

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Some notes on convex F-contraction in b-metric spaces

Ali Farajzadeh^{a,*}, Mahtab Delfani^a, Ljubiša D. R. Kočinac^b

^aDepartment of Mathematics, Razi University, Kermanshah, Iran ^bFaculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia

Abstract.

In this paper, a generalized version of convex F-contraction, where F is not necessarily strictly increasing, in b-metric spaces is introduced. A weaker form of the continuity, called nearly continuity, is presented and it is also shown, by providing an example, that it is a real generalization of the continuity. A new version of the convex F-contraction, by comparing the old one, in order to establish an existence result of a fixed point for a self-mapping in the setting of b-metric spaces, has been offered. By using this version of the convex F-contraction, being a Cauchy sequence of the Picard's iteration is stated which by applying this result an affirmative answer to the first question raised in [(MDPI) Axioms, DOI:10.3390/axioms10020071] is given. By suitable conditions and replacing the strictly increasing by the quasi-convexity of the function F, the existence and uniqueness of fixed points for self-mappings which are satisfied in F-Kannan type contraction is proved. The results of the article improve the main results in this area as well answer to the open problems raised in the paper [On Convex F-Contraction in F-Contraction mappings whose F are strictly increasing instead of being quasi-convex.

1. Introduction and preliminaries

In [12], Wardowski introduced the concept of *F*-contraction and proved a fixed point theorem which generalizes the classical Banach contraction mapping principle [1].

Definition 1.1. ([12]) Let (X,d) be a metric space and $T:X\to X$ be a mapping. Then T is called an F-contraction, if there exists a function $F:(0,\infty)\to\mathbb{R}$ such that:

- (F_1) *F* is strictly increasing on (0, ∞);
- (F_2) for every sequence $\{\alpha_n\}$ in $(0, \infty)$ we have $\lim_{n\to\infty} F(\alpha_n) = -\infty$ if and only if $\lim_{n\to\infty} \alpha_n = 0$;
- (F_3) there exists a number $k \in (0,1)$ such that $\lim_{\alpha \to 0^+} \alpha^k F(\alpha) = 0$;

²⁰²⁰ Mathematics Subject Classification. Primary 47H10; Secondary 54E35, 54H25.

Keywords. F-contraction; convex F-contraction; fixed point; nearly continuous; quasi-convex; weakly continuous

Received: 06 April 2025; Revised: 28 July 2025; Accepted: 24 September 2025

Communicated by Dejan Ilić

^{*} Corresponding autor: Ali Farajzadeh

Email addresses: farajzadehali@gmail.com (Ali Farajzadeh), ma.delfani@gmail.com (Mahtab Delfani), lkocinac@gmail.com (Ljubiša D. R. Kočinac)

ORCID iDs: https://orcid.org/0000-0001-5221-6741 (Ali Farajzadeh), https://orcid.org/0000-0002-4870-7908 (Ljubiša D. R. Kočinac)

(F_4) there exists $\tau > 0$ such that

$$\tau + F(d(Tx, Ty)) \le F(d(x, y)),\tag{1}$$

for all $x, y \in X$ with $Tx \neq Ty$.

Theorem 1.2. ([12]) Let (X, d) be a complete metric space and $T: X \to X$ be an F-contraction. Then T has a unique fixed point x^* in X. Also, for every $x \in X$, the sequence $\{T^n x\}$ converges to x^* .

Recall that *F*-contractions in metric spaces were considered in [4, 5, 10], and in *b*-metric spaces in [6, 11]. The concept of *b*-metric space, which is a great generalization of usual metric space, was introduced by Czerwik [3].

Definition 1.3. ([3]) Let X be a nonempty set. A *b-metric* on X is a function $d: X \times X \to [0, +\infty)$, if there exists a real number $s \ge 1$, such that for all $x, y, z \in X$ the following conditions hold:

- (i) d(x, y) = 0 if and only if x = y;
- (ii) d(x, y) = d(y, x);
- (iii) $d(x, z) \le s[d(x, y) + d(y, z)].$

(X, d, s) is called a *b-metric space*.

Example 1.4. Let X = [0,1] and $d: X \times X \to \mathbb{R}^+$ be defined by $d(x,y) = |x-y|^2$, for all $x,y \in X$. Clearly, (X,d,2) is a b-metric space that is not a metric space.

Remark 1.5. It is well known that if (X, d) is a b-metric space, then the function $\rho(x, y) = \inf\{\sum_{i=1}^{n} d(x_{i-1}, x_i)\}$, where the infimum is taken over all natural numbers n and all chains $x = x_0, x_1, ..., x_n = y$ of elements in X, defines a pseudometric on X and $d(x, y) \le \rho(x, y)$, for all $x, y \in X$.

Recall that a sequence $\{x_n\}$ in a b-metric space (X,d,s) converges to a point $x \in X$, if $\lim_{n\to\infty} d(x_n,x) = 0$. A sequence $\{x_n\}$ in a b-metric space (X,d,s) is a Cauchy sequence, if for each $\varepsilon > 0$, there exists a natural number $n_0(\varepsilon)$ such that $d(x_n,x_m) < \varepsilon$, for each $m,n \geq n_0(\varepsilon)$. A b-metric space (X,d,s) is complete, if each Cauchy sequence in X converges to some point of X.

Remark 1.6. ([2]) Let (X, d) be a *b*-metric space. The *b*-metric *d* is called *continuous* if

$$(d(x_n, x) \to 0 \text{ and } d(y_n, y) \to 0) \Longrightarrow d(x_n, y_n) \to d(x, y).$$

The following example shows that the continuity of *d* may fail.

Example 1.7. ([8]) Let $X = \mathbb{N} \cup \{\infty\}$ and let $d: X \times X \to \mathbb{R}$ be defined by

$$d(m,n) = \begin{cases} 0, & \text{if } m = n, \\ |\frac{1}{m} - \frac{1}{n}|, & \text{if one of m, n is even and the other is even or } \infty, \\ 5, & \text{if one of } m, n \text{ is odd and the other is odd (and } m \neq n) \text{ or } \infty, \\ 2, & \text{otherwise.} \end{cases}$$

Then, considering all possible cases, it can be checked that for all $m, n, p \in X$, we have

$$d(m,p) \leq \frac{5}{2} \left(d(m,n) + d(n,p) \right).$$

Thus, (X, d) is a b-metric space (with s = 5/2). Let $x_n = 2n$ and $y_n = 1$, for each $n \in \mathbb{N}$. Then

$$d(2n, \infty) = \frac{1}{2n} \to 0 \text{ as } n \to \infty,$$

that is, $x_n \to \infty$, but $d(x_n, 1) = 2 \to 5 = d(\infty, 1)$ as $n \to \infty$.

Let (X, d, s) be a b-metric space and T be a self-mapping on X. The *Picard sequence* of T is given by $\{x_n\}_{n\in\mathbb{N}\cup\{0\}} = \{T^nx\}_{n\in\mathbb{N}\cup\{0\}}$ for any $x\in X$, where $T^0x=x$.

In this paper, a generalized version of convex *F*-contraction, where *F* is not necessarily strictly increasing, in *b*-metric spaces is introduced. A weaker form of the continuity, called nearly continuity, is presented and it is also shown, by providing an example, that it is a real generalization of the continuity. A new version of the convex *F*-contraction, by comparing the old one, in order to establish an existence result of a fixed point for a self-mapping in the setting of b-metric spaces, has been offered. By using this version of the convex *F*-contraction, being a Cauchy sequence of the Picard's iteration is stated which by applying this result an affirmative answer to the first question raised in [(MDPI) Axioms, DOI:10.3390/axioms10020071] is given. By suitable conditions and replacing the strictly increasing by the quasi-convexity of the function *F*, the existence and uniqueness of fixed points for self-mappings which are satisfied in *F*-Kannan type contraction is proved. The results of the article improve the main results in this area as well answer to the open problems raised in the paper [On Convex F-Contraction in b-Metric Spaces, (MDPI) Axioms, DOI:10.3390/axioms10020071]. Moreover, all the fixed point theorems are obtained for *F*-contraction mappings whose *F* are strictly increasing instead of being quasi-convex.

2. Main results

In this section we are going to introduce weak forms of the continuity which are needed in the sequel. Also, a weak version of the convex *F*-contraction is given. By using these notions, the results presented in [7] will be improved by mild assumptions. Finally, the questions posed by Huang et. al. in [7] are answered.

Definition 2.1. ([7]) Let (X, d, s) be a b-metric space and T be a self-mapping on X. We say that T is a *convex* F-contraction, if there exists a function $F: (0, +\infty) \to \mathbb{R}$ such that condition (F_1) holds and

 (F_2^s) for each sequence $\{\alpha_n\}$ of positive numbers, if $\lim_{n\to\infty} F(\alpha_n) = -\infty$, then $\lim_{n\to\infty} \alpha_n = 0$;

$$(F_3^s)$$
 there exists $k \in \left(0, \frac{1}{1 + \log_2^s}\right)$ such that $\lim_{\alpha \to 0^+} \alpha^k F(\alpha) = 0$;

(F_{λ}^{s}) there exist $\tau > 0$ and $\lambda \in [0, 1)$ such that

$$\tau + F(d(x_{n+1}, x_n)) \le F(\lambda d(x_{n+1}, x_n) + (1 - \lambda)d(x_n, x_{n-1})), \tag{2}$$

for all $d(x_{n+1}, x_n) > 0$, where $n \in \mathbb{N}$.

Condition (F_4^s) in Definition 2.1 is a bit confusing and uncertain, because it depends on a recursive sequence which depends on the variable x which changes on the set X. Therefore, the sequence in root depends on all elements of X. Thus we modify it as follows.

 $(F_4^{s'})$ there exist $\tau > 0$ and $\lambda \in [0, 1)$ such that

$$\tau + F(d_n) \le F(\lambda d_n + (1 - \lambda)d_{n-1}),\tag{3}$$

where $\{d_n = d(T^{n+1}(x), T^n(x))\}$ and x an arbitrary element of X.

Remark 2.2. If the self-mapping $T: X \to X$ satisfies in conditions (F_1) and (F_4) then it fulfils in $(F_4^{s'})$, because if x an arbitrary element of X, we get by (F_4)

$$\tau + F(d(T(T^n(x)), T(T^{n-1}(x)))) \le F(d(T^n(x), T^{n-1}(x))),$$

Hence, since *F* is strictly increasing and $\tau > 0$ we obtain

$$d(T(T^n(x)), T(T^{n-1}(x))) \le d(T^n(x), T^{n-1}(x))$$

which implies

$$\tau + F(d(T^{n+1}(x), T^n(x))) \leq F(\frac{1}{2}d(T^{n+1}(x), T^n(x)) + (1 - \frac{1}{2})d(T^n(x), T^{n-1}(x))).$$

Consequently the definition of *F*-contraction is a special case of *convex F-contraction*.

We introduce the following definitions which play important role in this article.

Definition 2.3. Let *X* be a topological space. The mapping $T: X \to X$ is called *weakly continuous* at $x_0 \in X$, if $x_i \to x_0$, then there exists a subnet $\{x_{i_i}\}$ of $\{x_i\}$ such that $Tx_{i_i} \to Tx_0$.

Remark 2.4. Let X be a topological space. If $T: X \to X$ is a continuous mapping at x^* , then it is obvious that T is weakly continuous at x^* . Now if T is not continuous at x^* , then there exists $x_i \to x^*$ such that $Tx_i \to Tx^*$. Hence for each open set U of Tx^* there exists x_{i_U} with $Tx_{i_U} \notin U$. Hence net $\{Tx_{i_U}\}_U$ does not have a convergent subnet where x_{i_U} converges to x^* which means T is not weakly continuous at x^* . Consequently, the concepts of continuity and weakly continuity are equivalent.

Definition 2.5. Let (X, d, s) be a b-metric space. We say that $T: X \to X$ is *nearly continuous* at $x_0 \in X$, if $x_n \to x_0$, then there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $\{Tx_{n_k}\}$ is convergent.

Remark 2.6. (a) If $T: X \to X$ is continuous at x_0 , then it is nearly continuous at x_0 , but the converse may fail; for example, if we take $X = \{\frac{1}{n} : n \in \mathbb{N}\} \cup \{0\}$ with the Euclidean metric and define $T: X \to X$ by

$$Tx = \begin{cases} 1, & x \in \{\frac{1}{2k} : k \in \mathbb{N}\}, \\ 0, & x \in \{\frac{1}{2k-1} : k \in \mathbb{N}\} \cup \{0\}, \end{cases}$$

then *T* is not continuous at $x_0 = 0$, while it is nearly continuous at 0.

- (b) If T is nearly continuous at x_0 and T is closed (that is, its graph is closed), then for each sequence $\{x_n\}$ converging to x_0 there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that Tx_{n_k} is convergent. Hence, it follows from the closedness of T that $Tx_{n_k} \to Tx_0$ and so it is weakly continuous at x_0 .
- (c) The mapping T defined by $T(x) = \frac{1}{x}$ for $x \ne 0$, and T(0) = 0, has closed graph, although it is not nearly continuous at x = 0. This counterexample demonstrates that the closedness of T need not imply nearly continuity, in general.

The following lemma plays a crucial role in proving the main results, and it gives an affirmative answer to the first question raised in [7]. In fact, we use the condition (F_1) instead of (F_2^s) , with a new proof.

Lemma 2.7. Let (X, d, s) be a b-metric space and $T: X \to X$ a self-mapping. If T satisfies in the conditions (F_1) , (F_3) and $(F_4^{s'})$, then for each $x \in X$, the sequence $\{T^n x\}_{n \in \mathbb{N} \cup \{0\}}$ is a Cauchy sequence.

Proof. Choose $x \in X$ and construct a sequence $\{x_n\}$ by $x_n = T^n x$, for all $n \in \mathbb{N} \cup \{0\}$. If there exists $n_0 \in \mathbb{N} \cup \{0\}$ such that $x_{n_0+1} = x_{n_0}$, then

$${x_n} = {x, Tx, T^2x, \dots, T^{n_0-1}x, x_{n_0}, x_{n_0}, \dots}.$$

In this case, the sequence $\{T^n x\}_{n \in \mathbb{N} \cup \{0\}}$ is clearly Cauchy, and the proof is completed. So, we can assume that $x_{n+1} \neq x_n$, for each $n \in \mathbb{N} \cup \{0\}$. Therefore $d(x_{n+1}, x_n) > 0$, for all $n \in \mathbb{N} \cup \{0\}$. Now, if we define $d_n = d(x_{n+1}, x_n)$, then by (F_4^s) we have

$$F(d(x_{n+1},x_n)) < \tau + F(d(x_{n+1},x_n)) \le F(\lambda d(x_{n+1},x_n) + (1-\lambda)d(x_n,x_{n-1})).$$

Using condition (F_1) , we obtain

$$d(x_{n+1}, x_n) \le \lambda d(x_{n+1}, x_n) + (1 - \lambda) d(x_n, x_{n-1}).$$

Then $d(x_{n+1},x_n) \leq d(x_n,x_{n-1})$, for all $n \in \mathbb{N}$. Hence, $\{d(x_{n+1},x_n)\}$ is a convergent sequence. We claim that $\lim_{n\to\infty} d(x_{n+1},x_n) = 0$. Otherwise, let $\lim_{n\to\infty} d(x_{n+1},x_n) = \varepsilon > 0$. Since F is strictly increasing, then F has right and left limit in each positive real number, especially $L = \lim_{t\to\varepsilon^+} F(t)$. Thus, since $\{d(x_{n+1},x_n)\}$ is a decreasing sequence (converges to ε) and $\lim_{n\to\infty} d(x_{n+1},x_n) = \inf_{k\in\mathbb{N}} d(x_{k+1},x_k)$, we have $d(x_{n+1},x_n)\to\varepsilon$, $d(x_n,x_{n-1})\to\varepsilon$ and $\lambda d(x_{n+1},x_n)+(1-\lambda)d(x_n,x_{n-1})\to\varepsilon$ which imply

$$L = \lim_{n \to \infty} F(d(x_{n+1}, x_n)), \ L = \lim_{n \to \infty} F(d(x_n, x_{n-1})),$$

and

$$L = \lim_{n \to \infty} F(\lambda d(x_{n+1}, x_n) + (1 - \lambda)d(x_n, x_{n-1})).$$

By condition $(F_4^{s'})$, we have

$$F(d(x_{n+1}, x_n)) < \tau + F(d(x_{n+1}, x_n)) \le F(\lambda d(x_{n+1}, x_n) + (1 - \lambda)d(x_n, x_{n-1})).$$

Now, by taking the limit from both sides of the above inequalities, when $n \to \infty$, we get $L < \tau + L \le L$, which is a contradiction. Therefore $\lim_{n \to \infty} d(x_{n+1}, x_n) = 0$. Hence, by $\lim_{n \to \infty} d(x_{n+1}, x_n) = 0$, via (F_3) , there exists $k \in (0, 1)$ such that

$$\lim_{n \to \infty} (d(x_{n+1}, x_n))^k F(d(x_{n+1}, x_n)) = 0.$$
(4)

We now proceed to show that

$$\tau + F(d(x_{n+1}, x_n)) \le F(d(x_n, x_{n-1})),\tag{5}$$

for all $n \in \mathbb{N}$. Indeed, if (9) is not true, then

$$\tau + F(d(x_{n+1}, x_n)) > F(d(x_n, x_{n-1})),$$

for some $n \in \mathbb{N}$. Thus,

$$F(d(x_n, x_{n-1})) < \tau + F(d(x_{n+1}, x_n)) \le F(\lambda d(x_{n+1}, x_n) + (1 - \lambda)d(x_n, x_{n-1})).$$

Thus, it follows from the strictly increasing of *F* that

$$d(x_n, x_{n-1}) < \lambda d(x_{n+1}, x_n) + (1 - \lambda) d(x_n, x_{n-1}).$$

Hence, $d(x_n, x_{n-1}) < d(x_{n+1}, x_n)$, which is a contradiction. Consequently, the relation (9) holds and by repeating it we get

$$F(d(x_{n+1}, x_n)) \le F(d(x_1, x_0)) - n\tau, \tag{6}$$

for all $n \in \mathbb{N}$.

From (10) we obtain

$$(d_n = d(x_{n+1}, x_n))^k n\tau \le (d(x_{n+1}, x_n))^k F(d(x_1, x_0)) - (d(x_{n+1}, x_n))^k F(d(x_{n+1}, x_n)). \tag{7}$$

Therefore, the equations (8) and $\lim_{n\to\infty} d(x_{n+1},x_n) = 0$ conclude

$$\lim_{n\to\infty} d_n^k n = 0$$

Hence, there exists $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$,

$$d_n \leq \frac{1}{n^{\frac{1}{k}}}$$
.

Hence the series $\sum_{n=1}^{\infty} d_n$ is convergent, which implies that the sequence $\{S_m = \sum_{n=1}^m d_n\}$ of partial sums is convergent. Now, the result follows from Remark 1.5. \square

Inspired by the proof of the previous result, we state the following proposition by removing the strictly increasing condition of the mapping *F*.

Remember that $F:(0,\infty)\to\mathbb{R}$ is called quasi-convex if

$$F(tx + (1 - t)y) \le \max\{F(x), F(y)\}, \forall x, y \in (0, \infty), t \in [0, 1].$$

It is obvious that a convex function is quasi-convex function while the converse may fail, for instance F(x) = [x] (the step function).

Proposition 2.8. Let (X,d,s) be a b-metric space and $T:X\to X$ a self-mapping. If T satisfies in the conditions F_2,F_3 and $(F_A^{s'})$, where F is quasi-convex, then for each $x\in X$, the sequence $\{T^nx\}_{n\in\mathbb{N}\cup\{0\}}$ is a Cauchy sequence.

Proof. Put $x_n = T^n x$, for all $n \in \mathbb{N} \cup \{0\}$. If there exists $n_0 \in \mathbb{N} \cup \{0\}$ such that $x_{n_0+1} = x_{n_0}$, then $\{x_n\} = x_{n_0}$, for all $n \ge n_0$, which converges to x_{n_0} . Then $x_n = T^n x$ is a Cauchy sequence and the proof is completed. Hence, suppose that $x_{n+1} \ne x_n$, for each $n \in \mathbb{N} \cup \{0\}$. Therefore $d(x_{n+1}, x_n) > 0$, for all $n \in \mathbb{N} \cup \{0\}$. Now, if we define $d_n = d(x_{n+1}, x_n)$, then by $(F_4^{s'})$ we have

$$F(d(x_{n+1}, x_n)) < \tau + F(d(x_{n+1}, x_n)) \le F(\lambda d(x_{n+1}, x_n) + (1 - \lambda)d(x_n, x_{n-1})),$$

which implies, by the quasi-convexity of F, that $F(d(x_{n+1}, x_n)) - F(d(x_n, x_{n-1})) \le -\tau$. Hence, for each $m \ge 1$,

$$\sum_{n=1}^{m} (F(d(x_{n+1}, x_n)) - F(d(x_n, x_{n-1}))) \le \sum_{n=1}^{m} -\tau,$$

which implies $\lim_{n\to\infty} F(d(x_{n+1},x_n)) = -\infty$, and by F_2 we get $d(x_n,x_{n-1})\to 0$. By (F_3) , there exists $k\in(0,1)$ such that

$$\lim_{n \to \infty} (d(x_{n+1}, x_n))^k F(d(x_{n+1}, x_n)) = 0.$$
(8)

By $(F_{\Delta}^{s'})$ and the quasi-convexity of F, we deduce that

$$\tau + F(d(x_{n+1}, x_n)) \le F(d(x_n, x_{n-1})),\tag{9}$$

for all $n \in \mathbb{N}$, which implies

$$F(d(x_{n+1}, x_n)) \le F(d(x_1, x_0)) - n\tau, \tag{10}$$

for all $n \in \mathbb{N}$. From (10) we obtain

$$(d_n = d(x_{n+1}, x_n))^k n\tau \le (d(x_{n+1}, x_n))^k F(d(x_1, x_0)) - (d(x_{n+1}, x_n))^k F(d(x_{n+1}, x_n)). \tag{11}$$

Hence, by (8), (11) and $\lim_{n\to\infty} d(x_{n+1},x_n) = 0$ we conclude

$$\lim_{n\to\infty}d_n^k n=0.$$

Then, there exists $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$,

$$d_n \leq \frac{1}{n^{\frac{1}{k}}}$$
.

This means the series $\sum_{n=1}^{\infty} d_n$ is convergent, equivalently the sequence $\{S_m = \sum_{n=1}^m d_n\}$ of partial sums of the series $\sum_{n=1}^{\infty} d_n$ is convergent. Now, the result follows from Remark 1.5. \square

The following fixed point theorem, by using Proposition 2.8, is established in the setting of complete b-metric spaces which improves the corresponding results given in [4, 6, 7, 10, 12].

Theorem 2.9. Let (X, d, s) be a complete b-metric space and $T: X \to X$ a closed self-mapping. If T satisfies in (F_2) , (F_3) and (F_4^s) , for at least an element of X where F is quasi-convex then T has a fixed point.

Proof. Let x be an element of X which satisfies in $(F_4^{s'})$. By Proposition 2.8 the sequence $\{T^n(x)\}$ is a Cauchy sequence. Then, the completeness of X implies that there exists $z \in X$ such that $T^n(x) \to z$. It is obvious that $(T^n(x), T(T^n(x))) \in G_r(T)$ and $(T^n(x), T(T^n(x))) \to (z, z)$. Thus, the closedness of T assures that $(z, z) \in G_r(T)$. This means z = T(z). and the proof is completed. □

Example 2.10. Let $X = L^1([0,1])$ (The set of all lebesgue integrable functions on [0,1]) with

$$d(f,g) = \int_0^1 |f(x) - g(x)| dx, \quad \forall f, g \in X,$$

and $T: X \to X$ be defined by $T(f) = f^2$. Now, if we take $f_0(x) = x^2$, for all $x \in [0, 1]$, then

$$d(T^{n+1}(f_0), T^n(f_0)) = \int_0^1 |x^{2(n+1)} - x^{2n}| dx = \frac{1}{2n+1} - \frac{1}{2n+3} = \frac{2}{(2n+1)(2n+3)},$$

and

$$d(T^{n}(f_{0}), T^{n-1}(f_{0})) = \int_{0}^{1} |x^{2(n)} - x^{2(n-1)}| dx = \frac{1}{2(n-1)+1} - \frac{1}{2(n-1)+3} = \frac{2}{(2n-1)(2n+1)}.$$

Now, by taking $F(x) = -\frac{1}{\sqrt{x}}$, for all x > 0, we have

$$\tau + F(d(T^{n+1}(f_0), T^n(f_0))) \le F(d(T^n(f_0), T^{n-1}(f_0))).$$

Hence

$$\tau - \frac{\sqrt{(2n+1)(2n+3)}}{\sqrt{2}} \le -\frac{\sqrt{(2n-1)(2n+1)}}{\sqrt{2}} \Rightarrow \tau \le \frac{\sqrt{4n^2+8n+3}-\sqrt{4n^2-1}}{\sqrt{2}}.$$

Thus, the self-mapping T fulfills all the hypotheses of Theorem 2.9.

The next result was stated in [7] for $\lambda = 0$. We are going to prove it for each $\lambda \in [0, 1)$.

Theorem 2.11. Let (X, d, s) be a complete b-metric space and T: X a closed self-mapping on X. If conditions (F_1) , (F_3) and $(F_4^{s'})$ are satisfied, then, T has a fixed point in X, and the fixed point is unique when the following condition holds

 $(F_4^{s''})$ there exist $\tau > 0$ and $\lambda \in [0,1)$ such that

$$\tau + F(d(T(x), T(y))) \le F(\lambda d(T(x), T(y)) + (1 - \lambda)d(x, y)), \forall x, y \in X.$$

$$\tag{12}$$

Proof. If $x \in X$, then by Lemma 2.7 and the completeness of X we deduce that the sequence $\{T^nx\}$ is convergent to an element x^* . Hence, $x^* = \lim_{n \to \infty} T^nx$. Due to the closedness of T, we conclude that x^* is a fixed points of T. Now, if we suppose x^* , y^* are two different fixed points of T, then by $(F_4^{s''})$ we have

$$F(d(x^*, y^*)) = F(d(Tx^*, Ty^*)) < \tau + F(d(Tx^*, Ty^*))$$

$$\leq F(\lambda d(Tx^*, Ty^*) + (1 - \lambda)d(x^*, y^*))$$

$$= F(\lambda d(x^*, y^*) + (1 - \lambda)d(x^*, y^*)) = F(d(x^*, y^*)),$$

which is a contradiction. So, $x^* = y^*$ and the proof is completed. \square

Remark 2.12. It is obvious that he condition $(F_4^{s''})$ and the strictly increasing of F imply d(T(x), T(y)) < d(x, y) for $x \neq y$. Hence T is contractible mapping. Then it is Lipschitz continuous. Thus, in this case we can relax the closedness of T in the first part of Theorem 2.11. Also condition (F_4) is a special case of $(F_4^{s''})$ by taking $\lambda = 0$. Therefore, Theorem 2.11 improves Theorem 3 of [T].

By combining Theorem 2.11 and part (b) of Remark 2.6 we get the following result.

Theorem 2.13. Let (X, d, s) be a complete b-metric space and T be closed self-mapping on X. If conditions (F_1) , (F_3) and $(F_4^{s'})$ are satisfied, then T has a fixed point in X and the fixed point is unique if the following condition holds

 $(F_4^{s''})$ there exist $\tau > 0$ and $\lambda \in [0, 1)$ such that

$$\tau + F(d(T(x), T(y))) \le F(\lambda d(T(x), T(y)) + (1 - \lambda)d(x, y)), \forall x, y \in X.$$

$$\tag{13}$$

Remark 2.14. The result of the first part of the previous Theorem is still valid if $(F_4^{s'})$ holds for some element of X.

In order to state the next result we need the following definition.

Definition 2.15. ([7]) Let (X, d, s) be a b-metric space and T be a self-mapping on X. We say that T is an F-contraction of Kannan type if there exists a function $F:(0,\infty)\to\mathbb{R}$ such that condition (F_1) holds and (F_4^k) there exist $\tau>0$ such that

$$\tau + F(d(T(x), T(y))) \le F\left(\frac{1}{2}(d(x, T(x)) + d(y, T(y)))\right),\tag{14}$$

for all $x, y \in X$ with $x \neq y$.

Remark 2.16. It is obvious from (F_1) and the last inequality that

$$d(T(x), T(y)) \le \frac{1}{2} \left(d(x, T(x)) + d(y, T(y)) \right) \le d(x, T(x)) + d(y, T(y)),$$

for all $x, y \in X$ with $x \neq y$ which is Kannan contraction.

By using Definition 2.15 we can introduce the following condition.

We say that a self-mapping T on a b-metric X satisfies condition (F_4^k) if the following statement holds: there exists $\tau > 0$ such that

$$\tau + F(d_n) \le F\left(\frac{1}{2}(d_n + d_{n-1})\right),\tag{15}$$

where $\{d_n = d(T^{n+1}(x), T^n(x))\}\$ and $x \in X$.

We note that condition (F_4^k) is exactly $(F_4^{s'})$ when $\lambda = \frac{1}{2}$. Hence we have the following theorems which answers to the second question posed in [7]. Moreover it is a new version of Theorem 4 of [7] and they are new versions of Kannan type theorem.

Theorem 2.17. Let (X, d, s) be a complete b-metric space and let $T: X \to X$ satisfy $(F_1), (F_3)$ and (F_4^k) , for some $x \in X$. If T has closed graph, then T has a fixed point x^* in X and the fixed point is unique if at least one of the conditions (F_4^k) or $(F_4^{s''})$ holds. Further, if (F_4^k) , is true for all $x \in X$, then for each $x \in X$, the sequence $\{T^n x\}$ converges to x^* .

Proof. Let x be an arbitrary element of X and (F_4^k) be satisfied. Define $x_n = T^n(x)$ for each $n \in \mathbb{N} \cup \{0\}$. By Lemma 2.7, $\{x_n = T^n(x)\}$ is a Cauchy sequence and by the completeness of X x_n converges to an element of X, say x^* . Now the closedness of x^* assures that it is a fixed point of T. Now, if we suppose x^* and y^* are two distinct fixed points of T, then by (F_4^k) we get

$$F(d(x^*, y^*)) = F(d(T(x^*), T(y^*))) < \tau + F(d(T(x^*), T(y^*)))$$

$$\leq F\left(\frac{1}{2}(d(x^*, T(x^*)) + d(y^*, T(y^*)))\right)$$

$$= F\left(\frac{1}{2}(d(x^*, x^*) + d(y^*, y^*))\right)$$

which is a contradiction. Hence, T has a unique fixed point. Each iteration $\{T^n x\}$ converges to the unique fixed point x^* is obtained by Lemma 2.7 and the validity of (F_4^k) or $(F_4^{s''})$ for each element of X. \square

Remark 2.18. The result of Theorem 2.17 is still valid if the hypothesis (F_1) is replaced by the quasi-convexity of T.

3. Conclusions

A generalized version of convex F-contraction, where F is not necessarily strictly increasing, in b-metric spaces is introduced. A weaker form of the continuity (is called nearly continuity) is given. A new contraction which is named convex F-contraction in order to establish an existence result of a fixed point for a self-mapping in the setting of b-metric spaces is provided. By suitable conditions and relaxing the strictly increasing by the quasi-convexity of the function F existence and uniqueness of fixed point for a self-mapping which is satisfied in F-Kannan type contraction is investigated. The results of the article improve the main results in this area as well answer the open problems raised in the paper [On Convex F-Contraction in b-Metric Spaces, (MDPI) Axioms, DOI:10.3390/axioms10020071]. Moreover, all the fixed point theorems are obtained for F-contraction mappings whose F are strictly increasing are replaced by quasi-convexity.

References

- [1] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fund. Math. 3 (1922), 133–181.
- [2] S. Cobazas, b-metric spaces, fixed points and Lipschitz functions, arXiv:1802.02722v2 (2018), 35 pp.
- [3] S. Czerwik, S. Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav. 1 (1993), 5–11.
- [4] M. Delfani, A. P. Farajzadeh, C. F. Wen, On fixed points theorems for generalized F-contraction mappings via t-property, J. Nonlinear Convex Anal. 23 (2022), 2511–2521.
- [5] A. P. Farajzadeh, M. Delfani, Y. H. Wang, Existence and uniqueness of fixed points of generalized F-contraction mappings J. Math. 2021 (2021), Art. ID 687238, Doi.org/10.1155/2021/6687238.
- [6] N. Goswami, N. Haokip, V. N. Mishra, F-contractive type mappings in b-metric spaces and some related fixed point results, Fixed Point Theory Appl. 2019 (1):13, DOI:10.1186/s13663-019-0663-6.
- [7] H. Huang, Z. D. Mitrović, k. Zoto, S. Radenović, On convex F-contraction in b-metric spaces, Axioms. 2021, 10(2), 71; https://doi.org/10.3390/axioms10020071.
- [8] N. Hussain, V. Parvaneh, J. R. Roshan, Z. Kadelburg, Fixed points of cyclic (ψ, φ, L, A, B)-contractive mappings in ordered b-metric spaces with applications, Fixed Point Theory Appl. 2013 (2013), http://dx.doi.org/10.1155/2014/471827.
- [9] R. Kannan, Some results on fixed points II, Amer. Math. Monthly 76 (1969), 405-408.
- [10] A. Taheri, A. Farajzadeh, A new generalization of α-type almost-F-contractions and α-type F-Suzuki contractions in metric spaces and their fixed point theorems, Carpathian Math. Publ. 11 (2019), 475–492.
- [11] S. Tomonari, Fixed point theorems for single-valued and set-valued F-contractions in b-metric spaces, J. Fixed Point Theory Appl. 2018 (2018), 20–35.
- [12] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl. 2012 (2012), Art. ID 94.