

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Characteristic and lower characteristic of bounded linear operators

Sami Baraketa, Aref Jeribia,*

^aDepartment of Mathematics and statistics, College of science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riadh, Saudi Arabia

Abstract. In this article, we introduce the notion of lower characteristic of a bounded operator by means of the weak non-compactness measure. We prove that if the lower characteristic of T is strictly positive then T is an upper generalized semi-Fredholm. Finally, an application to Markov chains is given.

1. Introduction

Let X and Y be two Banach spaces. We denote by $\mathcal{L}(X,Y)$, the Banach space of all bounded linear operators from X into Y and we denote by $\mathcal{K}(X,Y)$, the subspace of all compact operators of $\mathcal{L}(X,Y)$. If $T \in \mathcal{L}(X,Y)$ then $\alpha(T)$ denotes the dimension of the kernel N(T) and $\beta(T)$ the codimension of R(T) in Y. If X = Y, the sets $\mathcal{L}(X,Y)$ and $\mathcal{K}(X,Y)$ are replaced by $\mathcal{L}(X)$ and $\mathcal{K}(X)$, respectively. An operator T is called upper semi-Fredholm from X into Y if $\alpha(T) < \infty$ and $\alpha(T)$ is closed in $\alpha(T)$. If $\alpha(T)$ is closed in $\alpha(T)$ is upper or lower semi-Fredholm, then the index of $\alpha(T)$ is defined by $\alpha(T) := \alpha(T) - \beta(T)$.

Let $T \in \mathcal{L}(X)$ be an operator, we denote by $R^{\infty}(T)$ the set

$$R^{\infty}(T) = \bigcap_{n=0}^{\infty} R(T^n).$$

We start this section by recalling some notations, results and definitions of weak noncompactness measure given in [10]. If $x \in X$ and r > 0, then B(x, r) will denote the closed ball of X with a center at x and a radius r, B_r denotes the closed ball in X centered at 0_X with radius r, and r denotes the closed ball in r centered at r and r denotes the closed ball in r de

$$S_X = \{x \in X \ : \ ||x|| = 1\}.$$

Let Ω_X be the collection of all nonempty bounded subsets of X, and \mathcal{K}^w be the subset of Ω_X consisting of all weakly compact subsets of X. The notion of the measure of weak noncompactness was introduced by De Blasi in [8]; it is the map $\omega:\Omega_X\longrightarrow [0,+\infty)$ defined by the following:

$$\omega(\mathcal{M}) = \inf\{r > 0 : \text{ there exists } K \in \mathcal{K}^w \text{ such that } \mathcal{M} \subset K + B_r\},\tag{1}$$

2020 Mathematics Subject Classification. Primary 37C25; Secondary 47N20, 47H08, 45D05.

Keywords. Operator theory.

Received: 30 March 2024; Accepted: 12 October 2025

Communicated by Dragan S. Djordjević

* Corresponding author: Aref Jeribi

Email addresses: SBaraket@imamu.edu.sa (Sami Baraket), aref.jeribi@fss.rnu.tn (Aref Jeribi)

for all $\mathcal{M} \in \Omega_X$. Let us recall some basic properties of $\omega(.)$ needed below (see, for example, [1–4, 8] see also [5], where an axiomatic approach to the notion of a measure of weak noncompactness is presented).

Lemma 1.1. Let \mathcal{M}_1 and \mathcal{M}_2 be two elements of Ω_X . Then, the following conditions are satisfied:

- (1) $\mathcal{M}_1 \subset \mathcal{M}_2$ implies $\omega(\mathcal{M}_1) \leq \omega(\mathcal{M}_2)$.
- (2) $\omega(\mathcal{M}_1) = 0$ if, and only if, $\overline{\mathcal{M}_1^w} \in \mathcal{K}^w$, where $\overline{\mathcal{M}_1^w}$ is the weak closure of the subset \mathcal{M}_1 .
- (3) $\omega(\overline{\mathcal{M}_1}^{\overline{w}}) = \omega(\mathcal{M}_1)$.
- (4) $\omega(\mathcal{M}_1 \cup \mathcal{M}_2) = \max\{\omega(\mathcal{M}_1), \omega(\mathcal{M}_2)\}.$
- (5) $\omega(\lambda \mathcal{M}_1) = |\lambda|\omega(\mathcal{M}_1)$ for all $\lambda \in \mathbb{R}$.
- (6) $\omega(co(\mathcal{M}_1)) = \omega(\mathcal{M}_1)$, where $co(\mathcal{M}_1)$ is the convex hull of \mathcal{M}_1 .
- $(7) \omega(\mathcal{M}_1 + \mathcal{M}_2) \le \omega(\mathcal{M}_1) + \omega(\mathcal{M}_2).$
- (8) if $(\mathcal{M}_n)_{n\geq 1}$ is a decreasing sequence of nonempty, bounded, and weakly closed subsets of X with $\lim_{n\to\infty}\omega(\mathcal{M}_n)=0$, then $\mathcal{M}_{\infty}:=\bigcap_{n=1}^{\infty}\mathcal{M}_n$ is nonempty and $\omega(\mathcal{M}_{\infty})=0$ i.e., \mathcal{M}_{∞} is relatively weakly compact.

Remark 1.2. The measure of weak noncompactness of the unit ball B_X belongs to $\{0,1\}$ i.e., $\omega(B_X) \in \{0,1\}$. In fact, it is obvious that $\omega(B_X) \leq 1$. Let r > 0 be given such that there is a weakly compact K of X satisfying $B_X \subset K + rB_X$. Then, $\omega(B_X) \leq r\omega(B_X)$. If $\omega(B_X) \neq 0$, then $r \geq 1$. Thus, $\omega(B_X) \geq 1$.

The paper is organized as follows. In Section 2, we present the main results of this paper. We prove under some hypotheses that $[T]_a > 0$ if, and only if, T is upper semi-Fredholm, where $[\cdot]_a$ is the "lower" characteristic. In Section 3, we present a characterization of the generalized Jeribi essential spectra in Banach space. Finally, in Section 4, an application to Markov chains is given.

2. Main results

Definition 2.1. Let $T \in \mathcal{L}(X,Y)$, we define the "lower" characteristic

$$[T]_a = \sup\{k : k > 0, \ \omega(T(M)) \ge k\omega(M) \text{ for all bounded } M \subset X\}$$
 (2)

as elements of $[0, \infty]$.

Note that in finite dimensional spaces we have $[T]_a = \infty$. In infinite dimensional spaces, where this characteristic is of more use, we get

$$[T]_a = \inf_{0 < \omega(M) < \infty} \frac{\omega(T(M))}{\omega(M)}.$$
 (3)

Sets with $\omega(M) = 0$ can be left out here, since the continuity of T assures that also $\omega(T(M)) = 0$. This can be seen by considering the following

$$\omega(T(M)) \leq \omega(T(\overline{M})).$$

Proposition 2.2. [11] Let X, Y, Z be three Banach spaces, T, $S \in \mathcal{L}(X, Y)$ and $R \in \mathcal{L}(Y, Z)$. Then,

- $(i) [R]_a [T]_a \leq [RT]_a.$
- (ii) $[T + S]_a = [T]_a$ if S is weakly compact.

Definition 2.3. We say that X has the property (H1) (resp. (H2)) if every reflexive subspace admits a closed complementary subspace (resp. if every closed subspace with reflexive quotient space admits a closed complementary subspace). We say that X has the property (H), if it satisfies both properties (H1) and (H2).

Definition 2.4. An operator $T \in \mathcal{L}(X, Y)$ is said to be generalized Fredholm if its range is closed and both its kernel and co-kernel are reflexive.

The upper generalized semi-Fredholm classes is defined by

$$\Phi_{g+}(X,Y) := \{T \in \mathcal{L}(X,Y) : N(T) \text{ is reflexive and } R(T) \text{ is closed in } Y\},$$

and the lower generalized semi-Fredholm classes is defined as follows

$$\Phi_{g-}(X,Y) := \{T \in \mathcal{L}(X,Y) : Y/R(T) \text{ is reflexive and } R(T) \text{ is closed in } Y\}.$$

We denote by $\Phi_g(X,Y) := \Phi_{g+}(X,Y) \cap \Phi_{g-}(X,Y)$ the set of generalized Fredholm operators in $\mathcal{L}(X,Y)$ and by $\Phi_{g\pm}(X,Y) := \Phi_{g+}(X,Y) \cup \Phi_{g-}(X,Y)$ the set of generalized semi-Fredholm operators.

Theorem 2.5. Let X and Y be two Banach space, $T \in \mathcal{L}(X,Y)$. Suppose that (H1) is satisfied and $S_X \cap R^{\infty}(T)$ is relatively compact. Then, $[T]_a > 0$ if, and only if, T is upper generalized semi-Fredholm.

Proof. Let $T \in \mathcal{L}(X, Y)$ be such that $[T]_a > 0$ and fix $k \in (0, [T]_a)$. Consider M the set

$$M = \{x \in X \text{ such that } Tx = 0 \text{ and } ||x|| = 1\}$$
$$= S_X \cap N(T),$$

and $(x_n)_n$ is a bounded sequence of the set M. It is easy to see that

$$N(T) \subset R^{\infty}(T)$$
.

Then,

$$M=S_X\bigcap N(T)\subset S_X\bigcap R^\infty(T).$$

The fact that M is closed and $\overline{S_X \cap R^\infty(T)}$ is compact, we infer that M is compact. Consequently, N(T) is of finite dimension. We now prove that the range R(T) of T is closed. Indeed, since $\dim N(T) < \infty$, then there exists a closed subspace $X_0 \subset X$ such that $X = X_0 \oplus N(T)$. Let $(y_n)_n$ be a sequence in the range of T, R(T), converging to an element $y \in Y$. Then, there is $(x_n)_n$ in X such that $Tx_n = y_n$. Now, we distinguish two cases. First, assume that $(x_n)_n$ is bounded. With k > 0 as before we then obtain

$$\omega(\lbrace x_1, x_2, \cdots, x_n, \cdots \rbrace) \leq \frac{1}{k} \omega(\lbrace y_1, y_2, \cdots, y_n, \cdots \rbrace) = 0.$$

Hence, $\omega(\{x_1, x_2, \dots, x_n, \dots\}) = 0$. Thus, $(x_{n_k})_k$ converge weakly to an element x for some subsequence $(x_{n_k})_k$ of $(x_n)_n$ and suitable $x \in X$. Since the operator T is bounded, then $y_{n_k} = Tx_{n_k} \to Tx$. The uniqueness of the limit implies that Tx = y, and so $y \in R(T)$. Second, assume that $||x_n||$ is unbounded i.e., $||x_n|| \to \infty$. Set $e_n = \frac{x_n}{||x_n||}$ and $E = \{e_1, e_2, \dots, e_n, \dots\}$. It is clearly to see that $E \subset \{x \in X : ||x|| = 1\}$ and

$$Te_n = \frac{Tx_n}{\|x_n\|} = \frac{y_n}{\|x_n\|} \to 0 \text{ as } n \to \infty.$$

Hence, $\omega(T(E)) = 0$. On the other hand, $\omega(T(E)) \ge k\omega(E)$, by (2). So, $\omega(E) = 0$. Whithout loss of generality we may assume that the sequence $(e_n)_n$ converge weakly to some element $e \in \{x \in X_0 : ||x|| = 1\}$. Hence, $e \in \{x \in X_0 : ||x|| = 1\}$. Hence, $e \in \{x \in X_0 : ||x|| = 1\}$.

Inversely, now we can show that the closeness of R(T) and the space N(T) is reflexive imply that $[T]_a > 0$. Assume that $T \in \Phi_{g+}(X)$. Now, from the fact that X satisfies the property (H1), there exists a closed subspace X_0 of X such that $X = N(T) \oplus X_0$. Since I - P is compact, then the projection $P : X \longrightarrow X_0$ satisfies the condition $[P]_a = 1$. Let $\widehat{T} : X_0 \longrightarrow R(T)$ be the canonical isomorphism. Since $T = \widehat{TP}$ and $[\widehat{T}]_a > 0$, then $[T]_a \ge [\widehat{T}]_a[P]_a > 0$. This completes the proof. \square

Remark 2.6. It is noted that the implication $[T]_a > 0$ implies T is upper generalized semi-Fredholm does not require the assumptions (H1) and $S_X \cap R^{\infty}(T)$ is relatively compact.

Lemma 2.7. [9] Let $T \in \mathcal{L}(X)$. Then, $T \in \Phi_{q+}(X)$ if, and only if, $T^* \in \Phi_{q-}(X^*)$.

Theorem 2.8. Let X and Y be two Banach space, $T \in \mathcal{L}(X,Y)$. Assume that (H1) is satisfied and $S_X \cap R^{\infty}(T)$ is relatively compact. Then, $[T^*]_a > 0$ if, and only if, T is lower generalized semi-Fredholm.

Proof. The result follows by using Lemma 2.7 and Theorem 2.5. □

Theorem 2.9. Let X be a Banach space having the property (H1) and $T \in \mathcal{L}(X)$. Assume that $S_X \cap R^{\infty}(T)$ is relatively compact. If $[T]_a > 0$, then $[T_{|M}]_a > 0$, where $T_{|M}$ is the restriction of T to any closed subspace M of X.

Proof. If $[T]_a > 0$, then by using Theorem 2.5, $T \in \Phi_{g+}(X)$. We observe that $N(T_{|M}) = N(T) \cap M$. Since N(T) is reflexive and M is a closed subspace, the intersection $N(T) \cap M$ is also a reflexive subspace. Now, from the fact that X satisfies the property (H1), there exists a closed subspace M_1 of X such that $X = N(T) \oplus M_1$. Clearly, the restriction $T_{|M_1}$ is injective and has closed range, since $R(T) = T(M_1)$. On the other hand, we have $M = N(T) \cap M \oplus M_1 \cap M$. Which implies $T(M) = T(M_1 \cap M)$. Since $T_{|M_1}$ is bounded below, then $T(M_1 \cap M)$ is closed. Consequently $T_{|M_1} \in \Phi_{g+}(M)$. The result follows from Theorem 2.5. □

Definition 2.10. Let $T \in \mathcal{L}(X, Y)$. T is said to have a left weak-Fredholm inverse if there exists $T_l^w \in \mathcal{L}(X, Y)$ such that $I_X - T_l^w T \in \mathcal{W}(X)$.

Lemma 2.11. Let X be a Banach space having the property (H1) and $T \in \mathcal{L}(X)$. Suppose that $S_X \cap R^{\infty}(T)$ is relatively compact. If $[T]_a > 0$, then T has a left weak-Fredholm inverse.

Proof. The proof follow from [9] and Theorem 2.5. \Box

Theorem 2.12. Let X be a Banach space having the property (H1) and T, $S \in \mathcal{L}(X)$. Suppose that $S_X \cap R^{\infty}(T)$ is relatively compact. If $[ST]_a > 0$, then $[T]_a > 0$.

Proof. If $[ST]_a > 0$, then by using Theorem 2.5, we have $ST \in \Phi_{g+}(X)$. Since X satisfies the property (H1), then by using Lemma 2.11, there exist $W \in \mathcal{W}(X)$ and $A \in \mathcal{L}(X)$ such that AST = I + W. Now, we have to prove that $[T]_a > 0$. For a bounded subset D of X, we have

$$\omega(D) = \omega((I+W)(D))$$

$$= \omega(AST(D))$$

$$\leq ||AS||\omega(T(D)).$$

Hence

$$[T]_a \ge \frac{1}{\|AS\|}.$$

So, $[T]_a > 0$.

Theorem 2.13. Let X be a Banach space having the property (H1) and T, $S \in \mathcal{L}(X)$. Suppose that $S_X \cap R^{\infty}(T)$ is relatively compact. If $[T^*S^*]_a > 0$ and X^* satisfies the property (H1), then $[S^*]_a > 0$.

Proof. Suppose $[T^*S^*]_a > 0$, then according to Theorem 2.5, we get $T^*S^* \in \Phi_{g+}(X^*)$. It follows from the fact that X^* satisfies the property (H1) and reasoning as in the proof of Theorem 2.12, we infer that $S^* \in \Phi_{g+}(X^*)$. Using again Lemma 2.7, we obtain $S \in \Phi_{g-}(X)$. By using Theorem 2.8, we infer that $[S^*]_a > 0$. \square

Theorem 2.14. Let X be a Banach space having the property (H1) and T, $S \in \mathcal{L}(X)$. Suppose that $S_X \cap R^{\infty}(T)$ is relatively compact. If $ST \in \Phi_q(X)$ and X^* satisfies the property (H1), then $[T]_a > 0$ and $[S^*]_a > 0$.

Proof. The result follows from Theorems 2.12 and 2.13. \Box

Theorem 2.15. Let X, Y and Z be three Banach spaces and let $T \in \mathcal{L}(X, Y)$ and $S \in \mathcal{L}(Y, Z)$. If $[T]_a > 0$ and $[S]_a > 0$, then $[ST]_a > 0$.

Proof. Assume that $[T]_a > 0$ and $[S]_a > 0$. Then, from Proposition 2.2, $[ST]_a > 0$. \square

Theorem 2.16. Let X, Y and Z be three Banach spaces and let $T \in \mathcal{L}(X,Y)$ and $S \in \mathcal{L}(Y,Z)$. Suppose that X^* satisfies the property (H1). If $[T^*]_a > 0$ and $[S^*]_a > 0$, then $ST \in \Phi_{a-}(X)$.

Proof. Assume that $[T^*]_a > 0$ and $[S^*]_a > 0$. Since X^* satisfies the property (H1) and by Theorem 2.15, we infer that $[T^*S^*]_a > 0$. Thus, $ST \in \Phi_{q-}(X)$. \square

We begin by recalling the definition of a Tauberian operator introduced by Kalton and Wilansky in [7].

Definition 2.17. An operator $T \in \mathcal{L}(X, Y)$ is called Tauberian if $T^{**-1}(Y) \subset X$.

The class of Tauberian operators from X into Y is denoted by $\mathcal{T}(X,Y)$. Now, let us recall some important properties of Tauberian operators.

Proposition 2.18. [7] Let X, Y and Z be three Banach spaces and let T, $W \in \mathcal{L}(X,Y)$ and $S \in \mathcal{L}(Y,Z)$. Then we have

- (i) If T and S are Tauberian, then ST is Tauberian.
- (ii) If ST is Tauberian, then T is Tauberian.
- (iii) If T is Tauberian and weakly compact if and only if X is reflexive.
- (iv) If $T \in \mathcal{T}(X, Y)$ and $W \in \mathcal{W}(X, Y)$, then $T + W \in \mathcal{T}(X, Y)$.
- (v) T is Tauberian, then N(T) is reflexive.

Definition 2.19. An operator $T \in \mathcal{L}(X, Y)$ is said to be co-Tauberian when its conjugate T^* is Tauberian.

The classes of co-Tauberian operators from *X* into *Y* is denoted by $\mathcal{T}^d(X,Y)$.

Lemma 2.20. Let X and Y be two Banach spaces and $Z \subset X$. For an operator $T \in \mathcal{L}(X,Y)$, the following statements are equivalent

- (i) T is co-Tauberian.
- (ii) Every operator $S \in \mathcal{L}(Y, Z)$ is weakly compact whenever ST is weakly compact.

Theorem 2.21. Let X, Y and Z be three Banach spaces. Suppose that X satisfies the property (H1). If $[T]_a > 0$ and $W \in \mathcal{W}(X)$, then $[T + W]_a > 0$.

Proof. Since *X* has the property (*H*1), $[T]_a > 0$ and $W \in \mathcal{W}(X)$, then by using assertions (*iii*) and (*v*) from Proposition 2.18, we get $[T + W]_a = [T]_a > 0$. It follows that $[T + W]_a > 0$. \square

3. Generalized Jeribi essential spectra

We introduced the generalized Jeribi essential spectra of a bounded linear operator by

$$\sigma_{ei,q}(T) := \{\lambda \in \mathbb{C} \text{ such that } [\lambda - T]_q = 0\} := \mathbb{C} \setminus \Phi_{q+}(T),$$

and

$$\sigma_{eje,g}(T):=\{\lambda\in\mathbb{C} \text{ such that } [\lambda-T]_a=0 \text{ or } [\overline{\lambda}-T^*]_a=0\}:=\mathbb{C}\backslash\Phi_g(T).$$

Proposition 3.1. *Let* X *be a Banach space having the property (H1) and let* T *and* S *be two bounded linear operators on* X. *Then,*

$$\sigma_{ej,g}(T) = \bigcap_{W \in \mathcal{W}(X)} \sigma_{eje,g}(T+W).$$

Proof. Suppose that $\lambda \notin \sigma_{ej,g}(T)$, then $[\lambda - T]_a > 0$. From the fact that X satisfy the property (H1) and $[\lambda - T]_a > 0$, then by Theorem 2.21 we deduce that

$$[\lambda - T - W_1]_a > 0, \tag{4}$$

where $W_1 \in W(X)$. It remains to show that $(\lambda - T - W_1)$ is co-Tauberian. Let $A \in \mathcal{L}(X)$ such that $A(\lambda - T - W_1)$ is weakly compact. By Lemma 2.20, it is enough to show that A is weakly compact. We have

$$\overline{\omega}(A(\lambda - T - W_1)) \ge [\lambda - T - W_1]_a \overline{\omega}(A). \tag{5}$$

Since $[\lambda - T - W_1]_a > 0$, and taking into account that $\overline{\omega}(A(\lambda - T - W_1)) = 0$, then the use of Equation (5) leads to $\overline{\omega}(A) = 0$. Hence, A is weakly compact, and then $(\lambda - T - W_1) \in \mathcal{T}^d(X)$. From Equation (4), we obtain that $R(\lambda - T - W_1)$ is closed. Thus

$$\left[\overline{\lambda} - T^* - W_1^*\right]_a > 0. \tag{6}$$

From Equation (4) and (6), we conclude that $\lambda \notin \bigcap_{W \in \mathcal{W}(X)} \sigma_{eje,g}(T+W)$. Conversely, let $\lambda \notin \bigcap_{W \in \mathcal{W}(X)} \sigma_{eje,g}(T+W)$, then there exists $W \in \mathcal{W}(X)$ such that $\lambda \notin \sigma_{eje,g}(T+W)$. Thus, $[\lambda - T - W]_a > 0$ and $[\overline{\lambda} - T^* - W^*]_a > 0$. Since X satisfy the property (H1) and $[\lambda - T - W]_a > 0$, then by Lemma 2.11 there exist $T_0 \in \mathcal{L}(X)$ and $W_1 \in \mathcal{W}(X)$ such that

$$T_0(\lambda - T - W) = I + W_1$$
.

It follows that $T_0(\lambda - T) = I + W_1 + T_0 W$. By using Theorem 2.12, we infer that $[\lambda - T]_a > 0$ and consequently $\lambda \notin \sigma_{ej,q}(T)$. \square

In the next result a refinement of Proposition 3.1 is presented.

Theorem 3.2. Let X be a Banach space having the property (H) and T and S be two bounded linear operators on X. Then,

$$\sigma_{ej,g}(T) = \bigcap_{W \in \mathcal{W}_n(X)} \sigma_{eje,g}(T+W),$$

where $W_n(X) = \{T \in \mathcal{L}(X) \text{ such that } \overline{\omega}((TS)^n) < 1 \text{ for all } S \in \mathcal{L}(X)\}.$

Proof. Taking into account that $W(X) \subset W_n(X)$, we deduce by Proposition 3.1 that

$$\bigcap_{W\in\mathcal{W}_n(X)}\sigma_{eje,g}(T+W)\subset\sigma_{ej,g}(T).$$

Conversely, let $\lambda \notin \bigcap_{W \in \mathcal{W}_n(X)} \sigma_{eje,g}(T+W)$, then there exists $W \in \mathcal{W}_n(X)$ such that $\lambda - T - W \in \Phi_g(X)$. Since X satisfies the property (H) and $W \in \mathcal{W}_n(X)$, then by using Proposition 3.4.1, we deduce that $[\lambda - T]_a > 0$ and $[\overline{\lambda} - T^*]_a > 0$. Consequently, $\lambda \notin \sigma_{ej,g}(T)$, which completes the proof. \square

4. Application to Markov chains

The aim of this section is to apply the results obtained to characterize Markov chains having an upper generalized semi-Fredholm action on a Banach space. To get this done; we recall some framework on Markov chains. Let (E, ε) be a measurable space of finite measure σ . Let M be a Banach space of the set of functions on (E, ε) which are additive with bounded total variation and $P: f \in M \longrightarrow g \in M$ be the operator defined by

$$Pf(t) := g(t) = \int_{E} P(x, t) f \, dx. \tag{7}$$

The mapping P(x, dy) from (E, ε) to (E, ε) determines an operator P, given in (7). P is called a transition probability on (E, ε) .

Let $(X_n)_n$ be a sequence of positive contractions on $L^1(E,\varepsilon)$ which preserves the norm on

$$L^{1}_{+} = \{ f \in L^{1}(E, \varepsilon) : f \geq 0 \text{ a.e.} \},$$

i.e., ||T|| = 1, $Tf \ge 0$ a.e. and $||Tf||_{L^1} = ||f||_{L^1}$ are maintained each time $f \ge 0$ a.e. This sequence $(X_n)_n$ on (E, ε) associated with P is called a Markov chain.

Consider w from E to $[1, +\infty[$ a measurable function. Consider C_w the Banach space of measurable functions with complex values on E satisfying the following condition

$$\sup_{x\in E}\frac{|f(x)|}{w(x)}<+\infty,$$

with the following norm

$$||f||_w = \sup_{x \in E} \frac{|f(x)|}{w(x)}.$$

Definition 4.1. Let $(X_n)_n$ be a Markov chain with state space E and transition probability P. $(X_n)_n$ is said to be w-geometrically ergodic if there exists an invariant distribution V on E such that $V(w) < +\infty$ and certain constants r < 1 and $R \in \mathbb{R}_+$ such that for each $f \in C_w$, we have

$$||P^n f - \mathcal{V}(f)1_E|| \le Rr^n ||f||_{w_f}$$

where P is given in (7).

Our goal is to give an interesting case of lower transition probability characteristic, where $(X_n)_n$ is w-geometrically ergodic Markov chain. It is easy, by Definition 4.1, that the transition probability satisfies $[I - P]_a > 0$. A periodic Markov chain satisfying the Doeblin condition is a geometric ergodicity with a bounded function w. In the following, an example is given by the functional autoregressive model.

(*i*) Let X_0 be random variable on \mathbb{R}^d and $(Y_n)_{n\geq 1}$ be an independent and identically distributed sequence of random variables on \mathbb{R}^d , independent of X_0 . Consider

$$X_n = \varphi(X_{n-1}) + Y_n,$$

where φ is a function in \mathbb{R}^d . Suppose that the random variables Y_n have a common density p > 0 and a moment of order δ_0 and φ continuous such that

$$\limsup \left(\frac{\|\varphi(x)\|}{\|x\|} \right) < 1$$

when $||x|| \to \infty$. Let's put $w(x) = (1 + ||x||)^{\delta_0}$. Since p > 0, then it is clear to see that $(X_n)_{n \ge 0}$ is aperiodic and Lebesgue-irreducible. Furthermore, we have

$$\lim \sup \left(\frac{Pw(x)}{w(x)} \right) < 1$$

when $||x|| \to \infty$. Using dominated convergence theorem, we infer the following

$$(Pf)(x) = \int_{\mathbb{R}^d} f(\varphi(x) + y) p(y) \, dy.$$

Thanks to the results of [6], it is clear to see that $(X_n)_{n\geq 0}$ is w-geometrically ergodic with P(x,dy)=K(x,y)dy, $K(x,y)=p(y-\varphi(x))$. This implies that I-P is an upper generalized semi-Fredholm. Then, in view of Theorem 2.5, we deduce that $[I-P]_a>0$.

(ii) Let X_0 be random variable on \mathbb{R}^d and $(Z_n)_{n\geq 1}$ be an independent and identically distributed sequence of real-valued random variables, independent of X_0 , such that $m = \mathbb{E}(|Z_1|) < +\infty$, the state space is $E = \mathbb{R}$ and $P(x, A) = \mathbb{E}(1_A(\alpha x + Z_1))$. Another simple example is provided by the linear model

$$X_n = \alpha X_{n-1} + Z_n,$$

with $\alpha \in]-1,1[$. Let $w(y)=1+|y|,y\in \mathbb{R}$. If Z_1 has positive density everywhere, then $(X_n)_n$ is w-geometrically ergodic Markov chain. Therefore, I-P is an upper generalized semi-Fredholm. Thus, by applying the Theorem 2.5, we obtain the associated transition probability $[I-P]_a>0$.

Declarations, Funding and/or Conflicts of interests/Competing interests: no conflicts and Data availability

References

- [1] A. Jeribi, Spectral theory and applications of linear operators and block operator matrices. Springer, Cham, 2015. xvi+599 pp. ISBN: 978-3-319-17565-2; 978-3-319-17566-9
- [2] A. Jeribi, Denseness, bases and frames in Banach spaces and applications. (English) Zbl 06849137 Berlin: De Gruyter (ISBN 978-3-11-048488-5/hbk; 978-3-11-049386-3/ebook). xv, 406 p. (2018).
- [3] A. Jeribi, Perturbation theory for linear operators: Denseness and bases with applications. Springer-Verlag (ISBN 978-981-16-2527-5), Singapore (2021).
- [4] A. Jeribi, Problems in Finite Element Methods Aubin Nitsche's Duality Process, Nodal Methods and Friedrichs Systems, book series: Infosys Science Foundation Series, Springer-Verlag (978-981-97-5709-1), Singapore (2024).
- [5] Banas, J., Rivero, J.: On measures of weak noncompactness. Ann. Mat. Pura Appl. 151: 213-224 (1988).
- [6] S. P. Meyn and R. L. Tweedie, Markov Chains and Stochas- tic Stability (Springer Verlag, New York, Heidelberg, Berlin, 1993).
- [7] N. Kalton, A. Wilansky. Tauberian operators on Banach spaces. Proc. Amer. Math. Soc. 57 (1976), 251-255
- [8] De Blasi, F. S.: On a property of the unit sphere in a Banach space. *Bull. Math. Soc. Sci. Math. R. S. Roumanie* (N.S.) 21: 259–262 (1977).
- [9] A. Azzouz, M. Beghdadi, B. Krichen, g-Riesz operators and their spectral properties. Adv. Oper. Theory 7.2 (2022) 18-27.
- [10] J. Banas, J. Rivero, On measures of weak noncompactness. Ann. Mat. Pura Appl. 151, 213-224, 1988.
- [11] A. Widder, Spectral theory for nonlinear operators, Thesis, Vienna university of technology, 2012.