

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

# q-Numerical radii of sectorial matrices and $2 \times 2$ operator matrices

Jyoti Rania, Arnab Patraa,\*

<sup>a</sup>Department of mathematics, Indian Institute of Technology Bhilai, Durg, 491002, India

**Abstract.** This article focuses on several significant bounds of q-numerical radius  $w_q(A)$  for sectorial matrix A, which refine and generalize previously established bounds. One of the significant bounds we have derived is as follows:

$$\frac{|q|^2\cos^2(\alpha)}{2}||A^*A + AA^*|| \le w_q^2(A) \le \frac{\left(\sqrt{(1-|q|^2)\left(1+2\sin^2(\alpha)\right)} + |q|\right)^2}{2}||A^*A + AA^*||,$$

where A is a sectorial matrix. Also, upper bounds for commutator and anti-commutator matrices and relations between  $w_q(A^t)$  and  $w_q^t(A)$  for non-integral power  $t \in [0,1]$  are also obtained. Moreover, a few significant estimations of q-numerical radii of off-diagonal  $2 \times 2$  operator matrices are developed.

## 1. Introduction

Let  $\mathcal{B}(\mathcal{H})$  be the  $C^*$  algebra of all bounded linear operators acting on the Hilbert space  $(\mathcal{H}, \langle .,. \rangle)$  equipped with the operator norm. For any  $T \in \mathcal{B}(\mathcal{H})$ , the numerical range W(T), the numerical radius w(T), and the operator norm ||T|| are defined, respectively, by

$$W(T) = \{ \langle Tx, x \rangle : x \in \mathcal{H}, ||x|| = 1 \},$$
  
 $w(T) = \sup\{ |\langle Tx, x \rangle| : x \in \mathcal{H}, ||x|| = 1 \}, \text{ and }$   
 $||T|| = \sup\{ |\langle Tx, y \rangle| : x, y \in \mathcal{H}, ||x|| = ||y|| = 1 \}.$ 

It is well known that w(.) defines a norm on  $\mathcal{B}(\mathcal{H})$ , which is equivalent to the usual operator norm ||T||. In fact, for every  $T \in \mathcal{B}(\mathcal{H})$ , the following relation holds:

$$\frac{\|T\|}{2} \le w(T) \le \|T\|. \tag{1}$$

2020 Mathematics Subject Classification. Primary 15A60; Secondary 15B48, 47B44, 47A63.

Keywords. q-numerical radius, Sectorial matrices, Operator matrices, Inequality.

Received: 02 April 2025; Revised: 02 September 2025; Accepted: 16 September 2025

Communicated by Dragan S. Djordjević

The second author gratefully acknowledge the financial support received from the Anusandhan National Research Foundation (ANRF), Government of India (SRG/2023/002420).

\* Corresponding author: Arnab Patra

Email addresses: jyotir@iitbhilai.ac.in (Jyoti Rani), arnabp@iitbhilai.ac.in (Arnab Patra)

ORCID iDs: https://orcid.org/0009-0001-2461-909X (Jyoti Rani), https://orcid.org/0000-0002-9318-3963 (Arnab Patra)

The left-hand side inequality becomes an equality when  $T^2 = 0$ , and the other inequality becomes an equality when the operator T is normal.

In 2005, Kittaneh [20] obtained one more refinement of inequality (1) as follows

$$\frac{1}{4}||T^*T + TT^*|| \le w^2(T) \le \frac{1}{2}||T^*T + TT^*||. \tag{2}$$

For more such inequalities, one may refer to the recent articles [4, 6, 12, 13, 22, 23] along with the references therein and, the books [5, 17].

$$S_{\alpha} = \{ z \in \mathbb{C} : \Re z > 0, |Iz| \le \tan(\alpha)(\Re z) \}.$$

Here,  $\Re z$  and  $\Im z$  denote the real and imaginary parts of the complex number z. The class of all  $n \times n$  sectorial matrices where  $W(T) \subseteq S_{\alpha}$  is denoted by  $\prod_{s,\alpha}^n$ . If  $\alpha = 0$ , then the sector  $S_{\alpha}$  reduces to the interval  $(0, \infty)$ , reducing the class  $\prod_{s,\alpha}^n$  to the set of all positive definite matrices in  $M_n$ . If A > 0, then A is a sectorial matrix with  $\alpha = 0$ . The numerical range and radius of sectorial matrices have been explored by several authors. In particular, Samah Abu Sammour et al. [28], Yassine Bedrani et al. [3], and Pintu Bhunia et al. [7] have focused their study on the bounds of the numerical radius of sectorial matrices. However, we explore the concept of more generalized numerical range, namely, the q-numerical range of sectorial matrices. The q-numerical range of  $T \in \mathcal{B}(\mathcal{H})$  is defined by,

$$W_q(T) = \{ \langle Tx, y \rangle : x, y \in \mathcal{H}, ||x|| = ||y|| = 1, \langle x, y \rangle = q \},$$

where  $|q| \le 1$ . The *q*-numerical radius  $w_q(T)$  of  $T \in \mathcal{B}(\mathcal{H})$  is

$$w_q(T) = \sup_{w \in W_q(T)} |w|.$$

For any  $T \in \mathcal{B}(\mathcal{H})$ , we have  $T = \mathcal{R}(T) + iI(T)$ , where  $\mathcal{R}(T) = \frac{T + T^*}{2}$  and  $I(T) = \frac{T - T^*}{2i}$ . The following relations can be easily derived:

$$w_q(\mathcal{R}(T)) \le w_q(T)$$
 and  $w_q(I(T)) \le w_q(T)$ . (3)

Limited research work is available in the literature on the q-numerical range. Notable contributions in this direction can be found in [8, 14, 21, 26, 27, 31]. For a comprehensive review, one can refer to [17, p.380]. Recently in [11], for  $T \in \mathcal{B}(\mathcal{H})$  and  $q \in (0,1)$ , several significant estimations of the q-numerical radius has been established, such as

$$\frac{q}{2(2-q^2)}||T|| \le w_q(T) \le ||T||,\tag{4}$$

$$\frac{1}{4} \left( \frac{q}{2 - q^2} \right)^2 ||T^*T + TT^*|| \le w_q^2(T) \le \frac{\left( q + 2\sqrt{1 - q^2} \right)^2}{2} ||T^*T + TT^*||. \tag{5}$$

The present work aims to obtain bounds of q-numerical radii of sectorial matrices. This leads to the refinement of several results on q-numerical radius. Significant results on upper bounds for the q-numerical radii of commutator and anti-commutator matrices, and on non-integral powers of matrices, are obtained. Furthermore, this study explores the q-numerical radius inequalities associated with  $2 \times 2$  block matrices.

### 2. q-Numerical Radius Inequalities for Sectorial Matrices

Throughout this paper, the symbol T denotes an element of  $\mathcal{B}(\mathcal{H})$ , while the letter A is designated specifically for  $n \times n$  matrices. We start this section by listing some known outcomes that will be required in our analysis of the principal findings.

**Lemma 2.1.** [28] Let  $A \in \prod_{s,\alpha}^n$  for some  $\alpha \in [0, \frac{\pi}{2})$ . Then

 $||I(A)|| \le \sin(\alpha)w(A)$ .

**Lemma 2.2.** [28] Let  $A \in \prod_{s,\alpha}^n$ . Then

$$||A|| \le \sqrt{1 + 2\sin^2(\alpha)}w(A).$$

The following Lemma represents a relation between |||R(A)||| and |||A|||, where |||.||| is a unitarily invariant norm on  $M_n$ .

**Lemma 2.3.** [32] Let  $A \in \prod_{s,\alpha}^n$  and  $\|\|.\|\|$  be any unitarily invariant norm on  $M_n$ . Then

$$\cos(\alpha) |||A||| \le |||\mathcal{R}(A)||| \le |||A|||.$$

The following result states that, if a matrix *A* is sectorial, then raising it to a fractional power will still preserve its sectoriality.

**Lemma 2.4.** [10] Let  $0 \le \alpha < \frac{\pi}{2}$ , 0 < t < 1 and  $A \in M_n$  is a square matrix with  $W(A) \subseteq S_\alpha$ . Then  $W(A^t) \subseteq S_{t\alpha}$ .

Additionally, it should be noted that  $W(A^{-t})$  is a subset of  $S_{t\alpha}$ . This can be inferred from the fact that  $W(A^{-1})$  is a subset of  $S_{\alpha}$  when W(A) is a subset of  $S_{\alpha}$ .

Here are some additional important results related to the fractional powers of sectorial matrices:

**Lemma 2.5.** [9] Let  $A \in \prod_{s,\alpha}^{n}$  and  $t \in [0,1]$ . Then

$$\cos^{2t}(\alpha)\mathcal{R}(A^t) \leq (\mathcal{R}(A))^t \leq \mathcal{R}(A^t).$$

**Lemma 2.6.** [9] Let  $A \in \prod_{s,\alpha}^{n}$  and  $t \in [-1,0]$ . Then

$$\mathcal{R}(A^t) \le (\mathcal{R}(A))^t \le \cos^{2t}(\alpha)\mathcal{R}(A^t).$$

Let  $\mathcal{D}$  be the closed unit disc in the complex plane and  $\mathcal{D}' = \mathcal{D} \setminus \{0\}$ . Also, if  $\dim \mathcal{H} = 1$  then  $W_q(A)$  is empty if and only if |q| < 1, and  $W_q(A)$  is non-empty if  $\dim \mathcal{H} \ge 2$  [17, p.380, Proposition 3.1(a)]. Thus, throughout the article we restrict ourselves to the case  $\dim \mathcal{H} \ge 2$ . An operator  $T \in \mathcal{B}(\mathcal{H})$  is said to be normaloid if w(T) = ||T||. Also, all normal operators satisfy the similar relation. However, similar equality

does not hold for *q*-numerical radius. For example, let  $T = \begin{bmatrix} 5 & 0 \\ 0 & 4 \end{bmatrix}$ . Then ||T|| = 5 and the *q*-numerical radius

 $w_q(T) = \frac{9q+1}{2} \neq ||T||$  for all  $q \in [0,1)$  (i.e., except q=1) follows from Theorem 3.4 [17, p.384]. In this context, Theorem 2.7 provides a relation between  $w_q(T)$  and ||T|| for normaloid operator T. It is noteworthy that for a normaloid operator T, the equality r(T) = ||T|| = w(T) holds, where r(T) is the spectral radius of T.

We start our main result with a relation between  $w_q(T)$  and w(T) for normaloid operators by using the spectral inclusion relation.

**Theorem 2.7.** *If*  $T \in \mathcal{B}(\mathcal{H})$  *is a normaloid operator and*  $q \in \mathcal{D}$ *, then* 

$$|q|w(T) \le w_q(T) \le w(T)$$
.

*Proof.* From Proposition 3.1 (h) [17, p.380], we have the following inclusion relation

$$q\sigma(T) \subseteq \overline{W_q(T)}$$
 for  $|q| \le 1$ .

It follows that

$$|q|r(T) \le w_q(T)$$
.

As T is normaloid, we have

$$|q|w(T) \leq w_q(T)$$
.

Also, it is well-known that  $w_q(T) \le ||T||$  for all  $T \in \mathcal{B}(\mathcal{H})$ . Since T is normaloid, we have

$$w_a(T) \le ||T|| = w(T).$$

This completes the proof.  $\Box$ 

**Remark 2.8.** A few important observations are mentioned below.

- (i) For normal T, the relation w(T) = ||T|| holds, and subsequently we have  $|q|||T|| \le w_q(T) \le ||T||$  which was recently obtained in [30, Theorem 1.4].
- (ii) For  $q \in (0,1)$ ,  $q \ge \frac{q}{2-q^2}$ , thus Theorem 2.7 is a refinement of [11, Theorem 2.1] for normal operator T.
- (iii) Theorem 2.7 is the q-numerical radius analogue of the well-known relation (1) for normal operators, which reduces to the equality w(T) = ||T|| when q = 1.
- (iv) Both the inequalities of Theorem 2.7 are best possible. Let  $S_1$  be the set of all  $n \times n$  ( $n \ge 2$ ) real scalar matrices. Let  $S_1 \ni A_1 = \eta I$ , where  $\eta(\ne 0) \in \mathbb{R}$  and I is  $n \times n$  identity matrix. Therefore,  $w_q(A_1) = |q|w(A_1)$ . Let S be the right shift operator. Then  $w_q(S) = w(S) = 1$  [17, p.384].

For any  $T \in \mathcal{B}(\mathcal{H})$ ,  $\mathcal{R}(T)$  and  $\mathcal{I}(T)$  are self-adjoint operators. An easy calculation leads to the following corollary.

**Corollary 2.9.** *If*  $T \in \mathcal{B}(\mathcal{H})$  *and*  $q \in \mathcal{D}$ *, then we have* 

- (a)  $|q|||\mathcal{R}(T)|| \le w_a(\mathcal{R}(T)) \le ||\mathcal{R}(T)||$ ,
- (b)  $|q||I(T)|| \le w_q(I(T)) \le ||I(T)||$ .

The next result provides the equivalence of two norms ||A|| and  $w_q(A)$  and extends the inequality (1) for q-numerical radii of sectorial matrices.

**Theorem 2.10.** (a) If  $A \in \prod_{s,\alpha}^n$  and  $q \in \mathcal{D}'$ , then

$$|q|\cos(\alpha)||A|| \le w_q(A) \le ||A||.$$

(b) Let  $q \in \mathcal{D}'$ . If either  $A, A^2 \in \prod_{s,\alpha}^n$  or A is accretive–dissipative, then

$$\frac{|q|}{\sqrt{2}}||A|| \le w_q(A) \le ||A||.$$

Proof. (a) Using Lemma 2.3, Corollary 2.9, and relation (3) we have

$$\cos(\alpha)||A|| \le ||\mathcal{R}(A)|| \le \frac{1}{|q|}w_q(\mathcal{R}(A)) \le \frac{1}{|q|}w_q(A) \le \frac{1}{|q|}||A||.$$

Hence, the required result holds.

(b) If  $A^2 \in \prod_{s,\alpha}^n$ , then Lemma 2.4 implies that

$$W(A) = W((A^2)^{\frac{1}{2}}) \subset S_{\frac{\alpha}{2}} \subset S_{\frac{\pi}{4}}.$$
 (6)

Also, if *A* is accretive–dissipative, then

$$W(e^{\frac{-i\pi}{4}}A) \subset S_{\frac{\pi}{4}}. \tag{7}$$

Thus, inequalities (6) and (7), together with part (a), give the desired result.

- **Remark 2.11.** (i) If  $\alpha \in \left[0, \frac{\pi}{3}\right)$  and q = 1, then the lower bound mentioned in Theorem 2.10(a) is a refinement of lower bound mentioned in (1). Moreover, for  $\cos(\alpha) \ge \frac{1}{2(2-q^2)}$ ,  $q \in (0,1)$ , the lower bound mentioned in Theorem 2.10(a) is a refinement of the lower bound mentioned in relation (4).
- (ii) Part (b) provides a more precise bound than part (a) of Theorem 2.10 for  $\alpha \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$ .

The following corollary provides an upper bound for  $w_q(AB)$ . Recall that for any two matrices  $A, B \in M_n$ , we have [17, p.125]

$$w(AB) \le 4w(A)w(B). \tag{8}$$

Also, it is well-known that if *A* and *B* are positive semidefinite matrices then

$$w(AB) \le w(A)w(B). \tag{9}$$

However, the relations (8) and (9) do not hold for q-numerical radius. Consider normal matrices  $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$  and  $B = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$ . Then by Theorem 3.4 [17, p.384], we have  $w_q(A) = \frac{3q+1}{2}$ ,  $w_q(B) = 2q$  and  $w_q(AB) = 3q+1$ . One can check that  $w_q(AB) \nleq w_q(A)w_q(B)$  for all  $q \in [0,1)$  and  $w_q(AB) \nleq 4w_q(A)w_q(B)$  for q < 0.25. Our next theorem is an attempt to overcome such situations. Using Theorem 2.10(a) and  $w_q(AB) \leq \|A\| \|B\|$ , we can derive the following result easily.

**Corollary 2.12.** *For*  $q \in \mathcal{D}'$ *, the following hold:* 

(a) If A and B both are sectorial matrices, then

$$|q|^2 w_a(AB) \le \sec^2(\alpha) w_a(A) w_a(B).$$

(b) If A and B both are positive definite matrices, then

$$|q|^2 w_a(AB) \le w_a(A) w_a(B)$$
.

**Remark 2.13.** If we take q = 1, Corollary 2.12(a) implies that  $w(AB) \le \sec^2(\alpha)w(A)w(B)$  when A and B both are sectorial matrices, which is a refinement of inequality (8) when  $\alpha \in \left(0, \frac{\pi}{3}\right)$ . If we take q = 1 in Corollary 2.12(b), we obtain the well-known result  $w(AB) \le w(A)w(B)$  for positive definite matrices A and B.

Before proceeding to the next theorem, we establish the following construction.

Consider  $q \in \mathcal{D}$  and dim  $\mathcal{H} \ge 2$ . Let  $x \in \mathcal{H}$  be the unit vector. For any  $y \in \mathcal{H}$  with ||y|| = 1 and  $\langle x, y \rangle = q$ , using  $\mathcal{H} = \lim\{x\} \oplus \{x\}^{\perp}$ , we can express y as

$$y = \overline{q}x + \sqrt{1 - |q|^2} z$$
, where  $z \in \mathcal{H}$ ,  $||z|| = 1$ , and  $\langle x, z \rangle = 0$ . (10)

The converse is also true, i.e., if (10) holds, then  $\langle x, y \rangle = q$  and ||y|| = 1.

Our next focus is to establish a relation between the q-numerical radii and classical numerical radii for sectorial matrices. It is evident that if A is normaloid, then  $w_q(A) \le w(A)$ . Take  $q \in (0,1)$  and a non-normaloid

matrix 
$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
. Then for  $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ ,  $\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \in \mathbb{R}^2$ , with  $||x|| = ||y|| = 1$  and  $\langle x, y \rangle = q$ , we have  $\langle Ax, y \rangle = x_2 y_1$ .

Thus

$$w_q(A) = \sup_{\|x\|=1, \|y\|=1, \langle x, y \rangle = q} |x_2 y_1|. \tag{11}$$

If we take  $x = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$  and  $y = \left(\frac{q - \sqrt{1 - q^2}}{\sqrt{2}}, \frac{q + \sqrt{1 - q^2}}{\sqrt{2}}\right)$ , then equation (11) implies  $w_q(A) \ge \frac{q + \sqrt{1 - q^2}}{2}$ . Also,  $w(A) = \frac{1}{2}$ . In this case  $w_q(A) > w(A)$ ,  $q \in (0, 1)$ . In general, there is no relation between classical numerical range and q-numerical range. Our next result is an attempt in this direction for sectorial matrices.

**Theorem 2.14.** Let  $A \in \prod_{s,\alpha}^n$  and  $q \in \mathcal{D}$ . Then

(a) 
$$w_q(A) \le \left(\sqrt{(1-|q|^2)(1+2\sin^2(\alpha))}+|q|\right)w(A)$$

(b) 
$$w_q(A) \leq \sqrt{1 + \sin^2(\alpha)w(A)}$$
.

*Proof.* (a) Let  $x, y \in \mathcal{H}$  such that ||x|| = ||y|| = 1 and  $\langle x, y \rangle = q$ . Then y can be expressed as  $y = \overline{q}x + \sqrt{1 - |q|^2}z$ , where  $z \in \mathcal{H}$ , ||z|| = 1 and  $\langle x, z \rangle = 0$ . Therefore,

$$\begin{split} |\langle Ax,y\rangle| \leq &|\langle Ax,\overline{q}x+\sqrt{1-|q|^2}z\rangle| \\ \leq &|q||\langle Ax,x\rangle|+\sqrt{1-|q|^2}|\langle Ax,z\rangle| \\ \leq &|q||\langle Ax,x\rangle|+\sqrt{1-|q|^2}||A||. \end{split}$$

Using Lemma 2.2, we get

$$|\langle Ax, y \rangle| \le \sqrt{(1 - |q|^2)(1 + 2\sin^2(\alpha))} w(A) + |q| |\langle Ax, x \rangle|.$$

This implies,

$$|\langle Ax,y\rangle| \leq \left(\sqrt{(1-|q|^2)(1+2\sin^2(\alpha))}+|q|\right)w(A).$$

Taking supremum over all x, y with ||x|| = ||y|| = 1 and  $\langle x, y \rangle = q$ , we have

$$w_q(A) \leq \left(\sqrt{(1-|q|^2)(1+2\sin^2(\alpha))} + |q|\right)w(A).$$

(b) Using the Cartesian decomposition  $A = \mathcal{R}(A) + i\mathcal{I}(A)$ , we obtain

$$\begin{aligned} |\langle Ax, y \rangle| &\leq \sqrt{\langle \mathcal{R}(A)x, y \rangle^2 + \langle \mathcal{I}(A)x, y \rangle^2} \\ &\leq \left(\sqrt{\|\mathcal{R}(A)\|^2 + \|\mathcal{I}(A)\|^2}\right) \|x\| \|y\|. \end{aligned}$$

Using  $||\mathcal{R}(A)|| \le w(A)$  and Lemma 2.1, we have

$$|\langle Ax,y\rangle \leq \left(\sqrt{w^2(A)+\sin^2(\alpha)w^2(A)}\right)||x||||y||.$$

Taking supremum over all x, y on both sides with ||x|| = ||y|| = 1 and  $\langle x, y \rangle = q$ , we have

$$w_q(A) \le \sqrt{1 + \sin^2(\alpha)} w(A).$$

**Remark 2.15.** Theorem 2.14 enables us to explore the ratio  $\frac{w_q(A)}{w(A)}$  in terms of q and the sectorial index  $\alpha$ . Also, for different values of  $\alpha$  (say  $\alpha = 0, \frac{\pi}{4}, \frac{\pi}{2}$ ) we can compare the bounds in part (a) and part (b) as follows:

(i) For 
$$\alpha = \frac{\pi}{2}$$
,  $\sqrt{2} = \sqrt{1 + \sin^2(\alpha)} \le q + \sqrt{3(1 - q^2)} = \sqrt{(1 - |q|^2)\left(1 + 2\sin^2(\alpha)\right)} + |q|$  holds when  $q \in [0, 0.966]$ ,

(ii) For 
$$\alpha = \frac{\pi}{4}$$
,  $\sqrt{\frac{3}{2}} = \sqrt{1 + \sin^2(\alpha)} \le q + \sqrt{2(1 - q^2)} = \sqrt{(1 - |q|^2)\left(1 + 2\sin^2(\alpha)\right)} + |q|$  holds when  $q \in [0, 0.986]$ ,

(iii) For 
$$\alpha = 0$$
,  $1 = \sqrt{1 + \sin^2(\alpha)} \le q + \sqrt{1 - q^2} = \sqrt{(1 - |q|^2) \left(1 + 2\sin^2(\alpha)\right)} + |q|$  holds when  $q \in [0, 1]$ .

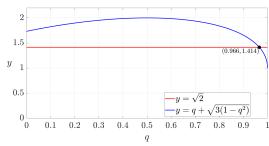


Figure 1: When  $\alpha = \frac{\pi}{2}$ 

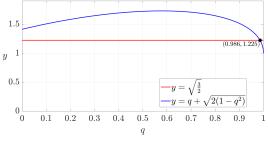


Figure 2: When  $\alpha = \frac{\pi}{4}$ 

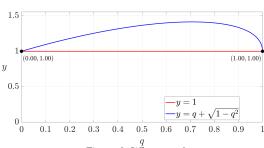


Figure 3: When  $\alpha = 0$ 

The analysis of the figures demonstrates that the bound presented in part (b) is a refinement of the bound presented in part (a) within a specific range of q. As the value of  $\alpha$  decreases, the region of q where refinement occurs expands correspondingly. This observation highlights the relationship between the parameter  $\alpha$  and the extent of refinement achieved in the specified region of q.

Now we are ready to give *q*-numerical radius version of Theorem 1 [20] for sectorial matrices. Furthermore, this result serves as a refinement of Theorem 3.1 in [11].

**Theorem 2.16.** Let  $A \in \prod_{s,\alpha}^n$  and  $q \in \mathcal{D}'$ . Then

$$\frac{|q|^2\cos^2\alpha}{2}||A^*A + AA^*|| \leq w_q^2(A) \leq \left(\sqrt{(1-|q|^2)\left(1+2\sin^2(\alpha)\right)} + |q|\right)^2 \frac{||A^*A + AA^*||}{2}.$$

Proof. From Lemma 2.1, we have

 $||I(A)|| \le \sin(\alpha)w(A) \le \sin(\alpha)||A||.$ 

Using Theorem 2.10(a), we have

$$||I(A)|| \le \frac{1}{|q|} \tan(\alpha) w_q(A). \tag{12}$$

Also,

$$||A^*A + AA^*|| = 2||\mathcal{R}^2(A) + \mathcal{I}^2(A)||$$
  
 
$$\leq 2(||\mathcal{R}(A)||^2 + ||\mathcal{I}(A)||^2).$$

Using equation (12) and Corollary 2.9(a), we have

$$\begin{split} ||A^*A + AA^*|| &\leq 2 \left( \frac{1}{|q|^2} w_q^2(\mathcal{R}(A)) + \tan^2 \alpha \frac{1}{|q|^2} w_q^2(\mathcal{I}(A)) \right) \\ &\leq 2 \left( \frac{1}{|q|^2} w_q^2(A) + \tan^2 \alpha \frac{1}{|q|^2} w_q^2(A) \right). \end{split}$$

Thus, we have

$$\frac{|q|^2 \cos^2 \alpha}{2} ||A^*A + AA^*|| \le w_q^2(A).$$

For the other part, Theorem 2.14(a) implies,

$$w_q^2(A) \le \left(\sqrt{(1-|q|^2)\left(1+2\sin^2(\alpha)\right)}+|q|\right)^2 w^2(A).$$

Using relation (2), we obtain

$$w_q^2(A) \le \left(\sqrt{(1-|q|^2)\left(1+2\sin^2(\alpha)\right)} + |q|\right)^2 \frac{||A^*A + AA^*||}{2}.$$

**Remark 2.17.** (i) If  $q \in (0,1)$ , the upper bound of  $w_q^2(A)$  of the aforementioned theorem refines the upper bound of  $w_q^2(A)$  given in relation (5). Furthermore, if either  $\cos(\alpha) \ge \frac{1}{\sqrt{2}(2-q^2)}$  or  $\alpha \in [0, \frac{\pi}{4})$ , the lower bound of  $w_q^2(A)$  in the aforementioned theorem provides an improvement over the lower bound of  $w_q^2(A)$  in relation (5).

(ii) If q = 1, Theorem 2.16 gives us

$$\frac{\cos^2(\alpha)}{2} ||A^*A + AA^*|| \le w^2(A) \le \frac{||A^*A + AA^*||}{2}.$$
 (13)

Clearly, if  $\alpha \in [0, \frac{\pi}{4})$ , then lower bound of above inequality is a refinement of the lower bound of inequality (2), and if A is a positive definite matrix, then inequality (13) gives us  $w^2(A) = \frac{\|A^*A + AA^*\|}{2}$ .

Next, we focus on the *q*-numerical radius inequalities of commutator and anti-commutator sectorial matrices.

**Theorem 2.18.** Let  $B, C, D \in M_n$ ,  $A \in \prod_{s,\alpha}^n$  and  $q \in \mathcal{D}'$ . Then

$$|q|w_a(ACB \pm BDA) \le 2\sec(\alpha)\max\{||C||, ||D||\}w_a(A)||B||.$$

*Proof.* As the norm satisfies the homogeneity property, we can take  $||C|| \le 1$  and  $||D|| \le 1$ . Consider,

$$w_a(AC \pm DA) \le ||AC \pm DA|| \le 2||A||$$
.

It follows from Theorem 2.10 that,

$$w_q(AC \pm DA) \le \frac{2}{|q|} \sec(\alpha) w_q(A). \tag{14}$$

If C = D = 0, then the required result holds trivially. Let  $\max\{\|C\|, \|D\|\} \neq 0$ . Then  $\left\|\frac{C}{\max\{\|C\|, \|D\|\}}\right\| \leq 1$  and  $\left\|\frac{D}{\max\{\|C\|, \|D\|\}}\right\| \leq 1$ .

Therefore, by replacing C with  $\frac{C}{\max\{\|C\|,\|D\|\}}$  and D with  $\frac{D}{\max\{\|C\|,\|D\|\}}$  in relation (14), we have

$$w_q(AC \pm DA) \le \frac{2}{|q|} \sec(\alpha) \max\{\|C\|, \|D\|\} w_q(A).$$
 (15)

Again, replacing C with CB and D with BD in inequality (15), we obtain that

$$w_q(ACB \pm BDA) \le \frac{2}{|q|} \sec(\alpha) \max\{\|CB\|, \|BD\|\} w_q(A)$$
  
  $\le \frac{2}{|q|} \sec(\alpha) \max\{\|C\|, \|D\|\} w_q(A) \|B\|.$ 

This completes the proof.  $\Box$ 

Remark 2.19. It was obtained in [15, Theorem 11] that

$$w(AB \pm BA) \le 2\sqrt{2}w(A)||B||. \tag{16}$$

Take C = D = I in Theorem 2.18, we have

$$|q|w_q(AB \pm BA) \le 2\sec(\alpha)w_q(A)||B||. \tag{17}$$

If q = 1, relation (17) implies that

$$w(AB \pm BA) \le 2\sec(\alpha)w(A)||B||. \tag{18}$$

Thus, relation (18) is a refinement of the relation (16) if  $\alpha \in \left[0, \frac{\pi}{4}\right]$ .

Replacing *A* and *B* in relation (17), we can obtain the following corollary easily.

**Corollary 2.20.** If  $A, B \in \prod_{s,\alpha}^n$  and  $q \in \mathcal{D}'$ , then

$$|q|w_q(AB \pm BA) \le 2\sec(\alpha)\min\{w_q(A)||B||, w_q(B)||A||\}.$$

It is noteworthy that the literature does not extensively address non-integral powers of the q-numerical radius. In our forthcoming results, we address this gap by establishing a relation between  $w_q^t(A)$  and  $w_q(A^t)$  for  $A \in \prod_{s,\alpha}^n$ . It is well-known that  $\|A^t\| = \|A\|^t$  for positive semidefinite matrix A. The significance of the forthcoming result lies in its ability to establish a relationship between  $w_q(A^{-1})$  and  $w_q^{-1}(A)$ . In general there is no such relation between  $w_q(A^{-1})$  and  $w_q^{-1}(A)$ . For example, let  $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$  and  $q \in (0,1)$ .

Then,  $w_q(A) = \frac{3q+1}{2}$  and  $w_q(A^{-1}) = \frac{3q+1}{4}$ . Here  $w_q(A^{-1}) \le w_q^{-1}(A)$  if  $q \in (0, 0.6095]$  and  $w_q^{-1}(A) \le w_q(A^{-1})$  if  $q \in [0.6095, 1)$ .

**Theorem 2.21.** If  $A \in \prod_{s,\alpha}^n$ ,  $q \in \mathcal{D}'$  and  $t \in [0,1]$ , then

(a) 
$$|q|^{t+1}\cos^t(\alpha)w_a^t(A) \le |q|^tw_q(A^t) \le \sec^{2t}(\alpha)\sec(t\alpha)w_a^t(A)$$
,

(b) 
$$|q|^{t+1}\cos(t\alpha)\cos^{2t}(\alpha)w_q^{-t}(A) \le w_q(A^{-t}).$$

*Proof.* (a) By Lemma 2.3, we have

$$\cos(\alpha)w_q(A) \le ||\mathcal{R}(A)||.$$

For  $t \in [0, 1]$ , Lemma 2.4 implies,

$$w_q(A^t) \le \sec(t\alpha) ||\mathcal{R}(A^t)||.$$

Now,

$$\begin{split} w_q(A^t) &\leq \sec(t\alpha) \sec^{2t}(\alpha) || \mathcal{R}^t(A) || \\ &= \sec(t\alpha) \sec^{2t}(\alpha) || \mathcal{R}(A) ||^t \\ &\leq \left(\frac{1}{|q|}\right)^t \sec(t\alpha) \sec^{2t}(\alpha) w_q^t(\mathcal{R}(A)) \\ &\leq \left(\frac{1}{|q|}\right)^t \sec(t\alpha) \sec^{2t}(\alpha) w_q^t(A), \end{split}$$

where the first inequality follows from Lemma 2.5, while the last two inequalities follow from Corollary 2.9 and, relation (3), respectively.

For the other inequality, we have

$$\begin{aligned} w_q(A^t) &\geq w_q(\mathcal{R}(A^t)) \\ &\geq |q| ||\mathcal{R}(A^t)|| \\ &\geq |q| ||\mathcal{R}^t(A)|| \\ &= |q| ||\mathcal{R}(A)||^t \\ &\geq |q| \cos^t(\alpha) ||A||^t \\ &\geq |q| \cos^t(\alpha) w_q^t(A) \end{aligned}$$

where the first, second, third, and fifth inequalities follow from relation (3), Corollary 2.9, Lemma 2.5, and Lemma 2.3, respectively. Finally, we have

$$|q|\cos^t(\alpha)w_q^t(A) \le w_q(A^t) \le \frac{1}{|q|^t}\sec^{2t}(\alpha)\sec(t\alpha)w_q^t(A).$$

(b) Using Theorem 2.10 and Lemma 2.3, we obtain that

$$w_q(A^{-t}) \ge |q| \cos(t\alpha) ||A^{-t}||$$
  
 
$$\ge |q| \cos(t\alpha) ||\mathcal{R}(A^{-t})||.$$

Using Lemma 2.6, Corollary 2.9(a) and the fact that  $||A||^{-1} \le ||A^{-1}||$ , where A is invertible matrix, we have

$$\begin{aligned} w_q(A^{-t}) &\geq |q| \cos(t\alpha) \cos^{2t}(\alpha) ||\mathcal{R}^{-t}(A)|| \\ &\geq |q| \cos(t\alpha) \cos^{2t}(\alpha) ||\mathcal{R}(A)||^{-t} \\ &\geq |q|^{t+1} \cos(t\alpha) \cos^{2t}(\alpha) w_q^{-t}(\mathcal{R}(A)) \\ &\geq |q|^{t+1} \cos(t\alpha) \cos^{2t}(\alpha) w_q^{-t}(A). \end{aligned}$$

Hence the required result.

**Remark 2.22.** (i) For q = 1, the lower bound in the part (a) of the aforementioned theorem represents an improvement over the following lower bound, which is mentioned in [3, Theorem 3.1]

$$\cos(t\alpha)\cos^t(\alpha)w^t(A) \le w(A^t) \le \sec^{2t}(\alpha)\sec(t\alpha)w^t(A)$$
.

(ii) Theorem 2.7 and Theorem 2.21(a) give us the following significant relation,

$$|q|^{2t+1}||A||^t \le |q|^t w_a(A^t) \le ||A||^t, \tag{19}$$

where A is a positive definite matrix. If q = 1, then relation (19) gives us the well-known equality  $||A^t|| = ||A||^t$ , A is positive definite matrix.

(iii) The case t = 1 in Theorem 2.21(b) provides

$$|q|^2 \cos^3(\alpha) w_q^{-1}(A) \le w_q(A^{-1}),$$
 (20)

and if A is positive definite matrix, relation (20) implies that

$$|q|^2 w_q^{-1}(A) \le w_q(A^{-1}).$$

## 3. q-Numerical Radius Inequalities of $2 \times 2$ Operator Matrices

Assuming  $\mathcal{H}$  represents a complex Hilbert space equipped with the inner product  $\langle .,. \rangle$ , the direct sum  $\mathcal{H} \oplus \mathcal{H}$  constructs another Hilbert space, and any operator  $T \in \mathcal{B}(\mathcal{H} \oplus \mathcal{H})$  can be represented by a  $2 \times 2$  operator matrix in the following manner

$$\mathbf{T} = \begin{bmatrix} Z & X \\ Y & W \end{bmatrix}$$

where Z, X, Y, and W are in  $\mathcal{B}(\mathcal{H})$ . In this section, our objective is to analyze the properties of the q-numerical radius of operators having off-diagonal representation of the form  $\begin{bmatrix} 0 & X \\ Y & 0 \end{bmatrix}$ . Since the q-numerical radius is weakly unitarily invariant, i.e.

$$W_q(U^*TU) = W_q(T)$$

for any unitary operator U on  $\mathcal{H}$ , the following relations,

$$w_q \begin{pmatrix} 0 & X \\ Y & 0 \end{pmatrix} = w_q \begin{pmatrix} 0 & X \\ e^{i\theta} Y & 0 \end{pmatrix} \text{ for all } \theta \in \mathbb{R}$$
 (21)

and

$$w_q \begin{pmatrix} 0 & X \\ Y & 0 \end{pmatrix} = w_q \begin{pmatrix} 0 & Y \\ X & 0 \end{pmatrix}, \tag{22}$$

can be easily deduced by considering the unitary operator U as  $\begin{bmatrix} I & 0 \\ 0 & e^{-\frac{i\theta}{2}}I \end{bmatrix}$ ,  $\theta \in \mathbb{R}$  and  $\begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix}$ , respectively.

Next, for  $q \in [0,1]$ , some observations of the q-numerical radius of  $\begin{bmatrix} 0 & A \\ A & 0 \end{bmatrix}$  are mentioned, where A is a Hermitian matrix. Let  $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_n$  be the eigenvalues of A. Thus by using Theorem 3.4 [17, p.384], we have

$$w_q(A) = \frac{q}{2}|\lambda_1 + \lambda_n| + \frac{1}{2}|\lambda_1 - \lambda_n|.$$

Also, the largest eigenvalue of  $\begin{bmatrix} 0 & A \\ A & 0 \end{bmatrix}$  is  $\lambda_{max} = \max\{-\lambda_n, \lambda_1\}$  and the smallest eigenvalue of  $\begin{bmatrix} 0 & A \\ A & 0 \end{bmatrix}$  is  $\lambda_{min} = \min\{-\lambda_1, \lambda_n\}$ . Therefore

Therefore, 
$$w_q \begin{pmatrix} 0 & A \\ A & 0 \end{pmatrix} = \begin{cases} \frac{q}{2} |\lambda_1 + \lambda_n| + \frac{1}{2} |\lambda_1 - \lambda_n| & \text{if } \lambda_{max} = \lambda_1, \lambda_{min} = \lambda_n \\ \frac{q}{2} |\lambda_1 + \lambda_n| + \frac{1}{2} |\lambda_1 - \lambda_n| & \text{if } \lambda_{max} = -\lambda_n, \lambda_{min} = -\lambda_1 \\ |\lambda_1| & \text{if } \lambda_{max} = \lambda_1, \lambda_{min} = -\lambda_1 \\ |\lambda_n| & \text{if } \lambda_{max} = -\lambda_n, \lambda_{min} = \lambda_n. \end{cases}$$

and  $w_q(A) \leq w_q\left(\begin{bmatrix} 0 & A \\ A & 0 \end{bmatrix}\right)$ .

In particular, let A be a positive semidefinite  $n \times n$  matrix with eigenvalues  $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_n \geq 0$ , we have  $\lambda_{max} = \lambda_1$ ,  $\lambda_{min} = -\lambda_1$  and

$$w_q\left(\begin{bmatrix}0&A\\A&0\end{bmatrix}\right) = ||A|| = w(A).$$

Following this, we will establish the bounds for *q*-numerical radius of  $\begin{bmatrix} 0 & Y \\ Y & 0 \end{bmatrix}$  and  $\begin{bmatrix} 0 & X \\ Y & 0 \end{bmatrix}$ ,  $X, Y \in \mathcal{B}(\mathcal{H})$ .

For  $Y \in \mathcal{B}(\mathcal{H}), \begin{bmatrix} 0 & Y \\ Y & 0 \end{bmatrix}$  satisfies the equality  $w \begin{pmatrix} \begin{bmatrix} 0 & Y \\ Y & 0 \end{bmatrix} \end{pmatrix} = w(Y)$  [18]. However, a similar assertion may not

$$\mathbf{T} = \begin{bmatrix} 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 2 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \end{bmatrix}.$$

Then  $w_q(\mathbf{T}) = 3$  and  $w_q(\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}) = \frac{5q}{2} + \frac{1}{2}$ . Clearly,  $w_q(\mathbf{T}) \neq w_q \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$  except q = 1 but  $w_q \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \leq w_q(\mathbf{T})$ . With this observation, we present the following result

**Proposition 3.1.** Let  $X, Y \in \mathcal{B}(\mathcal{H})$  and  $q \in \mathcal{D}$ , we have

(a) 
$$\max\{w_q(X-Y), w_q(X+Y)\} \le w_q(\begin{bmatrix} X & Y \\ Y & X \end{bmatrix}) \le \max\{\|X-Y\|, \|X+Y\|\},$$

(b) 
$$\frac{1}{2} \max\{w_q(X+Y), w_q(X-Y)\} \le w_q \begin{pmatrix} 0 & X \\ Y & 0 \end{pmatrix} \le \frac{1}{2} (\|X+Y\| + \|X-Y\|).$$

Proof. (a) From [24, Remark 4(i)], we have

$$\max\{w_q(X-Y),w_q(X+Y)\}\leq w_q\left(\begin{bmatrix}X-Y&0\\0&X+Y\end{bmatrix}\right)\leq \max\{\|X-Y\|,\|X+Y\|\}.$$

As 
$$w_q(U^*TU) = w_q(T)$$
 holds, taking  $U = \frac{1}{\sqrt{2}} \begin{bmatrix} I & I \\ -I & I \end{bmatrix}$ ,

we have  $\begin{bmatrix} X & Y \\ Y & X \end{bmatrix}$  is unitarily similar to  $\begin{bmatrix} X-Y & 0 \\ 0 & X+Y \end{bmatrix}$ . This implies,

$$\max\{w_q(X - Y), w_q(X + Y)\} \le w_q\left(\begin{bmatrix} X & Y \\ Y & X \end{bmatrix}\right) \le \max\{\|X - Y\|, \|X + Y\|\}.$$

(b) The triangle inequality of *q*-numerical radius provides

$$w_q\left(\begin{bmatrix}0&X+Y\\X+Y&0\end{bmatrix}\right)\leq w_q\left(\begin{bmatrix}0&X\\Y&0\end{bmatrix}\right)+w_q\left(\begin{bmatrix}0&Y\\X&0\end{bmatrix}\right).$$

From the relation  $w_q \begin{pmatrix} 0 & X \\ Y & 0 \end{pmatrix} = w_q \begin{pmatrix} 0 & Y \\ X & 0 \end{pmatrix}$  (equality 22), it follows

$$w_q\left(\begin{bmatrix}0&X+Y\\X+Y&0\end{bmatrix}\right)\leq 2w_q\left(\begin{bmatrix}0&X\\Y&0\end{bmatrix}\right).$$

Taking X = 0 in part (a), we have  $w_q(Y) \le w_q(\begin{bmatrix} 0 & Y \\ Y & 0 \end{bmatrix})$ . Therefore, using relation (21), we obtain

$$w_q(X+Y) \leq w_q\left(\begin{bmatrix} 0 & X+Y \\ X+Y & 0 \end{bmatrix}\right) \leq 2w_q\left(\begin{bmatrix} 0 & X \\ Y & 0 \end{bmatrix}\right) = 2w_q\left(\begin{bmatrix} 0 & X \\ e^{i\theta}Y & 0 \end{bmatrix}\right).$$

Replacing Y with -Y, and taking  $\theta = \pi$ , we have

$$w_q(X-Y) \le w_q\left(\begin{bmatrix}0 & X-Y\\ X-Y & 0\end{bmatrix}\right) \le 2w_q\left(\begin{bmatrix}0 & X\\ Y & 0\end{bmatrix}\right).$$

Thus,

$$w_q\left(\begin{bmatrix} 0 & X \\ Y & 0 \end{bmatrix}\right) \ge \frac{1}{2} \max\{w_q(X+Y), w_q(X-Y)\}.$$

Let 
$$U = \frac{1}{\sqrt{2}} \begin{bmatrix} I & -I \\ I & I \end{bmatrix}$$
. Then

$$\begin{split} w_q \begin{pmatrix} \begin{bmatrix} 0 & X \\ Y & 0 \end{bmatrix} \end{pmatrix} &= w_q \begin{pmatrix} U^* \begin{bmatrix} 0 & X \\ Y & 0 \end{bmatrix} U \end{pmatrix} \\ &= \frac{1}{2} w_q \begin{pmatrix} \begin{bmatrix} X+Y & X-Y \\ -(X-Y) & -(X+Y) \end{bmatrix} \end{pmatrix} \\ &\leq \frac{1}{2} w_q \begin{pmatrix} \begin{bmatrix} X+Y & 0 \\ 0 & -(X+Y) \end{bmatrix} + \begin{bmatrix} 0 & X-Y \\ -(X-Y) & 0 \end{bmatrix} \end{pmatrix} \\ &\leq \frac{1}{2} \begin{pmatrix} \left\| \begin{bmatrix} X+Y & 0 \\ 0 & -(X+Y) \end{bmatrix} \right\| + \left\| \begin{bmatrix} 0 & X-Y \\ -(X-Y) & 0 \end{bmatrix} \right\| \end{pmatrix} \\ &= \frac{1}{2} \left( \left\| [X+Y] \right\| + \left\| [X-Y] \right\| \right). \end{split}$$

Hence the required result holds.

**Remark 3.2.** If we take X = 0 in part (a) of the aforementioned result, we have

$$w_q(Y) \le w_q \begin{pmatrix} 0 & Y \\ Y & 0 \end{pmatrix} \le ||Y||. \tag{23}$$

For  $Y = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ , we have  $||Y|| = w_q(Y) = w_q(\begin{bmatrix} 0 & Y \\ Y & 0 \end{bmatrix}) = 1$ . Thus, the bounds mentioned in relation (23) are best possible.

**Corollary 3.3.** Let  $X \in \mathcal{B}(\mathcal{H})$  and  $q \in \mathcal{D}$ . Then

(a) 
$$|q| \max\{||\mathcal{R}(X)||, ||\mathcal{I}(X)||\} \le w_q \begin{pmatrix} 0 & X \\ X^* & 0 \end{pmatrix} \le ||\mathcal{R}(X)|| + ||\mathcal{I}(X)||,$$

$$(b) \ \frac{w_q(X)}{2} \le w_q \left( \begin{bmatrix} 0 & \mathcal{R}(X) \\ I(X) & 0 \end{bmatrix} \right) \le ||X||,$$

(c) if X is Hermitian, then 
$$|q|||X|| \le w_q \begin{pmatrix} 0 & X \\ X & 0 \end{pmatrix} \le ||X||$$
,

(d) if 
$$X^2 = 0$$
, then  $|q|||\mathcal{R}(X)|| \le w_q \begin{pmatrix} 0 & X \\ X^* & 0 \end{pmatrix} \le 2||\mathcal{R}(X)||$ .

*Proof.* Taking  $Y = X^*$  in Proposition 3.1(b) and using Corollary 2.9(a), we can easily obtain the result mentioned in part (a). Replacing Y with iY in Proposition 3.1(b), we have

$$\frac{1}{2} \max\{w_q(X+iY), w_q(X-iY)\} \le w_q \begin{pmatrix} 0 & X \\ iY & 0 \end{pmatrix} \le \frac{1}{2} (\|X+iY\| + \|X-iY\|).$$

For  $\theta = \frac{\pi}{2}$ , from the relation  $w_q \begin{pmatrix} 0 & X \\ Y & 0 \end{pmatrix} = w_q \begin{pmatrix} 0 & X \\ e^{i\theta}Y & 0 \end{pmatrix}$  (equality (21)), it follows

$$\frac{1}{2}\max\{w_q(X+iY), w_q(X-iY)\} \le w_q\left(\begin{bmatrix} 0 & X \\ Y & 0 \end{bmatrix}\right) \le \frac{1}{2}(\|X+iY\| + \|X-iY\|). \tag{24}$$

The inequalities in part (b) follow by replacing X with  $\mathcal{R}(X)$  and Y with I(X) in (24). Moreover, the relations in part (c) and part (d) follow from part (a) when X is Hermitian and  $X^2 = 0$  ( $||\mathcal{R}(X)|| = ||I(X)||$ ), respectively.  $\square$ 

Let T be a bounded linear operator, acting on a Hilbert space  $\mathcal{H}$ . Then there exists a unique complex number  $c \in \overline{W(T)}$  such that [29]

$$m(T) = \inf_{\lambda \in \mathbb{C}} ||T - \lambda I|| = ||T - cI||. \tag{25}$$

Prasanna [25] termed m(T) as the transcendental radius and defined it as

$$m^{2}(T) = \sup_{\|x\|=1} \left( \|Tx\|^{2} - |\langle Tx, x \rangle|^{2} \right).$$
 (26)

Consider an orthonormal set *O* that contains *x* and *z*. Bessel's inequality implies

$$\sum_{y' \in O} |\langle Tx, y' \rangle|^2 \leq ||Tx||^2.$$

$$i.e., \quad |\langle Tx,z\rangle|^2 \leq \sum_{y' \in O \backslash \{x\}} |\langle Tx,y'\rangle|^2 \leq \|Tx\|^2 - |\langle Tx,x\rangle|^2.$$

Therefore, relations (25) and (26) imply,

$$|\langle Tx, z \rangle| \le (||Tx||^2 - |\langle Tx, x \rangle|^2)^{\frac{1}{2}} \le m(T) = ||T - cI||, \ c \in \overline{W(T)}.$$
 (27)

Using m(T), the following result gives us an upper bound of  $w_q \begin{pmatrix} 0 & X \\ Y & 0 \end{pmatrix}$  using the concept of non-negative functions f and g. The following lemma is used in the next theorem.

**Lemma 3.4.** [19, Theorem 1] Let  $T \in \mathcal{B}(\mathcal{H})$ , f and g be non-negative functions on  $[0, \infty)$  which are continuous and satisfy the relation f(t)g(t) = t for all  $t \in [0, \infty)$ . Then  $|\langle Tx, y \rangle| \le ||f(|T|)x||||g(|T^*|)y||$  for all  $x, y \in \mathcal{H}$ .

**Theorem 3.5.** Let f and g satisfy the conditions of Lemma 3.4,  $q \in \mathcal{D}$ , and  $c \in \overline{W(T)}$ . Then, we have

(a)

$$\begin{split} w_q\left(\begin{bmatrix} 0 & X \\ Y & 0 \end{bmatrix}\right) \leq & \frac{1}{2} \max\{||f^2(|Y|) + |q|^2g^2(|X^*|)||, ||f^2(|X|) + |q|^2g^2(|Y^*|)||\} + \frac{1 - |q|^2}{2} \max\{||g^2(|X^*|)||, ||g^2(|Y^*|)||\} \\ & + |q| \sqrt{1 - |q|^2} \max\{||g^2(|X^*|) - cI||, ||g^2(|Y^*|) - cI||\}. \end{split}$$

$$\begin{split} w_q^2\left(\begin{bmatrix} 0 & X \\ Y & 0 \end{bmatrix}\right) &\leq \frac{1}{2}\max\{||f^4(|Y|) + |q|^2g^4(|X^*|)||, ||f^4(|X|) + |q|^2g^4(|Y^*|)||\} + \frac{1 - |q|^2}{2}\max\{||g^4(|X^*|)||, ||g^4(|Y^*|)||\} \\ &+ |q|\sqrt{1 - |q|^2}\max\{||g^4(|X^*|) - cI||, ||g^4(|Y^*|) - cI||\}. \end{split}$$

*Proof.* (a) Let  $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathcal{H}$ , and  $y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \in \mathcal{H}$  with ||x|| = ||y|| = 1 and  $\langle x, y \rangle = q$ . From Lemma 3.4, we have

$$\begin{split} \left| \left| \left( \begin{bmatrix} 0 & X \\ Y & 0 \end{bmatrix} x, y \right) \right| &\leq \left\| f \left( \begin{bmatrix} 0 & X \\ Y & 0 \end{bmatrix} \right) x \right\| \left\| g \left( \begin{bmatrix} 0 & Y^* \\ X^* & 0 \end{bmatrix} \right) y \right\| \\ &\leq \left\langle f^2 \begin{bmatrix} 0 & X \\ Y & 0 \end{bmatrix} x, x \right\rangle^{\frac{1}{2}} \left\langle g^2 \begin{bmatrix} 0 & Y^* \\ X^* & 0 \end{bmatrix} y, y \right\rangle^{\frac{1}{2}} \\ &\leq \left\langle f^2 \begin{bmatrix} |Y| & 0 \\ 0 & |X| \end{bmatrix} x, x \right\rangle^{\frac{1}{2}} \left\langle g^2 \begin{bmatrix} |X^*| & 0 \\ 0 & |Y^*| \end{bmatrix} y, y \right\rangle^{\frac{1}{2}} \\ &\leq \frac{1}{2} \left( \left\langle f^2 \begin{bmatrix} |Y| & 0 \\ 0 & |X| \end{bmatrix} x, x \right\rangle + \left\langle g^2 \begin{bmatrix} |X^*| & 0 \\ 0 & |Y^*| \end{bmatrix} y, y \right\rangle \right) \\ &\leq \frac{1}{2} \left( \left\langle f^2 \begin{bmatrix} |Y| & 0 \\ 0 & |X| \end{bmatrix} x, x \right\rangle + \left\langle g^2 \begin{bmatrix} |X^*| & 0 \\ 0 & |Y^*| \end{bmatrix} \overline{q} x + \sqrt{1 - |q|^2} z, \overline{q} x + \sqrt{1 - |q|^2} z \right) \right) \\ &\leq \frac{1}{2} \left\langle f^2 \begin{bmatrix} |Y| & 0 \\ 0 & |X| \end{bmatrix} x, x \right\rangle + \frac{|q|^2}{2} \left\langle g^2 \begin{bmatrix} |X^*| & 0 \\ 0 & |Y^*| \end{bmatrix} x, x \right\rangle + \frac{1 - |q|^2}{2} \left\langle g^2 \begin{bmatrix} |X^*| & 0 \\ 0 & |Y^*| \end{bmatrix} z, z \right\rangle \\ &+ \frac{1}{2} \left( \overline{q} \sqrt{1 - |q|^2} \left\langle g^2 \begin{bmatrix} |X^*| & 0 \\ 0 & |Y^*| \end{bmatrix} x, z \right) + q \sqrt{1 - |q|^2} \left\langle g^2 \begin{bmatrix} |X^*| & 0 \\ 0 & |Y^*| \end{bmatrix} z, x \right\rangle \right) \\ &\leq \frac{1}{2} \left\langle f^2 \begin{bmatrix} |Y| & 0 \\ 0 & |X| \end{bmatrix} x, x \right\rangle + \frac{|q|^2}{2} \left\langle g^2 \begin{bmatrix} |X^*| & 0 \\ 0 & |Y^*| \end{bmatrix} x, x \right\rangle \\ &+ \frac{1 - |q|^2}{2} \left\langle g^2 \begin{bmatrix} |X^*| & 0 \\ 0 & |Y^*| \end{bmatrix} z, z \right\rangle + \mathcal{R} \left( \overline{q} \sqrt{1 - |q|^2} \left\langle g^2 \begin{bmatrix} |X^*| & 0 \\ 0 & |Y^*| \end{bmatrix} x, z \right\rangle \right) \\ &\leq \frac{1}{2} \left\langle f^2 \begin{bmatrix} |Y| & 0 \\ 0 & |X| \end{bmatrix} x, x \right\rangle + \frac{|q|^2}{2} \left\langle g^2 \begin{bmatrix} |X^*| & 0 \\ 0 & |Y^*| \end{bmatrix} x, x \right\rangle \\ &+ \frac{1 - |q|^2}{2} \left\langle g^2 \begin{bmatrix} |X^*| & 0 \\ 0 & |X| \end{bmatrix} z, z \right\rangle + |q| \sqrt{1 - |q|^2} \left| \left\langle g^2 \begin{bmatrix} |X^*| & 0 \\ 0 & |Y^*| \end{bmatrix} x, z \right\rangle \right|. \end{split}$$

Using relation (27), we have

$$\begin{split} \left| \left\langle \begin{bmatrix} 0 & X \\ Y & 0 \end{bmatrix} x, y \right\rangle \right| &\leq & \frac{1}{2} \left\langle f^2 \begin{bmatrix} |Y| & 0 \\ 0 & |X| \end{bmatrix} x, x \right\rangle + \frac{|q|^2}{2} \left\langle g^2 \begin{bmatrix} |X^*| & 0 \\ 0 & |Y^*| \end{bmatrix} x, x \right\rangle \\ &+ \frac{1 - |q|^2}{2} \left\langle g^2 \begin{bmatrix} |X^*| & 0 \\ 0 & |Y^*| \end{bmatrix} z, z \right\rangle \\ &+ |q| \sqrt{1 - |q|^2} \left\| g^2 \begin{bmatrix} |X^*| & 0 \\ 0 & |Y^*| \end{bmatrix} - c \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix} \right\|, \text{ where } c \in \overline{W(T)} \\ &\leq & \frac{1}{2} \left\langle \begin{bmatrix} f^2(|Y|) & 0 \\ 0 & f^2(|X|) \end{bmatrix} x, x \right\rangle + \frac{|q|^2}{2} \left\langle \begin{bmatrix} g^2(|X^*|) & 0 \\ 0 & g^2(|Y^*|) \end{bmatrix} x, x \right\rangle \\ &+ \frac{1 - |q|^2}{2} \left\langle \begin{bmatrix} g^2(|X^*|) & 0 \\ 0 & g^2(|Y^*|) \end{bmatrix} z, z \right\rangle \\ &+ |q| \sqrt{1 - |q|^2} \left\| \begin{bmatrix} g^2(|X^*|) & 0 \\ 0 & g^2(|Y^*|) \end{bmatrix} - c \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix} \right\| \\ &\leq & \frac{1}{2} \left\langle \begin{bmatrix} f^2(|Y|) + |q|^2 g^2(|X^*|) & 0 \\ 0 & g^2(|Y^*|) \end{bmatrix} z, z \right\rangle \\ &+ \frac{1 - |q|^2}{2} \left\langle \begin{bmatrix} g^2(|X^*|) & 0 \\ 0 & g^2(|Y^*|) \end{bmatrix} z, z \right\rangle \\ &+ |q| \sqrt{1 - |q|^2} \left\| \begin{bmatrix} g^2(|X^*|) & 0 \\ 0 & g^2(|Y^*|) \end{bmatrix} z, z \right\rangle \\ &+ |q| \sqrt{1 - |q|^2} \left\| \begin{bmatrix} g^2(|X^*|) & 0 \\ 0 & g^2(|Y^*|) \end{bmatrix} - c \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix} \right\| \end{split}$$

Therefore,

$$\begin{split} \left| \left\langle \begin{bmatrix} 0 & X \\ Y & 0 \end{bmatrix} x, y \right\rangle \right| &\leq & \frac{1}{2} \left( \left\| \begin{bmatrix} f^2(|Y|) + |q|^2 g^2(|X^*|) & 0 \\ 0 & f^2(|X|) + |q|^2 g^2(|Y^*|) \end{bmatrix} \right\| \right) \\ &+ \frac{1 - |q|^2}{2} \left\| \begin{bmatrix} g^2(|X^*|) & 0 \\ 0 & g^2(|Y^*|) \end{bmatrix} \right\| \\ &+ |q| \sqrt{1 - |q|^2} \left\| \begin{bmatrix} g^2(|X^*|) & 0 \\ 0 & g^2(|Y^*|) \end{bmatrix} - c \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix} \right\| \\ &= & \frac{1}{2} \max\{ ||f^2(|Y|) + |q|^2 g^2(|X^*|)||, ||f^2(|X|) + |q|^2 g^2(|Y^*|)||\} \\ &+ \frac{1 - |q|^2}{2} \max\{ ||g^2(|X^*|)||, ||g^2(|Y^*|)||\} \\ &+ |q| \sqrt{1 - |q|^2} \max\{ ||g^2(|X^*|) - cI||, ||g^2(|Y^*|) - cI||\}. \end{split}$$

Taking supremum for all  $x, y \in \mathcal{H}$  with ||x|| = ||y|| = 1 and  $\langle x, y \rangle = q$ , we obtain

$$\begin{split} w_q\left(\begin{bmatrix} 0 & X \\ Y & 0 \end{bmatrix}\right) \leq & \frac{1}{2} \max\{||f^2(|Y|) + |q|^2 g^2(|X^*|)||, ||f^2(|X|) + |q|^2 g^2(|Y^*|)||\} \\ & + \frac{1 - |q|^2}{2} \max\{||g^2(|X^*|)||, ||g^2(|Y^*|)||\} \\ & + |q| \sqrt{1 - |q|^2} \max||\{g^2(|X^*|) - cI||, ||g^2(|Y^*|) - cI||\}. \end{split}$$

(b) From Lemma 3.4, it follows

$$\begin{split} \left| \left\langle \begin{bmatrix} 0 & X \\ Y & 0 \end{bmatrix} x, y \right\rangle \right|^2 & \leq \left\| f \left( \left\| \begin{bmatrix} 0 & X \\ Y & 0 \end{bmatrix} \right\| \right) x \right\|^2 \left\| g \left( \left\| \begin{bmatrix} 0 & Y^* \\ X^* & 0 \end{bmatrix} \right\| \right) y \right\|^2 \\ & \leq \left\langle f^2 \begin{bmatrix} |Y| & 0 \\ 0 & |X| \end{bmatrix} x, x \right\rangle \left\langle g^2 \begin{bmatrix} |X^*| & 0 \\ 0 & |Y^*| \end{bmatrix} y, y \right\rangle \\ & \leq \frac{1}{2} \left( \left\langle f^2 \begin{bmatrix} |Y| & 0 \\ 0 & |X| \end{bmatrix} x, x \right\rangle^2 + \left\langle g^2 \begin{bmatrix} |X^*| & 0 \\ 0 & |Y^*| \end{bmatrix} y, y \right\rangle^2 \right) \\ & \leq \frac{1}{2} \left( \left\langle f^4 \begin{bmatrix} |Y| & 0 \\ 0 & |X| \end{bmatrix} x, x \right\rangle + \left\langle g^4 \begin{bmatrix} |X^*| & 0 \\ 0 & |Y^*| \end{bmatrix} y, y \right\rangle \right). \end{split}$$

A similar calculation as part (a) follows the required result.

**Remark 3.6.** Several upper bounds of  $w_q \begin{pmatrix} 0 & X \\ Y & 0 \end{pmatrix}$  follow by choosing particular f and g.

(i) Let  $f(t) = t^{\gamma}$  and  $g(t) = t^{1-\gamma}$ ,  $0 \le \gamma \le 1$ . Then Theorem 3.5(a) gives us,

$$\begin{split} w_q\left(\begin{bmatrix} 0 & X \\ Y & 0 \end{bmatrix}\right) \leq & \frac{1}{2} \max\{|||Y|^{2\gamma} + |q|^2|X^*|^{2(1-\gamma)}||, |||X|^{2\gamma} + |q|^2|Y^*|^{2(1-\gamma)}||\} \\ & + \frac{1 - |q|^2}{2} \max\{|||X^*|^{2(1-\gamma)}||, |||Y^*|^{2(1-\gamma)}||\} \\ & + |q|\sqrt{1 - |q|^2} \max\{|||X^*|^{2(1-\gamma)} - cI||, |||Y^*|^{2(1-\gamma)} - cI||\}. \end{split}$$

*If we take*  $\gamma = \frac{1}{2}$  *in the aforementioned inequality, then* 

$$\begin{split} w_q\left(\begin{bmatrix} 0 & X \\ Y & 0 \end{bmatrix}\right) \leq & \frac{1}{2} \max\{||\;|Y| + |q|^2|X^*|\;||, ||\;|X| + |q|^2|Y^*|\;||\} \\ & + \frac{1 - |q|^2}{2} \max\{||\;|X^*|\;||, ||\;|Y^*|\;||\} \\ & + |q|\; \sqrt{1 - |q|^2} \max\{||\;|X^*| - cI||, ||\;|Y^*| - cI||\}. \end{split}$$

When q = 1, we have

$$w\left(\begin{bmatrix} 0 & X \\ Y & 0 \end{bmatrix}\right) \le \frac{1}{2} \max\{||f^2(|Y|) + g^2(|X^*|)||, ||f^2(|X|) + g^2(|Y^*|)||\}$$

which is mentioned in [2, Theorem 1].

(ii) If we take  $f(t) = \frac{t}{1+t}$  and g(t) = 1 + t in Theorem 3.5(a), we have

$$\begin{split} w_q \left( \begin{bmatrix} 0 & X \\ Y & 0 \end{bmatrix} \right) &\leq \frac{1}{2} \max \left\{ \left\| \left( \frac{|Y|}{I + |Y|} \right)^2 + |q|^2 \left( I + |X^*| \right)^2 \right\|, \left\| \left( \frac{|X|}{I + |X|} \right)^2 + |q|^2 \left( I + |Y^*| \right)^2 \right\| \right\} \\ &+ \frac{1 - |q|^2}{2} \max \{ ||(I + |X^*|)^2||, ||(I + |Y^*|)^2|| \} \\ &+ |q| \sqrt{1 - |q|^2} \max ||\{(I + |X^*|)^2 - cI||, ||(I + |Y^*|)^2 - cI|| \}. \end{split}$$

The following result provides a lower bound of the *q*-numerical radius of  $\begin{bmatrix} 0 & X \\ Y & 0 \end{bmatrix}$ .

**Theorem 3.7.** Let  $X, Y \in \mathcal{B}(\mathcal{H})$  and  $q \in \mathcal{D}$ , we have

$$w_q\left(\begin{bmatrix}0 & X\\ Y & 0\end{bmatrix}\right) \geq \frac{|q|}{2}\max\{||X||,||Y||\} + \frac{|q|}{4}|\;||X+Y^*|| - ||X-Y^*||\;|.$$

Proof. Corollary 2.9 implies that  $w_q \begin{pmatrix} 0 & X \\ Y & 0 \end{pmatrix} \ge |q| \| \mathcal{R} \begin{pmatrix} 0 & X \\ Y & 0 \end{pmatrix} \|$  and  $w_q \begin{pmatrix} 0 & X \\ Y & 0 \end{pmatrix} \ge |q| \| \mathcal{I} \begin{pmatrix} 0 & X \\ Y & 0 \end{pmatrix} \|$ . This implies,

$$\begin{split} w_q \begin{pmatrix} 0 & X \\ Y & 0 \end{pmatrix} \geq |q| \, \left\| \mathcal{R} \begin{pmatrix} 0 & X \\ Y & 0 \end{pmatrix} \right\| &= \frac{|q|}{2} \, \left\| \begin{pmatrix} 0 & X + Y^* \\ Y + X^* & 0 \end{pmatrix} \right\| \\ &= \frac{|q|}{2} \max\{\|X + Y^*\|, \|Y + X^*\|\} \\ &= \frac{|q|}{2} \|X + Y^*\|. \end{split}$$

Also,

$$\begin{split} w_q \begin{pmatrix} \begin{bmatrix} 0 & X \\ Y & 0 \end{bmatrix} \end{pmatrix} &\geq |q| \, \left\| I \begin{pmatrix} \begin{bmatrix} 0 & X \\ Y & 0 \end{bmatrix} \right) \right\| = \frac{|q|}{2} \, \left\| \begin{pmatrix} \begin{bmatrix} 0 & X - Y^* \\ Y - X^* & 0 \end{bmatrix} \right) \right\| \\ &= \frac{|q|}{2} \max\{||X - Y^*||, ||Y - X^*||\} \\ &= \frac{|q|}{2} ||X - Y^*||. \end{split}$$

Finally,

$$\begin{split} w_q \begin{pmatrix} 0 & X \\ Y & 0 \end{pmatrix} & \geq \frac{|q|}{2} \max\{||X + Y^*||, ||X - Y^*||\} \\ & = \frac{|q|}{4} (||X + Y^*|| + ||X - Y^*||) + \frac{|q|}{4} |||X + Y^*|| - ||X - Y^*||| \\ & \geq \frac{|q|}{4} (||(X + Y^*) \pm (X - Y^*)||) + \frac{|q|}{4} |||X + Y^*|| - ||X - Y^*||| \\ & \geq \frac{|q|}{2} \max\{||X||, ||Y||\} + \frac{|q|}{4} |||X + Y^*|| - ||X - Y^*|||. \end{split}$$

Taking X = Y in the aforementioned result, we obtain the following corollary.

**Corollary 3.8.** *If*  $X \in \mathcal{B}(\mathcal{H})$  *and*  $q \in \mathcal{D}$ *, then we have* 

$$w_q \begin{pmatrix} 0 & X \\ X & 0 \end{pmatrix} \ge \frac{|q|}{2} ||X|| + \frac{|q|}{2} ||\mathcal{R}(X)|| - ||I(X)|||. \tag{28}$$

**Remark 3.9.** For q = 1, (28) gives us a refinement of inequality (1). Also, if  $X^2 = 0$ , then relation (28) gives us a significant result as follows

$$\frac{|q|}{2}||X|| \le w_q \left( \begin{bmatrix} 0 & X \\ X & 0 \end{bmatrix} \right) \le ||X||.$$

In our next result, we extend the following well-known equality for *q*-numerical radius.

**Lemma 3.10.** [1] Let  $T, S \in \mathcal{B}(\mathcal{H})$  be positive definite operators. Then

$$w\left(\begin{bmatrix} 0 & T \\ S & 0 \end{bmatrix}\right) = \frac{1}{2}||T + S||.$$

To prove this, we need the following relation.

$$|q|\sup_{\theta\in\mathbb{R}}||\mathcal{R}(e^{i\theta}T)||\leq \sup_{\theta\in\mathbb{R}}w_q(\mathcal{R}(e^{i\theta}T))\leq \sup_{\theta\in\mathbb{R}}w_q(e^{i\theta}T)=w_q(T).$$

Hence, for  $T \in \mathcal{B}(\mathcal{H})$ , we have

$$w_q(T) \ge |q| \sup_{\theta \in \mathbb{R}} ||\mathcal{R}(e^{i\theta}T)||.$$

**Theorem 3.11.** *Let*  $X, Y \in \mathcal{B}(\mathcal{H})$ ,  $q \in \mathcal{D}$  and  $0 \le \gamma \le 1$ , we have

$$\begin{split} \frac{|q|}{2} \sup_{\theta \in \mathbb{R}} \left\{ ||e^{i\theta}X + e^{-i\theta}Y^*|| \right\} &\leq w_q \begin{pmatrix} \begin{bmatrix} 0 & X \\ Y & 0 \end{bmatrix} \end{pmatrix} \leq \frac{|q|}{2} |||X|^{2\gamma} + |Y^*|^{2(1-\gamma)}||^{\frac{1}{2}} |||X^*|^{2(1-\gamma)} + |Y|^{2\gamma}||^{\frac{1}{2}} \\ &+ \sqrt{1 - |q|^2} \max\{||X||, ||Y||\}. \end{split}$$

*Proof.* From the relation  $w_q(T) \ge |q| \sup_{\theta \in \mathbb{R}} ||\mathcal{R}(e^{i\theta}T)||$ , we have

$$\begin{split} w_{q}\left(\begin{bmatrix} 0 & X \\ Y & 0 \end{bmatrix}\right) \geq & |q| \sup_{\theta \in \mathbb{R}} \left\| \mathcal{R}\left(e^{i\theta} \begin{bmatrix} 0 & X \\ Y & 0 \end{bmatrix}\right) \right\| \\ \geq & \frac{|q|}{2} \sup_{\theta \in \mathbb{R}} \left\| \begin{bmatrix} 0 & e^{i\theta}X + e^{-i\theta}Y^{*} \\ e^{i\theta}Y + e^{-i\theta}X^{*} & 0 \end{bmatrix} \right\| \\ = & \frac{|q|}{2} \sup_{\theta \in \mathbb{R}} ||e^{i\theta}X + e^{-i\theta}Y^{*}||. \end{split}$$

Now, to prove the second part, let  $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathcal{H}$ , and  $y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \in \mathcal{H}$  with ||x|| = ||y|| = 1 and  $\langle x, y \rangle = q$ . Then we can take  $y = \overline{q}x + \sqrt{1 - |q|^2}z$ , where  $z = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} \in \mathcal{H}$ , ||z|| = 1 and  $\langle x, z \rangle = 0$ . Thus,  $y_1 = \overline{q}x_1 + \sqrt{1 - |q|^2}z_1$  and  $y_2 = \overline{q}x_2 + \sqrt{1 - |q|^2}z_2$ .

Hence,

$$\begin{split} & \left| \left\langle \begin{bmatrix} 0 & X \\ Y & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \right\rangle \right| \\ \leq & \left| \left\langle Xx_2, y_1 \right\rangle \right| + \left| \left\langle Yx_1, y_2 \right\rangle \right| \\ = & \left| \left\langle Xx_2, \overline{q}x_1 + \sqrt{1 - |q|^2}z_1 \right\rangle \right| + \left| \left\langle Yx_1, \overline{q}x_2 + \sqrt{1 - |q|^2}z_2 \right\rangle \right| \\ \leq & \left| q \right| (\left| \left\langle Xx_2, x_1 \right\rangle \right| + \left| \left\langle Yx_1, x_2 \right\rangle \right|) + \sqrt{1 - |q|^2} (\left| \left\langle Xx_2, z_1 \right\rangle \right| + \left| \left\langle Yx_1, z_2 \right\rangle \right|). \end{split}$$

Using Theorem 1[16] and the Cauchy-Schwarz inequality, respectively, we have

$$\begin{split} & \left| \left\langle \begin{bmatrix} 0 & X \\ Y & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \right\rangle \right| \\ \leq & |q| (\langle |X|^{2\gamma} x_2, x_2 \rangle^{\frac{1}{2}} \langle |X^*|^{2(1-\gamma)} x_1, x_1 \rangle^{\frac{1}{2}} + \langle |Y|^{2\gamma} x_1, x_1 \rangle^{\frac{1}{2}} \langle |Y^*|^{2(1-\gamma)} x_2, x_2 \rangle^{\frac{1}{2}}) \\ & + \sqrt{1 - |q|^2} (||X||||x_2||||z_1|| + ||Y||||x_1||||z_2||) \\ \leq & |q| (\langle |X|^{2\gamma} x_2, x_2 \rangle + \langle |Y^*|^{2(1-\gamma)} x_2, x_2 \rangle)^{\frac{1}{2}} (\langle |X^*|^{2(1-\gamma)} x_1, x_1 \rangle + \langle |Y|^{2\gamma} x_1, x_1 \rangle)^{\frac{1}{2}} \\ & + \sqrt{1 - |q|^2} (||X||||x_2||||z_1|| + ||Y||||x_1||||z_2||) \\ \leq & |q| |||X|^{2\gamma} + |Y^*|^{2(1-\gamma)}||^{\frac{1}{2}} |||X^*|^{2(1-\gamma)} + |Y|^{2\gamma}||^{\frac{1}{2}} ||x_1||||x_2|| \\ & + \sqrt{1 - |q|^2} (||X||||x_2||||z_1|| + ||Y||||x_1||||z_2||). \end{split}$$

Take  $||x_1|| = \sin(\theta)$ ,  $||x_2|| = \cos(\theta)$ ,  $||z_1|| = \cos(\phi)$  and  $||z_2|| = \sin(\phi)$ , where  $\theta, \phi \in \mathbb{R}$ .

$$\begin{split} \left| \left\langle \begin{bmatrix} 0 & X \\ Y & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \right\rangle \right| &\leq |q| \left( |||X|^{2\gamma} + |Y^*|^{2(1-\gamma)}||^{\frac{1}{2}} |||X^*|^{2(1-\gamma)} + |Y|^{2\gamma}||^{\frac{1}{2}} \right) \cos(\theta) \sin(\theta) \\ &+ \sqrt{1 - |q|^2} (||X|| \cos(\theta) \cos(\phi) + ||Y|| \sin(\theta) \sin(\phi)) \\ &\leq \frac{|q| \sin(2\theta)}{2} |||X|^{2\gamma} + |Y^*|^{2(1-\gamma)} ||^{\frac{1}{2}} |||X^*|^{2(1-\gamma)} + |Y|^{2\gamma} ||^{\frac{1}{2}} \\ &+ \sqrt{1 - |q|^2} \max\{||X||, ||Y||\}. \end{split}$$

Hence,

$$w_q\left(\begin{bmatrix} 0 & X \\ Y & 0 \end{bmatrix}\right) \leq \frac{|q|}{2} |||X|^{2\gamma} + |Y^*|^{2(1-\gamma)}||^{\frac{1}{2}} |||X^*|^{2(1-\gamma)} + |Y|^{2\gamma}||^{\frac{1}{2}} + \sqrt{1 - |q|^2} \max\{||X||, ||Y||\}.$$

**Remark 3.12.** If X and Y are positive definite operators, then for  $\gamma = 1/2$  it follows from the above theorem that

$$\frac{|q|}{2}||X+Y|| \leq w_q \left( \begin{bmatrix} 0 & X \\ Y & 0 \end{bmatrix} \right) \leq \frac{|q|}{2}||X+Y|| + \sqrt{1-|q|^2} \max\{||X||, ||Y||\}.$$

For q = 1, it follows  $w\begin{pmatrix} 0 & X \\ Y & 0 \end{pmatrix} = \frac{1}{2}||X + Y||$ , which is mentioned in Lemma 3.10.

In our final result, we assume *X* and *Y* both are in  $\prod_{s,\alpha}^{n}$ .

**Theorem 3.13.** Let  $X, Y \in \prod_{s,\alpha}^n$  and  $q \in \mathcal{D}'$ .

(a) If  $\alpha \neq 0$ , then we have

$$\begin{split} w_q \left( \begin{bmatrix} 0 & X \\ Y & 0 \end{bmatrix} \right) &\geq \frac{|q|}{4} \max\{ \| (1 + \cot(\alpha))X + (1 - \cot(\alpha))Y^* \|, \| (1 - \cot(\alpha))X + (1 + \cot(\alpha))Y^* \| \} \\ &+ \frac{|q|}{4} \left\| \|X + Y^* \| - \cot(\alpha) \|X - Y^* \| \right\|. \end{split}$$

(b) If  $\alpha = 0$ , then we have

$$w_q\left(\begin{bmatrix} 0 & X \\ Y & 0 \end{bmatrix}\right) \ge \frac{|q|}{2} \max\{||X||, ||Y||\} + \frac{|q|}{4}|||X + Y|| - ||X - Y|||.$$

*Proof.* (a) From Theorem 2.10 and Lemma 2.1, the following relations

$$||I(T)|| \le \sin(\alpha)w(T) \le \sin(\alpha)||T|| \le \frac{\tan(\alpha)}{|q|}w_q(T)$$

hold for any  $T \in \mathcal{B}(\mathcal{H})$ . Hence, for  $T \in \mathcal{B}(\mathcal{H})$ , we have

$$w_q(T) \ge |q| ||\mathcal{R}(T)|| \text{ and } w_q(T) \ge |q| \cot(\alpha) ||\mathcal{I}(T)||.$$
 (29)

Taking  $T = \begin{bmatrix} 0 & X \\ Y & 0 \end{bmatrix}$  in inequality (29), we have

$$w_q\left(\begin{bmatrix}0 & X\\ Y & 0\end{bmatrix}\right) \geq \frac{|q|}{2}\|X + Y^*\| \text{ and } w_q\left(\begin{bmatrix}0 & X\\ Y & 0\end{bmatrix}\right) \geq \frac{|q|}{2}\cot(\alpha)\|X - Y^*\|.$$

Hence,

$$\begin{split} w_q\left(\begin{bmatrix} 0 & X \\ Y & 0 \end{bmatrix}\right) &\geq \frac{|q|}{2} \max\{||X+Y^*||, \cot(\alpha)||X-Y^*||\} \\ &= \frac{|q|}{4} \left(||X+Y^*|| + \cot(\alpha)||X-Y^*|| + |||X+Y^*|| - \cot(\alpha)||X-Y^*|||\right) \\ &\geq \frac{|q|}{4} \left(||(X+Y^*) \pm \cot(\alpha)(X-Y^*)|| + |||X+Y^*|| - \cot(\alpha)||X-Y^*|||\right). \end{split}$$

Thus,

$$w_{q}\left(\begin{bmatrix} 0 & X \\ Y & 0 \end{bmatrix}\right) \geq \frac{|q|}{4} \left(\max\{\|(1+\cot(\alpha))X + (1-\cot(\alpha))Y^{*}\|, \|(1-\cot(\alpha))X + (1+\cot(\alpha))Y^{*}\|\}\right) + \|X + Y^{*}\| - \cot(\alpha)\|X - Y^{*}\| \right).$$

(b) If  $\alpha = 0$ , then *X* and *Y* are positive definite matrices. We have

$$w_q(T) \ge |q| ||\mathcal{R}(T)|| \text{ and } w_q(T) \ge |q| ||\mathcal{I}(T)||.$$

By using similar calculations as Theorem 3.7, we have

$$w_q\left(\begin{bmatrix} 0 & X \\ Y & 0 \end{bmatrix}\right) \ge \frac{|q|}{2} \max\{||X||, ||Y^*||\} + \frac{|q|}{4}|||X + Y^*|| - ||X - Y^*|||.$$

As *X* and *Y* are positive definite so  $X = X^*$  and  $Y = Y^*$ , we have

$$w_q \left( \begin{bmatrix} 0 & X \\ Y & 0 \end{bmatrix} \right) \ge \frac{|q|}{2} \max\{||X||, ||Y||\} + \frac{|q|}{4} |||X + Y|| - ||X - Y|||.$$

**Remark 3.14.** One notable point is that if  $X \in \prod_{s,\alpha}^n$ , then  $X^* \in \prod_{s,\alpha}^n$ . If we take  $Y = X^*$ , then Theorem 3.13(a) gives us

$$|q|||X|| \le w_q \left( \begin{bmatrix} 0 & X \\ X^* & 0 \end{bmatrix} \right) \le ||X||.$$

The lower bound mentioned in the aforementioned inequality is better as compared to the lower bound in Corollary 3.3(a).

#### **Declarations:**

### Acknowledgement

The authors are grateful to the anonymous referee for insightful comments that helped improve the manuscript.

#### **Author Contributions**

All authors contributed equally to this research article.

#### Competing Interests

The authors have no competing interests.

## **Funding**

The second author gratefully acknowledge the financial support received from the Anusandhan National Research Foundation (ANRF), Government of India (SRG/2023/002420).

#### References

- [1] A. Abu-Omar and F. Kittaneh. Numerical radius inequalities for n× n operator matrices. Linear Algebra Appl., 468:18–26, 2015.
- [2] W. Bani-Domi. Generalized numerical radius inequalities for 2 × 2 operator matrices. Ital. J. Pure Appl. Math., 39:31–38, 2018.
- [3] Y. Bedrani, F. Kittaneh, and M. Sababheh. Numerical radii of accretive matrices. Linear Multilinear Algebra, 69(5):957–970, 2021.
- [4] P. Bhunia, S. Bag, and K. Paul. Numerical radius inequalities and its applications in estimation of zeros of polynomials. *Linear Algebra Appl.*, 573:166–177, 2019.
- [5] P. Bhunia, S. S. Dragomir, M. S. Moslehian, and K. Paul. Lectures on numerical radius inequalities. Springer Nature, 2022.
- [6] P. Bhunia and K. Paul. Development of inequalities and characterization of equality conditions for the numerical radius. *Linear Algebra Appl.*, 630:306–315, 2021.
- [7] P. Bhunia, K. Paul, and A. Sen. Numerical radius inequalities of sectorial matrices. *Annals of Functional Analysis*, 14(3):66, 2023.
- [8] M.-T. Chien and H. Nakazato. Davis-wielandt shell and q-numerical range. Linear Algebra Appl., 340(1-3):15–31, 2002.
- [9] D. Choi, T.-Y. Tam, and P. Zhang. Extensions of fischer's inequality. Linear Algebra Appl., 569:311–322, 2019.
- [10] S. Drury. Principal powers of matrices with positive definite real part. Linear Multilinear Algebra, 63(2):296–301, 2015.
- [11] S. Fakhri Moghaddam, A. Kamel Mirmostafaee, and M. Janfada. q-Numerical radius inequalities for hilbert space. *Linear and Multilinear Algebra*, 72(5):751–763, 2024.
- [12] K. Feki. Some a-spectral radius inequalities for a-bounded Hilbert space operators. Banach J. Math. Anal., 16(2):31, 2022.
- [13] K. Feki and F. Kittaneh. Some new refinements of generalized numerical radius inequalities for Hilbert space operators. *Mediterr. J. Math.*, 19(1):17, 2022.
- [14] K. Feki, A. Patra, J. Rani, and Z. Taki. Joint *q*-numerical ranges of operators in Hilbert and semi-Hilbert spaces. *arXiv preprint arXiv*:2410.03669, 2024.
- [15] C.-K. Fong and J. A. Holbrook. Unitarily invariant operator norms. Canad. J. Math., 35(2):274-299, 1983.
- [16] T. Furuta. A simplified proof of heinz inequality and scrutiny of its equality. Proc. Amer. Math. Soc., 97(4):751–753, 1986.
- [17] H.-L. Gau and P. Y. Wu. Numerical ranges of Hilbert space operators, volume 179. Cambridge University Press, 2021.
- [18] O. Hirzallah, F. Kittaneh, and K. Shebrawi. Numerical radius inequalities for certain 2× 2 operator matrices. *Integral Equations Operator Theory*, 71(1):129, 2011.
- [19] F. Kittaneh. Notes on some inequalities for Hilbert space operators. Publ. Res. Inst. Math. Sci., 24(2):283–293, 1988.
- [20] F. Kittaneh. Numerical radius inequalities for Hilbert space operators. Studia Math., 168(1):73-80, 2005.
- [21] C.-K. Li. q-Numerical ranges of normal and convex matrices. Linear Multilinear Algebra, 43(4):377–384, 1998.
- [22] M. Moslehian, Q. Xu, and A. Zamani. Seminorm and numerical radius inequalities of operators in semi-Hilbertian spaces. *Linear Algebra Appl.*, 591:299–321, 2020.
- [23] H. Najafi. Some numerical radius inequality for several operators. Linear Algebra Appl., 588:489-496, 2020.
- [24] A. Patra and F. Roy. On the estimation of q-numerical radius of Hilbert space operators. Oper. Matrices, 18(2), 2024.
- [25] S. Prasanna. The norm of a derivation and bjorck-thomee'lstratescu theorem. Math. Japon., 26:585–588, 1981.
- [26] P. J. Psarrakos and P. M. Vilamos. The q-numerical range of matrix polynomials. Linear Multilinear Algebra, 47(1):1–9, 2000.
- [27] J. Rani and A. Patra. q-Numerical range of operators in semi-Hilbertian space. arXiv preprint arXiv:2502.19855, 2025.
- [28] S. A. Sammour, F. Kittaneh, and M. Sababheh. A geometric approach to numerical radius inequalities. *Linear Algebra Appl.*, 652:1–17, 2022.
- [29] J. Stampfli. The norm of a derivation, pacific j. Math, 33:737–747, 1970.
- [30] H. Stanković, M. Krstić, and I. Damnjanović. Some properties of the q-numerical radius. *Linear and Multilinear Algebra*, pages 1–22. 2024.
- [31] N. K. Tsing. The constrained bilinear form and the C-numerical range. Linear Algebra Appl., 56:195–206, 1984.
- [32] F. Zhang. A matrix decomposition and its applications. Linear Multilinear Algebra, 63(10):2033–2042, 2015.