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Abstract. In the present paper, we introduce the Hausdorff operators associated with the multidimen-
sional Fourier-Bessel operator A,; and we prove the boundedness of the multidimensional Fourier-Bessel-
Hausdorff operators on the space L2(R%). We investigate multidimensional Fourier-Bessel wavelet trans-
form, and obtain some useful results. The relation between the multidimensional Fourier-Bessel wavelet
transform and multidimensional Fourier-Bessel-Hausdorff operators is also established. The properties of
the adjoint multidimensional Fourier-Bessel-Hausdorff operators are further discussed. The results of this
paper are illustrated by some examples and figures.

1. Introduction

In this paper, we consider the multidimensional Fourier-Bessel operator [1, 36, 37] defined for x =

(x1,...,%1) € R: by
L2 2041 9
Ay :Z{ﬁﬁ'—&—}
= 9% Xk Xk

This operator has important applications in both pure and applied mathematics and gives rise to a general-
ization of multi-variable analytic structures like the Fourier-Bessel transform, the Fourier-Bessel convolution
and the Fourier-Bessel wavelet transform [2, 5, 6, 23-26, 28-30]. As the harmonic analysis associated with
the multidimensional Fourier-Bessel operator has witnessed remarkable development, it is natural to ask
whether there exists an analogue of of the Hausdorff operators in the framework of the multidimensional
Fourier-Bessel harmonic analysis.

The Hausdorff operators constitute one of the most significant operators in harmonic analysis, and they
are used to address various certain classical problems in analysis. This class of operators includes several
well-known examples such as Hardy operator, adjoint Hardy operator and the Cesaro operator, among
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many others. Also, the Hardy-Littlewood-Pélya operator and Riemann-Liouville fractional integral can also
be derived as particular cases of Hausdorff operator. In the one-dimensional setting, Hausdorff operators
on the real line were introduced in [12] and studied on the Hardy space in [15]. The natural generalization
in several dimensions was introduced and analyzed in [4, 7, 16]. For a comprehensive overview, the reader
is referred to the survey article [17] by Liflyand which presents the main results on Hausdorff operators in
various settings and provides an extensive bibliography up to 2013. Recently, Daher and Saadi in [9, 10]
investigated the Dunkl-Hausdorff operator on the Lebesgue space L}(R) and on the Hardy space H.(R).
Subsequently, Mondal and Poria [19] studied Hausdorff operators associated with the Opdam-Cherednik
operator. Another fundamental tool in harmonic analysis is the multidimensional Fourier-Bessel-Hausdorff
operators, which is the main object of study in this paper. Precisely, let L},(IR?), p € [1, o], be the space of
measurable functions f on R%, for which

1/p
uﬂmmwﬂﬁ;wmmmaﬂ < oo,

Ifllrorey == esssup |f(x)] < eo,
xeR?

where x = (x1,...,x;) and
20+1

d
i k
dpa(x) = H TSI

Specifically, we consider the multidimensional Fourier-Bessel transform
FAAW = [ @i, 00, AR,
where
d
jad,2) 1= | | s i),
k=1

with j,, is the normalized Bessel function of the first kind and order ay (see [34]).
The multidimensional Fourier-Bessel transform can be regarded as a generalization of the Fourier-Bessel
transform [3, 11, 20]. Several important results have already been established for the multidimensional
Fourier-Bessel transform %, (see [2, 23, 25, 28]).

Let ¢ € L'(R;). We define the Hausdorff operator Hy, associated with the multidimensional Fourier-
Bessel operator A, for f € LL(R%) by

()
Hy f(x) = f}R + 7(3) tzfa>+d) dt, xeR!,

where () = a1 +ap + -+ - + ay.

The main purpose of this paper is to extend some results of the classical Hausdorff operator given
in [35] to the framework of multidimensional Fourier-Bessel harmonic analysis, and to investigate the
multidimensional Fourier-Bessel wavelet transform. We prove the boundedness of multidimensional
Fourier-Bessel-Hausdorff operators on L2(R?) space. The relation between multidimensional Fourier-
Bessel wavelet transform and multidimensional Fourier-Bessel-Hausdorff operators is also established.
Next, we introduce the adjoint operator H;, on L2(R%) by

H f(x) = fR ft)ptdt, xeRY.

We also give the properties of the adjoint operator H, including its boundedness on L2(R%). We also
establish a relation between the multidimensional Fourier-Bessel wavelet transform and the adjoint operator

H(p.
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In particular cases, we examine the multidimensional Fourier-Bessel-Cesaro operator Cg, = 1,2,...,
and its adjoint C;. We also analyze the multidimensional Fourier-Bessel-Hardy operator H and its adjoint
H*. Furthermore, we provide numerical and graphical results for these operators.

The paper is organized as follows. In Section 2, we recall some results about the multidimen-
sional Fourier-Bessel harmonic analysis. In Section 3, we introduce the multidimensional Fourier-Bessel-
Hausdorff operators Hy, and establish their properties. In Section 4, we investigate the multidimensional
Fourier-Bessel wavelet transform and derive its relation with the operators Hy, and H},. Next, in Section 5,
we present numerical and graphical results concerning the multidimensional Fourier-Bessel-Cesaro oper-
ator Cg, p = 1,2,..., and the multidimensional Fourier-Bessel-Hardy operator H and its adjoint /", in the
cased =2and a = (2, 1). In the last section we provide a conclusion and outline future perspectives.

2. Multidimensional Fourier-Bessel harmonic analysis

In this section we recall some basic results related to the multidimensional Fourier-Bessel harmonic
analysis [2, 5, 6, 23-26, 28].

Leta=(a,...,ag) € [—%, o0)?, we denote by A,, the multidimensional Fourier-Bessel operator [1, 36, 37]
defined for x = (xy,...,x;) € R% by

i P 2+l 0
= Xk 8xk )

For any A € RY, the system

d
Aau(x) = —|A|2M(X), M(O) = 1/ a_xku(x)

=0, k=1,...,4d,

Xk=0

admits a unique solution j,(A, x), given by

d
joeld,2) 1= | [ s i),
k=1

where j,, is the normalized Bessel function of the first kind and order ay (see [34]) given by

Jo (Xk) —F(ak+1)z—)n( k)”

nT'(n+ ax + 1)

Forallx,A € ]R‘i, the kernel j, (A, x) satisfies
lja(A, 0))| < 1.

The kernel j,(A, x) gives rise to an integral transform, which is called multidimensional Fourier-Bessel
transform on IR?, for which many fundamental properties have been established [1]. The multidimensional
Fourier-Bessel transform .7, is defined for f € LL(R?) by

FANW = [ 0900, AR,

Moreover if f € L}(R%), then
”g\a(f)”LM(]Rd < ”f”L (]Rd .
Theorem 2.1. (See [2, 23, 25]).
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(i) Plancherel formula for .#,. The transform .%#, extends uniquely to an isometric isomorphism on
L2(R%), onto itself. In particular,

||<%x(f)||L§,(1Ri) = ||f||L§,(1Ri)~
(i) Parseval formula for .%,. For all f, g € L2(R?), we have
(Za(f), a(g)hz(m ={f, 9>L2(]Rd

(iii) Inversion formula for .%,. If f and .Z,(f) are both in L} (R?), then
0= [ ZOWAIHW, ae reR,
R-%-

and
FZHE) = Za(f))

We denote by C.(IR?), the space of continuous functions f on R?, even with respect to each variable. For
f € C.(R%) and x, y € RY, we define the multidimensional Fourier-Bessel translation operator (see [2, 26, 36])

by

d
Txf(y) =g f . f ([xll yl]@ll LR [xd/ yd]@d) X H(Sln ek)zakdel s ded! (1)
0,m) k=1
where [x;, yilo, := \/xl2 + Y7 +2xy;cos0;,i=1,...,dand a, : Hk 1 \Frr(?of::l)/z

Theorem 2.2. (See [2, 6]).
(i) For suitable function f, for all x, y € RY, we have

T f(y) = 1, f(x) and Tof(®) = f(x).
(ii) Forall A,x,y € IR’_{, we have the product formula
Tx(Ja(A, DY) = jalA, %) ja(A, Y)-
(iii) For f € LL(R%), p € [1,0], and x € R%, then 7, f € L} (IR?) and
et ey < 1Nz
(iv) For f € LI(R%),p = 1,2 and x € R?, we have
Za () (A) = ju&, ) Fu(f)A), A ERL.

Let f,g € L2(R%). The multidimensional Fourier-Bessel convolution product (see [2, 26, 31]) of f and g
is defined by

Frot= [ FOromdut), xR @

The convolution * is commutative, associative and satisfies the Young inequality (see [2]). Let p,q,7 €
[1, 00] such that % + % =1+ % Then for f € L' (R%) and g € L] (R?) we have

IIf*gllL;(m) < ||f||Lg(R¢)||g||Lg(R¢)-
Theorem 2.3. (See [6]).
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(i) For f,g € L2(IR?), the function f * g belongs to LY (R%), and
f*g= T (Fa())Za(9)).
(i) Let f,g € L2(R). Then f * g belongs to L2(IR?) if and only if .Z,(f).Z.(g) belongs to L2(IR?), and
Fo(f *g9) = Zu(f)Fulg), inthe LEZK(]R‘i) — case.

(iii) Let f, g € L2(R%). Then

f |f * g)Pdpa(x) = f | Za(ANPZ(@) )P dua(h),
RY RY

where both sides are finite or infinite.

3. Multidimensional Fourier-Bessel-Hausdorff operators

In this section we define and study the Hausdorff operator associated with the multidimensional Fourier-
Bessel operator A,. As in the same of the Weinstein case (see [22]) we obtain.
Lemma 3.1. Let f € [2(IR?), and ¢ > 0. The function f; given by

1 x d
0=t (5), xR,

satisfies
Fo(f)N) = Zu(H(tA), AER], (©)
and
1
iz = sayeallf iz @)

Let ¢ € L'(R;). We define the Hausdorff operator Hy associated with the multidimensional Fourier-
Bessel operator A, for f € LL(R?) by

x\ o)
Hyf(x) := L+f(¥)mdt, ¥ eRY, (5)
Theorem 3.2. Let ¢ € L'(R,). Then for f € LL(R%), we have
FaHeHN) = | ZulHENGBAL, A€ R

Proof. Let ¢ € L'(IR,), and let f € LL(IR?). Then by (5), we have

FuHo PO = [ Hof()iah, 9us0)

- fR i { L + f(%) tzf[ffzd) dt] A, 2)d 1 (3).

fm fR f(f) o (®)

Since

Wdtd#a(ﬁf) = “f”LLlI(]Rﬁ)“qb“Ll(RQ < o,
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by Fubini’s theorem we obtain

FuHy HA) = f}R ZuFENGB, A e RL

The theorem is proved. O
Theorem 3.3. Let ¢ be a measurable function on R, such that
(0]
C¢,/2 = fR+ Hared dt < oo. (6)

Then the Hausdorff operator H, is bounded on L2(IR%), with

1Ho fll 2wty < Cooll fll2wey-

Proof. By using Minkowski’s inequality for integrals, we have

||Ht,f>f||L?.(1Ri) = [jﬂ;d [R F)Pbdt
e 2 172
< [flR‘i (jl; |ft(X)||¢(t)|dt) d‘Ua(X)}
1/2
2 2
= L; (*fﬂ;‘i If: ()% 1p(B)] dya(x)) dt

- [ Wz foonct
R,

1/2

2
d#a(x)}

Then by (4) we obtain
IHo fllr2rey < Co2llfllr2re)-

5 1/2
[ f ( f Ift(x)llqb(t)ldt) dmx)} ,
R \JR,

H(pf(x):‘f]R fi(x)p(t)dt,

Going back to the definition of

we deduce that the integral

is absolutely convergent for almost all x € R?, and defines a function H, f € L2(R%). m]
Remark 3.4. Let ¢ be a measurable function on R, such that

t
Cor= [ smmdt <o
R, t2(<f¥>+d)(1—;

for some p € [1, ). Then the Hausdorff operator Hy is bounded on LL(RY), with

”H¢’f”Lﬁ(IR‘1) = C‘P/P”f”Lﬂ(Ri)'

In the next part of this section we define and give the properties of the adjoint operator to Hg, such that
the boundedness on L2(IR?), and the relation between the multidimensional Fourier-Bessel transform .%,
and the adjoint operator Hy,.
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Let f,g € L2(R%), and let ¢ be a measurable function on R, satisfying the condition (6). We define the
adjoint operator H(’; by the relation

[ He o = [ R0,
R R
From Theorem 3.3, the operator H;}) is bounded on L2(R?), with

TG flliz ey < Coall fliz e o

where Cy» is the constant given by (6).
Theorem 3.5. Let f € L2(R%), and let ¢ be a measurable function on IR, satisfying the condition (6). Then

Hyf(x) = | ft0g(t)dt. 8)
R+

Proof. Let f,g € L2(R%), and let ¢» be a measurable function on R, satisfying the condition (6). From (5)
and Fubini’s theorem we have

[ FOOH g9 (2) = [ S [ [ 90900a] 9

- f [ f FE7 @A) | St
R, [JRY ]

= f [ f f(Ex)g()dpa(x)| P(t)dt.
R, [JRY ]

Using (4), this calculation is justified by the fact that

f f OO @ISOIE < Coallllyz el z ey < o
R, JR

Then according to Fubini’s theorem we obtain

jl; i F(O)Hpg(x)dpa(x) = f}R i [ jﬂ; ) f(tx)qb(f)df] g(0)dpia(x)
_ f}R H f@g00dpa(x),

where

Hyf = [ femon

This calculation is justified by the fact that

f f NI COIDIAE < ol Fl e 192 ety < o0
R, JR

This completes the proof of the theorem. ]
Theorem 3.6. Let ¢» be a measurable function on IR, satisfying the condition

lp®)l
C(f),oo = jl;r t2((a>+d) dt < oo. (9)
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Then for f € LL(R?), we have

A Pt
ﬂa(H;f)(A):L ﬁa(f)(?)tzi)j—>zmdt, AeR?

Proof. Let ¢ be a measurable function on R, satisfying the condition (9), and let f € L}Y(]Rﬁ). Then by (8),
we have

FAHNW = [ H a1, 900

= f [ f(tx)cp(t)dt]ja(A,x)dua(x).
R? [JR,

Since

f f FE) Bl (x) < Coeollfllz ey < 0,
RY JR,

+

by Fubini’s theorem we obtain

FAT AN = [ D) dt, AeRL.
R, t 7 f2(a)+d)

The theorem is proved. m|

4. Multidimensional Fourier-Bessel wavelet transform

In this section, we first recall some fundamental results on the multidimensional Fourier-Bessel wavelet
transform. This transform has been studied extensively in [5, 6,27, 31] where detailed definitions, illustrative
examples, and comprehensive discussions of its properties can be found. By using the harmonic analysis
associated with the operator A,, we establish a relation between the multidimensional Fourier-Bessel
wavelet transform and the multidimensional Fourier-Bessel-Hausdorff operators.

We say that a function g € L2(IR%) is a multidimensional Fourier-Bessel wavelet, if it satisfies for almost
all A € R?, the admissibility condition

0<w,:= f %(g)(m)ﬁ% < 0. (10)
]R+

Condition (10) is well known in the literature [5, 6, 18, 21, 27, 31], and the constant w, is independent of A.
Example. The function g given by

g(x) := fR 4 IARPe (A, 0)dpa(A), xeRZ,

is a multidimensional Fourier-Bessel wavelet and w, = }—5.

For a function g € L2(R%) and for (a,b) € R, x R? we denote by g, the function defined on R? by

Gap(X) 1= Tpga(X),

where 7, are the multidimensional Fourier-Bessel translation operators given by (1).
From Theorem 2.2 (iii) and (4) the function g, satisfies

1
||!7a,b||Lg(JRi) < W”!]HL(&(RQ- (11)
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Let g € L2(IR?) be a multidimensional Fourier-Bessel wavelet. We define for f € L2(IR?), the multidi-
mensional Fourier-Bessel wavelet transform by

N0 = [ s, 12)
IR+
which can also be written in the form

D@y(f)(a, b) = f * ga(b), (13)

where * is the multidimensional Fourier-Bessel convolution product given by (2).
From (11) and (12) with Holder’s inequality we have

1
1D,()(@, Mo < W”f”@(mﬁ)”g”g(ﬂzi)-

From Theorem 2.1 (iii), Theorem 2.3 (i) and (3) we have
Dy (f)(a,b) = jﬂ; , Za(HN)Za(g)@N)ja(A, b)dpta(A)- (14)

We denote by L2(R; X ]Ri), the space of measurable functions f on R, X ]Ri, such that

||f”L2(R+XRd) = [f f |f(a,b) |2dya(b)— < oo,

Theorem 4.1. Let g € L2 2(R?) be a multidimensional Fourier-Bessel wavelet.
(i) Plancherel formula for ®,. For f € L2(R%) we have

AR ey = ||<1>g(f)||L2(]R -
(ii) Parseval formula for ®,. For f,h € L2(R?%) we have
1
fiizwsy = —(Po(f), Loz, xre)-
g

Proof. (i) Using Fubini’s theorem, Theorem 2.3 (iii), and the relation (13), we obtain

||q>g<f)||LzaR XRd)—wig fR + fR 1 0,00
1 a a %
Sl A MG GECAGTETREES.
— 7 2 i z 2%
= [zowe( [ 1700w,

By relation (10) we have
1 oda
o | 1z =1

Then we deduce the desired result from Theorem 2.1 (i).
(ii) The result is easily deduced from (i). m|
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We define the operator @ for F € L2(R; x R?) by

N [ b, xR (15)

a

+XIRE
For f € L3(RY) and F € L3 (R, X R{) we have ®; by
(@y(f), Bhrarxwey = s PoEDrarey-

Theorem 4.2. Let g € L2(IR?) be a multidimensional Fourier-Bessel wavelet. For F € L2(IR; x R?) we have

O, (F)(a,b) = f ) F(@',b')W,((a,b); (@', b"))dua(b’)

R, xR

da’

a’

where

Wy((a, b); (@', 1)) = f 90y (00 p () dpta(x).
R!
Proof. Let F € L2(R; X R?). From (12), (15) and Fubini’s theorem we have

0,0,00,6) = [ @000,

’

_ d
- [ ( [ e )ga,bmdya(x)
R: \JR, xR?

— ,\da’
_ f P(g'/b/)( f ga/b(x)ga,/b,(x)dya(x))d‘uH(b) <
R, xR? RY a

Therefore we obtain

d ’
O, (F)(a,b) = f]R » F(@', b )W,((a,b); (a’,b"))dua(b’) ; ,

where

W00, ) = [ e ).

The theorem is proved. ]
We obtain a relation between the multidimensional Fourier-Bessel wavelet transform and the multidi-

mensional Fourier-Bessel-Hausdorff operators.

Theorem 4.3. Let g € L2(RY) be a multidimensional Fourier-Bessel wavelet, and let ¢ be a measurable

function on R, satisfying the condition (6). Then for f € L2 (R%) we have

Ot = [ D0,

Proof. Let g € L2(IR?) be a multidimensional Fourier-Bessel wavelet, and let f € L2(IR?). From Theorem 3.3
we have H,, f € L2(R?). Then by (5) and (12), we get

(I)y(H(/)f)(a/ b) = H(J)f(x)ga,b(x)d(ua(x)
R{

= f [ f ﬁ(x)qﬁ(t)dt]ga,b(x)dua(x)
RY [JR,

= f [ f ft(x)ga,b(x)dua(X)]qb(t)dt
R, LJRY
= fR Dy (fi)(a, b)p(t)dt.
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According to (14) we have

()0, = s NG, ).

Therefore we deduce that

ab (1)

(Dg(Hd)f)(ar b) = jl; g(f i’ t t2((a)+d) A A

Using (4) and (11), this calculation is justified by the fact that

Co2
f f |fe(Ol1ga,p ()| dpa () Pp(H)IdE < <am,IIfIILzURd)II_tJIILzURvI < oo,

This ends the proof of the theorem.

12371

(16)

O

We obtain a relation between the multidimensional Fourier-Bessel wavelet transform and the adjoint

operator H y

Theorem 4 4. Let g € L2(IR%) be a multidimensional Fourier-Bessel wavelet, and let ¢» be a measurable

function on R, satisfying the condition (6). Then for f € L2(R?) we have

OH, N6 = [ @m0

Proof. Letg € L2(R%) be a multidimensional Fourier-Bessel wavelet, and let fe L2(R%). From (7) we have

Hyf € L2(R%). Then by (8) and (12), we get

DuH N = [ H F09,0I00.00)

= fd [f f(tx)qb(t)dt] Fap(0)da(x)
fI[;+ [f f1 (0)gap(x) dya(x)] tzfogzd)dt

(t
= L + O,(f1)(a, b)tzfa>+d)dt

According to (16) we have
Dy(f1)(a, b) = P DD (f)(ta, th).

Therefore we deduce that

CDg(H;f)(a,b)zfﬂ; D, (f)(ta, th)p(t)dt.

Using (4) and (11), this calculation is justified by the fact that

Q)
f f |f @ gap(ldua() g dt < - <a>+d||f||Lsz)||g||L2Rd < oo,

This ends the proof of the theorem.
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5. Numerical applications

If we choose ¢(t) = B(1 — )P x1)(t), B = 1,2,..., where x(o,1) is the characteristic function of the interval
(0,1); we obtain the multidimensional Fourier-Bessel-Cesaro operator of order § denoted by Cs and given
by (Figures 1-4)

1—t)f1
Cof () = f (5) 0 .

A brief history of the study of Cesaro operator can be found in [13].

The adjoint of the multidimensional Fourier-Bessel-Cesaro operator is given by
1
Cpf(x) =B f Fftx)(1 -ty 1dt.
0

Ifd=2a= (3% and f(x;,x) = ¢ % we obtain

1 _ pp-1
Cpf(x1,32) 1= B f R Gl Ui t(f) dt,
0

and

1
Cif(x1, ) =P fo etV — pFldL.

0.7

0.6

0.1

_ 2,2
Figure 1: Plotof f(x1,x2) =e V12 when (x1,x2) € [0,10] x [0, 10].
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C1f(x1, x3)
A

Value

Figure 2: Plots of C1 f and C} f when a = (%, %) and (x1,x2) € [0,10] x [0, 10].

Figure 3: Plots of C2f and C} f when a = (3, 3) and (x1, x2) € [0,10] X [0, 10].

fix1, x5)

*
1

C.

f(x1, x3)

*
2

C.

12373

0.6

0.5

04
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03

0.2

0.1

0.7

0.6

0.5

Value

03

0.2
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C3f(x1, x3)
C3fx1, x3)

Figure 4: Plots of C3f and C} f when a = (%, %) and (x1,x2) € [0,10] x [0, 10].

If we choose ¢(t) = % X(1,00)(t), we obtain the multidimensional Fourier-Bessel-Hardy operator denoted

by H and given by (Figure 5)
L (x dt
Hf(x) = ]; f(?) 2@+l

It is well known that Hardy operators are important operators in harmonic analysis, for instance, see [8, 14].

The adjoint of the multidimensional Fourier-Bessel-Hardy operator is given by

Hiw= [ e

Ifd=2,a=(11)and f(x,x) = e Vi*%, we obtain

~ —1 /¥ +x dt
7'{f(xllxz)i:j‘ e %+§t_7'

1

and

H flx1, 1) = f e—tm%.
1
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Figure 5: Plots of H f and H* f when a = (%, %) and (x1,x2) € [0,10] x [0, 10].

6. Conclusion and perspective

In this work we have succeeded in generalizing the results of Mdricz for the classical Hausdorff operators
[35], Upadhyay et al. for the Fourier-Bessel-Hausdorff operators [32, 33] and Daher et al. for the Dunkl-
Hausdorff operators [9, 10] to the setting of the multidimensional Fourier-Bessel harmonic analysis. In
this paper, we have studied the multidimensional Fourier-Bessel-Hausdorff operators and their adjoint on
the Lebesgue space L2(R%). Several other questions arise naturally, namely, the multidimensional Fourier-
Bessel-Hausdorff operators on the Sobolev space, the Hardy space, the homogeneous weighted Herz space
and the Herz-type Hardy space.
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