

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Strongly EP elements which are characterized by projections, a-commutative and w-core inverses in a ring with involution

Suting Fana,*, Junchao Weia

^aSchool of Mathematical Science, Yangzhou University, Yangzhou 225002, China

Abstract. In this paper, we characterize strongly EP elements in a ring with involution by various methods. Especially, we construct projections with parameter variables in a specific set to characterize strongly EP elements. Then we introduce the concept of a-commutativity and w-core inverse to study the characterization of strongly EP elements.

1. Introduction

Let R be an associative ring with an identity. A mapping $*: R \longrightarrow R$ is called an involution if * is an anti-automorphism of order 2; that is, for any $a,b \in R$,

$$(a^*)^* = a$$
, $(a + b)^* = a^* + b^*$, $(ab)^* = a^*b^*$.

In this case, *R* is said to be a *-ring or an involution ring.

An element a is said to be Moore–Penrose invertible element if there exists $a^{\dagger} \in R$ such that

$$aa^{\dagger}a = a$$
, $a^{\dagger}aa^{\dagger} = a^{\dagger}$, $(aa^{\dagger})^* = aa^{\dagger}$, $(a^{\dagger}a)^* = a^{\dagger}a$.

Such an element a^{\dagger} is uniquely determined if it exists, and is called the Moore–Penrose inverse (or MP–inverse) of a (see [6, 10, 14]). The set of all Moore–Penrose invertible elements of R will be denoted by R^{\dagger} .

An element $a \in R$ is called group invertible element, if there is $a^{\#} \in R$ such taht

$$aa^{\#}a = a$$
, $a^{\#}aa^{\#} = a^{\#}$, $aa^{\#} = a^{\#}a$.

 $a^{\#}$ is called the group inverse of a and it is uniquely determined by the above equations [1]. We write $R^{\#}$ to denote the set of all group invertible elements of R.

2020 Mathematics Subject Classification. Primary 16W10, Secondary 15A09

Keywords. EP element, strongly EP element, projection, a-commutative, w-core inverse

Received: 20 March 2025; Revised: 30 August 2025; Accepted: 01 September 2025

Communicated by Dijana Mosić

Research supported by the National Natural Science Foundation of China (112712810).

* Corresponding author: Suting Fan

Email addresses: 2486563353@qq.com (Suting Fan), jcweiyz@126.com (Junchao Wei)

ORCID iDs: https://orcid.org/0009-0003-6731-9219 (Suting Fan), https://orcid.org/0000-0002-7310-1836 (Junchao Wei)

 $a \in R$ is called a partial isometry, if $aa^*a = a$. We write R^{PI} to denote the set of all partial isometries of R. It is known that $a \in R^+$ is partial isometry if and only if $a^+ = a^*$ (see [7]).

 $a \in R^{\#} \cap R^{+}$ is called *EP* if $a^{\#} = a^{+}$ (see [9]). We denote the set of all *EP* elements of *R* by R^{EP} .

 $a \in R^{\#} \cap R^{\dagger}$ is called strongly EP if $a^{\#} = a^{\dagger} = a^{*}$. We denote the set of all strongly EP elements of R by R^{SEP} . Evidently, $a \in R^{SEP}$ if and only if $a \in R^{EP}$ and $a \in R^{PI}$.

The study of generalized inverses in a ring with involution is an important ingredient in the ring theory. Many researchers have done a lots of results in this area. For instances, Mosić et al. presented a number of meaningful characterizations of *EP* elements and partial isometries in [5–7, 10]. In recent years, Wei et al. provided many new characterizations of strongly *EP* elements. For example, in [3], Zhao and Wei gave some sufficient and necessary conditions for an element to be a strongly *EP* element through some transformations of equations. In addition, Guan and Wei characterized strongly *EP* elements by using the solution of the generalized inverse equation in a specific set in [13]. More interesting results on generalized inverses in rings with involution can also be found in [2, 4, 8, 11, 16, 17].

Inspired by these results, this paper mainly study some new ways to characterize strongly EP elements. The paper is organized as follows: in Section 2, based on [15, Corollary 2.3], we construct projections with parameter variables and give some equivalent conditions for an element $a \in R^{\#} \cap R^{\dagger}$ to be a strongly EP element. In Section 3, we introduce the concept of a-commutativity and characterize strongly EP elements by constructing a-commutative elements. In Section 4, we study the w-core inverses and use it to investigate strongly EP elements.

2. Construct Projections with parameter variables to characterize Strongly EP elements

Let R be a *-ring. An element $a \in R$ is called projection, if $a^2 = a = a^*$. We write PE(R) to denote the set of all projections of R. In [15], it is shown that $a \in PE(R)$ if and only if $a = aa^*$ or $a = a^*a$. We begin with the following lemma which follows from [15, Corollary 2.3].

Lemma 2.1. Let $a \in R^{\#} \cap R^{\dagger}$. Then $a \in R^{SEP}$ if and only if $aa^*a^{\#}aa^{\dagger} = a^{\dagger}aa^{\#}$.

Inspired by Lemma 2.1, we have the following corollary.

Theorem 2.2. Let $a \in R^{\#} \cap R^{\dagger}$. Then $a \in R^{SEP}$ if and only if $aa^*a^{\#}a \in PE(R)$.

Proof. " \Longrightarrow " Assume that $a \in R^{SEP}$. Then $aa^*a^\#aa^\dagger = a^\dagger aa^\#$ by Lemma 2.1, it follows that $aa^*a^\#a = (aa^*a^\#aa^\dagger)a = (a^\dagger aa^\#)a = a^\dagger a \in PE(R)$.

" \Leftarrow " From the assumption, we have

$$aa^*a^{\#}a = (aa^*a^{\#}a)^*$$

this gives

$$aa^*a^\#a = aa^\dagger(aa^*a^\#a) = aa^\dagger(aa^*a^\#a)^* = (aa^*a^\#aaa^\dagger)^* = (aa^*)^* = aa^*,$$

so

$$a^* = a^{\dagger} a a^* = a^{\dagger} a a^* a^{\sharp} a = a^* a^{\sharp} a.$$

Hence, $a \in R^{EP}$ by [7, Theorem 1.2.1], which implies

$$aa^* = aa^*a^\#a \in PE(R).$$

Thus, $aa^* = (aa^*)^2$, which induces

$$a = aa^*(a^{\dagger})^* = (aa^*)^2(a^{\dagger})^* = aa^*a.$$

Thus, $a \in R^{SEP}$. \square

Obversing Theorem 2.2, we can give the following result.

Theorem 2.3. Let $a \in R^{\#} \cap R^{\dagger}$. Then $a \in R^{SEP}$ if and only if $xa^*ax^{\#} \in PE(R)$ for some $x \in \chi_a = \{a, a^{\#}, a^{\dagger}, a^{*}, (a^{\dagger})^*, (a^{\#})^*\}$.

Proof. " \Longrightarrow " It follows from Theorem 2.2 that $x = a \in \chi_a$ is a solution. " \Longleftarrow " If there exists $x_0 \in \chi_a$ such that $x_0 a^* a x_0^\# \in PE(R)$, then

$$x_0 a^* a x_0^\# = x_0 a^* a x_0^\# (x_0 a^* a x_0^\#)^* = x_0 a^* a x_0^\# (x_0^\#)^* a^* a x_0^*.$$

Then we can discuss the following cases.

(1) If $x_0 \in \tau_a = \{a, a^{\#}, (a^{\dagger})^*\}$, then $x_0^{\dagger}x_0 = a^{\dagger}a$, $x_0^*aa^{\dagger} = x_0^*$ and $x_0a^{\#}ax_0^{\#} = aa^{\#}$ by [13, Lemma 4.1]. It follows that

$$\begin{split} a^*ax_0^\# &= a^\dagger aa^*ax_0^\# = x_0^\dagger x_0 a^*ax_0^\# = x_0^\dagger x_0 a^*ax_0^\#(x_0^\#)^*a^*ax_0^* \\ &= a^\dagger aa^*ax_0^\#(x_0^\#)^*a^*ax_0^* = a^*ax_0^\#(x_0^\#)^*a^*ax_0^* \end{split}$$

and

$$ax_0^{\#} = (a^{\dagger})^* a^* a x_0^{\#} = (a^{\dagger})^* a^* a x_0^{\#} (x_0^{\#})^* a^* a x_0^{*} = a x_0^{\#} (x_0^{\#})^* a^* a x_0^{*}.$$

So

$$aa^{\#} = x_0 a^{\#} a x_0^{\#} = x_0 a^{\#} a x_0^{\#} (x_0^{\#})^* a^* a x_0^* = aa^{\#} (x_0^{\#})^* a^* a x_0^*$$
$$= (aa^{\#} (x_0^{\#})^* a^* a x_0^*) aa^{\dagger} = aa^{\#} aa^{\dagger} = aa^{\dagger}.$$

Hence, $a \in R^{EP}$.

(a) If $x_0 = a$, then

$$aa^{\#} = aa^{\#}(a^{\#})^*a^*aa^* = aa^*$$
.

so $a \in R^{SEP}$ by [7, Theorem 1.5.3].

(b) If $x_0 = a^{\#}$, then

$$aa^{\#} = aa^{\#}a^{*}a^{*}a(a^{\#})^{*} = a^{*}a^{*}a(a^{\#})^{*}$$

and

$$a^* = aa^{\dagger}a^* = a^*a^*a(a^{\dagger})^*a^* = a^*a^*a.$$

Aplying the involution on the last equality, one has $a = a^2 a^*$. Thus, $a \in R^{SEP}$ by [7, Theorem 1.5.3].

(c) If $x_0 = (a^{\dagger})^*$, then

$$aa^{\#} = aa^{\#}(a^{\dagger})^{\#}a^{*}aa^{\dagger} = aa^{\#}aa^{*} = aa^{*}.$$

So $a \in R^{SEP}$.

(2) If $x_0 \in \gamma_a = \{a^{\dagger}, a^*, (a^{\#})^*\}$, then $x_0^{\#}x_0 = (aa^{\#})^*$, $x_0^*a^{\dagger}a = x_0^*$ and $x_0a^{\dagger}ax_0^{\#} = (aa^{\#})^*$ by [13, Lemma 4.1], this leads to

$$a^* a x_0^{\#} = (aa^{\#})^* a^* a x_0^{\#} = x_0^{\#} x_0 a^* a x_0^{\#}$$
$$= x_0^{\#} x_0 a^* a x_0^{\#} (x_0^{\#})^* a^* a x_0^{*} = a^* a x_0^{\#} (x_0^{\#})^* a^* a x_0^{*}$$

and

$$ax_0^{\#} = (a^{\dagger})^* a^* a x_0^{\#} = (a^{\dagger})^* a^* a x_0^{\#} (x_0^{\#})^* a^* a x_0^* = a x_0^{\#} (x_0^{\#})^* a^* a x_0^*.$$

This induces

$$(aa^{\#})^{*} = x_{0}a^{\dagger}ax_{0}^{\#} = x_{0}a^{\dagger}ax_{0}^{\#}(x_{0}^{\#})^{*}a^{*}ax_{0}^{*} = (aa^{\#})^{*}(x_{0}^{\#})^{*}a^{*}ax_{0}^{*}$$
$$= ((aa^{\#})^{*}(x_{0}^{\#})^{*}a^{*}ax_{0}^{*})a^{\dagger}a = (aa^{\#})^{*}a^{\dagger}a = a^{\dagger}a.$$

Hence, $a \in R^{EP}$ by [7, Theorem 1.1.3], it follows that if $x_0 = a^{\dagger} = a^{\#}$ or $x_0 = (a^{\#})^* = (a^{\dagger})^*$, then $a \in R^{SEP}$ by (1). If $x_0 = a^*$, then

$$aa^{\#} = (aa^{\#})^{*} = (aa^{\#})^{*}((a^{*})^{\#})^{*}a^{*}a(a^{*})^{*} = aa^{\#}a^{\#}a^{*}a^{2} = a^{\#}a^{*}a^{2}$$

and

$$a = a^2 a^\# = a a^\# a^* a^2 = a^* a^2.$$

Thus, $a \in R^{SEP}$ by [7, Theorem 1.5.3].

Therefore, in any case, we have $a \in R^{SEP}$. \square

Corollary 2.4. Let $a \in R^{\#} \cap R^{\dagger}$. Then $a \in R^{SEP}$ if and only if $xa^*x^{\#}a \in PE(R)$ for some $x \in \tau_a$.

Proof. " \Longrightarrow " Assume that $a \in R^{SEP}$, then $aa^*a^\#a \in PE(R)$ by Theorem 2.2. Hence, $x = a \in \tau_a$ is a solution. " \Longleftarrow " Noting that $x^\#a = ax^\#$ for x = a or $x = a^\#$. In this case, $a \in R^{SEP}$ by Theorem 2.3.

Now take $x = (a^{\dagger})^*$, then $(a^{\dagger})^*a^*((a^{\dagger})^*)^{\sharp}a \in PE(R)$. Since $(a^{\dagger})^{\sharp} = (aa^{\sharp})^*a(aa^{\sharp})^*$ by [13, Lemma 2.2], it follows that

$$(a^{\dagger})^*a^*((a^{\dagger})^*)^{\#}a = (aa^{\dagger})^*((aa^{\#})^*a(aa^{\#})^*)^*a = aa^{\dagger}aa^{\#}a^*aa^{\#}a = aa^{\#}a^*a.$$

So $aa^{\dagger}a^{*}a \in PE(R)$, this induces

$$aa^{\dagger}a^{*}a = (aa^{\dagger}a^{*}a)^{*}aa^{\dagger}a^{*}a$$

and

$$aa^{\#} = aa^{\#}a^{\dagger}a = aa^{\#}a^{*}aa^{\dagger}(a^{\dagger})^{*} = (aa^{\#}a^{*}a)^{*}aa^{\#}a^{*}aa^{\dagger}(a^{\dagger})^{*}$$

= $(aa^{\#}a^{*}a)^{*}aa^{\#} = a^{*}a(aa^{\#})^{*}aa^{\#}.$

It follows that

$$aa^{\dagger} = aa^{\sharp}aa^{\dagger} = a^*a(aa^{\sharp})^*aa^{\sharp}aa^{\dagger} = a^*a(aa^{\sharp})^* = a^{\dagger}a(a^*a(aa^{\sharp})^*) = a^{\dagger}a^2a^{\dagger}.$$

Hence, $a \in R^{EP}$, which leads to $aa^{\dagger} = a^*a(aa^{\#})^*aa^{\#} = a^*a$. Thus, $a \in R^{SEP}$. \square

Theorem 2.5. Let $a \in R^{\#} \cap R^{\dagger}$. Then $a \in R^{SEP}$ if and only if $xx^*aa^{\#} \in PE(R)$ for some $x \in \tau_a$.

Proof. " \Longrightarrow " Since $a \in R^{SEP}$, we have $aa^*aa^\# \in PE(R)$ by Theorem 2.2. Taking $x = a \in \tau_a$, we are done. " \longleftarrow " (1) If x = a, then $aa^*aa^\# \in PE(R)$. This induces $a \in R^{SEP}$ by Theorem 2.2. (2) If $x = a^\#$, then $a^\#(a^\#)^*aa^\# \in PE(R)$, this gives

$$a^{\#}(a^{\#})^*aa^{\#} = (a^{\#}(a^{\#})^*aa^{\#})^*a^{\#}(a^{\#})^*aa^{\#}.$$

Multiplying the equality on the right by $aa^{\dagger}a^{*}a^{\dagger}a$, one gets

$$a^{\#} = (aa^{\#})^* a^{\#} (a^{\#})^* a^{\#} = a^{\dagger} a ((aa^{\#})^* a^{\#} (a^{\#})^* a^{\#}) = a^{\dagger} a a^{\#}.$$

Hence, $a \in R^{EP}$ by [6, Theorem 2.1], which induces

$$a^{\#} = (aa^{\#})^*a^{\#}(a^{\#})^*a^{\#} = aa^{\#}a^{\#}(a^{\#})^*a^{\#} = a^{\#}(a^{\#})^*a^{\#} = a^{\#}(a^{\#})^*a^{\#}$$

and

$$a = aa^{\dagger}a = aa^{\dagger}(a^{\dagger})^*a^{\dagger}a = (a^{\dagger})^*.$$

Thus, $a \in R^{SEP}$.

(3) If
$$x = (a^{\dagger})^*$$
, then $(a^{\dagger})^*((a^{\dagger})^*)^*aa^{\#} \in PE(R)$, i.e., $(a^{\dagger})^*a^{\#} \in PE(R)$. This gives

$$(a^{\dagger})^* a^{\#} = (a^{\dagger})^* a^{\#} ((a^{\dagger})^* a^{\#})^* = (a^{\dagger})^* a^{\#} (a^{\#})^* a^{\dagger}.$$

$$a = a^2 a^{\#} = a^2 a^* (a^{\dagger})^* a^{\#} = a^2 a^* (a^{\dagger})^* a^{\#} (a^{\#})^* a^{\dagger} = a(a^{\#})^* a^{\dagger}$$

and

$$a^{\dagger}a = a^{\dagger}a(a^{\#})^*a^{\dagger} = (a^{\#})^*a^{\dagger} = ((a^{\#})^*a^{\dagger})aa^{\dagger} = a^{\dagger}a^2a^{\dagger}.$$

Hence, $a \in R^{EP}$ and $a^* = a^*a^{\dagger}a = a^*(a^{\sharp})^*a^{\dagger} = a^{\dagger}$. Thus, $a \in R^{SEP}$.

Theorem 2.6. Let $a \in R^{\#} \cap R^{\dagger}$. Then $a \in R^{SEP}$ if and only if $ax^*xa^{\#} \in PE(R)$ for some $x \in \chi_a$.

Proof. " \Longrightarrow " Assume that $a \in R^{SEP}$, then $aa^*aa^\# \in PE(R)$ by Theorem 2.2, that is choosing $x = a \in \chi_a$, as desired.

" \leftarrow " From the assumption, there exists $x_0 \in \chi_a$ such that

$$ax_0^*x_0a^\# = (ax_0^*x_0a^\#)^* = (a^\#)^*x_0^*x_0a^* = ((a^\#)^*x_0^*x_0a^*)aa^\dagger = ax_0^*x_0a^\#aa^\dagger.$$

Then we can discuss the following cases.

(1) If $x_0 \in \tau_a$, then we have

$$a^{\dagger}ax_{0}^{*}=x_{0}^{*},\;(x_{0}^{\dagger})^{*}x_{0}^{*}=aa^{\dagger},\;x_{0}^{\#}x_{0}=aa^{\#},\;aa^{\dagger}x_{0}=x_{0}.$$

It follows that

$$x_0^* x_0 a^\# = a^\dagger a x_0^* x_0 a^\# = a^\dagger a x_0^* x_0 a^\# a a^\dagger = x_0^* x_0 a^\# a a^\dagger,$$

$$x_0 a^\# = a a^\dagger x_0 a^\# = (x_0^\dagger)^* x_0^* x_0 a^\# = (x_0^\dagger)^* x_0^* x_0 a^\# a a^\dagger = a a^\dagger x_0 a^\# a a^\dagger = x_0 a^\# a a^\dagger,$$

and

$$a^{\#} = aa^{\#}a^{\#} = x_0^{\#}x_0a^{\#} = x_0^{\#}x_0a^{\#}aa^{\dagger} = aa^{\#}a^{\#}aa^{\dagger} = a^{\#}aa^{\dagger}.$$

Hence, $a \in R^{EP}$ by [7, Theorem 1.2].

- (a) If $x_0 = a$, then $aa^*aa^\# \in PE(R)$. By Theorem 2.2, $a \in R^{SEP}$.
- (b) If $x_0 = a^{\#}$, then $a(a^{\#})^* a^{\#} a^{\#} \in PE(R)$, one gets

$$a(a^{\#})^*a^{\#}a^{\#} = a(a^{\#})^*a^{\#}a^{\#}(a(a^{\#})^*a^{\#}a^{\#})^*.$$

Multiplying the equality on the left by $a^3a^*a^{\dagger}$, one has

$$a = a(a(a^{\#})^*a^{\#}a^{\#})^* = a^2(a^{\#})^*a^{\#}a^{\#}$$

and

$$a^{\#} = a^{\#}a^{\#}a = a^{\#}a^{\#}a^{2}(a^{\#})^{*}a^{\#}a^{\#} = (a^{\#})^{*}a^{\#}a^{\#}.$$

This induces

$$a = a^{\dagger}a^{2} = (a^{\dagger})^{*}a^{\dagger}a^{\dagger}a^{2} = (a^{\dagger})^{*}.$$

Hence, $a \in R^{SEP}$.

- (c) If $x_0 = (a^{\dagger})^*$, then $a((a^{\dagger})^*)^*(a^{\dagger})^*a^{\#} \in PE(R)$, that is $(a^{\dagger})^*a^{\#} \in PE(R)$. Hence, $a \in R^{SEP}$ by Theorem 2.5 (3). (2) If $x_0 \in \gamma_a$, then, similar to (1), we obtain $a \in R^{EP}$. It follows that $a \in R^{SEP}$ for $x_0 = a^{\dagger} = a^{\#}$ or $x_0 = (a^{\#})^* = (a^{\dag})^*$ by (b) and (c).

If $x_0 = a^*$, then $a^2 a^* a^\# \in PE(R)$, this infers

$$a^2a^*a^\# = a^2a^*a^\#(a^2a^*a^\#)^*.$$

Multiplying the equality on the left by $a^2(a^{\dagger})^*a^{\dagger}a^{\dagger}$, one has

$$a = a(a^2a^*a^*)^* = a(a^*)^*aa^*a^*.$$

It follows that

$$(a^{\dagger})^* = a^{\dagger} a (a^{\dagger})^* = a^{\dagger} a (a^{\sharp})^* a a^* a^* (a^{\dagger})^* = (a^{\dagger})^* a a^*.$$

So $a^{\dagger} = aa^*a^{\dagger}$. By [7, Theorem 1.5.3], $a \in R^{SEP}$.

3. Using a-commutative elements to characterize Strongly EP elements

Let a, x, $y \in R$. Then x, y are called a-commutative if ax = ya.

Evidently, $a \in E(R)$ (the set of all idempotents of R) if and only if a, 1 are a–commutative if and only if a, 2a – 1 are a–commutative.

Inspired by Lemma 2.1, we have the following theorem.

Theorem 3.1. Let $a \in R^{\#} \cap R^{\dagger}$. Then $a \in R^{SEP}$ if and only if $aa^{\#}$, $(aa^{\#})^*aa^*$ are a^{\dagger} –commutative.

Proof. " \Longrightarrow " Since $a \in R^{SEP}$, one gets $aa^*a^\#a \in PE(R)$ by Theorem 2.2 and $aa^*a^\#aa^\dagger = a^\dagger aa^\#$ by Lemma 2.1. It follows that

$$a^{\dagger}aa^{\#} = aa^*a^{\#}aa^{\dagger} = (aa^*a^{\#}a)^*a^{\dagger} = (aa^{\#})^*aa^*a^{\dagger}.$$

Hence, aa^{\dagger} , $(aa^{\dagger})^*aa^*$ are a^{\dagger} -commutative.

 $" \Leftarrow "$ From the assumption, we have

$$a^{\dagger}aa^{\#} = (aa^{\#})^*aa^*a^{\dagger} = ((aa^{\#})^*aa^*a^{\dagger})aa^{\dagger} = a^{\dagger}aa^{\#}aa^{\dagger} = a^{\dagger}.$$

Hence, $a \in R^{EP}$ by [7, Theorem 1.2.1], which implies

$$(aa^{\#})^*aa^* = aa^{\#}aa^* = aa^* = (aa^*)^* = ((aa^{\#})^*aa^*)^* = aa^*aa^{\#},$$

and so

$$aa^*aa^{\dagger}a^{\dagger} = (aa^{\dagger})^*aa^*a^{\dagger} = a^{\dagger}aa^{\dagger}.$$

Thus, $a \in R^{SEP}$ by Lemma 2.1. \square

Lemma 3.2. Let $a, x, y \in R$. If x, y are a-commutative, then x^k, y^k are a-commutative for all $k \in \mathbb{Z}^+$.

Proof. It can be varified by induction on k. \square

Since $(aa^{\#})^k = aa^{\#}$, Theorem 3.1 and Lemma 3.2 imply the following theorem.

Theorem 3.3. Let $a \in R^{\#} \cap R^{\dagger}$. Then $a \in R^{SEP}$ if and only if $aa^{\#}$, $((aa^{\#})^*aa^*)^k$ are a^{\dagger} -commutative for k = 2, 3.

Proof. " \Longrightarrow " It is an immediate result of Theorem 3.1 and Lemma 3.2.

" \Leftarrow " Assume that aa^{\dagger} , $((aa^{\dagger})^*aa^*)^k$ are a^{\dagger} —commutative for k=2,3, we have

$$a^{\dagger}(aa^{\sharp})^{2} = ((aa^{\sharp})^{*}aa^{*})^{2}a^{\dagger}$$

and

$$a^{\dagger}(aa^{\sharp})^{3} = ((aa^{\sharp})^{*}aa^{*})^{3}a^{\dagger},$$

that is

$$a^{\dagger}aa^{\#} = (aa^{\#})^*(aa^*)^2a^{\dagger}$$

and

$$a^{\dagger}aa^{\#} = (aa^{\#})^*(aa^*)^3a^{\dagger},$$

it follows that

$$(aa^{\dagger})^*(aa^*)^2a^{\dagger} = (aa^{\dagger})^*(aa^*)^3a^{\dagger}.$$

Multiplying the last equality on the left by $a^{\dagger}(a^{\dagger})^*a^{\dagger}$, one gets

$$a^*a^{\dagger} = a^*aa^*a^{\dagger}.$$

Multiplying the equality on the right by $a(aa^{\dagger})^*$, one obtains

$$a^* = a^*aa^*$$
.

Hence, $a \in R^{PI}$, it follows that $a^{\dagger} = a^*$. This yields

$$a^{\dagger}aa^{\#} = (aa^{\#})^{*}(aa^{*})^{2}a^{\dagger} = (aa^{\#})^{*}aa^{\dagger}a^{\dagger} = a^{\dagger}.$$

So
$$a \in R^{SEP}$$
. \square

Lemma 3.4. Let $a, x, y \in R$. If x, y are a-commutative, then x + ya, y + ay are a-commutative.

Proof. Since x, y are a-commutative, one has

$$a(x + ya) = ax + aya = ya + aya = (y + ay)a$$

and hence, x + ya, y + ay are a-commutative. \square

Inspired by Theorem 3.1 and Lemma 3.4, we have the following theorem.

Theorem 3.5. Let $a \in R^{\#} \cap R^{\dagger}$. Then $a \in R^{SEP}$ if and only if $aa^{\#} + (aa^{\#})^*aa^*a^{\dagger}$, $(aa^{\#})^*aa^* + a^*$ are a^{\dagger} —commutative.

Proof. " \Longrightarrow " Since $a \in R^{SEP}$, $aa^{\#}$, $(aa^{\#})^*aa^*$ are a^{\dagger} —commutative by Theorem 3.1. Then we have $aa^{\#}$ + $(aa^{\#})^*aa^*a^{\dagger}$, $(aa^{\#})^*aa^*$ + $a^{\dagger}(aa^{\#})^*aa^*$ are a^{\dagger} —commutative by Lemma 3.4, that is $aa^{\#}$ + $(aa^{\#})^*aa^*a^{\dagger}$, $(aa^{\#})^*aa^*$ + a^* are a^{\dagger} —commutative.

" From the hypothesis, one gets $a^{\dagger}(aa^{\sharp} + (aa^{\sharp})^*aa^*a^{\dagger}) = ((aa^{\sharp})^*aa^* + a^*)a^{\dagger}$, that is

$$a^{\dagger}aa^{\#} = (aa^{\#})^*aa^*a^{\dagger}.$$

Hence, $aa^{\#}$, $(aa^{\#})^*aa^*$ are a^{\dagger} —commutative, which induces $a \in R^{SEP}$ by Theorem 3.1. \square

Lemma 3.6. Let $a, x, y \in R$ and x, y are a-commutative. If $x, y \in R^{\#}$, then $x^{\#}$, $y^{\#}$ are a-commutative.

Proof. From the assumption, we have ax = ya. Then

$$ax^{\#} = axx^{\#}x^{\#} = yax^{\#}x^{\#} = y^{\#}y^{2}ax^{\#}x^{\#}.$$

By Lemma 3.2, one gets $y^2a = ax^2$, it implies

$$ax^{\#} = v^{\#}ax^{2}x^{\#}x^{\#} = v^{\#}axx^{\#}.$$

$$y^{\#}a = y^{\#}y^{\#}ya = y^{\#}y^{\#}ax = y^{\#}y^{\#}ax^{2}x^{\#} = y^{\#}y^{\#}yaxx^{\#} = y^{\#}axx^{\#}.$$

Hence, $ax^{\#} = y^{\#}a$, that is $x^{\#}$, $y^{\#}$ are a-commutative. \square

Noting that $(aa^{\#})^{\#} = aa^{\#}$, $((aa^{\#})^*aa^*)^{\#} = (a^{\#})^*a^{\dagger}$. Then Theorem 3.1 and Lemma 3.6 imply the following

Theorem 3.7. Let $a \in R^{\#} \cap R^{\dagger}$. Then $a \in R^{SEP}$ if and only if $aa^{\#}$, $(a^{\#})^*a^{\dagger}$ are a^{\dagger} –commutative.

Theorem 3.8. Let $a \in R^{\#} \cap R^{\dagger}$. Then $a \in R^{SEP}$ if and only if aa^{\dagger} , $aa^*a^{\#}a$ are x-commutative for some $x \in \chi_a$.

Proof. " \Longrightarrow " Since $a \in R^{SEP}$, one gets $aaa^{\dagger} = a$, $aa^*a^{\sharp}aa = aa^*a = a$. Hence, $aaa^{\dagger} = aa^*a^{\sharp}aa$, that is aa^{\dagger} , $aa^*a^{\sharp}a$ are a-commutative. Thus, $x = a \in \chi_a$ is a solution.

" \Leftarrow " If there exists $x_0 \in \chi_a$ such that aa^{\dagger} , $aa^*a^{\sharp}a$ are x_0 -commutative, then

$$x_0 a a^{\dagger} = a a^* a^{\dagger} a x_0.$$

(1) If $x_0 \in \tau_a$, then $x_0 a^{\dagger} a = x_0$ and $x_0^{\sharp} x_0 = a a^{\sharp}$, it follows that

$$x_0 a a^{\dagger} a^{\dagger} a = a a^* a^{\sharp} a x_0 a^{\dagger} a = a a^* a^{\sharp} a x_0 = x_0 a a^{\dagger}$$

and

$$aa^{\dagger}a^{\dagger}a = aa^{\sharp}aa^{\dagger}a^{\dagger}a = x_0^{\sharp}x_0aa^{\dagger}a^{\dagger}a = x_0^{\sharp}x_0aa^{\dagger} = aa^{\sharp}aa^{\dagger} = aa^{\dagger}.$$

Hence, $a \in R^{EP}$. If follows that

$$aa^{\#} = aa^{\#}aa^{\dagger} = x_0^{\#}x_0aa^{\dagger} = x_0^{\#}aa^*a^{\#}ax_0 = x_0^{\#}aa^*x_0.$$

- (a) If $x_0 = a$, then $aa^\# = a^\# aa^* a = a^* a$. So $a \in R^{SEP}$ by [7, Theorem 1.5.3].
- (b) If $x_0 = a^{\#}$, then $aa^{\#} = a^2 a^* a^{\#}$, this infers

$$a = aa^{\dagger}a = a^{2}a^{*}a^{\dagger}a = a^{2}a^{*}.$$

Hence, $a \in R^{SEP}$ by [7, Theorem 1.5.3].

- (c) If $x_0 = (a^{\dagger})^* = (a^{\#})^*$, then $aa^{\#} = a^*aa^*(a^{\#})^* = a^*a$. So $a \in R^{SEP}$.
- (2) If $x_0 \in \gamma_a$, then $x_0 a a^{\dagger} = x_0$ and $x_0 x_0^{\dagger} = a^{\dagger} a$, one obtains

$$a^{\dagger}a = x_0 x_0^{\dagger} = x_0 a a^{\dagger} x_0^{\dagger} = a a^* a^{\sharp} a x_0 x_0^{\dagger} = a a^* a^{\sharp} a a^{\dagger} a = a a^* a^{\sharp} a.$$

Hence, $aa^*a^\#a \in PE(R)$. By Theorme 2.2, $a \in R^{SEP}$. \square

4. Using w-core inverse to characterize strongly EP elements

Let *R* be a *-ring and $a, w \in R$. If there exists $x \in R$ such that

$$x = awx^2$$
, $a = xawa$, $(awx)^* = awx$,

then a is called w-core invertible and x is called the w-core inverse of a [12]. Denote by $a_w^{\oplus} = x$.

Particularly, if a is a 1–core invertible element, then a is called core invertible and x is called the core inverse of a and denote it by a^{\oplus} . Using the w–core invertibility, the following theorem gives a new characterization of SEP elements.

Theorem 4.1. Let $a \in R^{\#} \cap R^{\dagger}$. Then $a \in R^{SEP}$ if and only if $a_{a^*}^{\#} = aa^{\#}$.

Proof. " \Longrightarrow " Since $a \in R^{SEP}$, one has $aa^*aa^{\dagger}a^{\dagger} = a^{\dagger}aa^{\dagger}$ by Lemma 2.1, which implies

$$aa^*aa^\# = aa^*aa^\#a^\dagger a = a^\dagger aa^\#a = a^\dagger a = aa^\dagger.$$

Hence,

$$(aa^*aa^*)^* = aa^*aa^*,$$

 $aa^*(aa^*)^2 = aa^*aa^* = aa^*,$

and

$$(aa^{\#})aa^{*}a = aa^{*}a = a.$$

Thus, $a_{a^*}^{\#} = aa^{\#}$.

" $\stackrel{"}{\longleftarrow}$ " From the assumption, one gets

$$aa^*aa^\# = (aa^*aa^\#)^*,$$

$$aa^{\#} = aa^{*}(aa^{\#})^{2} = aa^{*}aa^{\#}.$$

Hence, $aa^*aa^\# \in PE(R)$ and, by Theorem 2.2, $a \in R^{SEP}$. \square

Lemma 4.2. Let $a \in R^{\dagger}$. Then $a_{a^*}^{\oplus} = (a^{\dagger})^* a^{\dagger}$.

Proof. By the definition of *w*–core inverse, we can easily check

$$aa^*(a^{\dagger})^*a^{\dagger} = aa^{\dagger}aa^{\dagger} = aa^{\dagger} = (aa^*(a^{\dagger})^*a^{\dagger})^*,$$

 $aa^*((a^{\dagger})^*a^{\dagger})^2 = aa^{\dagger}(a^{\dagger})^*a^{\dagger} = (a^{\dagger})^*a^{\dagger},$

and

$$(a^{\dagger})^* a^{\dagger} a a^* a = (a^{\dagger})^* a^* a = a.$$

So
$$a_{a^*}^{\oplus} = (a^{\dagger})^* a^{\dagger}$$
. \square

By Theorem 4.1 and Lemma 4.2, we have the following corollary.

Corollary 4.3. Let $a \in R^{\#} \cap R^{\dagger}$. Then $a \in R^{SEP}$ if and only if $aa^{\#} = (a^{\dagger})^*a^{\dagger}$.

Lemma 4.4. Let $a \in R^{\#} \cap R^{\dagger}$. Then $a_{a^*a^{\#}}^{\#} = a(a^{\dagger})^*a^{\dagger}$.

Proof. According to the definition of *w*–core inverse, we can verify directly

$$aa^*a^\#a(a^\dagger)^*a^\dagger = aa^*(a^\dagger)^*a^\dagger = aa^\dagger = (aa^*a^\#a(a^\dagger)^*a^\dagger)^*,$$

 $aa^*a^\#(a(a^\dagger)^*a^\dagger)^2 = aa^\dagger a(a^\dagger)^*a^\dagger = a(a^\dagger)^*a^\dagger,$

and

$$(a(a^{\dagger})^*a^{\dagger})aa^*a^{\sharp}a = a(a^{\dagger})^*a^*a^{\sharp}a = aa^{\sharp}a = a.$$

Hence, $a_{a^*a^\#}^{\#} = a(a^{\dagger})^*a^{\dagger}$. \square

Combining Corollary 4.3 and Lemma 4.4, we can easily get the following corollary.

Corollary 4.5. Let $a \in R^{\#} \cap R^{\dagger}$. Then $a \in R^{SEP}$ if and only if $a_{\sigma^{*}\sigma^{\#}}^{\oplus} = a$.

Proof. " \Longrightarrow " Since $a \in R^{SEP}$, we have $aa^\# = (a^\dagger)^*a^\dagger$ by Corollary 4.3. Hence, $a^\#_{a^*a^\#} = a((a^\dagger)^*a^\dagger) = a(aa^\#) = a$. " \Longleftrightarrow " Assume that $a^\#_{a^*a^\#} = a$, then we have $a(a^\dagger)^*a^\dagger = a$ by Lemma 4.4. This infers

$$a = a^{\dagger}a^{2} = a^{\dagger}(a(a^{\dagger})^{*}a^{\dagger})a = (a^{\dagger})^{*}.$$

Hence, $a \in R^{PI}$, this implies $a^{\dagger} = a^*$. Now we have $a = a(a^{\dagger})^*a^{\dagger} = a^2a^{\dagger}$. Thus, $a \in R^{SEP}$. \square

Lemma 4.6. Let $a \in R^{\#} \cap R^{\dagger}$. Then $(aa^*)_{a^{\#}}^{\oplus} = a(a^{\dagger})^*a^{\dagger}$.

Proof. Similar to the proof of Lemma 4.4, we can easily verify the result. \Box

Corollary 4.5 and Lemma 4.6 lead to the following theorem.

Theorem 4.7. Let $a \in R^{\#} \cap R^{\dagger}$. Then the following statments are equivalent:

- (1) $a \in R^{SEP}$;
- (2) $(aa^*)_{a^\#}^{\oplus} = a;$
- (3) $(a^{\dagger}a)_{a^{\#}}^{a^{\#}} = a(a^{\dagger})^*a^{\dagger};$
- (4) $a^{\dagger}a^2 = a(a^{\dagger})^*a^{\dagger}$.

Proof. (1) \Longrightarrow (2) Since $a \in R^{SEP}$, by Lemma 4.6 we have

$$(aa^*)_{a^\#}^{\oplus} = a(a^{\dagger})^*a^{\dagger} = aaa^\# = a.$$

(2) \Longrightarrow (3) Assume that $(aa^*)_{a^\#}^{\oplus} = a$, then $a(a^{\dagger})^*a^{\dagger} = a$ by Lemma 4.6. Hence, $a \in R^{SEP}$ by Corollary 4.5, which infers $a^{\dagger}a = aa^*$. By Lemma 4.6, we have

$$(a^{\dagger}a)_{a^{\#}}^{\oplus} = (aa^{*})_{a^{\#}}^{\oplus} = a(a^{\dagger})^{*}a^{\dagger}.$$

- (3) \Longrightarrow (4) Noting that $(a^{\dagger}a)_{a^{\#}}^{\oplus} = a^{\dagger}a^{2}$, then we have $a^{\dagger}a^{2} = a(a^{\dagger})^{*}a^{\dagger}$ by (3).
- (4) \Longrightarrow (1) Assume that $a^{\dagger}a^{2} = a(a^{\dagger})^{*}a^{\dagger}$, this leads to

$$a = a^{\dagger}a^{2} = a^{\dagger}(a^{\dagger}a^{2})a = a^{\dagger}a(a^{\dagger})^{*}a^{\dagger}a = (a^{\dagger})^{*}.$$

Thus, $a \in R^{PI}$, which infers $a^{\dagger}a^2 = a(a^{\dagger})^*a^{\dagger} = a^2a^{\dagger}$. Then

$$aa^{\dagger} = a^{\sharp}a^{2}a^{\dagger} = a^{\sharp}a^{\dagger}a^{2} = a^{\sharp}a.$$

Hence, $a \in R^{SEP}$. \square

Lemma 4.4 and Lemma 4.6 induces us to give the following result, which proof is trivial.

Proposition 4.8. Let R be a *-ring and a, w, b, $x \in R$. Then $a_{wh}^{\oplus} = x$ if and only if $(aw)_h^{\oplus} = x$ and aR = awR.

References

- [1] A. Ben-Israel and T. N. E. Greville, Generalized Inverses, Theory and Applications, 2nd ed., CMS Books Math./Ouvrages Math. SMC15, Springer, NewYork, 2003.
- [2] A. Q. Li, M. G. Guan and J. C. Wei, SEP elements and solutions of related equations in a ring with involution, Filomat. 37(24)(2023), 8213-8228.
- [3] D. D. Zhao and J. C. Wei, Strongly EP elements in rings with involution, J. Algebra Appl. 21(5)(2022), Article ID 2250088.
- [4] D. Mosić and D. S. Djordjević, Moore-Penrose-invertible normal and Hermitian elements in rings, Linear Algebra Appl. 431(5-7)(2009), 732-745.
- [5] D. Mosić and D. S. Djordjević, Further results on partial isometries and *EP* elements in rings with involution, Math. Comput. Modelling 54(1-2)(2011), 460-465.
- [6] D. Mosić, D. S. Djordjević and J. J. Koliha, EP elements in rings, Linear Algebra Appl. 431(5-7)(2009), 527-535.
- [7] D. Mosić, Generalized inverses, Faculty of Sciences and Mathematics, University of Niš, Niš, 2018.
- [8] D. Mosić, S. Z. Xu and J. Benítez, Further results of special elements in rings with involution, Filomat. 34(10)(2020), 3381-3393.
- [9] G. Szep, Simultaneous triangularization of projector matrices, Acta Math. Hungar. 48(3-4)(1986), 285-288.
- [10] J. J. Koliha, D. Cvetković and D. S. Djordjević, Moore-Penrose inverse in rings with involution, Linear Algebra Appl. 426(2-3)(2007), 371-381.
- [11] J. J. Koliha, The Drazin and Moore-Penrose inverse in C*-algebras, Math. Proc. R. Ir. Acad. 99A(1)(1999), 17-27.
- [12] L. Y. Wu, H. H. Zhu, Weighted w-core inverses in rings, Czecho. Math. J. 73 (2023) 581-602.
- [13] M. G. Guan and J. C. Wei, Generalized inverse equations and SEP elements in a ring with involution, Georgian Math. J. 31(1)(2024) 25-33.
- [14] R. Harte and M. Mbekhta, On generalized inverses in C*-algebras, Studia Math. 103(1)(1992), 71-77.
- [15] Y. C. Qu, S. T. Fan and J. C. Wei, Projections, one-sided idempotents and SEP elements in a ring with involution, Georgian Math. J. 2025.
- [16] Y. K. Zhou and J. L. Chen, Generalized inverses and units in a unitary ring, Acta Math. Sin. (Engl. Ser.) 40(4)(2024), 1000-1014.
- [17] Y. Wang, X. R. Wang and J. C. Wei, W-core inverses in a ring with involution, Filomat. 38(27)(2024), 9507-9517.