

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On atom bond sum connectivity index of chemical unicyclic graphs with a perfect matching

Jianwei Dua,*, Xiaoling Suna, Yinzhen Meia

^a School of Mathematics, North University of China, Taiyuan 030051, China

Abstract. The atom bond sum connectivity (*ABS*) index of a graph $\Gamma = (V(\Gamma), E(\Gamma))$ is formulated by $ABS(\Gamma) = \sum_{xy \in E(\Gamma)} \sqrt{\frac{d_{\Gamma}(x) + d_{\Gamma}(y) - 2}{d_{\Gamma}(x) + d_{\Gamma}(y)}}$, where $d_{\Gamma}(x)$ denotes the degree of vertex x in Γ. In this work, we determine the maximum value of atom bond sum connectivity index of chemical unicyclic graphs with a perfect matching and identify the corresponding extremal graphs. Our discoveries extend the results of the recent paper [Wang et al., MATCH Commun. Math. Comput. Chem. 92 (2024) 653-669] from chemical trees with a perfect matching to chemical unicyclic graphs with a perfect matching.

1. Introduction

In this paper, we are only concerned with simple, undirected and connected graphs. For such a graph Γ , the vertex and edge sets of Γ are denoted by $V(\Gamma)$ and $E(\Gamma)$, respectively. Let $N_{\Gamma}(x) = \{y \in V(\Gamma) : xy \in E(\Gamma)\}$ and $d_{\Gamma}(x) = |N_{\Gamma}(x)|$. Generally, a pendent vertex is a vertex with degree 1, and a pendent edge is an edge incident to a pendent vertex. Let $\Gamma - uv$ and $\Gamma + uv$ be the graphs obtained from Γ by deleting the edge $uv \in E(\Gamma)$ and by connecting two vertices $u, v \in V(\Gamma)$ ($uv \notin E(\Gamma)$), respectively. We use $\Gamma - v$ to denote the subgraph of Γ obtained by deleting the vertex $v \in V(\Gamma)$ and the edges incident with v. Recall that a chemical graph is a graph Γ with $d_{\Gamma}(x) \leq 4$ for all $x \in V(\Gamma)$. A unicyclic graph is a graph with exactly one cycle.

A set of pairwise nonadjacent edges of a graph Γ is called a matching in Γ . A perfect matching is defined as a set of edges that cover every vertex of the graph. Let $C\Gamma_{2m}$ be the set of 2m-vertex chemical unicyclic graphs with perfect matchings. For undefined notations and terminologies, one can see [8, 16, 17].

In the realm of mathematical chemistry and chemoinformatics, topological indices have emerged as indispensable tools for characterizing molecular structures and predicting physicochemical, biological, or pharmacological properties of compounds [11, 12]. The atom-bond sum connectivity (*ABS*) index, a recently

²⁰²⁰ Mathematics Subject Classification. Primary 05C07; Secondary 92E10.

Keywords. atom bond sum connectivity index, chemical unicyclic graph, perfect matching.

Received: 10 May 2025; Revised: 26 August 2025; Accepted: 03 September 2025

Communicated by Paola Bonacini

Research supported by the Natural Science Foundation of Shanxi Province of China (No. 202303021211154) and the Shanxi Scholarship Council of China (No. 2022-149).

^{*} Corresponding author: Jianwei Du

Email addresses: jianweidu@nuc.edu.cn (Jianwei Du), sunxiaoling@nuc.edu.cn (Xiaoling Sun), myzmath@nuc.edu.cn (Yinzhen Mei)

ORCID iDs: https://orcid.org/0000-0002-9415-6852 (Jianwei Du), https://orcid.org/0000-0001-9215-2340 (Xiaoling Sun), https://orcid.org/0000-0001-8289-9053 (Yinzhen Mei)

proposed topological descriptor by Ali et al. [6], has attracted great attention and has been widely studied. For a graph Γ , *ABS* index is defined as

$$ABS(\Gamma) = \sum_{xy \in E(\Gamma)} \sqrt{\frac{d_{\Gamma}(x) + d_{\Gamma}(y) - 2}{d_{\Gamma}(x) + d_{\Gamma}(y)}} = \sum_{xy \in E(\Gamma)} \sqrt{1 - \frac{2}{d_{\Gamma}(x) + d_{\Gamma}(y)}}.$$

Ali et al. [5] showed that the *ABS* index has good predictive potential for some physico-chemical properties. For recent mathematical investigations on the *ABS* index, we refer the readers to [1–4, 7, 9, 10, 13–15, 18, 19] and the references therein. Motivated by these works, in this paper, we aim to determine the maximum *ABS* index of chemical unicyclic graphs with a perfect matching.

The paper is structured as follows: Section 2 gives useful lemmas which will be used in the proof of our main results. Section 3 shows the process of characterizing chemical unicyclic graphs with a perfect matching achieving the maximum *ABS* index. Our discoveries extend the results of the recent paper [18] from chemical trees with a perfect matching to chemical unicyclic graphs with a perfect matching.

2. Preliminaries

Let $A(a,b) = \sqrt{\frac{a+b-2}{a+b}}$, where $a,b \ge 1$ are positive integers and $a+b \ge 3$. Clearly, A(a,b) is strictly increasing with respect to a or b. Next, we provide two lemmas which are specifically used in our main results.

Lemma 2.1. [18] Let $f(x) = A(x,\alpha) - A(x,\alpha-1) = \sqrt{\frac{x+\alpha-2}{x+\alpha}} - \sqrt{\frac{x+\alpha-3}{x+\alpha-1}}$, where $\alpha \ge 2$ and $x \ge 1$. Then f(x) is decreasing with respect to x.

Lemma 2.2. Let $\Gamma \in C\Gamma_{2m}$ $(m \ge 4)$ and M be a perfect matching of Γ . If Γ has the maximum ABS index and $uv \in M$, then uv must be a pendent edge of Γ .

Proof. On the contrary, we assume that uv is a non-pendent edge. Therefore, $2 \le d_{\Gamma}(u), d_{\Gamma}(v) \le 4$. Let C be the unique cycle of Γ . Next, we consider the following six cases.

Case 1. $d_{\Gamma}(u) = 2$ and $d_{\Gamma}(v) = 2$.

Denote $N_{\Gamma}(u) \setminus \{v\} = \{u_1\}$ and $N_{\Gamma}(v) \setminus \{u\} = \{v_1\}$.

Case 1.1. $u \notin V(C)$.

Case 1.1.1. *u* is the vertex that is situated closer to *C* than *v*.

Notice that $d_{\Gamma}(v_1) \geq 2$ since $uv \in M$. Let $\Gamma_1 = U - vv_1 + uv_1$. Then $\Gamma_1 \in C\Gamma_{2m}$ and one has

$$ABS(\Gamma_1) - ABS(\Gamma)$$

$$= A(3, d_{\Gamma}(u_1)) + A(3, d_{\Gamma}(v_1)) + A(3, 1) - A(2, d_{\Gamma}(u_1)) - A(2, d_{\Gamma}(v_1)) - A(2, 2)$$

$$= (A(3, d_{\Gamma}(u_1)) - A(2, d_{\Gamma}(u_1))) + (A(3, d_{\Gamma}(v_1)) - A(2, d_{\Gamma}(v_1))) + A(3, 1) - A(2, 2)$$

$$> A(3, 1) - A(2, 2)$$

$$= 0.$$

Thus $ABS(\Gamma_1) > ABS(\Gamma)$, which contradicts the assumption that Γ has the maximum ABS index.

Case 1.1.2. v is the vertex that is situated closer to C than u.

Note that $v \notin V(C)$ otherwise $d_{\Gamma}(v) \geq 3$. Let $\Gamma_2 = U - uu_1 + vu_1$. Then $\Gamma_2 \in C\Gamma_{2m}$ and we derive

$$ABS(\Gamma_2) - ABS(\Gamma)$$
= $A(3, d_{\Gamma}(u_1)) + A(3, d_{\Gamma}(v_1)) + A(3, 1) - A(2, d_{\Gamma}(u_1)) - A(2, d_{\Gamma}(v_1)) - A(2, 2)$
>0.

Hence $ABS(\Gamma_2) > ABS(\Gamma)$, a contradiction.

Case 1.2. $u \in V(C)$.

```
Now, v \in V(C), otherwise d_{\Gamma}(u) \geq 3. So u_1, v_1 \in V(C).
Case 1.2.1. u_1 \neq v_1.
Let \Gamma_3 = U - vv_1 + uv_1. Then \Gamma_3 \in C\Gamma_{2m} and we derive ABS(\Gamma_3) - ABS(\Gamma) = A(3, d_{\Gamma}(u_1)) + A(3, d_{\Gamma}(v_1)) + A(3, 1) - A(2, d_{\Gamma}(u_1)) - A(2, d_{\Gamma}(v_1)) - A(2, 2) > 0.
```

Therefore, $ABS(\Gamma_3) > ABS(\Gamma)$, which is a contradiction.

Case 1.2.2. $u_1 = v_1$.

Observe that $C = uvu_1u$ is the only cycle of Γ . Since $uv \in M$ and $m \ge 4$, there exist a neighbor u_1' of u_1 other than u and v such that $u_1u_1' \in M$ and $d_{\Gamma}(u_1') \ge 2$, or there exist a pendent neighbor and a non-pendent neighbor u_1' of u_1 other than u and v such that $d_{\Gamma}(u_1') \ge 2$. Suppose P is a maximal path from u_1 to x and containing u_1u_1' . It is obvious that $d_{\Gamma}(x) = 1$, and we denote $N_{\Gamma}(x) = \{y\}$. Then $d_{\Gamma}(y) = 2$ since Γ has a perfect matching. Denote $N_{\Gamma}(y) \setminus \{x\} = \{y_1\}$. Let $\Gamma_4 = U - uu_1 + yu_1$. Then $\Gamma_4 \in C\Gamma_{2m}$ and it can be concluded that

$$\begin{split} &ABS(\Gamma_4) - ABS(\Gamma) \\ = &A(3,d_{\Gamma}(u_1)) + A(3,d_{\Gamma}(y_1)) + A(3,1) + A(2,1) \\ &- A(2,d_{\Gamma}(u_1)) - A(2,d_{\Gamma}(y_1)) - A(2,2) - A(2,1) \\ > &A(3,1) + A(2,1) - A(2,2) - A(2,1) \\ = &0. \end{split}$$

So $ABS(\Gamma_4) > ABS(\Gamma)$, a contradiction.

Case 2. $d_{\Gamma}(u) = 2$ and $d_{\Gamma}(v) = 3$.

Denote $N_{\Gamma}(u) \setminus \{v\} = \{u_1\}$ and $N_{\Gamma}(v) \setminus \{u\} = \{v_1, v_2\}$.

Case 2.1. $u \notin V(C)$.

Case 2.1.1. *u* is the vertex that is situated nearer to *C* than *v*.

Let $\Gamma_5 = U - \{vv_1, vv_2\} + \{uv_1, uv_2\}$. Then $\Gamma_5 \in C\Gamma_{2m}$ and it follows that

$$\begin{split} &ABS(\Gamma_5) - ABS(\Gamma) \\ = &A(4,d_{\Gamma}(u_1)) + A(4,d_{\Gamma}(v_1)) + A(4,d_{\Gamma}(v_2)) + A(4,1) \\ &- A(2,d_{\Gamma}(u_1)) - A(3,d_{\Gamma}(v_1)) - A(3,d_{\Gamma}(v_2)) - A(2,3) \\ > &A(4,1) - A(2,3) \\ = &0. \end{split}$$

As a result, $ABS(\Gamma_5) > ABS(\Gamma)$, which contradicts the fact that Γ has the maximum ABS index.

Case 2.1.2. v is the vertex that is situated nearer to C than u.

We have $d_{\Gamma}(u_1) \ge 2$ since $uv \in M$. Let $\Gamma_6 = U - uu_1 + vu_1$. Then $\Gamma_6 \in C\Gamma_{2m}$ and it can be concluded that

$$ABS(\Gamma_6) - ABS(\Gamma)$$

$$= A(4, d_{\Gamma}(u_1)) + A(4, d_{\Gamma}(v_1)) + A(4, d_{\Gamma}(v_2)) + A(4, 1)$$

$$- A(2, d_{\Gamma}(u_1)) - A(3, d_{\Gamma}(v_1)) - A(3, d_{\Gamma}(v_2)) - A(2, 3)$$

$$> A(4, 1) - A(2, 3)$$

$$= 0.$$

Thus $ABS(\Gamma_6) > ABS(\Gamma)$, a contradiction.

Case 2.2. $u \in V(C)$.

Since $v \in V(C)$, we suppose that $v_1 \in V(C)$ and $v_2 \notin V(C)$. So $d_{\Gamma}(v_2) \ge 2$.

Case 2.2.1. $u_1 \neq v_1$.

Let $\Gamma_7 = U - uu_1 + vu_1$. Then $\Gamma_7 \in C\Gamma_{2m}$ and we derive

$$ABS(\Gamma_7) - ABS(\Gamma)$$

$$= A(4, d_{\Gamma}(u_1)) + A(4, d_{\Gamma}(v_1)) + A(4, d_{\Gamma}(v_2)) + A(4, 1)$$

$$- A(2, d_{\Gamma}(u_1)) - A(3, d_{\Gamma}(v_1)) - A(3, d_{\Gamma}(v_2)) - A(2, 3)$$

$$> A(4, 1) - A(2, 3)$$

$$= 0.$$

So $ABS(\Gamma_7) > ABS(\Gamma)$, which is a contradiction.

Case 2.2.2. $u_1 = v_1$.

Note that $C = uvu_1u$ is the only cycle of Γ . Suppose P is a maximal path from v to x and containing vv_2 . So $d_{\Gamma}(x) = 1$ and we denote $N_{\Gamma}(x) = \{y\}$. Then $d_{\Gamma}(y) = 2$ since Γ has a perfect matching. Denote $N_{\Gamma}(y) \setminus \{x\} = \{y_1\}$. Let $\Gamma_8 = U - uu_1 + yu_1$. Then $\Gamma_8 \in C\Gamma_{2m}$ and one has

$$ABS(\Gamma_8) - ABS(\Gamma)$$

$$= A(3, d_{\Gamma}(y_1)) + A(3, d_{\Gamma}(u_1)) + A(3, 1) + A(3, 1)$$

$$- A(2, d_{\Gamma}(y_1)) - A(2, d_{\Gamma}(u_1)) - A(3, 2) - A(2, 1)$$

$$> A(3, 1) + A(3, 1) - A(3, 2) - A(2, 1)$$

$$= \sqrt{2} - \sqrt{\frac{3}{5}} - \sqrt{\frac{1}{3}}$$

$$\approx 0.0623 > 0$$

Therefore, $ABS(\Gamma_8) > ABS(\Gamma)$, a contradiction.

Case 3. $d_{\Gamma}(u) = 2$ and $d_{\Gamma}(v) = 4$.

Denote $N_{\Gamma}(u) \setminus \{v\} = \{u_1\}$ and $N_{\Gamma}(v) \setminus \{u\} = \{v_1, v_2, v_3\}$.

Case 3.1. $u \notin V(C)$.

Case 3.1.1. *u* is the vertex that is situated closer to *C* than *v*.

Since $uv \in M$, then $d_{\Gamma}(u_1), d_{\Gamma}(v_1), d_{\Gamma}(v_2), d_{\Gamma}(v_3) \ge 2$. Suppose P is a maximal path from v to x and containing vv_2 . It is clear that $d_{\Gamma}(x) = 1$, and we denote $N_{\Gamma}(x) = \{y\}$. Then $d_{\Gamma}(y) = 2$ since Γ has a perfect matching. Denote $N_{\Gamma}(y) \setminus \{x\} = \{y_1\}$. Let $\Gamma_9 = U - \{uu_1, vv_3\} + \{u_1v, yv_3\}$. Then $\Gamma_9 \in C\Gamma_{2m}$ and by Lemma 2.1, we have

$$\begin{split} &ABS(\Gamma_9) - ABS(\Gamma) \\ = &A(4,d_\Gamma(u_1)) + A(3,d_\Gamma(y_1)) + A(3,d_\Gamma(v_3)) + A(4,1) + A(3,1) \\ &- A(2,d_\Gamma(u_1)) - A(2,d_\Gamma(y_1)) - A(4,d_\Gamma(v_3)) - A(2,4) - A(2,1) \\ > &A(3,d_\Gamma(v_3)) - A(4,d_\Gamma(v_3)) + A(4,1) + A(3,1) - A(2,4) - A(2,1) \\ \ge &A(3,2) - A(4,2) + A(4,1) + A(3,1) - A(2,4) - A(2,1) \\ = &2\sqrt{\frac{3}{5}} + \sqrt{\frac{1}{2}} - 2\sqrt{\frac{2}{3}} - \sqrt{\frac{1}{3}} \\ \approx &0.0460 > 0. \end{split}$$

Hence $ABS(\Gamma_9) > ABS(\Gamma)$, which is a contradiction.

Case 3.1.2. v is the vertex that is situated closer to C than u.

Without loss of generality, we suppose that v_1 is the vertex that is situated nearer to C than v_2 , v_3 when $v \notin V(C)$, and $v_1, v_3 \in V(C)$ when $v \in V(C)$. Suppose P is a maximal path from v to x and containing vv_2 . We know that $d_{\Gamma}(x) = 1$ and we denote $N_{\Gamma}(x) = \{y\}$. Then $d_{\Gamma}(y) = 2$ since Γ has a perfect matching. Denote

 $N_{\Gamma}(y) \setminus \{x\} = \{y_1\}$. Let $\Gamma_{10} = U - uu_1 + yu_1$. Then $\Gamma_{10} \in C\Gamma_{2m}$ and we have

$$\begin{split} &ABS(\Gamma_{10}) - ABS(\Gamma) \\ &= A(3, d_{\Gamma}(u_1)) + A(3, d_{\Gamma}(y_1)) + A(4, 1) + A(3, 1) \\ &- A(2, d_{\Gamma}(u_1)) - A(2, d_{\Gamma}(y_1)) - A(2, 4) - A(2, 1) \\ &> A(4, 1) + A(3, 1) - A(2, 4) - A(2, 1) \\ &= \sqrt{\frac{3}{5}} + \sqrt{\frac{1}{2}} - \sqrt{\frac{2}{3}} - \sqrt{\frac{1}{3}} \\ &\approx 0.0879 > 0. \end{split}$$

Thus $ABS(\Gamma_{10}) > ABS(\Gamma)$, a contradiction.

Case 3.2. $u \in V(C)$.

Since $v \in V(C)$, we suppose that $v_1 \in V(C)$ and $v_2, v_3 \notin V(C)$. So $d_{\Gamma}(v_2), d_{\Gamma}(v_3) \ge 2$.

Case 3.2.1. $u_1 \neq v_1$.

Suppose P is a maximal path from v to x and containing vv_2 . We see that $d_{\Gamma}(x)=1$ and we denote $N_{\Gamma}(x)=\{y\}$. Then $d_{\Gamma}(y)=2$ since Γ has a perfect matching. Denote $N_{\Gamma}(y)\setminus\{x\}=\{y_1\}$. Let $\Gamma_{11}=U-\{uu_1,vv_3\}+\{u_1v,yv_3\}$. Then $\Gamma_{11}\in C\Gamma_{2m}$ and by Lemma 2.1, we dereive

$$\begin{split} &ABS(\Gamma_{11}) - ABS(\Gamma) \\ &= A(4, d_{\Gamma}(u_1)) + A(3, d_{\Gamma}(y_1)) + A(3, d_{\Gamma}(v_3)) + A(4, 1) + A(3, 1) \\ &- A(2, d_{\Gamma}(u_1)) - A(2, d_{\Gamma}(y_1)) - A(4, d_{\Gamma}(v_3)) - A(2, 4) - A(2, 1) \\ &> A(3, d_{\Gamma}(v_3)) - A(4, d_{\Gamma}(v_3)) + A(4, 1) + A(3, 1) - A(2, 4) - A(2, 1) \\ &\geq A(3, 2) - A(4, 2) + A(4, 1) + A(3, 1) - A(2, 4) - A(2, 1) \\ &= 2\sqrt{\frac{3}{5}} + \sqrt{\frac{1}{2}} - 2\sqrt{\frac{2}{3}} - \sqrt{\frac{1}{3}} \\ > 0 \end{split}$$

So $ABS(\Gamma_{11}) > ABS(\Gamma)$, which is a contradiction.

Case 3.2.2. $u_1 = v_1$.

Note that $C = uvu_1u$ is the only cycle of Γ . Suppose P is a maximal path from v to x and containing vv_2 . It is clear that $d_{\Gamma}(x) = 1$, and we denote $N_{\Gamma}(x) = \{y\}$. Then $d_{\Gamma}(y) = 2$ since Γ has a perfect matching. Denote $N_{\Gamma}(y) \setminus \{x\} = \{y_1\}$. Let $\Gamma_{12} = U - uu_1 + yu_1$. Then $\Gamma_{12} \in C\Gamma_{2m}$ and we have

$$\begin{split} &ABS(\Gamma_{12}) - ABS(\Gamma) \\ &= A(3, d_{\Gamma}(u_1)) + A(3, d_{\Gamma}(y_1)) + A(4, 1) + A(3, 1) \\ &- A(2, d_{\Gamma}(u_1)) - A(2, d_{\Gamma}(y_1)) - A(2, 4) - A(2, 1) \\ &> A(4, 1) + A(3, 1) - A(2, 4) - A(2, 1) \\ &= \sqrt{\frac{3}{5}} + \sqrt{\frac{1}{2}} - \sqrt{\frac{2}{3}} - \sqrt{\frac{1}{3}} \\ &> 0. \end{split}$$

As a result, $ABS(\Gamma_{12}) > ABS(\Gamma)$, a contradiction.

Case 4. $d_{\Gamma}(u) = 3$ and $d_{\Gamma}(v) = 3$.

Denote $N_{\Gamma}(u) \setminus \{v\} = \{u_1, u_2\}$ and $N_{\Gamma}(v) \setminus \{u\} = \{v_1, v_2\}$.

Case 4.1. $u \notin V(C)$.

Case 4.1.1. *u* is the vertex that is situated nearer to *C* than *v*.

Since $uv \in M$, then $d_{\Gamma}(u_1), d_{\Gamma}(u_2), d_{\Gamma}(v_1), d_{\Gamma}(v_2) \ge 2$. Suppose u_1 is the vertex that is situated nearer to C than u_2 and P is a maximal path from u to x and containing uu_2 . So $d_{\Gamma}(x) = 1$, and we denote $N_{\Gamma}(x) = \{y\}$.

Then $d_{\Gamma}(y) = 2$ since Γ has a perfect matching. Denote $N_{\Gamma}(y) \setminus \{x\} = \{y_1\}$. Let $\Gamma_{13} = U - \{vv_1, vv_2\} + \{yv_1, yv_2\}$. Then $\Gamma_{13} \in C\Gamma_{2m}$ and we have

$$ABS(\Gamma_{13}) - ABS(\Gamma)$$

$$= A(4, d_{\Gamma}(v_{1})) + A(4, d_{\Gamma}(v_{2})) + A(4, d_{\Gamma}(y_{1})) + A(4, 1) + A(3, 1)$$

$$- A(3, d_{\Gamma}(v_{1})) - A(3, d_{\Gamma}(v_{2})) - A(2, d_{\Gamma}(y_{1})) - A(3, 3) - A(2, 1)$$

$$> A(4, 1) + A(3, 1) - A(3, 3) - A(2, 1)$$

$$= \sqrt{\frac{3}{5}} + \sqrt{\frac{1}{2}} - \sqrt{\frac{2}{3}} - \sqrt{\frac{1}{3}}$$

$$> 0.$$

Thus $ABS(\Gamma_{13}) > ABS(\Gamma)$, which is a contradiction.

Case 4.1.2. v is the vertex that is situated nearer to C than u.

Without loss of generality, we assume that v_1 is the vertex that is situated nearer to C than v_2 when $v \notin V(C)$, and $v_1, v_2 \in V(C)$ when $v \in V(C)$.

If $v \notin V(C)$, suppose P is a maximal path from v to x and containing vv_2 . It is obvious that $d_{\Gamma}(x) = 1$, and we denote $N_{\Gamma}(x) = \{y\}$. Then $d_{\Gamma}(y) = 2$ since Γ has a perfect matching. Denote $N_{\Gamma}(y) \setminus \{x\} = \{y_1\}$. Let $\Gamma_{14} = U - \{uu_1, uu_2\} + \{yu_1, yu_2\}$. Then $\Gamma_{14} \in C\Gamma_{2m}$ and we have

$$ABS(\Gamma_{14}) - ABS(\Gamma)$$

$$= A(4, d_{\Gamma}(u_{1})) + A(4, d_{\Gamma}(u_{2})) + A(4, d_{\Gamma}(y_{1})) + A(4, 1) + A(3, 1)$$

$$- A(3, d_{\Gamma}(u_{1})) - A(3, d_{\Gamma}(u_{2})) - A(2, d_{\Gamma}(y_{1})) - A(3, 3) - A(2, 1)$$

$$> A(4, 1) + A(3, 1) - A(3, 3) - A(2, 1)$$

$$= \sqrt{\frac{3}{5}} + \sqrt{\frac{1}{2}} - \sqrt{\frac{2}{3}} - \sqrt{\frac{1}{3}}$$

$$> 0$$

Hence $ABS(\Gamma_{14}) > ABS(\Gamma)$, which is a contradiction.

If $v \in V(C)$, suppose P is a maximal path from u to x and containing uu_2 . We can see that $d_{\Gamma}(x) = 1$ and we denote $N_{\Gamma}(x) = \{y\}$. Then $d_{\Gamma}(y) = 2$ since Γ has a perfect matching. Denote $N_{\Gamma}(y) \setminus \{x\} = \{y_1\}$. Let $\Gamma_{15} = U - \{uu_1, uu_2\} + \{vu_2, yu_1\}$. Then $\Gamma_{15} \in C\Gamma_{2m}$. If $y \neq u_2$, we have

$$\begin{split} &ABS(\Gamma_{15}) - ABS(\Gamma) \\ &= A(4,d_{\Gamma}(v_1)) + A(4,d_{\Gamma}(v_2)) + A(4,d_{\Gamma}(u_2)) + A(3,d_{\Gamma}(y_1)) + A(4,1) + A(3,1) \\ &- A(3,d_{\Gamma}(v_1)) - A(3,d_{\Gamma}(v_2)) - A(3,d_{\Gamma}(u_2)) - A(2,d_{\Gamma}(y_1)) - A(3,3) - A(2,1) \\ &> A(4,1) + A(3,1) - A(3,3) - A(2,1) \\ &= \sqrt{\frac{3}{5}} + \sqrt{\frac{1}{2}} - \sqrt{\frac{2}{3}} - \sqrt{\frac{1}{3}} \\ &> 0. \end{split}$$

If $y = u_2$, i.e. $u = y_1$, we have

$$ABS(\Gamma_{15}) - ABS(\Gamma)$$

$$= A(4, d_{\Gamma}(v_{1})) + A(4, d_{\Gamma}(v_{2})) + A(4, 3) + A(4, 1) + A(3, 1)$$

$$- A(3, d_{\Gamma}(v_{1})) - A(3, d_{\Gamma}(v_{2})) - A(3, 2) - A(3, 3) - A(2, 1)$$

$$> A(4, 1) + A(3, 1) - A(3, 3) - A(2, 1)$$

$$= \sqrt{\frac{3}{5}} + \sqrt{\frac{1}{2}} - \sqrt{\frac{2}{3}} - \sqrt{\frac{1}{3}}$$

$$> 0.$$

As a result, $ABS(\Gamma_{15}) > ABS(\Gamma)$, a contradiction.

Case 4.2. $u \in V(C)$.

Case 4.2.1. $v \notin V(C)$.

Since $uv \in M$, then $d_{\Gamma}(v_1), d_{\Gamma}(v_2) \ge 2$. Suppose P is a maximal path from v to x and containing vv_2 . Thus, $d_{\Gamma}(x) = 1$, and we denote $N_{\Gamma}(x) = \{y\}$. Then $d_{\Gamma}(y) = 2$ since Γ has a perfect matching. Denote $N_{\Gamma}(y) \setminus \{x\} = \{y_1\}$. Let $\Gamma_{16} = U - \{vv_1, vv_2\} + \{uv_2, yv_1\}$. Then $\Gamma_{16} \in C\Gamma_{2m}$. If $y \ne v_2$, we have

$$ABS(\Gamma_{16}) - ABS(\Gamma)$$

$$= A(4, d_{\Gamma}(u_{1})) + A(4, d_{\Gamma}(u_{2})) + A(4, d_{\Gamma}(v_{2})) + A(3, d_{\Gamma}(y_{1})) + A(4, 1) + A(3, 1)$$

$$- A(3, d_{\Gamma}(u_{1})) - A(3, d_{\Gamma}(u_{2})) - A(3, d_{\Gamma}(v_{2})) - A(2, d_{\Gamma}(y_{1})) - A(3, 3) - A(2, 1)$$

$$> A(4, 1) + A(3, 1) - A(3, 3) - A(2, 1)$$

$$= \sqrt{\frac{3}{5}} + \sqrt{\frac{1}{2}} - \sqrt{\frac{2}{3}} - \sqrt{\frac{1}{3}}$$

$$> 0$$

If $y = v_2$, i.e. $v = y_1$, we have

$$\begin{split} &ABS(\Gamma_{16}) - ABS(\Gamma) \\ &= A(4, d_{\Gamma}(u_1)) + A(4, d_{\Gamma}(u_2)) + A(4, 3) + A(4, 1) + A(3, 1) \\ &- A(3, d_{\Gamma}(u_1)) - A(3, d_{\Gamma}(u_2)) - A(3, 2) - A(3, 3) - A(2, 1) \\ &> A(4, 1) + A(3, 1) - A(3, 3) - A(2, 1) \\ &= \sqrt{\frac{3}{5}} + \sqrt{\frac{1}{2}} - \sqrt{\frac{2}{3}} - \sqrt{\frac{1}{3}} \\ &> 0. \end{split}$$

As a result, $ABS(\Gamma_{16}) > ABS(\Gamma)$, which is a contradiction.

Case 4.2.2. $v \in V(C)$.

Without loss of generality, we assume that $u_1, v_1 \in V(C)$ and $u_2, v_2 \notin V(C)$. Since $uv \in M$, then $d_{\Gamma}(u_2), d_{\Gamma}(v_2) \ge 2$. Suppose P is a maximal path from v to x and containing vv_2 . It can be seen that $d_{\Gamma}(x) = 1$, and we denote $N_{\Gamma}(x) = \{y\}$. Then $d_{\Gamma}(y) = 2$ since Γ has a perfect matching. Let $N_{\Gamma}(y) \setminus \{x\} = \{y_1\}$.

Case 4.2.2.1. $u_1 \neq v_1$.

Let $\Gamma_{17} = U - \{uu_1, uu_2\} + \{u_1v, yu_2\}$. Then $\Gamma_{17} \in C\Gamma_{2m}$. If $y \neq v_2$, we have

$$\begin{split} &ABS(\Gamma_{17}) - ABS(\Gamma) \\ &= A(4, d_{\Gamma}(v_1)) + A(4, d_{\Gamma}(v_2)) + A(4, d_{\Gamma}(u_1)) + A(3, d_{\Gamma}(y_1)) + A(4, 1) + A(3, 1) \\ &- A(3, d_{\Gamma}(v_1)) - A(3, d_{\Gamma}(v_2)) - A(3, d_{\Gamma}(u_1)) - A(2, d_{\Gamma}(y_1)) - A(3, 3) - A(2, 1) \\ &> A(4, 1) + A(3, 1) - A(3, 3) - A(2, 1) \\ &= \sqrt{\frac{3}{5}} + \sqrt{\frac{1}{2}} - \sqrt{\frac{2}{3}} - \sqrt{\frac{1}{3}} \\ &> 0. \end{split}$$

If $y = v_2$, i.e. $v = y_1$, we have

$$ABS(\Gamma_{17}) - ABS(\Gamma)$$

$$= A(4, d_{\Gamma}(u_1)) + A(4, d_{\Gamma}(v_1)) + A(4, 3) + A(4, 1) + A(3, 1)$$

$$- A(3, d_{\Gamma}(u_1)) - A(3, d_{\Gamma}(v_1)) - A(3, 2) - A(3, 3) - A(2, 1)$$

$$> A(4, 1) + A(3, 1) - A(3, 3) - A(2, 1)$$

$$= \sqrt{\frac{3}{5}} + \sqrt{\frac{1}{2}} - \sqrt{\frac{2}{3}} - \sqrt{\frac{1}{3}}$$

>0.

Thus $ABS(\Gamma_{17}) > ABS(\Gamma)$, which is a contradiction.

Case 4.2.2.2. $u_1 = v_1$.

Note that $C = uvu_1u$ is the only cycle of Γ . Let $\Gamma_{18} = U - \{uu_1, uu_2\} + \{vu_2, yu_1\}$. Then $\Gamma_{18} \in C\Gamma_{2m}$. If $y \neq v_2$, we have

$$\begin{split} &ABS(\Gamma_{18}) - ABS(\Gamma) \\ &= A(4,d_{\Gamma}(u_1)) + A(4,d_{\Gamma}(u_2)) + A(3,d_{\Gamma}(y_1)) + A(4,1) + A(3,1) \\ &- A(3,d_{\Gamma}(u_1)) - A(3,d_{\Gamma}(u_2)) - A(2,d_{\Gamma}(y_1)) - A(3,3) - A(2,1) \\ &> A(4,1) + A(3,1) - A(3,3) - A(2,1) \\ &= \sqrt{\frac{3}{5}} + \sqrt{\frac{1}{2}} - \sqrt{\frac{2}{3}} - \sqrt{\frac{1}{3}} \\ &> 0. \end{split}$$

If $y = v_2$, i.e. $v = y_1$, we have

$$\begin{split} &ABS(\Gamma_{18}) - ABS(\Gamma) \\ &= A(4,d_{\Gamma}(u_1)) + A(4,d_{\Gamma}(u_2)) + A(4,3) + A(4,1) + A(3,1) \\ &- A(3,d_{\Gamma}(u_1)) - A(3,d_{\Gamma}(u_2)) - A(3,2) - A(3,3) - A(2,1) \\ &> A(4,1) + A(3,1) - A(3,3) - A(2,1) \\ &= \sqrt{\frac{3}{5}} + \sqrt{\frac{1}{2}} - \sqrt{\frac{2}{3}} - \sqrt{\frac{1}{3}} \\ &> 0. \end{split}$$

Hence $ABS(\Gamma_{18}) > ABS(\Gamma)$, a contradiction.

Case 5. $d_{\Gamma}(u) = 3$ and $d_{\Gamma}(v) = 4$.

Denote $N_{\Gamma}(u) \setminus \{v\} = \{u_1, u_2\}$ and $N_{\Gamma}(v) \setminus \{u\} = \{v_1, v_2, v_3\}$.

Case 5.1. $u \notin V(C)$.

Case 5.1.1. *u* is the vertex that is situated closer to *C* than *v*.

Since $uv \in M$, then $d_{\Gamma}(u_1)$, $d_{\Gamma}(u_2)$, $d_{\Gamma}(v_1)$, $d_{\Gamma}(v_2)$, $d_{\Gamma}(v_3) \ge 2$. Suppose u_1 is the vertex that is situated nearer to C than u_2 and P is a maximal path from u to x and containing uu_2 . It is obvious that $d_{\Gamma}(x) = 1$, and we denote $N_{\Gamma}(x) = \{y\}$. Then $d_{\Gamma}(y) = 2$ since Γ has a perfect matching. Denote $N_{\Gamma}(y) \setminus \{x\} = \{y_1\}$. Let $\Gamma_{19} = U - \{vv_1, vv_2, vv_3\} + \{uv_1, yv_2, yv_3\}$. Then $\Gamma_{19} \in C\Gamma_{2m}$. If $y \ne u_2$, we get

$$\begin{split} &ABS(\Gamma_{19}) - ABS(\Gamma) \\ &= A(4,d_{\Gamma}(u_1)) + A(4,d_{\Gamma}(u_2)) + A(4,d_{\Gamma}(y_1)) + A(4,1) + A(4,1) \\ &- A(3,d_{\Gamma}(u_1)) - A(3,d_{\Gamma}(u_2)) - A(2,d_{\Gamma}(y_1)) - A(4,3) - A(2,1) \\ &> A(4,1) + A(4,1) - A(4,3) - A(2,1) \\ &= 2\sqrt{\frac{3}{5}} - \sqrt{\frac{5}{7}} - \sqrt{\frac{1}{3}} \\ &\approx 0.1267 > 0. \end{split}$$

If $y = u_2$, i.e. $u = y_1$, we derive

$$\begin{split} &ABS(\Gamma_{19}) - ABS(\Gamma) \\ &= A(4, d_{\Gamma}(u_1)) + A(4, 4) + A(4, 1) + A(4, 1) \\ &- A(3, d_{\Gamma}(u_1)) - A(3, 2) - A(4, 3) - A(2, 1) \\ &> A(4, 1) + A(4, 1) - A(4, 3) - A(2, 1) \\ &= 2\sqrt{\frac{3}{5}} - \sqrt{\frac{5}{7}} - \sqrt{\frac{1}{3}} \\ &> 0. \end{split}$$

As a result, $ABS(\Gamma_{19}) > ABS(\Gamma)$, which is a contradiction.

Case 5.1.2. v is the vertex that is situated closer to C than u.

Without loss of generality, we assume that v_1 is the vertex that is situated closer to C than v_2 , v_3 when $v \notin V(C)$, and $v_1, v_2 \in V(C)$, $v_3 \notin V(C)$ when $v \in V(C)$.

If $v \notin V(C)$, suppose P is a maximal path from v to x and containing vv_2 . Obviously, $d_{\Gamma}(x) = 1$, and we denote $N_{\Gamma}(x) = \{y\}$. Then $d_{\Gamma}(y) = 2$ since Γ has a perfect matching. Denote $N_{\Gamma}(y) \setminus \{x\} = \{y_1\}$. Let $\Gamma_{20} = U - \{uu_1, uu_2\} + \{yu_1, yu_2\}$. Then $\Gamma_{20} \in C\Gamma_{2m}$ and we have

$$\begin{split} &ABS(\Gamma_{20}) - ABS(\Gamma) \\ &= A(4, d_{\Gamma}(u_1)) + A(4, d_{\Gamma}(u_2)) + A(4, d_{\Gamma}(y_1)) + A(4, 1) + A(4, 1) \\ &- A(3, d_{\Gamma}(u_1)) - A(3, d_{\Gamma}(u_2)) - A(2, d_{\Gamma}(y_1)) - A(4, 3) - A(2, 1) \\ &> A(4, 1) + A(4, 1) - A(4, 3) - A(2, 1) \\ &= 2\sqrt{\frac{3}{5}} - \sqrt{\frac{5}{7}} - \sqrt{\frac{1}{3}} \\ > 0 \end{split}$$

So $ABS(\Gamma_{20}) > ABS(\Gamma)$, which is a contradiction.

If $v \in V(C)$, suppose P is a maximal path from v to x and containing vv_3 . It is clear that $d_{\Gamma}(x) = 1$, and we denote $N_{\Gamma}(x) = \{y\}$. Then $d_{\Gamma}(y) = 2$ since Γ has a perfect matching. Denote $N_{\Gamma}(y) \setminus \{x\} = \{y_1\}$. Let $\Gamma_{21} = U - \{uu_1, uu_2\} + \{yu_1, yu_2\}$. Then $\Gamma_{21} \in C\Gamma_{2m}$ and we have

$$\begin{split} &ABS(\Gamma_{21}) - ABS(\Gamma) \\ = &A(4,d_{\Gamma}(u_1)) + A(4,d_{\Gamma}(u_2)) + A(4,d_{\Gamma}(y_1)) + A(4,1) + A(4,1) \\ &- A(3,d_{\Gamma}(u_1)) - A(3,d_{\Gamma}(u_2)) - A(2,d_{\Gamma}(y_1)) - A(4,3) - A(2,1) \\ > &A(4,1) + A(4,1) - A(4,3) - A(2,1) \\ = &2\sqrt{\frac{3}{5}} - \sqrt{\frac{5}{7}} - \sqrt{\frac{1}{3}} \\ > &0. \end{split}$$

Hence $ABS(\Gamma_{21}) > ABS(\Gamma)$, a contradiction.

Case 5.2. $u \in V(C)$.

Case 5.2.1. $v \notin V(C)$.

Since $uv \in M$, then $d_{\Gamma}(v_1), d_{\Gamma}(v_2), d_{\Gamma}(v_3) \ge 2$. Suppose P is a maximal path from v to v and containing vv_2 . So $d_{\Gamma}(v) = 1$, and we denote $N_{\Gamma}(v) = \{y\}$. Then $d_{\Gamma}(v) = 2$ since Γ has a perfect matching. Denote

$$N_{\Gamma}(y)\setminus\{x\}=\{y_1\}.$$
 Let $\Gamma_{22}=U-\{vv_1,vv_2,vv_3\}+\{uv_2,yv_1,yv_3\}.$ Then $\Gamma_{22}\in C\Gamma_{2m}.$ If $y\neq v_2$, we have
$$ABS(\Gamma_{22})-ABS(\Gamma)\\ =A(4,d_{\Gamma}(u_1))+A(4,d_{\Gamma}(u_2))+A(4,d_{\Gamma}(y_1))+A(4,1)+A(4,1)\\ -A(3,d_{\Gamma}(u_1))-A(3,d_{\Gamma}(u_2))-A(2,d_{\Gamma}(y_1))-A(4,3)-A(2,1)\\ >A(4,1)+A(4,1)-A(4,3)-A(2,1)$$

$$=2\sqrt{\frac{3}{5}}-\sqrt{\frac{5}{7}}-\sqrt{\frac{1}{3}}$$

> 0.

If $y = v_2$, i.e. $v = y_1$, we derive

$$ABS(\Gamma_{22}) - ABS(\Gamma)$$

$$= A(4, d_{\Gamma}(u_1)) + A(4, d_{\Gamma}(u_2)) + A(4, 4) + A(4, 1) + A(4, 1)$$

$$- A(3, d_{\Gamma}(u_1)) - A(3, d_{\Gamma}(u_2)) - A(2, 4) - A(4, 3) - A(2, 1)$$

$$> A(4, 1) + A(4, 1) - A(4, 3) - A(2, 1)$$

$$= 2\sqrt{\frac{3}{5}} - \sqrt{\frac{5}{7}} - \sqrt{\frac{1}{3}}$$

Thus $ABS(\Gamma_{22}) > ABS(\Gamma)$, which is a contradiction.

Case 5.2.2. $v \in V(C)$.

Without loss of generality, we assume that $u_1, v_1 \in V(C)$ and $u_2, v_2, v_3 \notin V(C)$. Since $uv \in M$, then $d_{\Gamma}(u_2), d_{\Gamma}(v_2), d_{\Gamma}(v_3) \geq 2$. Suppose P is a maximal path from v to x and containing vv_2 . It is obvious that $d_{\Gamma}(x) = 1$, and we denote $N_{\Gamma}(x) = \{y\}$. Then $d_{\Gamma}(y) = 2$ since Γ has a perfect matching. Let $N_{\Gamma}(y) \setminus \{x\} = \{y_1\}$.

Case 5.2.2.1. $u_1 \neq v_1$.

Let $\Gamma_{23} = U - \{uu_1, uu_2, vv_3\} + \{u_1v, yu_2, yv_3\}$. Then $\Gamma_{23} \in C\Gamma_{2m}$ and it follows that

$$\begin{split} &ABS(\Gamma_{23}) - ABS(\Gamma) \\ &= A(4, d_{\Gamma}(u_1)) + A(4, d_{\Gamma}(u_2)) + A(4, d_{\Gamma}(y_1)) + A(4, 1) + A(4, 1) \\ &- A(3, d_{\Gamma}(u_1)) - A(3, d_{\Gamma}(u_2)) - A(2, d_{\Gamma}(y_1)) - A(4, 3) - A(2, 1) \\ &> A(4, 1) + A(4, 1) - A(4, 3) - A(2, 1) \\ &= 2\sqrt{\frac{3}{5}} - \sqrt{\frac{5}{7}} - \sqrt{\frac{1}{3}} \\ &> 0 \end{split}$$

So $ABS(\Gamma_{23}) > ABS(\Gamma)$, which is a contradiction.

Case 5.2.2.2. $u_1 = v_1$.

Note that $C = uvu_1u$ is the only cycle of Γ . Let $\Gamma_{24} = U - \{uu_1, uu_2\} + \{yu_1, yu_2\}$. Then $\Gamma_{24} \in C\Gamma_{2m}$ and we derive

$$\begin{split} &ABS(\Gamma_{24}) - ABS(\Gamma) \\ &= A(4,d_{\Gamma}(u_1)) + A(4,d_{\Gamma}(u_2)) + A(4,d_{\Gamma}(y_1)) + A(4,1) + A(4,1) \\ &- A(3,d_{\Gamma}(u_1)) - A(3,d_{\Gamma}(u_2)) - A(2,d_{\Gamma}(y_1)) - A(4,3) - A(2,1) \\ &> A(4,1) + A(4,1) - A(4,3) - A(2,1) \\ &= 2\sqrt{\frac{3}{5}} - \sqrt{\frac{5}{7}} - \sqrt{\frac{1}{3}} \\ &> 0. \end{split}$$

Hence $ABS(\Gamma_{24}) > ABS(\Gamma)$, a contradiction.

Case 6. $d_{\Gamma}(u) = 4$ and $d_{\Gamma}(v) = 4$.

Denote $N_{\Gamma}(u) \setminus \{v\} = \{u_1, u_2, u_3\}$ and $N_{\Gamma}(v) \setminus \{u\} = \{v_1, v_2, v_3\}$.

Case 6.1. $u \notin V(C)$.

Case 6.1.1. *u* is the vertex that is situated nearer to *C* than *v*.

Since $uv \in M$, then $d_{\Gamma}(u_1)$, $d_{\Gamma}(u_2)$, $d_{\Gamma}(v_3)$, $d_{\Gamma}(v_1)$, $d_{\Gamma}(v_2)$, $d_{\Gamma}(v_3) \ge 2$. Suppose u_1 is the vertex that is situated nearer to C than u_2 , u_3 and P is a maximal path from u to x and containing uu_2 . So $d_{\Gamma}(x) = 1$, and we denote $N_{\Gamma}(x) = \{y\}$. Then $d_{\Gamma}(y) = 2$ since Γ has a perfect matching. Let $\Gamma_{25} = U - \{vv_1, vv_2, vv_3\} + \{xv_1, xv_2, xv_3\}$. Then $\Gamma_{25} \in C\Gamma_{2m}$ and we have

$$ABS(\Gamma_{25}) - ABS(\Gamma)$$

$$= A(4,1) + A(4,2) - A(4,4) - A(2,1)$$

$$= \sqrt{\frac{3}{5}} + \sqrt{\frac{2}{3}} - \sqrt{\frac{3}{4}} - \sqrt{\frac{1}{3}}$$

$$\approx 0.1477 > 0$$

Thus $ABS(\Gamma_{25}) > ABS(\Gamma)$, which is a contradiction.

Case 6.1.2. v is the vertex that is situated nearer to C than u.

Without loss of generality, we assume that v_1 is the vertex that is situated nearer to C than v_2 , v_3 when $v \notin V(C)$, and $v_1, v_2 \in V(C)$, $v_3 \notin V(C)$ when $v \in V(C)$.

If $v \notin V(C)$, suppose P is a maximal path from v to x and containing vv_2 . We see that $d_{\Gamma}(x) = 1$ and we denote $N_{\Gamma}(x) = \{y\}$. Then $d_{\Gamma}(y) = 2$ since Γ has a perfect matching. Let $\Gamma_{26} = U - \{uu_1, uu_2, uu_3\} + \{xu_1, xu_2, xu_3\}$. Then $\Gamma_{26} \in C\Gamma_{2m}$ and we have

$$ABS(\Gamma_{26}) - ABS(\Gamma)$$

$$= A(4,1) + A(4,2) - A(4,4) - A(2,1)$$

$$= \sqrt{\frac{3}{5}} + \sqrt{\frac{2}{3}} - \sqrt{\frac{3}{4}} - \sqrt{\frac{1}{3}}$$
>0.

So $ABS(\Gamma_{26}) > ABS(\Gamma)$, which is a contradiction.

If $v \in V(C)$, suppose P is a maximal path from v to x and containing vv_3 . It can be seen that $d_{\Gamma}(x) = 1$, and we denote $N_{\Gamma}(x) = \{y\}$. Then $d_{\Gamma}(y) = 2$ since Γ has a perfect matching. Let $\Gamma_{27} = U - \{uu_1, uu_2, uu_3\} + \{xu_1, xu_2, xu_3\}$. Then $\Gamma_{27} \in C\Gamma_{2m}$ and one has

$$ABS(\Gamma_{27}) - ABS(\Gamma)$$

$$= A(4,1) + A(4,2) - A(4,4) - A(2,1)$$

$$= \sqrt{\frac{3}{5}} + \sqrt{\frac{2}{3}} - \sqrt{\frac{3}{4}} - \sqrt{\frac{1}{3}}$$
>0.

Therefore, $ABS(\Gamma_{27}) > ABS(\Gamma)$, a contradiction.

Case 6.2. $u \in V(C)$.

Case 6.2.1. $v \notin V(C)$.

Without loss of generality, we assume that $u_1, u_2 \in V(C)$ and $u_3 \notin V(C)$. Since $uv \in M$, then $d_{\Gamma}(u_3), d_{\Gamma}(v_1), d_{\Gamma}(v_2), d_{\Gamma}(v_3) \geq 2$. Suppose P is a maximal path from u to x and containing uu_3 . So $d_{\Gamma}(x) = 1$, and we denote $N_{\Gamma}(x) = \{y\}$. Then $d_{\Gamma}(y) = 2$ since Γ has a perfect matching. Let $\Gamma_{28} = 1$

 $U - \{vv_1, vv_2, vv_3\} + \{xv_1, xv_2, xv_3\}$. Then $\Gamma_{28} \in C\Gamma_{2m}$ and it follows that

$$ABS(\Gamma_{28}) - ABS(\Gamma)$$

$$= A(4,1) + A(4,2) - A(4,4) - A(2,1)$$

$$= \sqrt{\frac{3}{5}} + \sqrt{\frac{2}{3}} - \sqrt{\frac{3}{4}} - \sqrt{\frac{1}{3}}$$
>0.

Thus $ABS(\Gamma_{28}) > ABS(\Gamma)$, which is a contradiction.

Case 6.2.2. $v \in V(C)$.

Without loss of generality, we assume that $u_1, v_1 \in V(C)$ and $u_2, u_3, v_2, v_3 \notin V(C)$. Since $uv \in M$, then $d_{\Gamma}(u_2), d_{\Gamma}(u_3), d_{\Gamma}(v_2), d_{\Gamma}(v_3) \geq 2$. Suppose P is a maximal path from v to x and containing vv_2 . It is obvious that $d_{\Gamma}(x) = 1$, and we denote $N_{\Gamma}(x) = \{y\}$. Then $d_{\Gamma}(y) = 2$ since Γ has a perfect matching. Let $N_{\Gamma}(y) \setminus \{x\} = \{y_1\}$.

Case 6.2.2.1. $u_1 \neq v_1$.

Let $\Gamma_{29} = U - \{uu_1, uu_2, uu_3, vv_3\} + \{u_1v, xu_2, xu_3, xv_3\}$. Then $\Gamma_{29} \in C\Gamma_{2m}$ and we have

$$ABS(\Gamma_{29}) - ABS(\Gamma)$$

$$= A(4,1) + A(4,2) - A(4,4) - A(2,1)$$

$$= \sqrt{\frac{3}{5}} + \sqrt{\frac{2}{3}} - \sqrt{\frac{3}{4}} - \sqrt{\frac{1}{3}}$$
>0.

Hence $ABS(\Gamma_{29}) > ABS(\Gamma)$, which is a contradiction.

Case 6.2.2.2. $u_1 = v_1$.

Note that $C = uvu_1u$ is the only cycle of Γ and $d_{\Gamma}(u_1) \geq 3$. Suppose P is a maximal path from v to x' and containing vv_3 . It is clear that $d_{\Gamma}(x') = 1$, and we denote $N_{\Gamma}(x') = \{y'\}$. Then $d_{\Gamma}(y') = 2$ since Γ has a perfect matching. Denote $N_{\Gamma}(y') \setminus \{x'\} = \{y'_1\}$. Let $\Gamma_{30} = U - \{uu_1, uu_2, uu_3\} + \{y'u_2, y'u_3, yu_1\}$. Then $\Gamma_{30} \in C\Gamma_{2m}$ and by Lemma 2.1, we have

$$\begin{split} &ABS(\Gamma_{30}) - ABS(\Gamma) \\ &= A(3, d_{\Gamma}(y_1)) + A(4, d_{\Gamma}(y_1')) + A(3, d_{\Gamma}(u_1)) + 2A(4, 1) + A(3, 1) \\ &- A(2, d_{\Gamma}(y_1)) - A(2, d_{\Gamma}(y_1')) - A(4, d_{\Gamma}(u_1)) - A(4, 4) - 2A(2, 1) \\ &> A(3, d_{\Gamma}(u_1)) - A(4, d_{\Gamma}(u_1)) + 2A(4, 1) + A(3, 1) - A(4, 4) - 2A(2, 1) \\ &\geq A(3, 3) - A(4, 3) + 2A(4, 1) + A(3, 1) - A(4, 4) - 2A(2, 1) \\ &= \sqrt{\frac{2}{3}} - \sqrt{\frac{5}{7}} + 2\sqrt{\frac{3}{5}} + \sqrt{\frac{1}{2}} - \sqrt{\frac{3}{4}} - 2\sqrt{\frac{1}{3}} \\ &\approx 0.2069 > 0. \end{split}$$

As a result, $ABS(\Gamma_{30}) > ABS(\Gamma)$, a contradiction.

The proof is completed. \Box

3. Main results

Let $\mathcal{U}(2m)$ ($m \ge 3$) be the 2m-vertex chemical unicyclic graph obtained from C_m by attaching exactly one pendent edge to its each vertex (see Fig. 3.1). Observe that $ABS(\mathcal{U}(2m)) = (\frac{\sqrt{2}}{2} + \frac{\sqrt{6}}{3})m$.

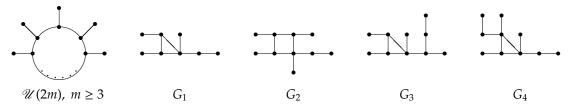


Fig. 3.1. The graphs $\mathcal{U}(2m)$, G_1 , G_2 , G_3 and G_4 .

Theorem 3.1. Let $\Gamma \in C\Gamma_{2m}$, where $m \geq 3$. Then

$$ABS(\Gamma) \leq (\frac{\sqrt{2}}{2} + \frac{\sqrt{6}}{3})m.$$

The equality holds only when $\Gamma \cong \mathcal{U}(2m)$.

Proof. Let

$$\psi(m)=(\frac{\sqrt{2}}{2}+\frac{\sqrt{6}}{3})m.$$

Since $\Gamma \in C\Gamma_{2m}$, every non-pendent vertex in Γ has at most one pendent neighbor. Thus, we can conclude that the number of pendent vertices of Γ is less than or equal to m. In the following, we consider two separate cases.

Case 1. The number of pendent vertices of Γ is m.

Now, every non-pendent vertex of Γ has a pendent neighbor. We prove the conclusion of this case by induction on m. If m=3, $\Gamma\cong \mathscr{U}(6)$ (see Fig. 3.1) and $ABS(\mathscr{U}(6))=\frac{3\sqrt{2}}{2}+\sqrt{6}=\psi(3)$. If m=4, $\Gamma\cong \mathscr{U}(8)$ or G_1 (see Fig. 3.1) and $ABS(\mathscr{U}(8))=2\sqrt{2}+\frac{4\sqrt{6}}{3}=\psi(4)$, $ABS(G_1)=\sqrt{2}+\frac{2}{3}\sqrt{6}+\frac{2}{7}\sqrt{35}+\frac{\sqrt{15}}{5}+\frac{\sqrt{3}}{3}\approx 6.0895<\psi(4)\approx 6.0944$. If m=5, Γ contains $\mathscr{U}(10)$, G_2 , G_3 and G_4 (see Fig. 3.1). Notice that $ABS(\mathscr{U}(10))=\frac{5\sqrt{2}}{2}+\frac{5\sqrt{6}}{3}=\psi(5)$, $ABS(G_2)=\frac{3}{2}\sqrt{2}+\sqrt{6}+\frac{2}{7}\sqrt{35}+\frac{\sqrt{15}}{5}+\frac{\sqrt{3}}{3}\approx 7.6131<\psi(5)\approx 7.6180$, $ABS(G_3)=\frac{3}{2}\sqrt{2}+\frac{\sqrt{6}}{3}+\frac{3}{7}\sqrt{35}+\frac{2\sqrt{15}}{5}+\frac{\sqrt{3}}{3}\approx 7.5998<\psi(5)$, $ABS(G_4)=\frac{\sqrt{2}}{2}+\frac{2\sqrt{6}}{3}+\frac{2}{7}\sqrt{35}+\frac{2\sqrt{15}}{5}+\frac{2\sqrt{3}}{3}+$

Suppose that the result holds for $\Gamma \in C\Gamma_{2k}$, k < m and $m \ge 6$. Let M be a perfect matching of Γ . We use $x, x_1, x_2, \cdots, x_{m-1}$ to denote all pendent vertices of Γ and $y, z_1, z_2, \cdots, z_{m-1}$ are their adjacent non-pendent vertices, respectively, where $d_{\Gamma}(y), d_{\Gamma}(z_1), d_{\Gamma}(z_2), \cdots, d_{\Gamma}(z_{m-1}) \ge 2$. It can be seen easily that $M = \{xy, x_1z_1, x_2z_2, \cdots, x_{m-1}z_{m-1}\}$.

Case 1.1. Γ contains a pendent vertex x adjacent to a vertex y of degree 2.

Observe that $xy \in M$, we denote $N_{\Gamma}(y) \setminus \{x\} = \{z_s\}$. Since every non-pendent vertex of Γ has a pendent neighbor, so $d_{\Gamma}(z_s) \ge 3$.

Case 1.1.1. $d_{\Gamma}(z_s) = 3$.

Denote $N_{\Gamma}(z_s) = \{y, x_s, z_{s+1}\}$, where $d_{\Gamma}(x_s) = 1$ and $d_{\Gamma}(z_{s+1}) \geq 3$. If Γ contains no vertex of degree 4, this leads to a contradiction that Γ is a unicyclic graph since every non-pendent vertex of Γ has a pendent neighbor. Therefore, there is a vertex z_{s+t} ($t \geq 1$) with $d_{\Gamma}(z_{s+t}) = 4$ such that $z_{s+1}, z_{s+2}, \cdots, z_{s+t-1}$ are vertices with degree 3 in Γ . We know that $\{xy, x_sz_s, x_{s+1}z_{s+1}, \cdots, x_{s+t-1}z_{s+t-1}\} \in M$ for $\Gamma \in C\Gamma_{2m}$. Let $\Gamma_1 = \Gamma - \{x_s, z_s, x_{s+1}, z_{s+1}, \cdots, x_{s+t-1}, z_{s+t-1}\} + yz_{s+t}$. Then $M \setminus \{x_sz_s, x_{s+1}z_{s+1}, \cdots, x_{s+t-1}z_{s+t-1}\}$ is a perfect matching

of Γ_1 and $\Gamma_1 \in C\Gamma_{2(m-t)}$. By the induction hypothesis, we derive

$$ABS(\Gamma) = ABS(\Gamma_1) + tA(1,3) + (t-1)A(3,3) + A(2,3) + A(3,4) - A(2,4)$$

$$\leq \psi(m-t) + \frac{\sqrt{2}}{2}t + \frac{\sqrt{6}}{3}(t-1) + \frac{\sqrt{15}}{5} + \frac{\sqrt{35}}{7} - \frac{\sqrt{6}}{3}$$

$$= \psi(m) - \frac{2\sqrt{6}}{3} + \frac{\sqrt{15}}{5} + \frac{\sqrt{35}}{7}$$

$$\approx \psi(m) - 0.0132$$

$$< \psi(m).$$

Case 1.1.2. $d_{\Gamma}(z_s) = 4$.

Denote $N_{\Gamma}(z_s) = \{y, x_s, z_{s-1}, z_{s+1}\}$, where $d_{\Gamma}(x_s) = 1$, $d_{\Gamma}(z_{s-1})$, $d_{\Gamma}(z_{s+1}) \ge 2$ and at least one of z_{s-1} and z_{s+1} has degree equal to 3 or 4 since $\Gamma \in C\Gamma_{2m}$ and every non-pendent vertex of Γ has a pendent neighbor.

Case 1.1.2.1.
$$d_{\Gamma}(z_{s-1}) = 2$$
 and $d_{\Gamma}(z_{s+1}) = 3$.

Denote $N_{\Gamma}(z_{s-1}) = \{x_{s-1}, z_s\}$ and $N_{\Gamma}(z_{s+1}) = \{x_{s+1}, z_s, z_{s+2}\}$, where $d_{\Gamma}(x_{s-1}) = 1$, $d_{\Gamma}(x_{s+1}) = 1$ and $d_{\Gamma}(z_{s+2}) \geq 3$. If Γ contains no vertex of degree 4 except z_s , then Γ is not a unicyclic graph, a contradiction. Therefore, there is a vertex z_{s+t} ($t \geq 2$) with degree 4 such that $d_{\Gamma}(z_{s+1}) = d_{\Gamma}(z_{s+2}) = \cdots = d_{\Gamma}(z_{s+t-1}) = 3$ in Γ . We can see that $\{xy, x_s z_s, x_{s+1} z_{s+1}, \cdots, x_{s+t-1} z_{s+t-1}\} \in M$ for $\Gamma \in C\Gamma_{2m}$. Let $\Gamma_2 = \Gamma - \{x, y, x_s, z_s, x_{s+1}, z_{s+1}, \cdots, x_{s+t-1}, z_{s+t-1}\} + z_{s-1} z_{s+t}$. Then $M \setminus \{xy, x_s z_s, x_{s+1} z_{s+1}, \cdots, x_{s+t-1} z_{s+t-1}\}$ is a perfect matching of Γ_2 and $\Gamma_2 \in C\Gamma_{2(m-t-1)}$. By the induction hypothesis, one has

$$ABS(\Gamma) = ABS(\Gamma_2) + (t-1)A(1,3) + (t-2)A(3,3) + A(2,1) + A(2,4) + A(4,1) + A(3,4) + A(3,4)$$

$$\leq \psi(m-t-1) + \frac{\sqrt{2}}{2}(t-1) + \frac{\sqrt{6}}{3}(t-2) + \frac{\sqrt{3}}{3} + \frac{\sqrt{6}}{3} + \frac{\sqrt{15}}{5} + \frac{2\sqrt{35}}{7}$$

$$= \psi(m) - \sqrt{2} - \frac{2\sqrt{6}}{3} + \frac{\sqrt{3}}{3} + \frac{\sqrt{15}}{5} + \frac{2\sqrt{35}}{7}$$

$$\approx \psi(m) - 0.0050$$

$$< \psi(m).$$

Case 1.1.2.2. $d_{\Gamma}(z_{s-1}) = 2$ and $d_{\Gamma}(z_{s+1}) = 4$.

Let $\Gamma_3 = \Gamma - \{x, y, x_s, z_s\} + z_{s-1}z_{s+1}$. Then $M \setminus \{xy, x_sz_s\}$ is a perfect matching of Γ_3 and $\Gamma_3 \in C\Gamma_{2(m-2)}$. By the induction hypothesis, one has

$$ABS(\Gamma) = ABS(\Gamma_3) + A(2,1) + A(2,4) + A(4,1) + A(4,4)$$

$$\leq \psi(m-2) + \frac{\sqrt{3}}{3} + \frac{\sqrt{6}}{3} + \frac{\sqrt{15}}{5} + \frac{\sqrt{3}}{2}$$

$$= \psi(m) - \frac{\sqrt{6}}{3} - \sqrt{2} + \frac{\sqrt{3}}{3} + \frac{\sqrt{15}}{5} + \frac{\sqrt{3}}{2}$$

$$\approx \psi(m) - 0.0127$$

$$< \psi(m).$$

Case 1.1.2.3. $d_{\Gamma}(z_{s-1}) = 3$ and $d_{\Gamma}(z_{s+1}) = 3$.

Let $\Gamma_4 = \Gamma - \{x, y\}$. Then $M \setminus \{xy\}$ is a perfect matching of Γ_4 and $\Gamma_4 \in C\Gamma_{2(m-1)}$. By the induction

hypothesis, one has

$$ABS(\Gamma) = ABS(\Gamma_4) + 2A(3,4) + A(4,2) + A(4,1) + A(2,1) - 2A(3,3) - A(3,1)$$

$$\leq \psi(m-1) + \frac{2\sqrt{35}}{7} + \frac{\sqrt{15}}{5} + \frac{\sqrt{3}}{3} - \frac{\sqrt{6}}{3} - \frac{\sqrt{2}}{2}$$

$$= \psi(m) - \frac{2\sqrt{6}}{3} - \sqrt{2} + \frac{2\sqrt{35}}{7} + \frac{\sqrt{15}}{5} + \frac{\sqrt{3}}{3}$$

$$\approx \psi(m) - 0.0050$$

$$< \psi(m).$$

Case 1.1.2.4. $d_{\Gamma}(z_{s-1}) = 3$ and $d_{\Gamma}(z_{s+1}) = 4$.

Let $\Gamma_5 = \Gamma - \{x, y, x_s, z_s\} + z_{s-1}z_{s+1}$. Then $M \setminus \{xy, x_sz_s\}$ is a perfect matching of Γ_5 and $\Gamma_5 \in C\Gamma_{2(m-2)}$. By the induction hypothesis, we derive

$$ABS(\Gamma) = ABS(\Gamma_5) + A(2,1) + A(2,4) + A(4,1) + A(4,4)$$

$$\leq \psi(m-2) + \frac{\sqrt{3}}{3} + \frac{\sqrt{6}}{3} + \frac{\sqrt{15}}{5} + \frac{\sqrt{3}}{2}$$

$$= \psi(m) - \frac{\sqrt{6}}{3} - \sqrt{2} + \frac{\sqrt{3}}{3} + \frac{\sqrt{15}}{5} + \frac{\sqrt{3}}{2}$$

$$< \psi(m).$$

Case 1.1.2.5. $d_{\Gamma}(z_{s-1}) = 4$ and $d_{\Gamma}(z_{s+1}) = 4$.

Let $\Gamma_6 = \Gamma - \{x, y, x_s, z_s\} + z_{s-1}z_{s+1}$. Then $M \setminus \{xy, x_sz_s\}$ is a perfect matching of Γ_6 and $\Gamma_6 \in C\Gamma_{2(m-2)}$. By the induction hypothesis, it follows that

$$ABS(\Gamma) = ABS(\Gamma_6) + A(2,1) + A(2,4) + A(4,1) + A(4,4)$$

$$\leq \psi(m-2) + \frac{\sqrt{3}}{3} + \frac{\sqrt{6}}{3} + \frac{\sqrt{15}}{5} + \frac{\sqrt{3}}{2}$$

$$= \psi(m) - \frac{\sqrt{6}}{3} - \sqrt{2} + \frac{\sqrt{3}}{3} + \frac{\sqrt{15}}{5} + \frac{\sqrt{3}}{2}$$

$$< \psi(m).$$

Case 1.2. Γ contains no neighbor of pendent vertex of degree 2.

Now, observe that $\Gamma \cong \mathcal{U}(2m)$ since $\Gamma \in C\Gamma_{2m}$ and every non-pendent vertex of Γ has a pendent neighbor, where $\mathcal{U}(2m)$ is displayed in Fig. 3.1. After a simple calculation, we derive $ABS(\mathcal{U}(2m)) = (\frac{\sqrt{6}}{3} + \frac{\sqrt{2}}{2})m$, as desired.

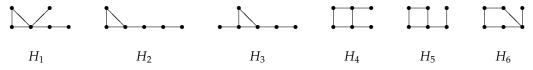


Fig. 3.2. The graphs H_1, H_2, H_3, H_4, H_5 and H_6 .

Case 2. Γ contains less than m pendent vertices.

Note that Γ contains a vertex with no pendent neighbor. If m = 3, Γ contains H_1, H_2, \dots, H_6 (see Fig. 3.2) and C_6 , where C_6 is a cycle of order 6. It is easy to check that $ABS(H_i) < \psi(3)$ ($i = 1, 2, \dots, 6$) and $ABS(C_6) < \psi(3)$. If $m \ge 4$, by Lemma 2.2 and the proof of Case 1, one can easily see that any vertex of Γ has maximum ABS index if and only if it has a pendent neighbor. Thus, $ABS(\Gamma) < \psi(m)$.

The proof is completed. \Box

References

- [1] K. Aarthi, S. Elumalai, S. Balachandran, S. Mondal, On difference between atom-bond sum-connectivity index and Randić index of graphs, J. Appl. Math. Comput. 71 (2025), 2727–2748.
- [2] A. M. Albalahi, Z. B. Du, A. Ali, On the general atom-bond sum connectivity index, AIMS Math. 8 (2023), 23771-23785.
- [3] A. Ali, T. Došlić, Z. Raza, On trees of a fixed maximum degree with extremal general atom-bond sum-connectivity index, J. Appl. Math. Comput. 71 (2025), 1035–1049.
- [4] A. Ali, I. Gutman, B. Furtula, I. Redžepović, T. Došlić, Z. Raza, Extremal results and bounds for atom-bond sum-connectivity index, MATCH Commun Math Comput Chem 92 (2024), 271–314.
- [5] A. Ali, I. Gutman, I. Redžepović, Atom-bond sum-connectivity index of unicyclic graphs and some applications, El. J. Math. 5 (2023), 1–7
- [6] A. Ali, B. Furtula, I. Redžepović, I. Gutman, Atom-bond sum connectivity index, J. Math. Chem. 60 (2022), 2081–2093.
- [7] A. Jahanbani, I. Redžepović, On the generalized ABS index of graphs, Filomat 37 (2023), 10161–10169.
- [8] J. A. Bondy, U. S. R. Murty, Graph Theory with Applications, New York, Elsevier, 1976.
- [9] J. Du, X. Su, On bond incident degree index of chemical trees with a fixed order and a fixed number of leaves, Appl. Math. Comput. 464 (2024), #128390.
- [10] K. J. Gowtham, I. Gutman, On the difference between atom-bond sum-connectivity and sum-connectivity indices, Bull. Cl. Sci. Math. Nat. Sci. Math. 47 (2022), 55–65.
- [11] I. Gutman, B. Furtula (Eds.), Novel Molecular Structure Descriptors Theory and Applications I, Univ. Kragujevac, Kragujevac, 2010.
- [12] I. Gutman, B. Furtula (Eds.), Novel Molecular Structure Descriptors Theory and Applications II, Univ. Kragujevac, Kragujevac, 2010.
- [13] F. Li, Q. Ye, Extremal graphs with given parameters in respect of general ABS index, Appl. Math. Comput. 482 (2024), #128974.
- [14] S. Noureen, A. Ali, Maximum atom-bond sum-connectivity index of n-order trees with fixed number of leaves, Discr. Math. Lett. 12 (2023), 26–28.
- [15] N. Palaniyappan, E. Suresh, B. Selvaraj, M. Sourav, Smallest ABS index of unicyclic graphs with given girth, J. Appl. Math. Comput. 69 (2023), 3675–3692.
- [16] N. Trinajstić, Chemical Graph Theory, CRC Press, Boca Raton, 1992.
- [17] S. Wagner, H. Wang, Introduction to Chemical Graph Theory, CRC Press, Boca Raton, 2018.
- [18] F. Wang, Y. Zhang, X. Ren, B. Zhang, Maximum atom bond sum connectivity index of molecular trees with a perfect matching, MATCH Commun Math Comput Chem 92 (2024), 653–669.
- [19] X. Zuo, A. Jahanbani, H. Shooshtari, On the atom-bond sumconnectivity index of chemical graphs, J. Mol. Struct. 1296 (2024), #136849.