $P = I - \beta (A^3)^* A^3$, $Q = \beta (A^3)^* A^3 A^{\dagger}$, $\beta = 0.1$.

The eigenvalues λ_i of QA are included in the set $\{0.2, 0, 0, 0\}$. The nonzero eigenvalues λ_i satisfy

$$\max_{i} |1 - \beta \lambda_i| = |1 - 0.02| = 0.98 < 1.$$

Then we obtain the satisfactory approximation for $A^{\bigotimes_{m}, \bigcirc}$ after the 6th iteration of the successive matrix squaring algorithm.

$$T_6 = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

The upper right corner of T_6 is an approximation of $A^{\Theta_m, \bigcirc}$, that is

7. The *m*-MP weak core inverse in certain bordered matrices

It is known that $X = A^{-1}$ is the unique solution to the following rank equality, if A is a nonsingular matrix

$$\operatorname{rank}\begin{pmatrix} A & I \\ I & X \end{pmatrix} = \operatorname{rank}(A). \tag{21}$$

Our intention in this section is to propose a generation of the property (21) to the *m*-MP weak core inverse. Results of Lemma 7.1 will be useful in verifying this result.

Lemma 7.1. Let
$$A \in \mathbb{C}_{n \times n}$$
, $M = \begin{pmatrix} A & AU \\ VA & B \end{pmatrix} \in \mathbb{C}_{2n \times 2n}$, then

$$rank(M) = rank(A) + rank(B - VAU).$$

Theorem 7.2. Let $m \in \mathbb{Z}^+$, $A \in \mathbb{C}_{n \times n}$ with $\operatorname{Ind}(A) = k$ and $\operatorname{rank}(A^k) = r$. Then there exists a unique matrix X satisfies the conditions

$$XA^{k} = 0, X^{2} = X, (A^{k})^{*}A^{m+1}A^{\dagger}X = 0, rank(X) = n - r,$$
 (22)

as well as a certain matrix Y such that

$$YA^{\dagger}A^{k} = 0, Y^{2} = Y, (A^{k})^{*}A^{m+1}Y = 0, \operatorname{rank}(Y) = n - r,$$
 (23)

and a unique Z satisfying

$$\operatorname{rank}\begin{pmatrix} A & I - X \\ I - Y & Z \end{pmatrix} = \operatorname{rank}(A). \tag{24}$$

Furthermore, $Z = A^{\bigotimes_m, \bigcirc}$ and the matrices X, Y are defines as

$$X = I - AA^{\bigotimes_{m}, \bigcirc}, Y = I - A^{\bigotimes_{m}, \bigcirc}A.$$

Proof. Suppose that *A* is expressed by Lemma 4.1. Applying Theorem 4.3, we can check that

$$X = I - AA^{\Theta_m, \bigcirc} = U \begin{pmatrix} 0 & -T^{-m}T_m NN^{\dagger} \\ 0 & I \end{pmatrix} U^*$$

satisfies (22). In order to show the uniqueness of X, we assume that X_0 is another matrix which fulfils (22). Let $X_1 = UX_0U^*$ be bordered as

$$X_1 = \begin{pmatrix} D_1 & D_2 \\ D_3 & D_4 \end{pmatrix},$$

where D_1 is the $r \times r$ block. On the basis of $XA^k = 0$ and using the invertibility of T, we gather

$$\begin{pmatrix} D_1 & D_2 \\ D_3 & D_4 \end{pmatrix} \begin{pmatrix} T^k & T_k \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} D_1 T^k & D_1 T_k \\ D_3 T^k & D_3 T_k \end{pmatrix} = 0,$$

which implies $D_1 = 0$ and $D_3 = 0$. Since $X^2 = X$ and rank(X) = n - r, we can see

$$\begin{pmatrix} 0 & D_2 \\ 0 & D_4 \end{pmatrix} \begin{pmatrix} 0 & D_2 \\ 0 & D_4 \end{pmatrix} = \begin{pmatrix} 0 & D_2 D_4 \\ 0 & D_4^2 \end{pmatrix} = \begin{pmatrix} 0 & D_2 \\ 0 & D_4 \end{pmatrix},$$

which shows that $D_2D_4 = D_2$, $D_4^2 = D_4$ and rank $(D_4) = n - r$. Therefore, $D_4 = I$. In addition, from $(A^k)^*A^{m+1}A^{\dagger}X = 0$, i.e.,

$$\begin{pmatrix} \begin{pmatrix} T^k \end{pmatrix}^* & 0 \\ (T_k)^* & 0 \end{pmatrix} \begin{pmatrix} T^m & T_m \\ 0 & N^m \end{pmatrix} \begin{pmatrix} I & 0 \\ 0 & NN^\dagger \end{pmatrix} \begin{pmatrix} 0 & D_2 \\ 0 & I \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} T^k \end{pmatrix}^* & 0 \\ (T_k)^* & 0 \end{pmatrix} \begin{pmatrix} T^m & T_m NN^\dagger \\ 0 & N^m NN^\dagger \end{pmatrix} \begin{pmatrix} 0 & D_2 \\ 0 & I \end{pmatrix}$$

$$= \begin{pmatrix} \begin{pmatrix} T^k \end{pmatrix}^* & 0 \\ (T_k)^* & 0 \end{pmatrix} \begin{pmatrix} 0 & T^m D_2 + T_m NN^\dagger \\ 0 & N^m NN^\dagger \end{pmatrix} = \begin{pmatrix} 0 & \begin{pmatrix} T^k \end{pmatrix}^* \begin{pmatrix} T^m D_2 + T_m NN^\dagger \\ 0 & T_k \end{pmatrix}^* \begin{pmatrix} T^m D_2 + T_m NN^\dagger \\ 0 & T_k \end{pmatrix} = 0,$$

it can be concluded that $T^mD_2 + T_mNN^{\dagger} = 0$, that is $D_2 = -T^{-m}T_mNN^{\dagger}$. Hence, $X_0 = X$. Similarly, we can certify that (23) is satisfied for a unique $Y = I - A^{\bigotimes_m, \bigcirc}A$. The matrices $X = I - AA^{\bigotimes_m, \bigcirc}$ and $Y = I - A^{\bigotimes_m, \bigcirc}A$ satisfy

$$\operatorname{rank}\begin{pmatrix} A & I - X \\ I - Y & Z \end{pmatrix} = \operatorname{rank}\begin{pmatrix} A & AA^{\otimes_m, \bigcirc} \\ A^{\otimes_m, \bigcirc}A & Z \end{pmatrix}.$$

In view of Lemma 7.1 and (24), it can be deduced that $\operatorname{rank}(Z - A^{\bigotimes_{m}, \bigcirc} A A^{\bigotimes_{m}, \bigcirc}) = \operatorname{rank}(Z - A^{\bigotimes_{m}, \bigcirc}) = 0$, which implies $Z = A^{\bigotimes_{m}, \bigcirc}$. This finishes the proof. \square

Example 7.3. There is an example to illustrate the results of Theorem 7.2. Consider

$$A = \begin{pmatrix} 2 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

Then rank(A) = 4, k = Ind(A) = 4, $r = rank(A^4) = 1$. Let m = 2, then

The block matrix

satisfies rank(B) = rank(A) = 4. In addition, the matrices

$$X = I - AA^{\Theta_2, \bigcirc} = \begin{pmatrix} 0 & -\frac{1}{2} & -\frac{3}{4} & -\frac{1}{4} & 0\\ 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \ \text{rank}(X) = 4$$

and

$$Y = I - A^{\bigotimes_2, \bigcirc} A = \begin{pmatrix} \frac{1}{5} & -\frac{2}{5} & -\frac{3}{5} & -\frac{3}{10} & -\frac{1}{10} \\ -\frac{2}{5} & \frac{4}{5} & -\frac{3}{10} & -\frac{3}{20} & -\frac{1}{20} \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \text{ rank}(Y) = 4$$

satisfy (22) and (23), respectively.

8. Continuity of the *m*-MP weak core inverse

In this part, we give a necessary and sufficient condition for the continuity of the *m*-MP weak core inverse. In order to do this, we firstly recall the known results about the continuity of the Moore-Penrose inverse and the *m*-weak group inverse.

Lemma 8.1. Let A, $A_p \in \mathbb{C}_{n \times n}$ and m, $p \in \mathbb{Z}^+$ satisfy $A_p \to A$ as $p \to \infty$. Then (1) [25] $A_p^+ \to A^+$ as $p \to \infty$ if and only if there is $p_0 \in \mathbb{Z}^+$ such that $\operatorname{rank}(A_p) = \operatorname{rank}(A)$ for $p \ge p_0$; (2) [20] $A_p^{\otimes_m} \to A_p^{\otimes_m} \to A_p^{\otimes_m}$ as $p \to \infty$ if and only if there is $p_0 \in \mathbb{Z}^+$ such that $\operatorname{rank}(A_p^l) = \operatorname{rank}(A^l)$ for $p \ge p_0$ and $l = \max\{\operatorname{Ind}(A), \operatorname{Ind}(A_p), \operatorname{Ind}(A_{p+1}), \ldots\}$.

Theorem 8.2. Let A, $A_p \in \mathbb{C}_{n \times n}$ and m, $p \in \mathbb{Z}^+$ satisfy $A_p \to A$ as $p \to \infty$. Then $A_p^{\otimes_m \cap} \to A^{\otimes_m \cap}$ as $p \to \infty$ if and only if there is $p_0 \in \mathbb{Z}^+$ such that $\operatorname{rank}(A_p) = \operatorname{rank}(A)$ and $\operatorname{rank}(A_p^l) = \operatorname{rank}(A^l)$, for $p \ge p_0$ and $l = \max\{\operatorname{Ind}(A), \operatorname{Ind}(A_p), \operatorname{Ind}(A_{p+1}), \ldots\}$.

Proof. " \Leftarrow ": For $p \ge p_0 \in \mathbb{Z}^+$ and $l = \max\{\operatorname{Ind}(A), \operatorname{Ind}(A_p), \operatorname{Ind}(A_{p+1}), \ldots\}$, if

$$rank(A_p) = rank(A)$$
, $rank(A_p^l) = rank(A^l)$,

if follows from Lemma 8.1 that

$$A_n^{\dagger} \to A^{\dagger}, A_n^{\mathfrak{Q}_m} \to A^{\mathfrak{Q}_m}.$$

As a consequence,

$$A_p^{\mathfrak{S}_m, \mathfrak{O}} = A_p^{\dagger} A_p A_p^{\mathfrak{S}_m} A_p A_p^{\dagger} \to A^{\dagger} A A^{\mathfrak{S}_m} A A^{\dagger} = A^{\mathfrak{S}_m, \mathfrak{O}}.$$

"
$$\Rightarrow$$
": If $A_p^{\otimes_m, \bigcirc} \to A^{\otimes_m, \bigcirc}$ and $A_p \to A$, then

$$A_p A_p^{\Theta_m, \bigcirc} \to A A^{\Theta_m, \bigcirc} \text{ as } p \to \infty.$$

From [26], we realize the existence of $p_0 \in \mathbb{Z}^+$, which satisfies

$$\operatorname{rank}(A_p A_p^{\bigotimes_{m}, \bigcirc}) = \operatorname{rank}(A A^{\bigotimes_{m}, \bigcirc}) \text{ for } p \geqslant p_0.$$

For $p \ge p_0$ and $l = \max\{\operatorname{Ind}(A), \operatorname{Ind}(A_v), \operatorname{Ind}(A_{v+1}), \ldots\}$, we have

$$R(A_p A_p^{\Theta_m, \bigcirc}) = R(A_p^l), \operatorname{rank}(AA^{\Theta_m, \bigcirc}) = R(A^l).$$

Hence, for $p \ge p_0$, we can deduce that

$$\operatorname{rank}(A_p^{l+m+1}) = \operatorname{rank}(A_p^l) = \operatorname{rank}(A_p A_p^{\mathfrak{S}_m, \mathcal{O}}) = \operatorname{rank}(A A^{\mathfrak{S}_m, \mathcal{O}}) = \operatorname{rank}(A^l) = \operatorname{rank}(A^{l+m+1}),$$

which, together with Lemma 8.1, implies

$$(A_v^{l+m+1})^{\dagger} \to (A^{l+m+1})^{\dagger} \text{ as } p \to \infty.$$

To confirm rank(A_p) = rank(A), we assume that $A_p^{\dagger} \rightarrow A^{\dagger}$ firstly. Then, by

$$A_n^{l+1} \rightarrow A^{l+1}, \left(A_n^{l+m+1}\right)^{\dagger} \rightarrow \left(A^{l+m+1}\right)^{\dagger}, A_n^{m+1} \rightarrow A^{m+1}, A_n^{\dagger} \rightarrow A^{\dagger},$$

we can infer

$$A_p^{\bigotimes_{m},\bigcirc} = A_p^{\dagger} A_p^{l+1} \left(A_p^{l+m+1} \right)^{\dagger} A_p^{m+1} A_p^{\dagger} \not\rightarrow A^{\dagger} A^{l+1} \left(A^{l+m+1} \right)^{\dagger} A^{m+1} A^{\dagger} = A^{\bigotimes_{m},\bigcirc}.$$

This is contradictory to $A_p^{\bigotimes_{m}, \bigcirc} \to A^{\bigotimes_{m}, \bigcirc}$. Therefore, we insist that $A_p^{\dagger} \to A^{\dagger}$, i.e., $\operatorname{rank}(A_p) = \operatorname{rank}(A)$. This finishes the proof. \square

9. Applications

Theorem 9.1. Let $A \in \mathbb{C}_{n \times n}$ with $\operatorname{Ind}(A) = k$ and $m \in \mathbb{Z}^+$. Then the general solution of the following consistent matrix equation

$$(A^k)^* A^{m+1} X = (A^k)^* A^{m+1} A^{\dagger} B, \ B \in \mathbb{C}_{n \times n}$$
 (25)

is expressed as

$$X = A^{\bigotimes_{m} \cap \bigcirc} B + (I_n - A^{\bigotimes_{m} \cap \bigcirc} A) Y_n$$

where $Y \in \mathbb{C}_{n \times n}$ is arbitrary.

Proof. In Section 6, we have identified

$$(A^k)^* A^{m+1} A^{\otimes_m, \bigcirc} = (A^k)^* A^{m+1} A^{\dagger}.$$

This shows that

$$(A^k)^* A^{m+1} A^{\mathfrak{M}_m, \mathcal{O}} A = (A^k)^* A^{m+1}.$$

Put $X = A^{\bigotimes_{m} \cap B} + (I_n - A^{\bigotimes_{m} \cap A})Y$, where $Y \in \mathbb{C}_{n \times n}$. Then

$$(A^{k})^{*} A^{m+1} X = (A^{k})^{*} A^{m+1} (A^{\bigotimes_{m}, \bigcirc} B + (I_{n} - A^{\bigotimes_{m}, \bigcirc} A) Y)$$

$$= (A^{k})^{*} A^{m+1} A^{\bigotimes_{m}, \bigcirc} B + (A^{k})^{*} A^{m+1} Y - (A^{k})^{*} A^{m+1} A^{\bigotimes_{m}, \bigcirc} A Y$$

$$= (A^{k})^{*} A^{m+1} A^{\dagger} B.$$

Furthermore, by Theorem 5.1 of [9], i.e., $A^{\bigotimes_m} = \left(A^D\right)^{m+1} A^k \left(A^k\right)^{\dagger} A^m$, we deduce

$$A^{\bigotimes_{m},\bigcirc} = A^{\dagger} A \left(A^{D}\right)^{m+1} A^{k} \left(A^{k}\right)^{\dagger} A^{m+1} A^{\dagger}.$$

Thus,

$$A^{\bigotimes_{m}, \bigcirc} B = A^{\dagger} A \left(A^{D} \right)^{m+1} A^{k} \left(A^{k} \right)^{\dagger} A^{m+1} A^{\dagger} B$$

$$= A^{\dagger} A \left(A^{D} \right)^{m+1} A^{k} \left(A^{k} \right)^{\dagger} A^{k} \left(A^{k} \right)^{\dagger} A^{m+1} A^{\dagger} B$$

$$= A^{\dagger} A \left(A^{D} \right)^{m+1} A^{k} \left(A^{k} \right)^{\dagger} \left(\left(A^{k} \right)^{\dagger} \right)^{*} \left(A^{k} \right)^{*} A^{k} \left(A^{k} \right)^{\dagger} A^{m+1} A^{\dagger} B$$

$$= A^{\dagger} A \left(A^{D} \right)^{m+1} \left(\left(A^{k} \right)^{\dagger} \right)^{*} \left(A^{k} \right)^{*} A^{m+1} A^{\dagger} B$$

$$= A^{\dagger} A \left(A^{D} \right)^{m+1} \left(\left(A^{k} \right)^{\dagger} \right)^{*} \left(A^{k} \right)^{*} A^{m+1} X$$

$$= A^{\dagger} A \left(A^{D} \right)^{m+1} A^{k} \left(A^{k} \right)^{\dagger} A^{m+1} X$$

$$= A^{\dagger} A \left(A^{D} \right)^{m+1} A^{k} \left(A^{k} \right)^{\dagger} A^{m+1} A^{\dagger} A X$$

$$= A^{\bigotimes_{m}, \bigcirc} A X,$$

which implies

$$X = A^{\bigotimes_{m} \cap \bigcirc} B + X - A^{\bigotimes_{m} \cap \bigcirc} AX = A^{\bigotimes_{m} \cap \bigcirc} B + (I_n - A^{\bigotimes_{m} \cap \bigcirc} A)X.$$

Hence, X possess the pattern $X = A^{\bigoplus_{m} \cap B} + (I_n - A^{\bigoplus_{m} \cap A})Y$, where $Y \in \mathbb{C}_{n \times n}$ is arbitrary. \square

Theorem 9.2. If the solution X of (25) satisfies $R(X) \subseteq R(A^{\dagger}A^{k})$, then X is unique and $X = A^{\bigotimes_{m} \cap} B$.

Proof. It is obvious that $X = A^{\bigoplus_{m} \cap B}$ is a solution of (25) and

$$R(X) = R(A^{\bigotimes_{m} \cap \bigcirc} B) \subseteq R(A^{\bigotimes_{m} \cap \bigcirc}) = R(A^{\dagger} A^{k}).$$

For the uniqueness, we assume that X_1 and X_2 are two solutions of (25), and satisfy

$$R(X_1) \subseteq R(A^{\dagger}A^k), R(X_2) \subseteq R(A^{\dagger}A^k).$$

Using the facts

$$(A^k)^* A^{m+1}(X_1 - X_2) = 0$$
 and $R(X_1 - X_2) \subseteq R(A^{\dagger}A^k)$,

we confirm that

$$R(X_1 - X_2) \subseteq N\left(\left(A^k\right)^* A^{m+1}\right) \cap R(A^{\dagger} A^k) = N(A^{\textcircled{m}_m, \bigcirc} A) \cap R(A^{\textcircled{m}_m, \bigcirc} A) = \{0\}.$$

This implies $X_1 = X_2$. Hence, (25) has uniquely determined solution $X = A^{\bigotimes_m \cap} B$ in $R(A^{\dagger}A^k)$. \square

Theorem 9.3. Let $A \in \mathbb{C}_{n \times m}$ with $\operatorname{Ind}(A) = k$ and $m \in \mathbb{Z}^+$. Suppose $X \in \mathbb{C}_{n \times m}$ and $D \in \mathbb{C}_{n \times m}$. If $R(D) \subseteq R(A^k)$, then the restricted matrix equation

$$AX = D, R(X) \subseteq R(A^{\dagger}A^{k}) \tag{26}$$

has the unique solution $X = A^{\bigotimes_m, \bigcirc} D$.

Proof. Since $R(D) \subseteq R(A^k) = R(AA^{\bigotimes_{m}, \bigcirc})$, it follows that $AA^{\bigotimes_{m}, \bigcirc}D = D$, which implies $A^{\bigotimes_{m}, \bigcirc}D$ is a solution of AX = D. And it is obvious that

$$R(X) = R(A^{\bigotimes_{m}, \bigcirc} D) \subseteq R(A^{\bigotimes_{m}, \bigcirc}) = R(A^{\dagger} A^{k}).$$

So $A^{\bigotimes_{m}, \bigcirc}D$ is a solution of (26). To prove the uniqueness, we assume Y is another solution of (26). Then we have $R(Y) \subseteq R(A^{\dagger}A^k) = R(A^{\bigotimes_{m}, \bigcirc}A)$. This implies

$$X = A^{\bigotimes_m, \bigcirc} D = A^{\bigotimes_m, \bigcirc} A Y = Y$$

This completes the proof. \Box

Theorem 9.4. Let $A \in \mathbb{C}_{n \times n}$ with $\operatorname{Ind}(A) = k$ and $m \in \mathbb{Z}^+$. Let $B \in \mathbb{C}_{n \times r}$ and $C^* \in \mathbb{C}_{n \times r}$ be of null column rank such that $R(B) = N\left(\left(A^k\right)^*A^{m+1}A^+\right)$ and $N(C) = R(A^\dagger A^k)$. Then the bordered matrix

$$L = \begin{pmatrix} A & B \\ C & 0 \end{pmatrix}$$

is nonsingular and its inverse is given by

$$L^{-1} = \begin{pmatrix} A^{\bigotimes_{m}, \bigcirc} & (I_n - A^{\bigotimes_{m}, \bigcirc} A)C^{\dagger} \\ B^{\dagger}(I_n - AA^{\bigotimes_{m}, \bigcirc}) & B^{\dagger}(AA^{\bigotimes_{m}, \bigcirc} A - A)C^{\dagger} \end{pmatrix}.$$

Proof. From $R(A^{\otimes_m, \bigcirc}) = R(A^{\dagger}A^k) = N(C)$, we have $CA^{\otimes_m, \bigcirc} = 0$. And since

$$R(I_n - AA^{\mathfrak{M}_m, \mathcal{O}}) = N(AA^{\mathfrak{M}_m, \mathcal{O}}) = N\left(\left(A^k\right)^* A^{m+1} A^{\dagger}\right) = R(B) = R(BB^{\dagger}),$$

it follows that $BB^{\dagger}(I_n - AA^{\bigotimes_{m} \bigcirc}) = I_n - AA^{\bigotimes_{m} \bigcirc}$.

$$T = \begin{pmatrix} A^{\bigotimes_m, \bigcirc} & (I_n - A^{\bigotimes_m, \bigcirc} A)C^{\dagger} \\ B^{\dagger}(I_n - AA^{\bigotimes_m, \bigcirc}) & B^{\dagger}(AA^{\bigotimes_m, \bigcirc} A - A)C^{\dagger} \end{pmatrix},$$

then

$$LT = \begin{pmatrix} AA^{\bigotimes_{m}, \bigcirc} + BB^{\dagger}(I_{n} - AA^{\bigotimes_{m}, \bigcirc}) & A(I_{n} - A^{\bigotimes_{m}, \bigcirc}A)C^{\dagger} + BB^{\dagger}(AA^{\bigotimes_{m}, \bigcirc}A - A)C^{\dagger} \\ CA^{\bigotimes_{m}, \bigcirc} & C(I_{n} - A^{\bigotimes_{m}, \bigcirc}A)C^{\dagger} \end{pmatrix}$$

$$= \begin{pmatrix} AA^{\bigotimes_{m}, \bigcirc} + I_{n} - AA^{\bigotimes_{m}, \bigcirc} & A(I_{n} - A^{\bigotimes_{m}, \bigcirc}A)C^{\dagger} - (I_{n} - AA^{\bigotimes_{m}, \bigcirc})AC^{\dagger} \\ 0 & CC^{\dagger} \end{pmatrix}$$

$$= \begin{pmatrix} I_{n} & 0 \\ 0 & I_{r} \end{pmatrix}$$

Hence $T = L^{-1}$. \square

Theorem 9.5. Let $A \in \mathbb{C}_{n \times n}$ with $\operatorname{Ind}(A) = k$, $m \in \mathbb{Z}^+$, $B \in \mathbb{C}_{n \times r}$ and $C^* \in \mathbb{C}_{n \times r}$ be as in Theorem 9.4. Let $X \in \mathbb{C}_{n \times m}$ and $D \in \mathbb{C}_{n \times m}$ be as in Theorem 9.3. Then the unique solution of (26) is given by $X = [x_{ij}]$, where

$$x_{ij} = \frac{\det \begin{pmatrix} A(i \to d_j) & B \\ C(i \to 0) & 0 \end{pmatrix}}{\det \begin{pmatrix} A & B \\ C & 0 \end{pmatrix}}, i = 1, 2, \dots, n, j = 1, 2, \dots, m,$$

$$(27)$$

 d_j denotes the j-th column of D and $A(i \to d_j)$ and $C(i \to 0)$ mean to substitute the i-th column of A and C by d_j and 0, respectively.

Proof. Since *X* is the solution of (26), we get that $R(X) \subseteq R(A^{\dagger}A^{k}) = N(C)$, which implies CX = 0. Then (26) can be written as

$$\begin{pmatrix} A & B \\ C & 0 \end{pmatrix} \begin{pmatrix} X & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} AX & 0 \\ CX & 0 \end{pmatrix} = \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix}.$$

According to Theorem 9.4, we have that

$$\begin{pmatrix} X & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} A & B \\ C & 0 \end{pmatrix}^{-1} \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix}
= \begin{pmatrix} A^{\bigotimes_{m}, \bigcirc} & (I_{n} - A^{\bigotimes_{m}, \bigcirc} A)C^{\dagger} \\ B^{\dagger}(I_{n} - AA^{\bigotimes_{m}, \bigcirc}) & B^{\dagger}(AA^{\bigotimes_{m}, \bigcirc} A - A)C^{\dagger} \end{pmatrix} \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix}.$$

Hence $X = A^{\bigotimes_{m} \cap D}$ and (27) follows from the classical Cramer rule. \square

10. Conclusions

In this paper, we present many basic properties for the *m*-MP weak core inverse. Representations including full-rank decomposition, limit and integral expressions of the *m*-MP weak core inverse are discussed. Applying the core-EP decomposition and the Hartwig-Spindelböck decomposition, we deduce two canonical forms of the *m*-MP weak core inverse. A variant of the successive matrix squaring iterative method, appropriate for generating the *m*-MP weak core inverse is developed. The relationship between the *m*-MP weak core inverse and certain bordered matrices is explored. And the continuity and applications of the *m*-MP weak core inverse are studied.

We are confident that more explorations of the m-MP weak core inverse will draw greater attention and interest, and we describe perspectives for further research.

- 1. Further properties, characterizations and representations of the *m*-MP weak core inverse.
- 2. We can further generalize the *m*-MP weak core inverse to the linear operator in Hilbert or in Banach space or to the tensor case.

Disclosure statement

No potential conflict of interest was reported by the authors.

Acknowledgements

The authors would like to thank the editor and the anonymous reviewers for their valuable comments, which have significantly improved the paper.

References

- [1] Benitez J, Boasso E, Jin H. On one-sided (B, C)-inverses of arbitrary matrices[J]. Electron. J. Linear Algebra, 2017, Vol.32: 391-422.
- [2] Deng C Y, Du H K. Representations of the Moore-Penrose inverse of 2×2 block operator valued matrices[J]. J. Korean Math. Soc, 2009, 46(6): 1139-1150.
- [3] Drazin M P. Pseudo-inverses in associative rings and semigroups[J]. Am. Math. Mon., 1958, 65(7): 506-514.
- [4] Ferreyra D E, Levis F E, Thome N. Revisiting the core EP inverse and its extension to rectangular matrices[J]. *Quaest. Math.*, 2018, 41(2): 265-281.
- [5] Gao J, Zuo K, Wang Q. A m-weak group inverse for rectangular matrices[J]. arXiv preprint arXiv:2312.10704, 2023.
- [6] Groetsch C W. Generalized inverses of linear operators: representation and approximation. In *Monogr. Textbooks Pure Appl. Math.*, Vol. 37. New York, Basel: Marcel Dekker, Inc., 1977.
- [7] Hartwig R E, Spindelböck K. Matrices for which A* and A[†] commute[J]. Linear Multilinear Algebra, 1983, 14(3): 241-256.
- [8] Jiang W, Gao J, Zhang X, Zuo S. m-weak group MP inverse[J]. arXiv preprint arXiv: 2411.00022, 2024.
- [9] Jiang W, Zuo K. Further characterizations of the *m*-weak group inverse of a complex matrix[J]. *AIMS Math.*, 2022, 7(9): 17369-17392.
- [10] Kamaraj K, Sivakumar K C. Moore-Penrose inverse in an indefinite inner product space[J]. J. Appl. Math. Comput., 2005, 19(1): 297-310.
- [11] Kheirandish E, Salemi A, Thome N. Properties of core-EP matrices and binary relationships[J]. Comput. Appl. Math., 2024, 43(6): 316.
- [12] Liu X, Liao M, Jin H. Characterizations and applications of MP weak core inverse (in Chinese)[J]. *Acta Math. Sci.*, 2022,42(06): 1619-1632.
- [13] Malik S B, Thome N. On a new generalized inverse for matrices of an arbitrary index[J]. Appl. Math. Comput., 2014, 226: 575-580.
- [14] Manjunatha Prasad K, Mohana K S. Core-EP inverse[J]. Linear Multilinear Algebra, 2014, 62(6): 792-802.
- [15] Mehdipour M, Salemi A. On a new generalized inverse of matrices[J]. Linear Multilinear Algebra, 2018,66(5):1046-1053.
- [16] Mosić D. Weak CMP inverses[J]. Aequ. Math., 2025: 1-20.
- [17] Mosić D, Stanimirović P S, Katsikis V N. Properties of the CMP inverse and its computation[J]. Comput. Appl. Math., 2022, 41(4):131.
- [18] Mosić D, Stanimirović P S, Kazakovtsev L A. The *m*-weak group inverse for rectangular matrices[J]. *Electron. Res. Arch.*, 2024, Vol.32(3): 1822-1843.
- [19] Mosić D, Stanimirović PS, Kazakovtsev LA. Minimization problem solvable by weighted *m*-weak group inverse[J]. *J. Appl. Math. Comput.*, 2024, 70(6): 6259-6281.
- [20] Mosić D, Zhang D. New representations and properties of the m-weak group inverse[J]. Result. Math., 2023, 78(3): 97.
- [21] Penrose R. A generalized inverse for matrices[C]. Mathematical proceedings of the Cambridge philosophical society. *Cambridge University Press*, 1955, 51(3): 406-413.
- [22] Rakić D.S. A note on Rao and Mitra's constrained inverse and Drazin's (b, c) inverse[J]. Linear Algebra Its Appl., 2017, 523: 102-108.
- [23] Stanimirović P.S. Limit representations of generalized inverses and related methods. Appl. Math. Comput., 1999, 103(1): 51-68.
- [24] Stanimirović P S, Cvetković-Ilić D S. Successive matrix squaring algorithm for computing outer inverses[J]. *Appl. Math. Comput.*, 2008, 203(1): 19-29.
- [25] Stewart G W. On the continuity of the generalized inverse[J]. SIAM J. Appl. Math., 1969, 17(1): 33-45.
- [26] Wang G, Wei Y, Qiao S, Lin P, Chen Y. Generalized inverses: theory and computations[M]. Springer, Singapore, 2018.
- [27] Wang H. Core-EP decomposition and its applications[J]. Linear Algebra Its Appl., 2016, 508: 289-300.
- [28] Wang H, Chen J. Weak group inverse[J]. Open Math., 2018, 16(1): 1218-1232.
- [29] Wang H, Liu X. The weak group matrix[J]. Aequ. Math., 2019, 93(6): 1261-1273.
- [30] Xu S, Chen J, Mosić D. New characterizations of the CMP inverse of matrices[J]. Linear Multilinear Algebra, 2020, 68(4): 790-804.
- [31] Yuan Y, Zuo K. Compute $\lim_{\lambda \to 0} x(\lambda I_p + YAX)^{-1}Y$ by the product singular value decomposition. *Linear Multilinear Algebra*, 2016, Vol.64(2): 269-278.