

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

A note on closed *-paranormal operators and Weyl's theorem

Salah Mecheri^{a,*}, Aissa Nasli Bakir^b

^aDepartment of Mathematics, Faculty of Mathematics and informatics, Mohamed El Bachir El Ibrahimi University, Al Bordj, Algeria

^bDepartment of Mathematics, Faculty of Exact Sciences and Informatics, Hassiba Benbouali University of Chlef,

B.P. 78C, 02180, Ouled Fares. Chlef, Algeria

Abstract. In this note we generalize the definition of *-paranormal operator to the case of unbounded operators. We show that every closed symmetric operator as well as every hyponormal operator is *-paranormal. Later we discuss a few spectral properties of this class and show that every *-paranormal operator satisfy the Weyl's theorem. We also prove that the Riesz idempotent corresponding to an isolated an eigenvalue of a *-paranormal operator is self-adjoint.

Introduction

Let B(H) denote the algebra of all bounded linear operators acting on infinite dimensional separable complex Hilbert space H. We say $T \in \mathcal{B}(H)$ satisfy the Weyl's theorem if

$$\sigma(T) \setminus \omega(T) = \pi_{00}(T)$$
,

where $\sigma(T)$, $\omega(T)$ and $\pi_{00}(T)$ denote the spectrum, the Weyl's spectrum and the set consisting of all isolated eigenvalues with finite multiplicity, respectively.

It is clear that normal operators satisfy the Weyl's theorem. We say $T \in \mathcal{B}(H)$ to be hyponormal if $||Tx|| \ge ||T^*x||$ for all $x \in H$. Here T^* is the adjoint of A. This class is bigger than the class of normal operators. Coburn [5] proved that hyponormal and Toeplitz operators satisfy the Weyl's theorem. Later this result is extended to paranormal operators by Uchiyama [24]. Recall that $T \in \mathcal{B}(H)$ is said to be paranormal if

$$||Tx||^2 \le ||T^2x|| ||x||$$
, for all $x \in H$.

We refer to [6, 7, 12] for more information about hyponormal and paranormal operators and some more generalizations of these classes. Another important class of operators which contains the hyponormal operators is the class of *-paranormal operators, which was introduced by S. M. Patel [21]. An operator $T \in \mathcal{B}(H)$ is said to be *-paranormal if

$$||T^*x||^2 \le ||T^2x|| ||x||$$
, for all $x \in H$.

2020 Mathematics Subject Classification. Primary 47A10, 47A53; Secondary 47B20.

Keywords. paranormal operator, *-paranormal operator, Closed operator.

Received: 15 October 2023; Accepted: 30 September 2025

Communicated by Dragan S. Djordjević

* Corresponding author: Salah Mecheri

Email addresses: mecherisalah@hotmail.com (Salah Mecheri), a.nasli@univ-chlef.dz (Aissa Nasli Bakir)

The class of *-paranormal operators is independent of the class of paranormal operators. For more information about this class we refer to [2, 22]. Recently, Tanahashi and Uchiyama has shown that *-paranormal operators satisfy the Weyl's theorem [22]. The Weyl's theorem for quasi *-paranormal and k-quasi *-paranormal operators is discussed in [15] and [16], respectively. In [4], the authors proved that closed paranormal operators satisfy the Weyl's theorem and the Riesz idempotent corresponding to the isolated eigenvalue is self-adjoint. In the present article we prove these results for *-paranormal operators which are not necessarily bounded.

Hyponormal operators are paranormal and *-paranormal. An operator $T \in B(H)$ is said to be normaloid if ||T|| = r(T) (the spectral radius of A). Paranormal operators are normaloid and *-paranormal operators are normaloid ([2, 6, 10, 21]).

1. Preliminaries

Here we recall a few basic definitions and results related to the class of closed operators. In what follows, H denotes a separable Hilbert space, and B(H) is the algebra of all bounded linear operators on H. For an operator $A \in B(H)$, $\ker(A)$ and $\operatorname{ran}(A)$ denote respectively, the null space and the range of A. An operator A is said to be densely defined linear operator on H, if the domain $\mathcal{D}(A)$ of A is dense in H, i.e., $\overline{\mathcal{D}(A)} = H$. This condition is necessary for the existence of the adjoint A^* of A defined by

$$\langle Ax, y \rangle = \langle x, A^*y \rangle, \ x \in \mathcal{D}(A), y \in \mathcal{D}(A^*),$$

where

$$\mathcal{D}(A^*) = \{ y \in H : \text{ the map } x \mapsto \langle Ax, y \rangle \text{ is continuous on } \mathcal{D}(A) \}.$$

Also, a densely defined linear operator A with $\mathcal{D}(A) \subset H$ is said to be closed if its graph $G(A) = \{(x, Ax), x \in \mathcal{D}(A)\}$ is closed, i.e., for each sequence $(x_n, Ax_n) \in G(A)$ that converges to (x, y), then $x \in \mathcal{D}(A)$ and y = Ax. We denote the set of all closed operators defined in H by C(H). If $A, B \in C(H)$, then we define

$$\mathcal{D}(A+B) = \mathcal{D}(A) \cap \mathcal{D}(B)$$

$$\mathcal{D}(AB) = \{x \in \mathcal{D}(B) : Bx \in \mathcal{D}(A)\}$$

and (A + B)x = Ax + Bx for all $x \in \mathcal{D}(A + B)$ and (AB)(x) = A(Bx) for all $x \in \mathcal{D}(AB)$. We propose the definition of *-paranormal operator in the unbounded case.

Definition 1.1. A densely defined linear operator $A : \mathcal{D}(A) \subseteq H \to H$ is said to be *-paranormal if $\mathcal{D}(A^2) \subseteq \mathcal{D}(A^*)$ and for every $x \in D(A^2)$, we have

$$||A^*x||^2 \le ||A^2x||||x||.$$

In the present paper, we are interested to the study of defined densely closed *-paranormal operators. We show certain fundamental and spectral properties. The Weyl's theorem, as well as the self-adjointness of the Riesz projection with respect to an isolated point of the spectrum of a such class of operators are also established.

Definition 1.2. A densely defined linear operator A on $\mathcal{D}(A)$ is said to be symmetric if $A \subseteq A^*$, i.e.,

$$\mathcal{D}(A) \subseteq \mathcal{D}(A^*)$$
 and $Ax = A^*x$, $x \in \mathcal{D}(A)$.

For a densely defined closed operator A the resolvent set is defined by

$$\rho(A) := \{ \lambda \in \mathbb{C} : (A - \lambda I)^{-1} \text{ exists and } (A - \lambda I)^{-1} \in \mathcal{B}(H) \}$$

and the spectrum of *A* is defined by $\sigma(A) = \mathbb{C} \setminus \rho(T)$. The point spectrum of *A* is defined by

$$\sigma_v(A) := \{ \lambda \in \mathbb{C} : A - \lambda I \text{ is not one-to-one} \}.$$

Note that $\sigma(T)$ is a non-empty compact subset of \mathbb{C} . The number $r(T) = \sup\{|\lambda| : \lambda \in \sigma(T)\}$ is called the spectral radius of T. We say $T \in \mathcal{B}(H)$ to be normaloid if r(T) = ||T||.

The set of isolated spectral points of A is denoted by iso(A) and $\pi_{00}(A) = \{\mu \in iso(\sigma(A)) : 0 < \dim(\ker(A - \mu I)) < \infty\}$. A densely defined closed operator $A \in C(H)$ is said to be Fredholm if $\ker(A)$ and $\ker(A^*)$ are finite dimensional and $\operatorname{ran}(A)$ is closed. In this case, the index of A is defined by

$$ind(A) = \dim \ker(A) - \dim \ker(A^*).$$

The Weyl spectrum of *A* is defined by

$$\omega(A) = \{\lambda \in \mathbb{C} : A - \lambda I \text{ is not a Fredholm operator with } ind(A - \lambda I) = 0\}.$$

2. Main results

In this section we prove our main results. First, we define the *-paranormal operator in the unbounded case and show that every closed symmetric operator as well as every hyponormal operator is *-paranormal. Later we show that that every *-paranormal operator satisfy the Weyl's theorem.

2.1. Closed *-paranormal operators

Theorem 2.1. A symmetric closed operator A on $\mathcal{D}(A) \subseteq H$ is *-paranormal.

Proof. Let $x \in \mathcal{D}(A^2)$. Since A is symmetric we have $\mathcal{D}(A) \subseteq \mathcal{D}(A^*)$. It is clear that $\mathcal{D}(A^2) \subseteq \mathcal{D}(A)$ by definition. So for $x \in \mathcal{D}(A^2)$, we have

$$\begin{split} ||A^*x||^2 &= ||Ax||^2 = \langle Ax, Ax \rangle = \langle x, A^*Ax \rangle \\ &= \langle x, A^2x \rangle \\ &\leq ||A^2x||||x||, \end{split}$$

by the Cauchy-Schwarz inequality. This shows that A is *-paranormal. \square

Definition 2.2. [11] Let A be a densely defined operator in H. Then A is said to be hyponormal if

- 1. $\mathcal{D}(A) \subseteq \mathcal{D}(A^*)$
- 2. $||A^*x|| \le ||Ax||$ for all $x \in \mathcal{D}(A)$.

Lemma 2.3. *Let A be a closed hyponormal operator. Then A is* *-paranormal.

Proof. Since A is hyponormal, we have $\mathcal{D}(A) \subseteq \mathcal{D}(A^*)$. So if $x \in \mathcal{D}(A^2)$, we have

$$||A^*x||^2 \le ||Ax||^2 = \langle Ax, Ax \rangle = \langle A^*Ax, x \rangle \quad \text{(since } Ax \in \mathcal{D}(A) \subseteq \mathcal{D}(A^*)\text{)}$$

$$\le ||A^*Ax|| ||x||$$

$$\le ||A(Ax)|| ||x||, \quad \text{(since } A \text{ hyponormal)}$$

$$= ||A^2x|| ||x||.$$

The following result generalizes that of [2, Lemma 2.1].

Lemma 2.4. Let $A \in C(H)$ be *-paranormal and $\lambda \in \sigma_v(A)$. Then $\ker(A - \lambda I) \subseteq \ker(A^* - \bar{\lambda}I)$.

Proof. Let $x \in \ker(A - \lambda I)$ with ||x|| = 1. Then $Ax = \lambda x$. It is clear that $x \in \mathcal{D}(A^2) \subseteq \mathcal{D}(A^*)$. Hence we have $||A^*x||^2 \le ||A^2x|| = |\lambda|^2$.

Thus

$$0 \le ||A^*x - \bar{\lambda}x||^2 = ||A^*x||^2 - 2\operatorname{Re}\langle A^*x, \bar{\lambda}x\rangle + |\lambda|^2$$
$$\le |\lambda|^2 - 2\operatorname{Re}\langle x, \bar{\lambda}x\rangle + |\lambda|^2$$
$$= 0$$

This imply that $x \in \ker(A^* - \bar{\lambda}I)$. This completes the proof. \square

Recall that a closed subspace M of H is said to be invariant under $A \in C(H)$ if $A(\mathcal{D}(A) \cap M) \subseteq M$, that is, $Ax \in M$ whenever $x \in \mathcal{D}(A) \cap M$.

Theorem 2.5. Let $A \in C(H)$ be a *-paranormal operator. Then, the restriction of A on a closed invariant subspace $M \subset H$ is also *-paranormal.

Proof. Let M be an invariant subspace for A and let $A_M = A|_M : \mathcal{D}(A) \cap M \to M$. First we want to show that $\mathcal{D}(A_M^2) \subseteq \mathcal{D}(A_M^*)$. Note that $\mathcal{D}(A_M^2) = \mathcal{D}(A^2) \cap M$. So, if $x \in \mathcal{D}(A_M^2)$, then

$$x \in \mathcal{D}(A^2) \cap M \subseteq \mathcal{D}(A^*) \cap M. \tag{1}$$

By definition we have that $y \in \mathcal{D}(A_M^*)$ if and only if the map $x \mapsto \langle A_M x, y \rangle$ is continuous for all $x \in \mathcal{D}(A_M)$. First, note that A_M^* is a map from M into $\mathcal{D}(A) \cap M$ with $\mathcal{D}(A_M^*) \subseteq M$. Hence for $x \in \mathcal{D}(A_M)$ and $y \in \mathcal{D}(A_M^*)$, we have

$$\langle Ax, y \rangle = \langle A_M x, y \rangle$$

that is, $\langle x, A^*y \rangle = \langle x, A_M^*y \rangle$. That is, the map $x \mapsto \langle Ax, y \rangle$ is continuous for all $y \in \mathcal{D}(A_M^*)$. Hence A^*y exists for all $y \in \mathcal{D}(A_M^*)$. That is, $y \in \mathcal{D}(A^*) \cap M$. Hence $\mathcal{D}(A_M^*) \subseteq \mathcal{D}(A^*) \cap M$.

On the other hand, if $y \in \mathcal{D}(A^*) \cap M$, then the map

$$x \mapsto \langle Ax, y \rangle$$

is continuous for all $x \in \mathcal{D}(A)$. That is, $y \in \mathcal{D}(A_M^*)$. Therefore, $\mathcal{D}(A_M^*) \subseteq \mathcal{D}(A^*) \cap M$. Hence we can conclude that $\mathcal{D}(A_M^2) \subseteq \mathcal{D}(A_M) \subseteq \mathcal{D}(A_M^*)$.

Next, for $y \in \mathcal{D}(A_M^2)$, we have

$$||A_M^*y||^2 = ||A^*y||^2 \text{ (as } \mathcal{D}(A_M^*) \subseteq \mathcal{D}(A^*))$$

 $\leq ||A^2y||||y|| \text{ (as } A \text{ is } *-\text{paranormal})$
 $\leq ||A_M^2y||||y||, \text{ since } \mathcal{D}(A_M^2) \subseteq \mathcal{D}(A^2) \cap M.$

Therefore, A_M is *-paranormal. \square

Let $iso(\sigma(A))$ denote the isolated spectrum of an operator A. If $\mu \in iso(\sigma(A))$, then the Riesz idempotent E_{μ} with respect to μ is defined by

$$E_{\mu} = \frac{1}{2\pi i} \int_{\partial \mathbb{D}} (z - A)^{-1} dz,$$

where $\mathbb D$ is the closed disk with center μ and having a small enough radius such that $\mathbb D \cap \sigma(A) = \{\mu\}$. It's known that $E_{\mu}^2 = E_{\mu}$, E_{μ} commutes with A, $\sigma(A\big|_{E_{\mu}(H)}) = \{\mu\}$ and $\sigma(A\big|_{(I-E_{\mu})(H)}) = \sigma(A) \setminus \{\mu\}$. Also, E_{μ} is an orthogonal projection if and only if E_{μ} coincides with its adjoint. Reader can see [8] for further information. We've then the following important result.

Theorem 2.6. Let $A \in C(H)$ be a *-paranormal operator and let $\mu \in iso(\sigma(A))$. Then, $ker(A - \mu I) = ran(E_{\mu})$.

Proof. It suffices to show that $\operatorname{ran}(E_{\mu}) \subset \ker(A - \mu I)$ according to [4, Lemma 2.2]. The restriction $A\Big|_{\operatorname{ran}(E_{\mu})}$ is a bounded *-paranormal operator by Theorem 2.5 and [8, Theorem 2.2]. Then, $A\Big|_{\operatorname{ran}(E_{\mu})}$ is normaloid by [22, Proposition 1]. If $\mu = 0$, then $A\Big|_{\operatorname{ran}(E_{\mu})}$ is quasinilpotent. Thus, $||A\Big|_{\operatorname{ran}(E_{\mu})}|| = 0$, and so $\operatorname{ran}(E_0) \subset \ker(A)$. Assume that $\mu \neq 0$. Then, $\sigma(\mu^{-1}A\Big|_{\operatorname{ran}(E_{\mu})}) = \{1\}$. Hence, $A\Big|_{\operatorname{ran}(E_{\mu})} = \mu I\Big|_{\operatorname{ran}(E_{\mu})}$ by [22, Corollary 1], that is, $\operatorname{ran}(E_{\mu}) \subset \ker(A - \mu I)$. \square

Corollary 2.7. If $A \in C(H)$ is a *-paranormal operator, then $ran(A - \mu I) = \ker(E_{\mu})$ for each isolated point $\mu \in iso(\sigma(A))$.

Proof. We have $\mu \notin \sigma(A|_{\ker(E_{\mu})})$ by [8, Theorem 2.2]. Then, $\operatorname{ran}(A - \mu I)|_{\ker(E_{\mu})} = \ker(E_{\mu})$. Since $\operatorname{ran}(A - \mu I)|_{\ker(E_{\mu})} \subset \operatorname{ran}(A - \mu I)$, it follows that $\ker(E_{\mu}) \subset \operatorname{ran}(A - \mu I)$.

Conversely, let $z = (A - \mu I)(t) \in ran(A - \mu I)$, for some $t \in \mathcal{D}(A)$. According to the decomposition $H = ran(E_{\mu}) \oplus \ker(E_{\mu})$, we can write t = x + y, where $x \in ran(E_{\mu})$ and $y \in \ker(E_{\mu})$. By the previous Theorem, $x \in \ker(A - \mu I)$. Then, $y = (t - x) \in \mathcal{D}(A)$. On the other hand, $\ker(E_{\mu})$ is invariant for A by [8, Theorem 2.2]. It follows that $z = (A - \mu I)y \in \ker(E_{\mu})$. \square

Corollary 2.8. Let $A \in C(H)$ be *-paranormal. If $0 \in iso(\sigma(A))$, then ran(A) is closed.

Proof. In view of [8, Theorem 2.2], $0 \notin \sigma(A|_{\ker(E_0)})$. Furthermore, $ran(A) = \ker(E_0)$ by Corollary 2.7. Hence the subspace ran(A) is then closed. □

Theorem 2.9. Let $A \in C(H)$ be a *-paranormal operator such that $\ker(A^*) \subset \ker(A)$ and $0 \in \sigma(A)$. If $\operatorname{ran}(A)$ is closed, then $0 \in \operatorname{iso}(\sigma(A))$.

Proof. The operator $A\big|_{\ker(A)^{\perp}}$: $\ker(A)^{\perp} \cap \mathcal{D}(A) \to \ker(A)^{\perp}$ is one-to-one with closed range since $\operatorname{ran}(A\big|_{\ker(A)^{\perp}}) = \operatorname{ran}(A)$ which is closed. By the definition of a *-paranormal operator and the hypothesis we have $\ker(A^*) \subset \ker(A)$, so we get that $\ker(A^*) = \ker(A)$. Then, $\operatorname{ran}(A\big|_{\ker(A)^{\perp}}) = \ker(A^*)^{\perp} = \ker(A)^{\perp}$. Hence, the operator $A\big|_{\ker(A)^{\perp}}$ is invertible and its inverse $(A\big|_{\ker(A)^{\perp}})^{-1}$ is bounded on $\ker(A)^{\perp}$. Thus, $0 \notin \sigma(A\big|_{\ker(A)^{\perp}})$, which entails that $\sigma(A) \subset \sigma(A\big|_{\ker(A)^{\perp}}) \cup \{0\}$ by [23, Theorem 5.4]. Since $0 \in \sigma(A)$, $\sigma(A) = \sigma(A\big|_{\ker(A)^{\perp}}) \cup \{0\}$. This achieves the proof. \square

Definition 2.10. *Let* $A \in C(H)$ *be densely defined. Then*

1. the minimum modulus of A is the nonnegative real number

$$m(A) := \inf\{||Ax|| : x \in \mathcal{D}(A), ||x|| = 1\}$$

2. the reduced minimum modulus of A is the nonnegative real number

$$\gamma(A) := \inf\{||Ax|| : x \in C(A), ||x|| = 1\},$$

where $C(A) = \mathcal{D}(A) \cap \ker(A)^{\perp}$ is said to be the carrier of A. We refer to [3, 9] for more details.

Obviously, $m(A) \leq \gamma(A)$.

Theorem 2.11. Let A be a densely closed defined *-paranormal operator such that $ker(A^*) \subset ker(A)$. Then we have the following:

- 1. *if* A not one-to-one, then $m(A) = dist(0, \sigma(A))$.
- 2. if A is injective, then $0 \notin \sigma(A)$. If in addition, A^{-1} is normaloid, then $m(A) = dist(0, \sigma(A))$.

Proof. First note that by the definition of paranormality of A, we get $ker(A) \subseteq ker(A^*)$. By the hypothesis, we get that $ker(A) = ker(A^*)$.

Proof of (1): In this case m(A) = 0. Since A is not-injective, we have $0 \in \sigma(A)$. Hence we have $m(A) = d(0, \sigma(A)) = 0$.

Proof of (2): If A is one-to-one, then $\ker(A) = \ker(A^*) = \{0\}$ since A is *-paranormal, and $m(A) = \gamma(A)$. If $\gamma(A) = 0$, then by [3, Page 334], $\operatorname{ran}(A)$ is not closed. Hence we have $0 \in \sigma(A)$ and in this case, $m(A) = 0 = d(0, \sigma(A))$. Next assume that, $\gamma(A) > 0$. Then $\operatorname{ran}(A)$ is closed, by [3, Page 334]. We've necessarily, $0 \notin \sigma(A)$. Otherwise, 0 is an eigenvalue of A by Theorem 2.6, Theorem 2.9 and Corollary 2.8, and this yields to a contradiction since A is injective. Since, A^{-1} is normaloid and by [13, Proposition 2.12]

$$\gamma(A) = \frac{1}{\|A^{-1}\|} = \frac{1}{r(A^{-1})} = \frac{1}{\sup\{|\lambda| : \lambda \in \sigma(A^{-1})\}}$$
$$= \inf\{|\mu| : \mu \in \sigma(A)\}$$
$$= dist(0, \sigma(A)).$$

2.2. Weyl's theorem for densely closed *-paranormal operators

In [22], it's proved that bounded *-paranormal operators satisfy Weyl's theorem. Also, authors in [4] showed that Weyl's theorem holds for closed paranormal operators. In the present section, we show that a closed *-paranormal operator satisfy the Weyl's theorem.

Recall that

$$w(A) = \{ \mu \in \sigma(A) : (A - \mu I) \text{ is not Fredholm and } ind(A) = 0 \}$$

 $\pi_{00}(A) = \{ \mu \in iso(\sigma(A)) : 0 < \dim(\ker(A - \mu I)) < \infty \}.$

An operator A is said to satisfy Weyl's theorem if $\sigma(A) \setminus w(A) = \pi_{00}(A)$. For the definition and more information on the Weyl's spectrum we refer to [1, Page 132].

Theorem 2.12. Let $A \in C(H)$ be a *-paranormal operator. Then A satisfies the Weyl's theorem, i.e., $\sigma(A) \setminus w(A) = \pi_{00}(A)$.

Proof. Let $\mu \in \sigma(A) \setminus w(A)$. Then, $\dim(\ker(A - \mu I)) = \dim(\ker(A - \mu I)^*) < \infty$ and $\operatorname{ran}(A - \mu I)$ is closed. Hence,

$$A - \mu I = \left(\begin{array}{cc} 0 & A_1 \\ 0 & A_2 - \mu I \end{array} \right)$$

on $H = \ker(A - \mu I) \oplus \ker(A - \mu I)^{\perp}$, $A_2 - \mu I = P_{\ker(A - \mu I)^{\perp}}(A - \mu I)$. We've $A_2 - \mu I$ is densely defined closed operator with closed range and has the domain $\mathcal{D}(A - \mu I) \cap \ker(A - \mu I)^{\perp}$. Since $\dim(\ker(A - \mu I)) < \infty$, A_2 is finite rank with null index. Thus, $\operatorname{ind}(A - \mu I) = \operatorname{ind}(A_2 - \mu I) = 0$. As $\ker((A_2 - \mu I)^*) = \ker(A_2 - \mu I) = \{0\}$, $\operatorname{ran}(A_2 - \mu I) = \ker(A - \mu I)^{\perp}$. Therefore, $A_2 - \mu I$ is invertible and its inverse is bounded. Furthermore, $\mu \notin \sigma(A_2)$. Since $\sigma(A) \subseteq \{\mu\} \cup \sigma(A_2)$, $\mu \in \operatorname{iso}(\sigma(A))$. Consequently, $\mu \in \pi_{00}(A)$.

Now, if $\mu \in \pi_{00}(A)$, then by [8, Theorem 2.2] and Corollary 2.7, $\mu \notin \sigma(A|_{\ker(E_n)})$ and

$$ran(A - \mu I) = ran((A - \mu I)|_{\ker(E_{\mu})}) = \ker(E_{\mu})$$

Since $\mu \notin \sigma(A\big|_{\ker(E_u)})$, $ran((A - \mu I)\big|_{\ker(E_u)})$ is closed and so is $ran(A - \mu I)$. Thus,

$$\dim(\ker(A - \mu I)^*) = \dim(\operatorname{ran}(A - \mu I)^{\perp}) = \dim(\ker(E_{\mu})^{\perp})$$
$$= \dim(\operatorname{ran}(E_{\mu}))$$
$$= \dim(\ker(A - \mu I)).$$

Hence $A - \mu I$ is Fredholm and $ind(A - \mu I) = 0$. Finally, $\mu \in \sigma(A) \setminus w(A)$. \square

Theorem 2.13. Let $A \in C(H)$ be a *-paranormal operator and $\mu \in iso(\sigma(A))$. Then

$$ran(E_{\mu}) = \ker(A - \mu I) = \ker(A - \mu I)^*.$$

In addition, E_{μ} *is self-adjoint.*

Proof. By [8, Theorem 2.2] and Corollary 2.7, $\mu \notin \ker(E_{\mu})$ and $\operatorname{ran}(A - \mu I) = \ker(E_{\mu})$. Since $A|_{\ker(A - \mu I)^{\perp}} : \ker(A - \mu I)^{\perp} \cap \mathcal{D}(A) \to \operatorname{ran}(A - \mu I)$ is bijective,

$$\ker(E_{\mu}) \cap \mathcal{D}(A) \subseteq \ker(A - \mu I)^{\perp} \cap \mathcal{D}(A).$$

Likewise, if $x \in \ker(A - \mu I)^{\perp} \cap \mathcal{D}(A)$. Put $E_{\mu}x = u + v$, $u \in \ker(A - \mu I)$ and $v \in \ker(A - \mu I)^{\perp}$. Then, $E_{\mu}x = u + v = (E_{\mu})^2x = u + E_{\mu}v$. Thus, $E_{\mu}v = v \in ran(E_{\mu}) \cap \ker(A - \mu I) \perp = \{0\}$ by Theorem 2.6. This implies $E_{\mu}x = E_{\mu}u = u$. That is,

$$x - u \in \ker(E_u) \cap \mathcal{D}(A) \subseteq \ker(A - \mu I)^{\perp} \cap \mathcal{D}(A).$$

Since $x \in \ker(A - \mu I)^{\perp}$, $u \in \ker(A - \mu I)^{\perp} \cap \ker(A - \mu I) = \{0\}$. This shows that $E_{\mu}x = 0$ and then

$$\ker(A - \mu I)^{\perp} \cap \mathcal{D}(A) \subseteq \ker(E_{\mu}) \cap \mathcal{D}(A).$$

Consequently,

$$\ker(A - \mu I)^{\perp} \cap \mathcal{D}(A) = \ker(E_{\mu}) \cap \mathcal{D}(A).$$

By [14, Lemma 3.3] and Corollary 2.7,

$$\ker(A - \mu I)^{\perp} = \overline{\ker(A - \mu I)^{\perp} \cap \mathcal{D}(A)} = \overline{ran(A - \mu I) \cap \mathcal{D}(A)}$$

$$= \overline{(\ker(A - \mu I)^{*})^{\perp} \cap \mathcal{D}(A)}$$

$$\subseteq \overline{(\ker(A - \mu I)^{*})^{\perp} \cap \mathcal{D}(A^{*})}$$

$$\subseteq (\ker(A - \mu I)^{*})^{\perp},$$

by [14, Lemma 3.3] again.

Then, $(\ker(A - \mu I)^*) \subseteq \ker(A - \mu I)$. Hence, $\ker(E_{\mu})^{\perp} \subseteq ran(E_{\mu})$ by Corollary 2.7.

Let $x \in ran(E_{\mu})$. Then, x = a + b, $a \in \ker(E_{\mu})$ and $b \in \ker(E_{\mu})^{\perp}$. Since $\ker(E_{\mu})^{\perp} \subseteq ran(E_{\mu})$, $a = x - b \in \ker(E_{\mu}) \cap ran(E_{\mu}) = \{0\}$. Thus,

$$\ker(E_{\mu})^{\perp} = ran(E_{\mu}) \tag{2}$$

i.e., $ker(A - \mu I) = ker(A - \mu I)^*$.

By Equation (2), E_{μ} is an orthogonal projection. Hence, $E_{\mu} = E_{\mu}^*$. This completes the proof. \Box

Acknowledgements We would like to thank the referee for his insightful suggestions that helped improve a manuscript or document.

References

- [1] Aiena, Pietro, Semi-Fredholm Operators, Perturbation Theory and localized SVEP, XX Escuela Venezolana de Mathematics (2007).
- [2] S.C. Arora and J. K. Thukral, On the class of operators, Glasnik Math. 21, (1986), 381-386.
- [3] A. Ben-Israel and T. N. E. Greville, *Generalized inverses*, second edition, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 15, Springer-Verlag, New York, 2003.
- [4] N. Bala and G. Ramesh, Weyl's theorem for paranormal closed operators, Ann. Funct. Anal. 11 (2020), no. 3, 567-582.
- [5] L. A. Coburn, Weyl's theorem for nonnormal operators, Michigan Math. J. 13 (1966), 285–288.
- [6] T. Furuta, Invitation to Linear Operatorss-From Matrices to Bounded Linear Operators in Hilbert space, Taylor and Francis, London, 2001.
- [7] T. Furuta, On the class of paranormal operators, Proc. Japan Acad. 43 (1967), 594-598.
- [8] I. Gohberg, S. Goldberg and M.A. Kaaskoek, *Classes of linear operators. Vol. I*, Operator theory, Advances and Applications, 49, Birkhäuser Verlag, Basel, 1990.
- [9] S. Goldberg, Unbounded linear operators, reprint of the 1985 corrected edition, Dover Publications, Inc., Mineola, NY, 2006.
- [10] V. Istrățescu, T. Saitô and T. Yoshino, On a class of operators, Tôhoku Math. J. 2 (1966), 410-413.

- [11] J. Janas, On unbounded hyponormal operators, Ark. Mat. 27 (1989), no. 2, 273–281
- [12] C. S. Kubrusly, *Hilbert space operators*, Birkhäuser Boston, Inc., Boston, MA, 2003.
- [13] S. H. Kulkarni, M. T. Nair and G. Ramesh, Some properties of unbounded operators with closed range, Proc. Indian Acad. Sci. Math. Sci. 118 (2008), no. 4, 613–625.
- [14] S. H. Kulkarni and G. Ramesh, The carrier graph topology, Banach J. Math. Anal. 5 (2011), no. 1, 56-69.
- [15] S. Mecheri, On quasi-*-paranormal operators, Annals Funct. Anal, 3(2012), 86-91.
- [16] S.Mecheri, On a new class of operators and Weyl Type theorems, Filomat 27(2013), 629-636.
- [17] S. Mecheri, A. Mansour, On the operator equation AXB- XD = E, Lobachevskii Journal of Mathematics, 3(2009), 224-228.
- [18] S. Mecheri, A. Uchiyama, An Extension of the Fuglede-Putnam theorem to class A operators, Math. Ineq. Appl, 13(2010), 57-61.
- [19] S. Mecheri, On the normality of operators, Revista Colombiana de Matemáticas Volumen 39(2005), 87-95.
- [20] S. Mecheri, Global Minimum and orthogonality in C1-classes, J. Math. Anal. Appl. 287(2003) 51-60.
- [21] S.M. Patel, Contributions to the study of spectraloid operators, Ph. D. Thesis, Delhi Univ., 1974.
- [22] K.Tanahashi and A. Uchiyama, A note on -*- paranormal operators and related classes of operators, Bull. Korean Math. Soc. 51(2), 2014, 357-371
- [23] A.E Taylor and D.C. Lay, *Introduction to functional analysis*, reprint of the second edition, robert E. Krieger Publishing Co., Inc., Melbourne, FL, 1986.
- [24] A. Uchiyama, On the isolated points of the spectrum of paranormal operators, Integral Equations Operator Theory 55 (2006), no. 1, 145–151