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Abstract. Motivated by the recently introduced strongly Bott-Duffin (e, f )-inverse for elements in a semi-
group [M. Drazin, Linear Multilinear Algebra, 71(8) (2023), 1397–1406], the aim of this paper is to investigate
this notion in the context of complex rectangular matrices. We provide necessary and sufficient condi-
tions for its existence and derive a general expression involving an arbitrary inner inverse of the matrix.
In addition, we obtain a canonical form for this inverse via the classical singular value decomposition.
Furthermore, we show that the recently introduced generalized bilateral inverse, as well as several other
notions appearing in the recent literature, can be viewed as particular cases of this new inverse.

1. Introduction

1.1. Mise-en-scène

Generalized inverses play a fundamental role in matrix theory, operator theory, and ring theory, unify-
ing and extending classical inverses such as the group inverse, the Drazin inverse, and the Moore-Penrose
inverse. Over the last decade, significant progress has been made in establishing frameworks that simulta-
neously encompass all three of these classical inverses.

In 1972, Rao and Mitra [26] introduced two different types of constraints to extend the concept of the
Bott-Duffin inverse [4], and defined a new constrained inverse. In this direction, Mary introduced in 2011
the concept of the inverse along an element d in a semigroup [21], while independently Drazin defined
the (b, c)-inverse [8]. These two notions, although formulated differently, are essentially equivalent when
b = c, and both yield a unique outer inverse, provided it exists. The inverse along d exists if and only if the
(d, d)-inverse exists, in which case both coincide.
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However, the (b, c)-inverse allows the greater generality b , c, a flexibility that is crucial in many recent
developments and is not captured by Mary ’s formulation. In 2017, Rakić [25] noted that the Rao-Mitra
inverse is a direct precursor of the (b, c)-inverse.

These definitions further extend the classical theory and provide a richer structure for analyzing gener-
alized invertibility.

More recently, Drazin introduced a new type of outer inverse for elements in a semigroup, namely, the
strongly Bott-Duffin (e, f )-inverse [9]. This inverse can be viewed as a weaker version of the (b, c)-inverse,
which in turn reduces to the Bott-Duffin (e, f )-inverse studied by the same author in [8] when (b, c) = (e, f ),
with e and f both idempotent.

It is worth noting that, although not mentioned in Drazin’s work, an equivalent notion had already been
introduced in 2005 by Djordjević and Wei [7] in the context of rings: the so-called (p, q)-outer generalized
inverse. This inverse is defined using two idempotent elements p and q, which coincide with the strongly
Bott-Duffin (e, f )-inverse when p = e and q = 1 − f .

As mentioned earlier, the outer inverses and their extensions discussed above have been defined in the
context of semigroups or rings. However, the set of complex m × n matrices does not form a semigroup
unless m = n.

The aim of this paper is to extend the strongly Bott-Duffin (e, f )-inverse to the setting of complex
rectangular matrices. This new framework allows us to unify and generalize several classical and recently
introduced inverses, including the Moore-Penrose inverse (when m , n), Drazin, group, and (b, c)-inverses,
as well as other more recent notions appearing in the literature.

The paper is organized as follows. In Section 2, we introduce the strongly Bott-Duffin (E,F)-inverse
for rectangular matrices and study its existence and uniqueness by analyzing the solutions of a related
matrix system. Several algebraic characterizations and properties are also presented. In Section 3, we
establish canonical forms using the singular value decomposition. In Section 4, we show that various
recently introduced generalized inverses, including the generalized bilateral and non-bilateral ones, such
as the DMP, CMP, MPCEP, core-EP, BT, WG, and GG inverses, among others, can be regarded as particular
cases of this new inverse.

1.2. Notation and preliminaries

Let Cm×n denote the set of complex m × n matrices and let A ∈ Cm×n. The conjugate transpose, rank,
null space, and column space of A are denoted by A∗, rank(A), N(A), and R(A), respectively. The symbol
PM,N stands for the projector (idempotent) onto the subspaceM along the subspace N . When N = M⊥,
we write PM.

The Moore-Penrose inverse of A, denoted by A†, is the unique matrix X ∈ Cn×m satisfying

AXA = A, XAX = X, (AX)∗ = AX, and (XA)∗ = XA.

This inverse is commonly used to represent orthogonal projectors: PA := AA† and QA := A†A, which project
onto R(A) and R(A∗), respectively.

A matrix X satisfying AXA = A (or XAX = X) is called an inner (or outer) inverse of A, and is denoted
by A(1) (or A(2)). The sets A{1} and A{2} consist of all inner and outer inverses of A, respectively.

For A ∈ Cn×n, the index of A, denoted by Ind(A), is the smallest nonnegative integer k such that
rank(Ak) = rank(Ak+1). Throughout this paper, we assume that Ind(A) = k ≥ 1.

The Drazin inverse of A ∈ Cn×n with index k is the unique matrix X ∈ Cn×n such that

XAX = X, AX = XA, and Ak+1X = Ak,

and is denoted by Ad. When k = 1, the Drazin inverse coincides with the group inverse, denoted by A#.
Given a matrix A ∈ Cm×n with rank(A) = r, a subspace T ⊆ Cn with dim(T ) = s ≤ r, and a subspace

S ⊆ Cm with dim(S) = m − s, the unique matrix X ∈ Cn×m satisfying

X = XAX, R(X) = T , and N(X) = S
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is called the outer inverse of A with prescribed range T and null space S, and is denoted by A(2)
T ,S

. It is well
known that such an inverse exists if and only if A(T ) ⊕ S = Cm. Moreover, when it exists, it is the unique
matrix X such that

XAX = X, XA = PT , (A∗(S⊥))⊥ , and AX = PA(T ),S. (1)

In particular, the Moore-Penrose, Drazin, and group inverses can be represented as:

A† = A(2)
R(A∗),N(A∗), Ad = A(2)

R(Ak),N(Ak)
, and A# = A(2)

R(A),N(A).

Let A,B,C ∈ Cn×n. Rao and Mitra introduced two types of constraints in order to generalize the
Bott-Duffin inverse:

Rao-Mitra Constraints

Type I Type II

c: R(X) ⊆ R(B) C: XA is identity on R(B)

r: R(X∗) ⊆ R(C∗) R: (AX)∗ is identity on R(C∗)

Definition 1.1. [26] Let A,B,C ∈ Cn×n. The matrix X ∈ Cn×n satisfying constraints c, r, C, and R is called the
crCR-inverse of A, and is denoted by AB,C.

It was shown in [26] that AB,C exists if and only if rank(CAB) = rank(C) = rank(B), in which case it is
unique and can be expressed as:

AB,C = B(CAB)(1)C, with (CAB)(1)
∈ CAB{1}.

Djordjević and Wei studied, in the context of abstract rings, outer generalized inverses with prescribed
idempotents. In the matrix setting, the concept can be formulated as follows:

Definition 1.2. [7] Let A,P,Q ∈ Cn×n with P and Q idempotent. A matrix X ∈ Cn×n satisfying

XAX = X, XA = P, and In − AX = Q

is called a (P,Q)-outer generalized inverse of A.

Mary introduced the concept of the inverse along an element within the framework of semigroups.

Definition 1.3. [25] Let A,D ∈ Cn×n. The inverse of A along D is a matrix X ∈ Cn×n such that

XAD = D = DAX, R(X) ⊆ R(D), and N(D) ⊆ N(X).

If such X exists uniquely, it is denoted by A∥D.

In particular:

A† = A∥A
∗

, Ad = A∥A
k
, and A# = A∥A.

Drazin generalized the inverse along an element in the following manner:

Definition 1.4. [8] Let A,B,C ∈ Cn×n. The (B,C)-inverse of A is a matrix X ∈ Cn×n satisfying

XAB = B, CAX = C, R(X) ⊆ R(B), and R(X∗) ⊆ R(C∗). (2)

If such X exists uniquely, it is denoted by A∥(B,C).
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As shown in [8], A∥D = A∥(D,D). Moreover, Rakić [25] noted that the crCR-inverse is a precursor of the
(b, c)-inverse in rings, and in the matrix case, both coincide:

AB,C = A∥(B,C).

These definitions are special cases of outer inverses with prescribed idempotents. Recently, Drazin
proposed a variant of the Bott-Duffin (e, f )-inverse:

Definition 1.5. [9] Let A,E,F ∈ Cn×n with E and F idempotent. A matrix X ∈ Cn×n satisfying

XAX = X, AX = E, and XA = F (3)

is called a strongly Bott-Duffin (E,F)-inverse of A.

2. Characterizations and properties of the strongly Bott-Duffin (E, F)-inverse

In this section, we extend the notion of the strongly Bott–Duffin (E,F)-inverse to the context of rectangular
matrices and establish its main characterizations and properties.

We begin by observing that the system of equations defining the strongly Bott–Duffin inverse, as
given in (3), admits a natural extension to the rectangular case. In order to analyze this extension and to
investigate existence and uniqueness, we first recall two auxiliary lemmas due to Penrose, which will play
a fundamental role in the subsequent analysis.

Lemma 2.1. [24, 26] Let A ∈ Cm×n, B ∈ Cp×q, C ∈ Cm×q, A(1)
∈ A{1}, and B(1)

∈ B{1}. Then, the equation AXB = C
is consistent (in X) if and only if AA(1)CB(1)B = C, in which case the general solution is

X = A(1)CB(1) + Z − A(1)AZBB(1),

where Z is an arbitrary matrix.

Lemma 2.2. [3] Let A ∈ Cm×n, B ∈ Cp×q, D ∈ Cm×p, and E ∈ Cn×q. The matrix equations

AX = D and XB = E, (4)

have a common solution if and only if each equation separately has a solution and AE = DB. In particular, if X0 ∈ Cn×p

is a solution of (4), the general solution is

X = X0 + (In − A(1)A)Y(Ip − BB(1)),

for arbitrary A(1)
∈ A{1}, B(1)

∈ B{1}, and Y ∈ Cn×p.

Theorem 2.3. Let A ∈ Cm×n, E ∈ Cn×n, and F ∈ Cm×m. The matrix equations

XAX = X, XA = E, and AX = F. (5)

have a common solution if and only if

EA(1)A = E, AA(1)F = F, AE = FA, E2 = E, and F2 = F, (6)

for some A(1)
∈ A{1}, in which case, the unique solution is given by

A(E,F) = EA(1)F.
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Proof. ⇒) Since (5) is consistent, from Lemma 2.2 it follows that each of the matrix equations XA = E and
AX = F has a solution in X and verify AE = FA. By applying Lemma 2.1 to each of the above equations
results that EA(1)A = E and AA(1)F = F, respectively, for some A(1)

∈ A{1}. Clearly, E and F are idempotent
since XAX = X. Thus, (6) is satisfied.
⇐) Consider the five conditions given in (6). It suffices to check that the matrix X := EA(1)F satisfies the
matrix equations (5). In fact,

XAX = EA(1)FAEA(1)F = (EA(1)A)E2A(1)F = E3A(1)F = EA(1)F = X.

The matrix equations XA = E and AX = F can be verified similarly.
Finally, it remains to prove uniqueness. Let X1 and X2 be two matrices satisfying (5). Therefore,

X1 = (X1A)X1 = EX1 = (X2A)X1 = X2(AX1) = X2F = X2(AX2) = X2.

The proof is complete.

We now introduce a new type of generalized inverse for rectangular matrices, which extends the recently
defined strongly Bott-Duffin (E,F)-inverse to the rectangular case.

Definition 2.4. Let A ∈ Cm×n, E ∈ Cn×n, and F ∈ Cm×m. A matrix X ∈ Cn×m is called the strongly Bott-Duffin
(E,F)-inverse of A if it satisfies the system (5). If such a matrix X exists, it is denoted by A(E,F).

Corollary 2.5. Let A ∈ Cm×n, E ∈ Cn×n, and F ∈ Cm×m. If A(E,F) exists, then

A(E,F) = EX1 = X2F,

where X1,X2 ∈ A{2}.

Proof. By Theorem 2.3 we have A(E,F) = EA(1)F. Now, we consider X1 := A(1)F. Then, by using the second
equation in (6) we obtain

X1AX1 = A(1)FAA(1)F = A(1)F2 = A(1)F = X1.

Thus, A(E,F) = EX1 with X1 ∈ A{2}.
Similarly, by taking X2 := EA(1), from the first equation in (6) we deduce that X2 = X2AX2.

Remark 2.6. The condition (6) in Theorem 2.3 is equivalent to

EA(1)A = E, AA(1)F = F, AE = FA, E2 = E, and F2 = F,

for an arbitrary A(1)
∈ A{1}.

Theorem 2.7. Let A ∈ Cm×n, E ∈ Cn×n, and F ∈ Cm×m. The following statements are equivalent:

(a) A(E,F) exists;

(b) EA(1)A = E, AA(1)F = F, AE = FA, E2 = E, and F2 = F, for some A(1)
∈ A{1};

(c) N(A) ⊆ N(E), R(F) ⊆ R(A), AE = FA, E2 = E, and F2 = F;

(d) R(E∗) ⊆ R(A∗), R(F) ⊆ R(A), AE = FA, E2 = E, and F2 = F;

(e) A(2)
R(E),N(F) exists,N(FA) = N(E), and R(AE) = R(F).

Moreover, in this case

A(E,F) = EA†F = A(2)
R(E),N(F). (7)
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Proof. (a)⇔ (b) Follows from Theorem 2.3.
(b)⇔ (c) Note that the equation EA(1)A = E is equivalent to R(In−A(1)A) ⊆ N(E) which in turn is equivalent
toN(A(1)A) = N(A) ⊆ N(E). Similarly, AA(1)F = F is true if and only if R(F) ⊆ R(A).
(c)⇔ (d) It is consequence of the classical propertyN(A) = R(A∗)⊥.
(a)⇒ (e) Let X := A(E,F). As X is an outer inverse we have

N(X) = N(AX) = N(F) and R(X) = R(XA) = R(E).

Therefore,

A(E,F) = A(2)
R(E),N(F). (8)

From equivalence (a)⇔ (d) we get

R(F) = R(F2) = FR(F) ⊆ FR(A) = R(FA) = R(AE) ⊆ R(F).

Similarly, as (a)⇔ (c) we obtain

R(E∗) = R((E∗)2) = E∗R(E∗) ⊆ E∗R(A∗) = R((AE)∗) = R((FA)∗),

which impliesN(FA) ⊆ N(E) ⊆ N(AE) = N(FA).
(e)⇒ (a) Let X := A(2)

R(E),N(F) be such thatN(FA) = N(E) andR(AE) = R(F). From (1), it follows that XAX = X,

XA = PR(E),(A∗(N(F)⊥))⊥

= PR(E),R((FA)∗)⊥

= PR(E),N(FA)

= PR(E),N(E) = E,

and

AX = PA(R(E)),N(F)

= PR(AE),N(F)

= PR(F),N(F) = F.

Finally, the first equality in (7) follows from Remark 2.6, while the second equality is due to (8).

An example of how to calculate the strongly Bott-Duffin (E,F)-inverse is shown below.

Example 2.8. Consider the matrix

A =


a 0 0
0 a 0
0 0 0
0 0 0

 , a ∈ C \ {0},

in conjunction with the projectors

E =


1
2

1
2 0

1
2

1
2 0

0 0 0

 and F =


1
2

1
2 0 0

1
2

1
2 0 0

0 0 0 0
0 0 0 0

 .
These matrices satisfy EA†A = E, AA†F = F, AE = FA, E2 = E, and F2 = F, which is a guarantee for the existence
of the strongly Bott-Duffin (E,F)-inverse of A given by

A(E,F) = EA†F =


1
2a

1
2a 0 0

1
2a

1
2a 0 0

0 0 0 0

 .
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Now, we show that the crCR-inverse is a particular case of the strongly Bott-Duffin (E,F)-inverse. Before,
we prove a new characterization of the crCR-inverse.

Theorem 2.9. Let A,B,C ∈ Cn×n. If AB,C exists, then it is the unique matrix X ∈ Cn×n such that

XAX = X, XA = PR(B),N(CA), and AX = PR(AB),N(C). (9)

Proof. Let X := AB,C satisfying (2). It follows that R(X) = R(B) and N(X) = N(C). Since R(X) ⊆ R(B), there
exists some matrix D such that

X = BD = (XAB)D = XA(BD) = XAX.

Consequently,

R(XA) = R(X) = R(B) and N(AX) = N(X) = N(C). (10)

Now, according to (10) we have

R(AX) = R(AB) and N(XA) = N(CA).

Since XAX = X, clearly XA and AX are idempotent. Therefore, from the uniqueness of an oblique projector
we obtain the last two equations in (9).
Finally, the uniqueness follows similarly to the uniqueness proof of Theorem 2.3.

Corollary 2.10. Let A,B,C ∈ Cn×n. If AB,C exists, then AB,C = A(E,F), where E = PR(B),N(CA) and F = PR(AB),N(C).

Proof. Assume that AB,C exists. By Theorem 2.9 we have that X := AB,C verifies XAX = X, XA = E, and
AX = F. The rest of the equalities are a consequence of Theorem 2.3 and Definition 2.4.

Corollary 2.11. Let A,E,F ∈ Cn×n. If A(E,F) exists, then AE,F exists and A(E,F) = AE,F.

Proof. If A(E,F) exists, by Theorem 2.7, A(2)
R(E),N(F) exists and A(E,F) = A(2)

R(E),N(F). Then, from Theorem 1.5 in [25],

AE,F exists and A(2)
R(E),N(F) = AE,F. Thus A(E,F) = AE,F.

The following example illustrates the previous corollary.

Example 2.12. Consider the matrix

A =

 a 0 0
0 b 0
0 0 0

 , a, b ∈ C \ {0},

in conjunction with the projectors

E =

 1 1 0
0 0 0
0 0 0

 and F =

 1 a
b 0

0 0 0
0 0 0

 .
These matrices satisfy EA†A = E, AA†F = F, AE = FA, E2 = E, and F2 = F, which is a guarantee for the existence
of the strongly Bott-Duffin (E,F)-inverse of A given by

A(E,F) = EA†F =


1
a

1
b 0

0 0 0
0 0 0

 .
On the other hand, the crCR-inverse is given by

AE,F = E(FAE)†F =


1
a

1
b 0

0 0 0
0 0 0

 .
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We finish this section with a result about when the strongly Bott-Duffin (E,F)-inverse is an inner inverse
of the matrix.

Theorem 2.13. Let A ∈ Cm×n, E ∈ Cn×n, and F ∈ Cm×m. If A(E,F) exists, then the following statements are equivalent:

(a) A(E,F)
∈ A{1};

(b) A = AE;

(c) A = FA;

(d) R(A) ⊆ R(F);

(e) N(E) ⊆ N(A).

Proof. (a)⇒ (b). By (5) we get A = AA(E,F)A = AE.
(b)⇒ (a). From Theorem 2.7 we have AA(E,F)A = AEA†FA = AA†A = A.
(b)⇔ (c). Follows from Theorem 2.7.
(c) ⇔ (d). Note that A = FA holds if and only if (Im − F)A = 0, which in turn is equivalent to R(A) ⊆
N(Im − F) = R(F).
(d)⇔ (b). Clearly, A = AE holds if and only ifN(E) = R(In − E) ⊆ N(A).
The proof is complete.

3. Canonical form of the strongly Bott-Duffin (E, F)-inverse

In this section we exhibit an interesting result about canonical form of the strongly Bott-Duffin (E,F)-
inverse.

We recall the classical Singular Value Decomposition (SVD).

Theorem 3.1. (SVD) Let A ∈ Cm×n be a nonnull matrix of rank r > 0 and let σ1 ≥ σ2 ≥ · · · ≥ σr > 0 be the

singular values of A. Then there exist unitary matrices U ∈ Cm×m and V ∈ Cn×n such that A = U
[
Σ 0
0 0

]
V∗, where

Σ = dia1(σ1, σ2, . . . , σr). In particular, the Moore-Penrose inverse of A is given by

A† = V
[
Σ−1 0

0 0

]
U∗.

Theorem 3.2. Let A ∈ Cm×n be written as in Theorem 3.1 and let

E = V
[
E1 E2
E3 E4

]
V∗ ∈ Cn×n, F = U

[
F1 F2
F3 F4

]
U∗ ∈ Cm×m. (11)

Then the following statements are equivalent:

(a) A(E,F) exists;

(b) E2
1 = E1, F2

1 = F1, ΣE1 = F1Σ, E3E1 = E3, F1F2 = F2, E2 = 0, E4 = 0, F3 = 0, and F4 = 0;

(c) E2
1 = E1, F2

1 = F1, ΣE1 = F1Σ,N(E1) ⊆ N(E3), R(F2) ⊆ R(F1), E2 = 0, E4 = 0, F3 = 0, and F4 = 0.

In this case,

A(E,F) = V
[
E1Σ

−1 E1Σ
−1F2

E3Σ
−1 E3Σ

−1F2

]
U∗. (12)
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Proof. (a)⇒ (b). Since A(E,F) exists, from Definition 2.4 and Remark 2.6 we have

EQA = E, PAF = F, AE = FA, E2 = E, and F2 = F. (13)

The first equality in (13) is equivalent to E2 = 0 and E4 = 0. While the second equality is equivalent to F3 = 0
and F4 = 0. Thus,

E = V
[
E1 0
E3 0

]
V∗ ∈ Cn×n, F = U

[
F1 F2
0 0

]
U∗ ∈ Cm×m. (14)

In consequence, from E2 = E we obtain that E2
1 = E1 and E3E1 = E3. Similarly, from F2 = F we have F2

1 = F1
and F1F2 = F2. Now, by using the expressions for E and F given in (14) and the condition AE = FA we
obtain ΣE1 = F1Σ.
(b)⇒ (a). It easy to check that the matrix given in (12) satisfies the three conditions in (5).
(b)⇔ (c). Note that under assumption E2

1 = E1, the equality E3E1 = E3 is equivalent to N(E1) ⊆ N(E3). In
fact, E3E1 = E3 holds if and only if E3(Ir − E1) = 0 which in turn is equivalent to N(E1) ⊆ N(E3). Similarly,
F1F2 = F2 is equivalent to R(F2) ⊆ R(F1) provided F2

1 = F1.
Finally, in order to prove (12) we use the representation of the strongly Bott-Duffin (E,F)-inverse of A
obtained in (7) and the fact F1 = ΣE1Σ

−1, E3E1 = E3, and E2
1 = E1.

Example 3.3. Consider the matrix

A =


a 0 0
0 b 0
0 0 0
0 0 0

 , a ∈ C \ {0}, b ∈ C.

in conjunction with the projectors

E =

 1 0 0
c 0 0
0 0 0

 and F =


1 0 0 0

bc
a 0 0 0
0 0 0 0
0 0 0 0

 .
Note that the matrix A is written as in Theorem 3.1 with U = I4, V = I3, and Σ =

[
a 0
0 b

]
. So, from (11) one can

see that E1 =

[
1 0
c 0

]
, E2 = 0, E3 = 0, E4 = 0, F1 =

 1 0
bc
a

0

, and F2 = F3 = F4 = 0. These matrices satisfy the

conditions in (b) of Theorem 3.2, which is a guarantee for the existence of the strongly Bott-Duffin (E,F)-inverse of
A. Thus, from (12) it is easy to check

A(E,F) =


1
a 0 0 0
c
a 0 0 0
0 0 0 0

 .
4. Redefining some recent generalized inverses

In recent years, a variety of generalized inverses for complex matrices have been introduced, each
capturing different algebraic and geometric properties relevant to applications in matrix theory and operator
analysis. These inverses, including the Moore–Penrose, Drazin and core inverses, together with numerous
extensions, are often characterized by algebraic equations involving the matrix and certain projectors, or
by prescribed range and null-space conditions.
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In this section, we revisit several notable generalized inverses, highlighting their defining properties and
interrelations. We then demonstrate how these various inverses can be unified and reinterpreted within
the framework of the strongly Bott–Duffin (E,F)-inverse, thereby providing a common perspective.

It is well known that the Moore-Penrose inverse A† of A ∈ Cm×n is the unique matrix X ∈ Cn×m satisfying

XAX = X, XA = PR(A∗),N(A), and AX = PR(A),N(A∗).

Similarly, the Drazin inverse Ad of A ∈ Cn×n is the unique X ∈ Cn×n such that

XAX = X and AX = XA = PR(Ak),N(Ak).

In particular, the group inverse of a matrix A of index 1 is the unique matrix X that satisfies

XAX and AX = XA = PR(A),N(A).

The core inverse for a square matrix was introduced in [1] by Baksalary and Trenkler as recently as
2010. Since then a considerable amount of research has been added to advance the theory of this inverse
[10, 17, 20, 28]. For a given matrix A ∈ Cn×n, the core inverse of A is defined to be a matrix X ∈ Cn×n

satisfying the conditions AX = PA and R(X) ⊆ R(A). The authors proved that A is core invertible if and
only if Ind(A) = 1. In this case, the core inverse (or GMP) of A is the unique matrix given by A #O = A#AA†.
It is easy to see that the core inverse can be characterized by the following conditions

XAX = X, XA = PR(A),N(A), and AX = PR(A),N(A∗).

As the core inverse exists only for matrices of index at most 1, in 2014 three kinds of generalizations of
the core inverse were defined for complex square matrices of an arbitrary index. We recall its definitions.
Let A ∈ Cn×n be with Ind(A) = k. Then the unique matrix X ∈ Cn×n satisfying

XAX = X and R(X) = R(X∗) = R(Ak),

is called the core-EP inverse (or CEP) of A and is denoted by A †O [18]. In the same way, the dual core-EP (or
∗CEP) was defined as the unique matrix satisfying

XAX = X and R(X) = R(X∗) = R((Ak)∗),

and is denoted by A †O.
The DMP inverse of A is the unique matrix X := AdAA† that satisfies

XAX = X, XA = AdA, and AkX = AkA†,

is called and is represented by Ad,† [19]. The associated dual inverse is given by the matrix A†,d = A†AAd

and is called ∗DMP (or MPD) inverse of A.
The unique matrix given by A⋄ = (APA)† is called the BT inverse of A [2].
In 2018, the CMP inverse of a square matrix was presented by Mehdipour and Salemi [22] as the unique

matrix X := A†AAdAA† (denoted by Ac,†) that satisfies

XAX = X, AXA = AAdA, XA = A†AAdA, and AX = AAdAA†.

In the same year, Wang and Chen [27] introduced the WG inverse of a matrix A ∈ Cn×n as the unique
matrix X := AwO satisfying

AX2 = X and AX = A †OA.

If Ind(A) = 1, the WG inverse and the group inverse coincide.
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Similarly, by using the core-EP and dual core-EP inverses, Chen et al. [5] defined the MPCEP and
∗CEPMP inverses of A as the matrices A†, †O = A†AA †O and A †O,† = A †OAA†, respectively.

To extend and unify most of the above mentioned definitions of generalized inverses, the OMP, MPO,
and MPOMP inverses were defined in [23] by composing an arbitrary outer inverse and the Moore-Penrose
inverse. More precisely, the OMP inverse of A ∈ Cm×n is defined as the unique matrix X := A(2)

T ,S
AA† ∈ Cn×m

such that

XAX = X, XA = A(2)
T ,S

A, and AX = AA(2)
T ,S

AA†,

and is denoted by A(2),†
T ,S

. Here, A(2)
T ,S

denotes the outer inverse of A with prescribed range T and null space
S. Clearly, the core, DMP, and ∗CEPMP inverses are particular cases of the OMP inverse. Dually, the MPO
(or ∗OMP) inverse of A is the matrix A†,(2)

T ,S
:= A†AA(2)

T ,S
, which extends the dual core (or MPG), MPD, and

MPCEP inverses.
On the other hand, the MPOMP inverse of A given by the matrix A†,(2),†

T ,S
:= A†AA(2)

T ,S
AA† generalizes the

CMP and Moore-Penrose inverses. Notice that the MPOMP inverse of A can be rewritten in terms of the
OMP (or MPO) inverse as A†,(2),†

T ,S
= A†AA(2),†

T ,S
= A†,(2)

T ,S
AA†.

Motived by the way in which some of these inverses were defined, recently Kheirandish and Salemi
introduced the notion of generalized bilateral inverse as a unified approach to such inverses.

The following definition is a slight modification of [16, Definition 2.1] according to characterizations
presented by the authors in Theorems 2.5 and 2.6.

Definition 4.1. Let A ∈ Cm×n and let X1,X2 ∈ Cn×m be such that X1 ∈ A{2} and X2 ∈ A{1}. Then X1AX2 (or
X2AX1) is called generalized bilateral inverse of A.

Remark 4.2. By Theorems 2.5 and 2.6 in [16], we know that the generalized bilateral inverse of a matrix A ∈ Cm×n

always exists and is unique.

Next, we show that the generalized bilateral inverse of a matrix can be obtained as a particular case of
the strongly Bott-Duffin (E,F)-inverse.

Theorem 4.3. Let A ∈ Cm×n and let X1,X2 ∈ Cn×m be such that X1 ∈ A{2} and X2 ∈ A{1}. Then A(E,F) = X1AX2,
where E = X1A and F = AX1AX2.

Proof. Let X := X1AX2. From [16, Theorems 2.5] we deduce that X is the unique matrix such that

XAX = X, XA = X1A = E, and AX = AXAX = AX1AX2 = F. (15)

Therefore, A(E,F) exists and X = A(E,F).

Applying the same method as in Theorem 4.3 and by using [16, Theorems 2.6] instead of [16, Theorems
2.5], we obtain the following result.

Theorem 4.4. Let A ∈ Cm×n and let X1,X2 ∈ Cn×m be such that X1 ∈ A{2} and X2 ∈ A{1}. Then A(E,F) = X2AX1,
where E = X2AX1A and F = AX1.

We would like to point out that the BT, CEP, and WG inverses are not generalized bilateral inverses.
In the following tables we illustrate that both generalized bilateral and non-bilateral inverses are partic-

ular cases of the strongly Bott-Duffin (E,F)-inverse. For the sake of completeness, we also add definitions
and notations of some more generalized inverses studied recently in the literature.
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Generalized bilateral inverses Name XA = E AX = F Reference

A #O = A#PA GMP A#A PA [1]

A #O = QAA# MPG QA AA# [18]

Ad,† = AdPA DMP AdA AAdPA [19]

A†,d = QAAd MPD QAAdA AAd [19]

Ac,† = A†,dPA CMP QAAdA AAdPA [22]

A†, †O = QAA †O MPCEP QAA †OA AA †O [5]

A †O,† = A †OPA ∗CEPMP A †OA AA †OPA [5]

AwO,† = AwOPA WGMP AwOA AAwOPA [12]

A†,wO = QAAwO MPWG QAAwOA AAwO [12]

A(2),†
T ,S
= A(2)

T ,S
PA OMP A(2)

T ,S
A AA(2)

T ,S
PA [23]

A†,(2)
T ,S
= QAA(2)

T ,S
MPO QAA(2)

T ,S
A AA(2)

T ,S
[23]

A†,(2),†
T ,S

= A†,(2)
T ,S

PA MPOMP QAA(2)
T ,S

A AA(2)
T ,S

PA [23]

Table 1: Generalized bilateral inverses

Non generalized bilateral inverses Name XA = E AX = F Reference

A⋄ = (APA)† BT (APA)†A PA2 [2, 13]

A †O = AdPAk CEP AdPAk A PAk [11, 18]

A †O = QAk Ad
∗CEP QAk AQAk Ad [23]

AwO = (A †O)2A WG (A †O)2A2 A(A †O)2A [27]

AwO2 = (A †O)3A2 GG (A †O)3A3 A(A †O)3A2 [14]

AwOm = (A †O)m+1Am m-WG (A †O)m+1Am+1 A(A †O)m+1Am [29]

A #Om = AwOm PAm m-WC AwOm PAm A AAwOm PAm [15]

Ak,(2),†
T ,S

= A(2)
T ,S

PAk k-OMP A(2)
T ,S

PAk A AA(2)
T ,S

PAk [23]

Ak,†,(2)
T ,S

= QAk A(2)
T ,S

k-MPO QAk A(2)
T ,S

A AQAk A(2)
T ,S

[23]

Table 2: Non generalized bilateral inverses

Conclusions and future work

We have established necessary and sufficient conditions for the existence of the strongly Bott–Duffin
(E,F)-inverse for complex rectangular matrices, formulated in terms of ranges and kernels. Moreover, we
provided an explicit formula for this inverse that is independent of the particular generalized inverse A(1)

chosen. These results extend the theory of generalized inverses associated with pairs of projections and
supply practical tools for problems in matrix and operator analysis.

We point out several directions for further research:

(i) Extension to bounded linear operators on infinite-dimensional Hilbert spaces.

(ii) Computational aspects and numerical stability: development and analysis of algorithms for comput-
ing A(E,F).

(iii) Perturbation analysis: derivation of bounds for the variation of A(E,F) under additive and multiplicative
perturbations of A, E, and F, including structured perturbations and sensitivity of the existence
conditions.
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Pursuing these directions should deepen both the theoretical understanding and the practical applica-
bility of the strongly Bott–Duffin inverse in more general settings.
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