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Abstract. In the present paper, we introduce the Hausdorff operators associated with the multidimen-
sional Fourier-Bessel operator ∆α; and we prove the boundedness of the multidimensional Fourier-Bessel-
Hausdorff operators on the space L2

α(Rd
+). We investigate multidimensional Fourier-Bessel wavelet trans-

form, and obtain some useful results. The relation between the multidimensional Fourier-Bessel wavelet
transform and multidimensional Fourier-Bessel-Hausdorff operators is also established. The properties of
the adjoint multidimensional Fourier-Bessel-Hausdorff operators are further discussed. The results of this
paper are illustrated by some examples and figures.

1. Introduction

In this paper, we consider the multidimensional Fourier-Bessel operator [1, 36, 37] defined for x =
(x1, . . . , xd) ∈ Rd

+ by

∆α :=
d∑

k=1

 ∂2

∂x2
k

+
2αk + 1

xk

∂
∂xk

 .
This operator has important applications in both pure and applied mathematics and gives rise to a general-
ization of multi-variable analytic structures like the Fourier-Bessel transform, the Fourier-Bessel convolution
and the Fourier-Bessel wavelet transform [2, 5, 6, 23–26, 28–30]. As the harmonic analysis associated with
the multidimensional Fourier-Bessel operator has witnessed remarkable development, it is natural to ask
whether there exists an analogue of of the Hausdorff operators in the framework of the multidimensional
Fourier-Bessel harmonic analysis.

The Hausdorff operators constitute one of the most significant operators in harmonic analysis, and they
are used to address various certain classical problems in analysis. This class of operators includes several
well-known examples such as Hardy operator, adjoint Hardy operator and the Cesàro operator, among
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many others. Also, the Hardy-Littlewood-Pólya operator and Riemann-Liouville fractional integral can also
be derived as particular cases of Hausdorff operator. In the one-dimensional setting, Hausdorff operators
on the real line were introduced in [12] and studied on the Hardy space in [15]. The natural generalization
in several dimensions was introduced and analyzed in [4, 7, 16]. For a comprehensive overview, the reader
is referred to the survey article [17] by Liflyand which presents the main results on Hausdorff operators in
various settings and provides an extensive bibliography up to 2013. Recently, Daher and Saadi in [9, 10]
investigated the Dunkl-Hausdorff operator on the Lebesgue space L1

α(R) and on the Hardy space H1
α(R).

Subsequently, Mondal and Poria [19] studied Hausdorff operators associated with the Opdam-Cherednik
operator. Another fundamental tool in harmonic analysis is the multidimensional Fourier-Bessel-Hausdorff
operators, which is the main object of study in this paper. Precisely, let Lp

α(Rd
+), p ∈ [1,∞], be the space of

measurable functions f on Rd
+, for which

∥ f ∥Lp
α(Rd

+) :=
[∫
Rd
+

| f (x)|pdµα(x)
]1/p

< ∞,

∥ f ∥L∞α (Rd
+) := ess sup

x∈Rd
+

| f (x)| < ∞,

where x = (x1, . . . , xd) and

dµα(x) :=
d∏

k=1

x2αk+1
k

2αkΓ(αk + 1)
dxk.

Specifically, we consider the multidimensional Fourier-Bessel transform

Fα( f )(λ) :=
∫
Rd
+

f (x) jα(λ, x)dµα(x), λ ∈ Rd
+,

where

jα(λ, x) :=
d∏

k=1

jαk (λkxk),

with jαk is the normalized Bessel function of the first kind and order αk (see [34]).
The multidimensional Fourier-Bessel transform can be regarded as a generalization of the Fourier-Bessel
transform [3, 11, 20]. Several important results have already been established for the multidimensional
Fourier-Bessel transform Fα (see [2, 23, 25, 28]).

Let ϕ ∈ L1(R+). We define the Hausdorff operator Hϕ associated with the multidimensional Fourier-
Bessel operator ∆α for f ∈ L1

α(Rd
+) by

Hϕ f (x) :=
∫
R+

f
(x

t

) ϕ(t)
t2(⟨α⟩+d)

dt, x ∈ Rd
+,

where ⟨α⟩ = α1 + α2 + · · · + αd.
The main purpose of this paper is to extend some results of the classical Hausdorff operator given

in [35] to the framework of multidimensional Fourier-Bessel harmonic analysis, and to investigate the
multidimensional Fourier-Bessel wavelet transform. We prove the boundedness of multidimensional
Fourier-Bessel-Hausdorff operators on L2

α(Rd
+) space. The relation between multidimensional Fourier-

Bessel wavelet transform and multidimensional Fourier-Bessel-Hausdorff operators is also established.
Next, we introduce the adjoint operator H∗ϕ on L2

α(Rd
+) by

H∗ϕ f (x) :=
∫
R+

f (tx)ϕ(t)dt, x ∈ Rd
+.

We also give the properties of the adjoint operator H∗ϕ, including its boundedness on L2
α(Rd

+). We also
establish a relation between the multidimensional Fourier-Bessel wavelet transform and the adjoint operator
H∗ϕ.
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In particular cases, we examine the multidimensional Fourier-Bessel-Cesàro operator Cβ, β = 1, 2, . . .,
and its adjoint C∗β. We also analyze the multidimensional Fourier-Bessel-Hardy operatorH and its adjoint
H
∗. Furthermore, we provide numerical and graphical results for these operators.
The paper is organized as follows. In Section 2, we recall some results about the multidimen-

sional Fourier-Bessel harmonic analysis. In Section 3, we introduce the multidimensional Fourier-Bessel-
Hausdorff operators Hϕ and establish their properties. In Section 4, we investigate the multidimensional
Fourier-Bessel wavelet transform and derive its relation with the operators Hϕ and H∗ϕ. Next, in Section 5,
we present numerical and graphical results concerning the multidimensional Fourier-Bessel-Cesàro oper-
ator Cβ, β = 1, 2, . . ., and the multidimensional Fourier-Bessel-Hardy operatorH and its adjointH ∗, in the
case d = 2 and α = ( 1

2 ,
1
2 ). In the last section we provide a conclusion and outline future perspectives.

2. Multidimensional Fourier-Bessel harmonic analysis

In this section we recall some basic results related to the multidimensional Fourier-Bessel harmonic
analysis [2, 5, 6, 23–26, 28].

Let α = (α1, . . . , αd) ∈ [− 1
2 ,∞)d, we denote by∆α, the multidimensional Fourier-Bessel operator [1, 36, 37]

defined for x = (x1, . . . , xd) ∈ Rd
+ by

∆α :=
d∑

k=1

 ∂2

∂x2
k

+
2αk + 1

xk

∂
∂xk

 .
For any λ ∈ Rd

+, the system

∆αu(x) = −|λ|2u(x), u(0) = 1,
∂
∂xk

u(x)
∣∣∣∣
xk=0
= 0, k = 1, . . . , d,

admits a unique solution jα(λ, x), given by

jα(λ, x) :=
d∏

k=1

jαk (λkxk),

where jαk is the normalized Bessel function of the first kind and order αk (see [34]) given by

jαk (xk) := Γ(αk + 1)
∞∑

n=0

(−1)n

n!Γ(n + αk + 1)

(xk

2

)2n
.

For all x, λ ∈ Rd
+, the kernel jα(λ, x) satisfies

| jα(λ, x))| ≤ 1.

The kernel jα(λ, x) gives rise to an integral transform, which is called multidimensional Fourier-Bessel
transform onRd

+, for which many fundamental properties have been established [1]. The multidimensional
Fourier-Bessel transform Fα is defined for f ∈ L1

α(Rd
+) by

Fα( f )(λ) :=
∫
Rd
+

f (x) jα(λ, x)dµα(x), λ ∈ Rd
+.

Moreover if f ∈ L1
α(Rd

+), then
∥Fα( f )∥L∞α (Rd

+) ≤ ∥ f ∥L1
α(Rd

+).

Theorem 2.1. (See [2, 23, 25]).



F. Soltani, N. Homrane / Filomat 39:35 (2025), 12361–12376 12364

(i) Plancherel formula for Fα. The transform Fα extends uniquely to an isometric isomorphism on
L2
α(Rd

+), onto itself. In particular,
∥Fα( f )∥L2

α(Rd
+) = ∥ f ∥L2

α(Rd
+).

(ii) Parseval formula for Fα. For all f , 1 ∈ L2
α(Rd

+), we have

⟨Fα( f ),Fα(1)⟩L2
α(Rd

+) = ⟨ f , 1⟩L2
α(Rd

+).

(iii) Inversion formula for Fα. If f and Fα( f ) are both in L1
α(Rd

+), then

f (x) =
∫
Rd
+

Fα( f )(λ) jα(λ, x)dµα(λ), a.e x ∈ Rd
+,

and
F−1
α ( f )(x) = Fα( f )(x).

We denote by C∗(Rd
+), the space of continuous functions f onRd

+, even with respect to each variable. For
f ∈ C∗(Rd

+) and x, y ∈ Rd
+, we define the multidimensional Fourier-Bessel translation operator (see [2, 26, 36])

by

τx f (y) := aα

∫
(0,π)d

f
(
[x1, y1]θ1 , . . . , [xd, yd]θd

)
×

d∏
k=1

(sinθk)2αk dθ1 . . .dθd, (1)

where [xi, yi]θi :=
√

x2
i + y2

i + 2xiyi cosθi, i = 1, . . . , d and aα :=
∏d

k=1
Γ(αk+1)

√
πΓ(αk+1/2)

.
Theorem 2.2. (See [2, 6]).

(i) For suitable function f , for all x, y ∈ Rd
+, we have

τx f (y) = τy f (x) and τ0 f (x) = f (x).

(ii) For all λ, x, y ∈ Rd
+, we have the product formula

τx( jα(λ, .))(y) = jα(λ, x) jα(λ, y).

(iii) For f ∈ Lp
α(Rd

+), p ∈ [1,∞], and x ∈ Rd
+, then τx f ∈ Lp

α(Rd
+) and∥∥∥τx f

∥∥∥
Lp
α(Rd

+)
≤ ∥ f ∥Lp

α(Rd
+).

(iv) For f ∈ Lp
α(Rd

+), p = 1, 2 and x ∈ Rd
+, we have

Fα
(
τx f

)
(λ) = jα(λ, x)Fα( f )(λ), λ ∈ Rd

+.

Let f , 1 ∈ L2
α(Rd

+). The multidimensional Fourier-Bessel convolution product (see [2, 26, 31]) of f and 1
is defined by

f ∗ 1(x) :=
∫
Rd
+

f (y)τx1(y)dµα(y), x ∈ Rd
+. (2)

The convolution ∗ is commutative, associative and satisfies the Young inequality (see [2]). Let p, q, r ∈
[1,∞] such that 1

p +
1
q = 1 + 1

r . Then for f ∈ Lp
α(Rd

+) and 1 ∈ Lq
α(Rd

+) we have

∥ f ∗ 1∥Lr
α(Rd

+) ≤ ∥ f ∥Lp
α(Rd

+)∥1∥Lq
α(Rd

+).

Theorem 2.3. (See [6]).
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(i) For f , 1 ∈ L2
α(Rd

+), the function f ∗ 1 belongs to L∞α (Rd
+), and

f ∗ 1 = F−1
α (Fα( f )Fα(1)).

(ii) Let f , 1 ∈ L2
α(Rd

+). Then f ∗ 1 belongs to L2
α(Rd

+) if and only if Fα( f )Fα(1) belongs to L2
α(Rd

+), and

Fα( f ∗ 1) = Fα( f )Fα(1), in the L2
α(R

d
+) − case.

(iii) Let f , 1 ∈ L2
α(Rd

+). Then∫
Rd
+

| f ∗ 1(x)|2dµα(x) =
∫
Rd
+

|Fα( f )(λ)|2|Fα(1)(λ)|2dµα(λ),

where both sides are finite or infinite.

3. Multidimensional Fourier-Bessel-Hausdorff operators

In this section we define and study the Hausdorffoperator associated with the multidimensional Fourier-
Bessel operator ∆α. As in the same of the Weinstein case (see [22]) we obtain.
Lemma 3.1. Let f ∈ L2

α(Rd
+), and t > 0. The function ft given by

ft(x) =
1

t2(⟨α⟩+d)
f
(x

t

)
, x ∈ Rd

+,

satisfies

Fα( ft)(λ) = Fα( f )(tλ), λ ∈ Rd
+, (3)

and

∥ ft∥L2
α(Rd

+) =
1

t⟨α⟩+d
∥ f ∥L2

α(Rd
+). (4)

Let ϕ ∈ L1(R+). We define the Hausdorff operator Hϕ associated with the multidimensional Fourier-
Bessel operator ∆α for f ∈ L1

α(Rd
+) by

Hϕ f (x) :=
∫
R+

f
(x

t

) ϕ(t)
t2(⟨α⟩+d)

dt, x ∈ Rd
+. (5)

Theorem 3.2. Let ϕ ∈ L1(R+). Then for f ∈ L1
α(Rd

+), we have

Fα(Hϕ f )(λ) =
∫
R+

Fα( f )(tλ)ϕ(t)dt, λ ∈ Rd
+.

Proof. Let ϕ ∈ L1(R+), and let f ∈ L1
α(Rd

+). Then by (5), we have

Fα(Hϕ f )(λ) =
∫
Rd
+

Hϕ f (x) jα(λ, x)dµα(x)

=

∫
Rd
+

[∫
R+

f
(x

t

) ϕ(t)
t2(⟨α⟩+d)

dt
]

jα(λ, x)dµα(x).

Since ∫
Rd
+

∫
R+

∣∣∣∣∣ f (x
t

)∣∣∣∣∣ |ϕ(t)|
t2(⟨α⟩+d)

dtdµα(x) ≤ ∥ f ∥L1
α(Rd

+)∥ϕ∥L1(R+) < ∞,
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by Fubini’s theorem we obtain

Fα(Hϕ f )(λ) =
∫
R+

Fα( f )(tλ)ϕ(t)dt, λ ∈ Rd
+.

The theorem is proved. □
Theorem 3.3. Let ϕ be a measurable function on R+ such that

Cϕ,2 :=
∫
R+

|ϕ(t)|
t⟨α⟩+d

dt < ∞. (6)

Then the Hausdorff operator Hϕ is bounded on L2
α(Rd

+), with

∥Hϕ f ∥L2
α(Rd

+) ≤ Cϕ,2∥ f ∥L2
α(Rd

+).

Proof. By using Minkowski’s inequality for integrals, we have

∥Hϕ f ∥L2
α(Rd

+) =

∫
Rd
+

∣∣∣∣∣∣
∫
R+

ft(x)ϕ(t)dt

∣∣∣∣∣∣2 dµα(x)

1/2

≤

∫
Rd
+

(∫
R+

| ft(x)||ϕ(t)|dt
)2

dµα(x)

1/2

≤

∫
R+

(∫
Rd
+

| ft(x)|2|ϕ(t)|2dµα(x)
)1/2

dt

=

∫
R+

∥ ft∥L2
α(Rd

+)|ϕ(t)|dt.

Then by (4) we obtain
∥Hϕ f ∥L2

α(Rd
+) ≤ Cϕ,2∥ f ∥L2

α(Rd
+).

Going back to the definition of ∫
Rd
+

(∫
R+

| ft(x)||ϕ(t)|dt
)2

dµα(x)

1/2

,

we deduce that the integral

Hϕ f (x) =
∫
R+

ft(x)ϕ(t)dt,

is absolutely convergent for almost all x ∈ Rd
+, and defines a function Hϕ f ∈ L2

α(Rd
+). □

Remark 3.4. Let ϕ be a measurable function on R+ such that

Cϕ,p :=
∫
R+

|ϕ(t)|

t2(⟨α⟩+d)(1− 1
p )

dt < ∞,

for some p ∈ [1,∞). Then the Hausdorff operator Hϕ is bounded on Lp
α(Rd

+), with

∥Hϕ f ∥Lp
α(Rd

+) ≤ Cϕ,p∥ f ∥Lp
α(Rd

+).

In the next part of this section we define and give the properties of the adjoint operator to Hϕ, such that
the boundedness on L2

α(Rd
+), and the relation between the multidimensional Fourier-Bessel transform Fα

and the adjoint operator H∗ϕ.
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Let f , 1 ∈ L2
α(Rd

+), and let ϕ be a measurable function on R+ satisfying the condition (6). We define the
adjoint operator H∗ϕ by the relation∫

Rd
+

H∗ϕ f (x)1(x)dµα(x) =
∫
Rd
+

f (x)Hϕ1(x)dµα(x).

From Theorem 3.3, the operator H∗ϕ is bounded on L2
α(Rd

+), with

∥H∗ϕ f ∥L2
α(Rd

+) ≤ Cϕ,2∥ f ∥L2
α(Rd

+), (7)

where Cϕ,2 is the constant given by (6).
Theorem 3.5. Let f ∈ L2

α(Rd
+), and let ϕ be a measurable function on R+ satisfying the condition (6). Then

H∗ϕ f (x) =
∫
R+

f (tx)ϕ(t)dt. (8)

Proof. Let f , 1 ∈ L2
α(Rd

+), and let ϕ be a measurable function on R+ satisfying the condition (6). From (5)
and Fubini’s theorem we have∫

Rd
+

f (x)Hϕ1(x)dµα(x) =
∫
Rd
+

f (x)
[∫
R+

1t(x)ϕ(t)dt
]

dµα(x)

=

∫
R+

[∫
Rd
+

f (x)1t(x)dµα(x)
]
ϕ(t)dt

=

∫
R+

[∫
Rd
+

f (tx)1(x)dµα(x)
]
ϕ(t)dt.

Using (4), this calculation is justified by the fact that∫
R+

∫
Rd
+

| f (x)||1t(x)|dµα(x)|ϕ(t)|dt ≤ Cϕ,2∥ f ∥L2
α(Rd

+)∥1∥L2
α(Rd

+) < ∞.

Then according to Fubini’s theorem we obtain∫
Rd
+

f (x)Hϕ1(x)dµα(x) =
∫
Rd
+

[∫
R+

f (tx)ϕ(t)dt
]
1(x)dµα(x)

=

∫
Rd
+

H∗ϕ f (x)1(x)dµα(x),

where

H∗ϕ f (x) =
∫
R+

f (tx)ϕ(t)dt.

This calculation is justified by the fact that∫
R+

∫
Rd
+

| f (tx)||1(x)|dµα(x)|ϕ(t)|dt ≤ Cϕ,2∥ f ∥L2
α(Rd

+)∥1∥L2
α(Rd

+) < ∞.

This completes the proof of the theorem. □
Theorem 3.6. Let ϕ be a measurable function on R+ satisfying the condition

Cϕ,∞ :=
∫
R+

|ϕ(t)|
t2(⟨α⟩+d)

dt < ∞. (9)
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Then for f ∈ L1
α(Rd

+), we have

Fα(H∗ϕ f )(λ) =
∫
R+

Fα( f )(
λ
t

)
ϕ(t)

t2(⟨α⟩+d)
dt, λ ∈ Rd

+.

Proof. Let ϕ be a measurable function on R+ satisfying the condition (9), and let f ∈ L1
α(Rd

+). Then by (8),
we have

Fα(H∗ϕ f )(λ) =
∫
Rd
+

H∗ϕ f (x) jα(λ, x)dµα(x)

=

∫
Rd
+

[∫
R+

f (tx)ϕ(t)dt
]

jα(λ, x)dµα(x).

Since ∫
Rd
+

∫
R+

| f (tx)||ϕ(t)|dtdµα(x) ≤ Cϕ,∞∥ f ∥L1
α(Rd

+) < ∞,

by Fubini’s theorem we obtain

Fα(H∗ϕ f )(λ) =
∫
R+

Fα( f )(
λ
t

)
ϕ(t)

t2(⟨α⟩+d)
dt, λ ∈ Rd

+.

The theorem is proved. □

4. Multidimensional Fourier-Bessel wavelet transform

In this section, we first recall some fundamental results on the multidimensional Fourier-Bessel wavelet
transform. This transform has been studied extensively in [5, 6, 27, 31] where detailed definitions, illustrative
examples, and comprehensive discussions of its properties can be found. By using the harmonic analysis
associated with the operator ∆α, we establish a relation between the multidimensional Fourier-Bessel
wavelet transform and the multidimensional Fourier-Bessel-Hausdorff operators.

We say that a function 1 ∈ L2
α(Rd

+) is a multidimensional Fourier-Bessel wavelet, if it satisfies for almost
all λ ∈ Rd

+, the admissibility condition

0 < ω1 :=
∫
R+

|Fα(1)(aλ)|2
da
a
< ∞. (10)

Condition (10) is well known in the literature [5, 6, 18, 21, 27, 31], and the constant ω1 is independent of λ.
Example. The function 1 given by

1(x) :=
∫
Rd
+

|λ|2e−|λ|
2
jα(λ, x)dµα(λ), x ∈ Rd

+,

is a multidimensional Fourier-Bessel wavelet and ω1 = 1
8 .

For a function 1 ∈ L2
α(Rd

+) and for (a, b) ∈ R∗+ ×Rd
+ we denote by 1a,b the function defined on Rd

+ by

1a,b(x) := τb1a(x),

where τb are the multidimensional Fourier-Bessel translation operators given by (1).
From Theorem 2.2 (iii) and (4) the function 1a,b satisfies

∥1a,b∥L2
α(Rd

+) ≤
1

a⟨α⟩+d
∥1∥L2

α(Rd
+). (11)
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Let 1 ∈ L2
α(Rd

+) be a multidimensional Fourier-Bessel wavelet. We define for f ∈ L2
α(Rd

+), the multidi-
mensional Fourier-Bessel wavelet transform by

Φ1( f )(a, b) :=
∫
Rd
+

f (x)1a,b(x)dµα(x), (12)

which can also be written in the form

Φ1( f )(a, b) = f ∗ 1a(b), (13)

where ∗ is the multidimensional Fourier-Bessel convolution product given by (2).
From (11) and (12) with Hölder’s inequality we have

∥Φ1( f )(a, .)∥∞ ≤
1

a⟨α⟩+d
∥ f ∥L2

α(Rd
+)∥1∥L2

α(Rd
+).

From Theorem 2.1 (iii), Theorem 2.3 (i) and (3) we have

Φ1( f )(a, b) =
∫
Rd
+

Fα( f )(λ)Fα(1)(aλ) jα(λ, b)dµα(λ). (14)

We denote by L2
α(R+ ×Rd

+), the space of measurable functions f on R+ ×Rd
+, such that

∥ f ∥L2
α(R+×Rd

+) :=
[∫
R+

∫
Rd
+

| f (a, b)|2dµα(b)
da
a

]1/2

< ∞.

Theorem 4.1. Let 1 ∈ L2
α(Rd

+) be a multidimensional Fourier-Bessel wavelet.
(i) Plancherel formula for Φ1. For f ∈ L2

α(Rd
+) we have

∥ f ∥2
L2
α(Rd

+)
=

1
ω1
∥Φ1( f )∥2

L2
α(R+×Rd

+)
.

(ii) Parseval formula for Φ1. For f , h ∈ L2
α(Rd

+) we have

⟨ f , h⟩L2
α(Rd

+) =
1
ω1
⟨Φ1( f ),Φ1(h)⟩L2

α(R+×Rd
+).

Proof. (i) Using Fubini’s theorem, Theorem 2.3 (iii), and the relation (13), we obtain

1
ω1
∥Φ1( f )∥2

L2
α(R+×Rd

+)
=

1
ω1

∫
R+

∫
Rd
+

| f ∗ 1a(b)|2dµα(b)
da
a

=
1
ω1

∫
R+

∫
Rd
+

|Fα( f )(λ)|2|Fα(1a)(λ)|2dµα(λ)
da
a

=

∫
Rd
+

|Fα( f )(λ)|2
(

1
ω1

∫
R+

|Fα(1)(aλ)|2
da
a

)
dµα(λ).

By relation (10) we have
1
ω1

∫
R+

|Fα(1)(aλ)|2
da
a
= 1.

Then we deduce the desired result from Theorem 2.1 (i).
(ii) The result is easily deduced from (i). □
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We define the operator Φ∗1 for F ∈ L2
α(R+ ×Rd

+) by

Φ∗1(F)(x) :=
∫
R+×Rd

+

F(a, b)1a,b(x)dµα(b)
da
a
, x ∈ Rd

+. (15)

For f ∈ L2
α(Rd

+) and F ∈ L2
α(R+ ×Rd

+) we have Φ∗1 by

⟨Φ1( f ),F⟩L2
α(R+×Rd

+) = ⟨ f ,Φ
∗

1(F)⟩L2
α(Rd

+).

Theorem 4.2. Let 1 ∈ L2
α(Rd

+) be a multidimensional Fourier-Bessel wavelet. For F ∈ L2
α(R+ ×Rd

+) we have

Φ1Φ
∗

1(F)(a, b) =
∫
R+×Rd

+

F(a′, b′)W1((a, b); (a′, b′))dµα(b′)
da′

a′
,

where

W1((a, b); (a′, b′)) =
∫
Rd
+

1a,b(x)1a′,b′ (x)dµα(x).

Proof. Let F ∈ L2
α(R+ ×Rd

+). From (12), (15) and Fubini’s theorem we have

Φ1Φ
∗

1(F)(a, b) =
∫
Rd
+

Φ∗1(F)(x)1a,b(x)dµα(x)

=

∫
Rd
+

(∫
R+×Rd

+

F(a′, b′)1a′,b′ (x)dµα(b′)
da′

a′

)
1a,b(x)dµα(x)

=

∫
R+×Rd

+

F(a′, b′)
(∫
Rd
+

1a,b(x)1a′,b′ (x)dµα(x)
)

dµα(b′)
da′

a′
.

Therefore we obtain

Φ1Φ
∗

1(F)(a, b) =
∫
R+×Rd

+

F(a′, b′)W1((a, b); (a′, b′))dµα(b′)
da′

a′
,

where

W1((a, b); (a′, b′)) =
∫
Rd
+

1a,b(x)1a′,b′ (x)dµα(x).

The theorem is proved. □
We obtain a relation between the multidimensional Fourier-Bessel wavelet transform and the multidi-

mensional Fourier-Bessel-Hausdorff operators.
Theorem 4.3. Let 1 ∈ L2

α(Rd
+) be a multidimensional Fourier-Bessel wavelet, and let ϕ be a measurable

function on R+ satisfying the condition (6). Then for f ∈ L2
α(Rd

+) we have

Φ1(Hϕ f )(a, b) =
∫
R+

Φ1( f )(
a
t
,

b
t

)
ϕ(t)

t2(⟨α⟩+d)
dt.

Proof. Let 1 ∈ L2
α(Rd

+) be a multidimensional Fourier-Bessel wavelet, and let f ∈ L2
α(Rd

+). From Theorem 3.3
we have Hϕ f ∈ L2

α(Rd
+). Then by (5) and (12), we get

Φ1(Hϕ f )(a, b) =
∫
Rd
+

Hϕ f (x)1a,b(x)dµα(x)

=

∫
Rd
+

[∫
R+

ft(x)ϕ(t)dt
]
1a,b(x)dµα(x)

=

∫
R+

[∫
Rd
+

ft(x)1a,b(x)dµα(x)
]
ϕ(t)dt

=

∫
R+

Φ1( ft)(a, b)ϕ(t)dt.
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According to (14) we have

Φ1( ft)(a, b) =
1

t2(⟨α⟩+d)
Φ1( f )(

a
t
,

b
t

). (16)

Therefore we deduce that

Φ1(Hϕ f )(a, b) =
∫
R+

Φ1( f )(
a
t
,

b
t

)
ϕ(t)

t2(⟨α⟩+d)
dt.

Using (4) and (11), this calculation is justified by the fact that∫
R+

∫
Rd
+

| ft(x)||1a,b(x)|dµα(x)|ϕ(t)|dt ≤
Cϕ,2

a⟨α⟩+d
∥ f ∥L2

α(Rd
+)∥1∥L2

α(Rd
+) < ∞.

This ends the proof of the theorem. □
We obtain a relation between the multidimensional Fourier-Bessel wavelet transform and the adjoint

operator H∗ϕ.

Theorem 4.4. Let 1 ∈ L2
α(Rd

+) be a multidimensional Fourier-Bessel wavelet, and let ϕ be a measurable
function on R+ satisfying the condition (6). Then for f ∈ L2

α(Rd
+) we have

Φ1(H∗ϕ f )(a, b) =
∫
R+

Φ1( f )(ta, tb)ϕ(t)dt.

Proof. Let 1 ∈ L2
α(Rd

+) be a multidimensional Fourier-Bessel wavelet, and let f ∈ L2
α(Rd

+). From (7) we have
H∗ϕ f ∈ L2

α(Rd
+). Then by (8) and (12), we get

Φ1(H∗ϕ f )(a, b) =
∫
Rd
+

H∗ϕ f (x)1a,b(x)dµα(x)

=

∫
Rd
+

[∫
R+

f (tx)ϕ(t)dt
]
1a,b(x)dµα(x)

=

∫
R+

[∫
Rd
+

f 1
t
(x)1a,b(x)dµα(x)

]
ϕ(t)

t2(⟨α⟩+d)
dt

=

∫
R+

Φ1( f 1
t
)(a, b)

ϕ(t)
t2(⟨α⟩+d)

dt.

According to (16) we have

Φ1( f 1
t
)(a, b) = t2(⟨α⟩+d)Φ1( f )(ta, tb).

Therefore we deduce that

Φ1(H∗ϕ f )(a, b) =
∫
R+

Φ1( f )(ta, tb)ϕ(t)dt.

Using (4) and (11), this calculation is justified by the fact that∫
R+

∫
Rd
+

| f 1
t
(x)||1a,b(x)|dµα(x)

|ϕ(t)|
t2(⟨α⟩+d)

dt ≤
Cϕ,2

a⟨α⟩+d
∥ f ∥L2

α(Rd
+)∥1∥L2

α(Rd
+) < ∞.

This ends the proof of the theorem. □
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5. Numerical applications

If we choose ϕ(t) = β(1− t)β−1χ(0,1)(t), β = 1, 2, . . ., where χ(0,1) is the characteristic function of the interval
(0, 1); we obtain the multidimensional Fourier-Bessel-Cesàro operator of order β denoted by Cβ and given
by (Figures 1–4)

Cβ f (x) := β
∫ 1

0
f
(x

t

) (1 − t)β−1

t2(⟨α⟩+d)
dt.

A brief history of the study of Cesàro operator can be found in [13].

The adjoint of the multidimensional Fourier-Bessel-Cesàro operator is given by

C
∗

β f (x) := β
∫ 1

0
f (tx)(1 − t)β−1dt.

If d = 2, α = ( 1
2 ,

1
2 ) and f (x1, x2) = e−

√
x2

1+x2
2 , we obtain

Cβ f (x1, x2) := β
∫ 1

0
e−

1
t

√
x2

1+x2
2
(1 − t)β−1

t6 dt,

and

C
∗

β f (x1, x2) := β
∫ 1

0
e−t
√

x2
1+x2

2 (1 − t)β−1dt.

Figure 1: Plot of f (x1, x2) = e−
√

x2
1+x2

2 when (x1, x2) ∈ [0, 10] × [0, 10].
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Figure 2: Plots of C1 f and C∗1 f when α = ( 1
2 ,

1
2 ) and (x1, x2) ∈ [0, 10] × [0, 10].

Figure 3: Plots of C2 f and C∗2 f when α = ( 1
2 ,

1
2 ) and (x1, x2) ∈ [0, 10] × [0, 10].
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Figure 4: Plots of C3 f and C∗3 f when α = ( 1
2 ,

1
2 ) and (x1, x2) ∈ [0, 10] × [0, 10].

If we choose ϕ(t) = 1
tχ(1,∞)(t), we obtain the multidimensional Fourier-Bessel-Hardy operator denoted

byH and given by (Figure 5)

H f (x) :=
∫
∞

1
f
(x

t

) dt
t2⟨α⟩+2d+1

.

It is well known that Hardy operators are important operators in harmonic analysis, for instance, see [8, 14].

The adjoint of the multidimensional Fourier-Bessel-Hardy operator is given by

H
∗ f (x) :=

∫
∞

1
f (tx)

dt
t
.

If d = 2, α = ( 1
2 ,

1
2 ) and f (x1, x2) = e−

√
x2

1+x2
2 , we obtain

H f (x1, x2) :=
∫
∞

1
e−

1
t

√
x2

1+x2
2
dt
t7 ,

and

H
∗ f (x1, x2) :=

∫
∞

1
e−t
√

x2
1+x2

2
dt
t
.
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Figure 5: Plots ofH f andH ∗ f when α = ( 1
2 ,

1
2 ) and (x1, x2) ∈ [0, 10] × [0, 10].

6. Conclusion and perspective

In this work we have succeeded in generalizing the results of Móricz for the classical Hausdorff operators
[35], Upadhyay et al. for the Fourier-Bessel-Hausdorff operators [32, 33] and Daher et al. for the Dunkl-
Hausdorff operators [9, 10] to the setting of the multidimensional Fourier-Bessel harmonic analysis. In
this paper, we have studied the multidimensional Fourier-Bessel-Hausdorff operators and their adjoint on
the Lebesgue space L2

α(Rd
+). Several other questions arise naturally, namely, the multidimensional Fourier-

Bessel-Hausdorff operators on the Sobolev space, the Hardy space, the homogeneous weighted Herz space
and the Herz-type Hardy space.
Acknowledgements. The authors are deeply grateful to the referee for his constructive comments and
valuable suggestions.
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