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Abstract. The purpose of this study is to prove the existence of both entropy solutions and renormalized
solutions for nonlinear parabolic equations with initial data in L∞ and degenerate coercivity. The functional
setting involves Lebesgue and Sobolev spaces with variable exponents.

1. Introduction

Our main objective is to show that entropy and renormalized solutions exist for the following nonlinear
degenerate parabolic problem

(P)


∂tu + Au + |u|θp(x)−2u|∇u|p(x) = |u|r(x)−2u in QT,

u(0, x) = u0(x) ≥ 0 in Ω,
u = 0 on ΓT.

where Ω is a bounded open subset of RN (N > 2) with Lipschitz boundary denoted by ∂Ω, T is a positive
constant, u0 ∈ L∞(Ω), QT = (0,T)×Ωwith the lateral boundary ΓT = (0,T)×∂Ω, and A is the operator given
by

Au = −div(d(t, x,u)|∇u|p(x)−2
∇u).

The function d : (0,T) ×RN
×R→ R are Carathéodory functions and satisfies for almost every (t, x) ∈ QT,

∀s ∈ R, the following:

α

(1 + |s|)ϱ(x)
≤ d(t, x, s) ≤ β, (1)

where α, β are strictly positive real numbers, ϱ(x) ∈ C(Ω) and ϱ(x) ≥ 0. The variable exponents p : Ω→ (1,∞)
and r : Ω→ (1,∞) are continuous functions and let p− = min

x∈Ω
p(x), p+ = max

x∈Ω
p(x) such that

θp− + 1 ≤ r(x) ≤ r+ = max
x∈Ω

r(x) ≤ p−(θ + 1), and θ ≥
1

p−
. (2)
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Differential equations and variational problems with nonstandard growth conditions have garnered signif-
icant interest due to their applications in elastic mechanics, electro-theological fluid dynamics, and image
processing. Researchers have explored various results for such problems, and the functional spaces used to
address them include generalized Lebesgue spaces and generalized Lebesgue Sobolev spaces. The notions
of entropy solutions and renormalized solutions have been introduced to deal with these problems, as
they require less regularity than traditional weak solutions. Recent studies have focused on the existence
and uniqueness of entropy and renormalized solutions for problems with variable exponents and L1 data,
relying on a priori estimates in Marcinkiewicz spaces with variable exponents. DiPerna and Lions [9]
first introduced the notion of renormalized solutions to study the Boltzmann equation. This concept was
then adapted to analyze certain nonlinear elliptic, parabolic, and fluid mechanics evolution problems. For
details, see [4–6, 12]. Concurrently, Bénilan et al. [3] proposed the idea of entropy solutions for nonlinear
elliptic problems. This framework was extended to related problems with constant p in [7, 17, 19].

As we have seen, If (1) holds true, the differential operator A is not coercive as u becomes large. Note
that the problem (P) includes a parabolic equation which is nonlinear with respect to the gradient of the
solution, and with variable exponents of nonlinearity. Thus, it is natural to solve problem (P) under the
framework of Sobolev spaces with variable exponents.

In the case of p(x) = 2, ϱ(x) = 0 and r(x) is a constant, the authors in [1] proved the existence of global
weak solutions of problem (P) for non-negative initial data u0 ∈ L1(Ω).

In the case with ϱ(x) = 0 and p(.) > 2 − 1
N+1 , C. Zhang and S. Zhou [22] have established the existence

and uniqueness of entropy solutions for the following nonlinear parabolic equation:

(1)


∂tu − div(|∇u|p(x)−2

∇u) = f in QT = (0,T) ×Ω
u(0, x) = u0 in Ω
u = 0 on ]0,T[×∂Ω

with f ∈ L1(QT) and u0 ∈ L1(Ω) such that u ∈ Lq− (0,T; W1,q(.)
0 (Ω)) and 1 ≤ q(.) < N(p(.)+1)−N

N+1 . Beside that
Bendahmane, Wittbold and Zimmermann in [2], the authors showed the existence and uniqueness of
the renormalized solutions to the problem (1). Moreover, they proved that u ∈ Lq−

(
0,T; W1,q(·)

0 (Ω)
)
, when

p− > 2 − 1
N+1 , for all continuous variable exponents q(.) on Ω such that 1 ≤ q(x) < N(p(x)−1)+p(x)

N+1 for all x ∈ Ω.
When p = p(x) ∈ C(Ω) satisfies the log-continuity condition, the existence and uniqueness of an entropy
solution to problem (1) are proved in [22].

The study aims to prove the existence of entropy and renormalized solutions for (P) and to expand upon
the findings in [2, 16, 22] to address degenerate parabolic equations with a source term. The condition of
degenerate coercivity indicates that α

(1+|u|)ϱ(x) decreases towards zero as |u| grows. To address this challenge,
we will use truncation in d to obtain a coercive differential operator. An additional challenge lies in
passing to the limit within the nonlinear terms with variable exponents, d(t, x,Tn(un))|∇un|

p(x)−2
∇un and

|un|
θp(x)−2un|∇un|

p(x). Moreover, the presence of this source term in the equation makes it very difficult to
prove the uniqueness of the solution, especially in conjunction with the term |u|θp(x)−2u|∇u|p(x). Consequently,
many studies that address to the uniqueness of the solution simplify the problem by considering the right-
hand side of the equation to be a simple function and excludes the lower-order term, as seen in [2, 5, 7, 19, 22]
and the related references.

This paper is structured as follows: Section 2 presents basic notations and properties of Sobolev spaces
with variable exponents. Section 3 provides the definition of entropy and renormalized solutions to problem
(P), along with the main results. Finally, in Section 4, we establish the existence of entropy and renormalized
solutions.

2. Mathematical preliminaries

In the following, we’ll revisit a few definitions and fundamental characteristics of the generalized
Lebesgue-Sobolev spaces Lp(·)(Ω), W1,p(·)(Ω), and W1,p(·)

0 (Ω), with Ω being an open subset of RN. For
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additional properties of the variable exponent Lebesgue-Sobolev spaces, we suggest consulting [13, 14] and
related sources.

Set C+(Ω) = {p ∈ C(Ω) : infx∈C(Ω) p(x) > 1.} For any p ∈ C(Ω), we define

p+ = sup
x∈C(Ω)

p(x), p− = inf
x∈C(Ω)

p(x).

We define the variable exponent Lebesgue space

Lp(·)(Ω) =
{

u : Ω→ R measurable |
∫
Ω

|u(x)|p(x)dx < +∞
}
.

The space Lp(·)(Ω) equipped with the norm

∥u∥p(·) = ∥u∥Lp(·)(Ω) = inf
{
µ > 0 |

∫
Ω

∣∣∣∣∣u(x)
µ

∣∣∣∣∣p(x)

dx ≤ 1
}
.

If p− > 1, then Lp(·)(Ω) is reflexive and the dual space of Lp(·)(Ω) can be identified with Lp′(·)(Ω) where
1

p(·) +
1

p′(·) = 1. For any u ∈ Lp(·)(Ω) and v ∈ Lp′ (·)(Ω) the Hölder type inequality∫
Ω

| uv | dx ≤ 2∥u∥Lp(·)(Ω)∥v∥Lp′ (·)(Ω), (3)

holds true. We may also consider the generalized Lebesgue space

∥u∥Lp(·)(QT) = inf
{
µ > 0 |

∫
QT

∣∣∣∣∣u(t, x)
µ

∣∣∣∣∣p(x)

dxdt ≤ 1
}
,

which, of course, shares the same type of properties as Lp(·)(Ω). We define also the Banach spaces

W1,p(·)(Ω) =
{
u ∈ Lp(·)(Ω) : |∇u| ∈ Lp(·)(Ω)

}
,

W1,p(·)
0 (Ω) =

{
u ∈ Lp(·)(Ω) | |∇u| ∈ Lp(·)(Ω) and u = 0 on ∂Ω

}
.

For u ∈W1,p(·)
0 (Ω) with p ∈ C(Ω) and p− ≥ 1, the poincaré inequality holds [15]

∥u∥Lp(·)(Ω) ≤ C∥∇u∥Lp(·)(Ω), (4)

for some constant C, which depends on Ω and the function p.

Remark 2.1. In general, the smooth functions are in general not dense in W1,p(·)
0 (Ω), but if the exponent variable

p(·) > 1 satisfies the log-Hölder continuity condition (5), that is ∃M > 0 :

|p(x) − p(y)| ≤ −
M

ln(|x − y|)
∀x , y ∈ Ω such that |x − y| ≤

1
2
, (5)

then the smooth functions are dense in W1,p(·)(Ω) and W1,p(·)
0 (Ω) (see [8, 13]). As in [2, 21], we do not need these

condition to prove our result and will most exclusively work with p ∈ C+(Ω).

Remark 2.2. [2] Let p(.) : Ω→ (1,∞) be a continuous function. We have the following continuous dense embeddings

Lp+ (0,T; Lp(·)(Ω)) ↪→ Lp(·)(QT) ↪→ Lp− (0,T; Lp(·)(Ω)). (6)
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3. Statements of results

For γ > 0, let Tγ be the truncation at levels −γ and γ. This function, which is Lipschitz, meets the
conditions Tγ(0) = 0, |Tγ(r)| ≤ γ, and its primitive function Θγ : R→ R+ is defined by

Θγ(r) =
∫ r

0
Tγ(t)dt =

 r2

2 , if;|r| ≤ γ,
γ|r| − γ2

2 , if;|r| > γ.

Throughout this paper, ⟨., .⟩ denotes the duality between X and X∗(dual space of X, the set of continuous
linear functional on X). We will then use the following result:∫ T

0
⟨∂tv,Tγ(v)⟩dt =

∫
Ω

Θγ(v(T)) −
∫
Ω

Θγ(v(0)). (7)

and

γ|r| −
γ2

2
≤ Θγ(r) ≤ γ|r|, ∀r ∈ R. (8)

Set

τ1,p(.)
0 (QT) =

{
u : (0,T] ×Ω→ R measurable, Tγ(u) ∈ Lp− (0,T; W1,p(.)

0 (Ω)),

with ∇Tγ(u) ∈ (Lp(.)(QT))N, for every γ > 0
}
.

Next, we define the weak gradient of a measurable function u ∈ τ1,p(.)
0 (QT). The proof follows from ([3],

Lemma 2.1) due to the fact that W1,p(.)
0 (Ω) ⊂W1,p−

0 (Ω) where p− = min
x∈Ω

p(x).

Proposition 3.1. For every measurable function u ∈ τ1,p(.)
0 (QT), there exists a unique measurable function v : QT −→

R such that
∇Tγ(u) = vχ{|u|≤γ}, a.e. in QT, ∀γ > 0,

where χA denotes the characteristic function of a measurable set A. The functions v are called the weak gradient of u
and are still denoted by ∇u. Moreover, if u belongs to L1(0,T; W1,1

0 (Ω)), then v coincides with the weak gradient of u,
that is, v = ∇u.

Definition 3.1. Let u0 ∈ L∞(Ω). Assume that (1) holds true. We will call an entropy solution of (P) a function
u ∈ τ1,p(.)

0 (QT) ∩ C([0,T]; L1(Ω)) such that for every γ > 0,∫
Ω

Θγ(u − φ)(T)dx −
∫
Ω

Θγ(u − φ)(0)dx +
∫ T

0
⟨∂tφ,Tγ(u − φ)⟩dt

+

∫
QT

d(t, x,u)|∇u|p(x)−2
∇u∇Tγ(u − φ)dxdt

+

∫
QT

uθp(x)−1
|∇u|p(x)Tγ(u − φ)dxdt ≤

∫
QT

ur(x)−1Tγ(u − φ), (9)

where uθp(x)−1
|∇u|p(x)

∈ L1(QT),ur(x)−1
∈ L1(QT) andφ ∈ Lp− (0,T; W1,p(.)

0 (Ω))∩L∞(QT) with∂tφ ∈ Lp′− (0,T; W−1,p′(.)(Ω))+
L1(QT).

Definition 3.2. Let u0 ∈ L∞(Ω). A measurable function u is a renormalized solution of the parabolic problem (P) if
Tγ(u) ∈ τ1,p(.)

0 (QT) for all γ > 0,

u ∈ C([0,T]; L1(Ω)), lim
γ−→+∞

∫
Bγ

d(t, x,u)|∇u|p(x)dxdt = 0
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and

∫ T

0
⟨∂tu,S′(u)φ⟩dt +

∫
QT

d(t, x,u)|∇u|p(x)−2
∇u(S′′(u)φ∇u + S′(u)Diφ)dxdt

+

∫
QT

uθp(x)−1
|∇u|p(x)S′(u)φdxdt =

∫
QT

ur(x)−1S′(u)φdxdt, (10)

where Bγ = {γ ≤ |u(t, x)| ≤ γ + 1}, γ > 0, uθp(x)−1
|∇u|p(x), ur(x)−1

∈ L1(QT) , φ ∈ Lp− (0,T; W1,p(x)
0 (Ω))∩ L∞(QT) and

any renormalization S(.) ∈ C∞(R) such that suppS′(.) ∈ [−M,M] for some constant M > 0.

Now we state our main results.

Theorem 3.2. If u0 belongs to L∞(QT) and (1)-(2) is satisfied, then problem (P) possesses at least one an entropy
solution.

The Theorem’s proof has multiple steps. Initially, we approximate problem (P) with a sequence of problems
(Pn) that have smooth solutions un and we obtain uniform estimates of un. Then, we take the limit as n goes
to infinity. Lastly, we prove the existence of an entropy solution.

Theorem 3.3. Let u0 ∈ L∞(Ω). Under the assumptions (1)-(2), the entropy solution of parabolic problem (P) is also
a renormalized solution

4. The proofs of main results

Proof of Theorem 3.2

Let n ∈N be arbitrary, let us consider the following approximated problem

(P∗n)


∂tun − div(d(t, x,Tn(un))|∇un|

p(x)−2
∇un) + |un|

θp(x)−2un|∇un|
p(x) = Tn(|un|

r(x)−2un), in QT
un(0, x) = u0(x), in Ω
un = 0, on ΓT.

Note that by (1), we have

d(t, x,Tn(un)) ≥
α

(1 + |Tn(un)|)ϱ(x)
≥

α

(1 + n)ϱ+
,

so that the operator B : v 7→ div(d(t, x,Tn(vn)|∇vn|
p(x)−2

∇vn) is coercive. Thus, the fact that |Tn(|un|
r(x)−2un)| ≤ n,

the existence of the approximate solution un ∈ Lp− (0,T; W1,p(.)
0 (Ω))∩C

(
[0,T]; L2(Ω)

)
is proved as in [11]. Due

to the fact that the lower-order term has the same sign of the solution, it is easy to prove by taking u−n as test
function in the weak formulation of problem (P∗n) that un ≥ 0. Consequently, un solves the problem

∂tun − div(d(t, x,Tn(un))|∇un|
p(x)−2

∇un) + uθp(x)−1
n |∇un|

p(x) = Tn(ur(x)−1
n ), in QT

un(0, x) = u0(x), in Ω
un = 0, on ΓT.

(11)

Lemma 4.1. Let un be the solutions to problems (11). Then we have for all γ > 0

α

(1 + γ)ϱ+

∫ T

0

∫
Ω

|∇Tγ(un)|p(x)dxdt ≤ γ
∫ T

0

∫
Ω

ur(x)−1
n dxdt + γ∥u0∥L1(Ω). (12)
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Proof. We choose Tγ(un) as test function in (11) and the fact that |Tn(ur(x)−1
n )| ≤ ur(x)−1

n , we obtain∫
Ω

Θγ(un)(T)dx +
∫ T

0

∫
Ω

d(t, x,Tn(un))|∇un|
p(x)−2

∇un∇(Tγ(un))dxdt

+

∫ T

0

∫
Ω

uθp(x)−1
n |∇un|

p(x)Tγ(un)dxdt

≤

∫ T

0

∫
Ω

ur(x)−1
n Tγ(un)dxdt +

∫
Ω

Θγ(un)(0)dx. (13)

Since Θγ ≥ 0 and uθp(x)−1
n Tγ(un) ≥ 0, so after dropping non-negative terms and using (8), we obtain∫ T

0

∫
Ω

d(t, x,Tn(un))|∇un|
p(x)−2

∇un∇(Tγ(un))dxdt ≤
∫ T

0

∫
Ω

ur(x)−1
n |Tγ(un)|dxdt + γ∥u0∥L1(Ω). (14)

According to the conditions (1) and for n > γ > 0, we get (12).

We shall denote by C or C j various constants depending only on the structure of p−, θ, γ, T, u0, |Ω|, for
j ∈N.

Lemma 4.2. Let un be a solution of problem (11) and suppose that (1), (2) hold true. Then, we have

• the sequence {un} is bounded in L∞(QT),

• the sequence {Tγ(un)} is bounded in Lp− (0,T; W1,p(x)
0 (Ω)).

Moreover. there exist a positive constant C such that

∥uθp(x)−1
n |∇un|

p(x)
∥L1(QT) ≤ C.

Proof. Choosing φ = un as test function in the approximated problem (11), we obtain, using (1)∫ T

0
⟨∂tun,un⟩dt + α

∫ T

0

∫
Ω

|∇un|
p(x)

(1 + |Tn(un)|)ϱ(x)
dxdt +

∫ T

0

∫
Ω

uθp(x)
n |∇un|

p(x)dxdt

≤

∫ T

0

∫
Ω

|Tn(ur(x)−1
n )|undxdt. (15)

Using that |Tn(ur(x)−1
n )|un ≤ ur(x)

n and∫ T

0
⟨∂tun,un⟩dt =

1
2

∫
Ω

(un(T, x))2dx −
1
2

∫
Ω

(un(0, x))2dx,

dropping positive term, we get this inequality∫ T

0

∫
Ω

up(x)θ
n |∇un|

p(x)dxdt ≤
∫ T

0

∫
Ω

ur(x)
n dxdt +

1
2

∫
Ω

u2
0dx.

Remark that uθp−
n |∇un|

p−
− uθp−

n − |∇un|
p−
≤ uθp(x)

n |∇un|
p(x) and u0 ∈ L∞(Ω). Then, we have∫ T

0

∫
Ω

up−θ
n |∇un|

p−dxdt ≤
∫ T

0

∫
Ω

ur(x)
n dxdt +

∫ T

0

∫
Ω

uθp−
n dxdt +

∫ T

0

∫
Ω

|∇un|
p−dxdt + C0, (16)

Since θp− ≤ r(x) and by (12), we have that∫ T

0

∫
Ω

up−θ
n |∇un|

p−dxdt ≤ C1

∫ T

0

∫
Ω

ur(x)
n dxdt + C2.
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Applying Poincaré inequality and since r(x) ≤ r+ < p−(θ + 1), it follows from Young inequality that∫ T

0

∫
Ω

up−(θ+1)
n dxdt ≤ C3.

which implies that the boundedness of (un) in Lp−(θ+1)(QT). Now, we prove that the sequence (ur(x)−1
n )n is

bounded in L1(QT). To this end, we choose uν+1
n as test function in (11) where ν > 0, we find

α(ν + 1)
∫ T

0

∫
Ω

|∇un|
p(x)

(1 + |Tn(un)|)ϱ(x)
uνndxdt +

∫ T

0

∫
Ω

uθp(x)+ν
n |∇un|

p(x)dxdt

≤

∫ T

0

∫
Ω

|Tn(ur(x)−1
n )|uν+1

n dxdt + C.

Dropping the non-negative term and with the same previous calculations, we find∫ T

0

∫
Ω

up−(θ+1)+ν
n dxdt ≤

∫ T

0

∫
Ω

ur++ν
n dxdt + C. (17)

Now, we can choose ν = p−(θ + 1) − r+ (ν > 0 since (2)), so p−(θ + 1) + ν = 2p−(θ + 1) − r+. Then by (17),
we obtain that un is bounded in L2p−(θ+1)−r+ (QT). Consequently, an iterating procedure gives us that (un) is
bounded in Lm(QT) for all m < +∞. Indeed, if we consider ν1 > 0 such that r+ + ν1 = 2p−(θ + 1) − r+, by (17)
and the fact that (un) is bounded in L2p−(θ+1)−r+ (QT), then it is bounded in L4p−(θ+1)−3r+ . Now consider ν2 > 0
such that r++ν2 = 4p−(θ+1)−3r+ and deduce that (un) is bounded in L8p−(θ+1)−7r+ (QT). Hence we can obtain
that (un) is bounded in L2sp−(θ+1)−(2s

−1)r+ (QT) for all s ∈N. Since

2sp−(θ + 1) − (2s
− 1)r+ = 2s(p−(θ + 1) − r+) + r+ → +∞, as s→ +∞,

we deduce that (un) is bounded in Lm(QT) for all m < +∞. Because there is s′ > 0 such that s′(p−(θ+1)−r+)+r+

r+−1 >
N
p− + 1,

(ur+−1
n ) is bounded in Lm(QT) for some m >

N
p−
+ 1. (18)

Standard parabolic estimates, performed using only the principal part of the operator (see for example
[10]), and taking advantage of the nonnegativity of the lower order gradient term, then imply that (un)n is
bounded in L∞(QT). Since r(x) − 1 ≤ r+ − 1 we have (ur(x)−1

n ) is bounded in L1(QT). Now, to prove that the
sequence (Tγ(un))n is bounded in Lp− (0,T; W1,p(x)

0 (Ω)), we get using (12),(18) and the fact that u0 ∈ L∞(Ω),
there exist a positive constant C such that

∥Tγ(un)∥Lp− (0,T;W1,p(x)
0 (Ω)) ≤ C, (19)

Therefore, we have ∫
QT

|∇un|
p(x)dxdt =

∫
{un≤γ}

|∇Tγ(un)|p(x)dxdt +
∫
{un>γ}

|∇un|
p(x)dxdt,

by L∞ estimate of un and using the dominated convergence theorem

χ{un>γ}|∇un|
p(x)
−→ 0 as γ→ +∞.

Thus, by the estimate (19) we obtain

∥un∥Lp− (0,T;W1,p(x)
0 (Ω)) ≤ C. (20)
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Moreover, if we take Tγ(un)
γ as test function in (11) and dropping the non-negative terms, we obtain∫ T

0

∫
Ω

uθp(x)−1
n |∇un|

p(x) Tγ(un)
γ

dxdt ≤
∫ T

0

∫
Ω

ur(x)−1
n

∣∣∣∣∣∣Tγ(un)
γ

∣∣∣∣∣∣ dxdt +
1
γ

∫
Ω

|Θγ(un)(0)|dx.

Using the fact that
∣∣∣∣Tγ(un)

γ

∣∣∣∣ ≤ 1 and (8), we have∫ T

0

∫
Ω

uθp(x)−1
n |∇un|

p(x) Tγ(un)
γ

dxdt ≤
∫ T

0

∫
Ω

ur(x)−1
n dxdt + ∥u0∥L1(Ω).

Letting γ tend to 0 and by Fatou’s Lemma, we deduce

∥uθp(x)−1
n |∇un|

p(x)
∥L1(QT) ≤ C. (21)

Since (un)n is bounded in L∞(QT) and taking n large enough, we get Tn(ur(x)−1
n ) = ur(x)−1

n and Tn(un) = un, so
that we conclude that un is a weak solution of

(Pn)


∂tun − div(d(t, x,un)|∇un|

p(x)−2
∇un) + uθp(x)−1

n |∇un|
p(x) = ur(x)−1

n , in QT
un(0, x) = u0(x) ≥ 0, in Ω
un = 0, on ΓT.

Passage to the limit.
Lemma 4.3.

∇Tγ(un) −→ ∇Tγ(u) strongly in (Lp(.)(QT))N, as n −→ +∞, for every γ > 0. (22)

Proof. By the estimate (20), there exist a function u ∈ Lp− (0,T; W1,p(x)
0 (Ω)) and a subsequence, still denoted

by {un}, such that

un ⇀ u weakly in Lp− (0,T; W1,p(x)
0 (Ω)). (23)

Moreover, going back to (Pn), the sequence (∂tun) is bounded in the space

Lp′− (0,T; W−1,p′(x)(Ω)) + L1(QT), p′(x) =
p(x)

p(x) − 1
.

Using compactness argument in ([20] Corollary 4), we obtain that

un → u strongly in L1(QT), and a.e. in QT. (24)

We now introduce a time-regularized truncation Tγ(u) that belongs to the space Lp− (0,T; W1,p(x)
0 (Ω)). With

ν > 0, we define

(Tγ(u))ν(t, x) := ν
∫ t

−∞

eν(s−t)Tγ(u(s, x))ds + e−νtTγ(u0), (25)

where Tγ(u(s, x)) is the zero extension of u for s < 0 (See [22]), we have the following properties:

• ((Tγ(u))ν)t = ν(Tγ(u) − (Tγ(u))ν)

• ((Tγ(u))ν)(0, x) = Tγ(u0)

• |((Tγ(u))ν)| ≤ γ
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• (∇Tγ(u))ν −→ ∇Tγ(u) strongly in (Lp(.)(QT))N as ν −→ +∞.

Let h > γ and let us take

wn = T2γ(un − Th(un) + Tγ(un) − (Tγ(u))ν),

as test function in (Pn), we have

∫ T

0
⟨∂tun,wn⟩dt +

∫ T

0

∫
Ω

d(t, x,un)(|∇un|
p(x)−2

∇un)∇wndxdt

+

∫ T

0

∫
Ω

uθp(x)−1
n |∇un|

p(x)wndxdt =
∫ T

0

∫
Ω

ur(x)−1
n wndxdt. (26)

We will also denote by τ(n, ν, h) any quantity I such that

lim
h−→+∞

lim
ν−→+∞

lim
n−→+∞

I = 0.

By the same technique of [18], we can obtain that∫ T

0
⟨∂tun,wn⟩dt ≥ τ(n, ν, h).

If we set M = 4γ + h > h > γ, then it is easy to see that ∇wn = 0 on the set {|un| > M}. Therefore, from the
above estimate, we can write the inequality (26) as

∫ T

0

∫
Ω

d(t, x,un)|∇TM(un)|p(x)−2
∇TM(un)∇wndxdt +

∫ T

0

∫
Ω

uθp(x)−1
n |∇un|

p(x)wndxdt

≤

∫ T

0

∫
Ω

ur(x)−1
n wndxdt − τ(n, ν, h). (27)

Splitting the integral in the left-hand side on the sets where |un| ≤ γ and where |un| > γ, we find

∫ T

0

∫
Ω

d(t, x,un)|∇TM(un)|p(x)−2
∇TM(un)∇wndxdt

≥
α

(1 + γ)ϱ+

∫ T

0

∫
{|un |≤γ}

|∇Tγ(un)|p(x)−2
∇Tγ(un)∇(Tγ(un) − (Tγ(u))ν)dxdt

−β

∫ T

0

∫
{|un |>γ}

||∇TM(un)|p(x)−2
∇TM(un)||∇(Tγ(u))ν|dxdt.

It follows from the above inequality that

α

(1 + γ)ϱ+

∫ T

0

∫
{|un |≤γ}

|∇Tγ(un)|p(x)−2
∇Tγ(un)∇(Tγ(un) − (Tγ(u))ν)dxdt

+

∫ T

0

∫
Ω

uθp(x)−1
n |∇un|

p(x)wndxdt ≤ β
∫ T

0

∫
{|un |>γ}

|∇TM(un)|p(x)−1
|∇(Tγ(u))ν|dxdt

+

∫ T

0

∫
Ω

ur(x)−1
n wndxdt − τ(n, ν, h).



R. Mecheter / Filomat 39:35 (2025), 12499–12517 12508

Furthermore, we have

α

(1 + γ)ϱ+

∫ T

0

∫
Ω

[|∇Tγ(un)|p(x)−2
∇Tγ(un) − |∇Tγ(u)|p(x)−2

∇Tγ(u)]

×∇(Tγ(un) − (Tγ(u))ν)dxdt

≤ β

∫ T

0

∫
{|un |>γ}

|∇TM(un)|p(x)−1
|∇(Tγ(u))ν|dxdt︸                                                  ︷︷                                                  ︸

I1

−
α

(1 + γ)ϱ+

∫ T

0

∫
Ω

|∇Tγ(u)|p(x)−2
∇Tγ(u)∇(Tγ(un) − (Tγ(u))ν)dxdt︸                                                                              ︷︷                                                                              ︸

I2

−

∫ T

0

∫
Ω

uθp(x)−1
n |∇un|

p(x)wndxdt︸                                   ︷︷                                   ︸
I3

+

∫ T

0

∫
Ω

ur(x)−1
n wndxdt︸                    ︷︷                    ︸
I4

−τ(n, ν, h).

Limit of I1.We observe that |∇TM(un)|p(x)−1 is bounded in Lp′(.)(QT) and using the fact that

(∇Tγ(u))ν −→ ∇Tγ(u) strongly in (Lp(.)(QT))N as ν −→ +∞,

by the dominated convergence theorem

χ{|un |>γ}|∇(Tγ(u))ν| −→ χ{|u|≥γ}|∇Tγ(u)| strongly in Lp(.)(QT),

which is zero, as n and ν tends to infinity. Thus, we obtain

lim
ν−→+∞

lim
n−→+∞

I1 = 0. (28)

Limit of I2. Using the boundedness of ∇Tγ(un) in (Lp(x)(QT))N (Since (19)), we draw a subsequence (still
denoted by {un} ) from {un} such that

∇Tγ(un) ⇀ ∇Tγ(u) weakly in (Lp(x)(QT))N. (29)

and the boundedness of |∇Tγ(u)|p(x)−2
∇Tγ(u) in Lp′(.)(QT), we obtain

lim
ν−→+∞

lim
n−→+∞

I2 = 0. (30)

Limit of I3 Using that uθp(x)−1
n ≤ uθp+−1

n + 1, we have

−

∫ T

0

∫
Ω

uθp(x)−1
n |∇un|

p(x)wndxdt ≤ −
∫ T

0

∫
{0≤un≤γ}

uθp(x)−1
n |∇Tγ(un)|p(x)wndxdt

≤

∫ T

0

∫
Ω

uθp+−1
n |∇Tγ(un)|p(x)

|wn|dxdt +
∫ T

0

∫
Ω

|∇Tγ(un)|p(x)
|wn|dxdt

≤ (Cp+

γ,θ + 1)
∫ T

0

∫
Ω

|∇Tγ(un)|p(x)
|wn|dxdt. (31)

where Cp+

γ,θ is a positive constant, such that Cp+

γ,θ = maxun∈[0,γ] uθp(x)−1
n . Since (19) and the fact that

|∇Tγ(un)|p(x)
|wn| ≤ 2γ∥∇Tγ(un)∥Lp(x)(QT) ∈ L1(QT),
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by Lebesgue dominated convergence theorem,

lim
h−→+∞

lim
ν−→+∞

lim
n−→+∞

I3 = 0.

Limit of I4 By the properties of (Tγ(u))ν and (18) and we have

|ur(x)−1
n wn| ≤ 2γ(∥ur+−1

n ∥L∞(QT) + 1) ∈ L1(QT),

by Lebesgue dominated convergence theorem,

lim
h−→+∞

lim
ν−→+∞

lim
n−→+∞

I4 = 0.

Now, passing to the limits in (28) as n, ν, h tend to infinity, we deduce that

lim
n−→+∞

Iγn = 0,

where

Iγn =
∫ T

0

∫
Ω

[|∇Tγ(un)|p(x)−2
∇Tγ(un) − |∇Tγ(u)|p(x)−2

∇Tγ(u)]∇(Tγ(un) − Tγ(u))dxdt.

As [22]. We recall the following well-known inequalities: for any two real vectors ξ, η and for every
ε ∈ [0.1],:

|ξ − η|p ≤

c(p)(|ξ|p−2ξ − |η|p−2η)(ξ − η), if p ≥ 2,
k(p)ε(p−2)/p(|ξ|p−2ξ − |η|p−2η)(ξ − η) + ε|η|p, if 1 < p < 2,

where c(p) = p−1
21−p and k(p) = 32−p

p−1 . Therefore, we have

1
c(p+)

∫ T

0

∫
{x∈Ω,p(x)≥2}

|∇(Tγ(un) − Tγ(u))|p(x)dxdt ≤ Iγn ,

and ∫ T

0

∫
{x∈Ω,1<p(x)<2}

|∇(Tγ(un) − Tγ(u))|p(x) dxdt ≤ k(p−)ε(p−−2)/p− Iγn + ε
∫ T

0

∫
Ω

|∇Tγ(u)|p(x)dxdt

Since Iγn −→ 0 as n −→ +∞, then using the arbitrariness of ε and ∇Tγ(u) is bounded in (Lp(x)(QT))N (see (19)
and (29)), we obtain

lim
n−→+∞

∫ T

0

∫
Ω

|∇(Tγ(un) − Tγ(u))|p(x)dxdt = 0.

From this result, we can deduce that (22) holds, and consequently (up to subsequences).

∇un −→ ∇u almost everywhere in QT. (32)

Lemma 4.4. u is an entropy solution of (P).

Proof. To prove that u is an entropy solution of problem (P) in QT, several facts are needed:

1. ur(x)−1
∈ L1(QT) and uθp(x)−1

|∇u|p(x)
∈ L1(QT),

2. u ∈ C([0,T]; L1(Ω)),
3. the entropic formulation (9) holds.
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The first condition is a consequence of proving that

ur(x)−1
n −→ ur(x)−1 strongly in L1(QT), (33)

and

uθp(x)−1
n |∇un|

p(x)
−→ uθp(x)−1

|∇u|p(x) strongly in L1(QT). (34)

Thanks to (24), we only need to prove that the sequence (ur(x)−1
n ) is uniformly integrable in QT. For this

purpose, we use T1(un) as test function in (Pn), eliminate non-negative terms, and utilize the inequality
uθp−

n |∇un|
p−
− uθp−

n − |∇un|
p−
≤ uθp(x)

n |∇un|
p(x), (12) and θp− ≤ r(x) − 1, (since (2)), it follows that∫ T

0

∫
Ω

uθp−−1
n |∇un|

p−T1(un)dxdt ≤ C
∫ T

0

∫
Ω

ur(x)−1
n T1(un)dxdt + 2∥u0∥L1(Ω).

Since ∫
QT

uθp−−1
n |∇un|

p−T1(un)dxdt ≥
∫
{un>1}∩QT

uθp−−1
n |∇un|

p−dxdt,

and r(x) ≤ r+, u0 ∈ L∞(Ω), we have∫
{un>1}∩QT

uθp−−1
n |∇un|

p−dxdt ≤ C
∫

QT

ur+−1
n T1(un)dxdt + C0

≤ C
∫
{un≤1}∩QT

ur+
n dxdt + C

∫
{un>1}∩QT

ur+−1
n dxdt + C0

≤ C.meas(QT) + C0 + C1

∫
{un>1}∩QT

(un − 1)r+−1dxdt.

Consequently, denoting G1(r) = r − T1(r), we get the inequality∫
{un>1}∩QT

uθp−−1
n |∇un|

p−dxdt ≤ C2 + C1

∫
{un>1}∩QT

(G1(un))r+−1dxdt,

so, that ∫
{un>1}∩QT

|∇un|
p− (G1(un) + 1)θp−−1dxdt ≤ C2 + C1

∫
{un>1}∩QT

(G1(un))r+−1dxdt,

which yields(
1 +

(θp− − 1)
p−

)−p− ∫
{un>1}∩QT

|∇(G1(un) + 1)
(
1− (1−θp− )

p−

)
|
p−dxdt

≤ C2 + C1

∫
{un>1}∩QT

(G1(un))r+−1dxdt.

Now Poincaré inequality implies∫
{un>1}∩QT

(G1(un) + 1)(θ+1)p−−1dxdt ≤ C3 + C4

∫
{un>1}∩QT

(G1(un))r+−1dxdt.

Observe that r+ − 1 < (θ + 1)p− − 1 (since (2)), by Young’s inequality we obtain∫
{un>1}∩QT

|G1(un)|(θ+1)p−−1dxdt ≤ C5. (35)
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Therefore ∫
{un>1}∩QT

ur(x)−1
n dxdt =

∫
{un>1}∩QT

(G1(un) + 1)r+−1dxdt ≤ C6.

From (18),(35), r(x) < (θ+1)p− and Hölder inequality, we deduce that (ur(x)−1
n )n is equi-integrable in QT, then

by Vitali’s Theorem convergence , we have (33).
Now, we shall obtain local equi-integrability of uθp(x)−1

n |∇un|
p(x) on QT. To this end. For every η > 1, we

define the function ψη : R+ → R by

ψη(σ) = (η − 1)
∫ σ

0

dt
(1 + t)η

=

(
1 −

1
(1 + σ)η−1

)
≥ 0, σ ∈ R+. (36)

Let k > 0. We also define φk : R+ → R by φk(σ) = ψη(σ − k) if σ ≥ k and φk(σ) = 0 if 0 < σ < k. We choose
φk(un) as test function in (Pn), we obtain∫

Ω

dx
∫ un(T,x)

0
φk(σ)dσ +

∫
QT

d(t, x,un)|∇un|
p(x)φ′k(un)dxdt +

∫
QT

uθp(x)−1
n |∇un|

p(x)φk(un)dxdt

≤

∫
QT

φk(un)ur(x)−1
n dxdt +

∫
Ω

dx
∫ un(0,x)

0
φk(σ)dσ.

As |φk| ≤ 1 and (1), we have∫
Ω

dx
∫ un(T,x)

0
φk(σ)dσ + α

∫
QT

|∇un|
p(x)

(1 + un)ρ(x)+η
dxdt +

∫
QT

uθp(x)−1
n |∇un|

p(x)φk(un)dxdt

≤

∫
QT∩{un≥k}

ur(x)−1
n dxdt +

∫
Ω∩{un≥k}

u0dx.

Dropping the non negative terms and using (18), we deduce from the above inequality that∫ T

0

∫
Ω

uθp(x)−1
n |∇un|

p(x)φk(un)dxdt→ 0 as k→ +∞ uniformly with respect to n.

Using the properties of the function φk, we get as k→ +∞∫
Ω∩{un≥2k}

uθp(x)−1
n |∇un|

p(x)dxdt ≤
1

φk(2k)

∫ T

0

∫
Ω

uθp(x)−1
n |∇un|

p(x)φk(un)dxdt→ 0. (37)

Consequently, we have

∫ T

0

∫
Ω

uθp(x)−1
n |∇un|

p(x)dxdt ≤
∫ T

0

∫
Ω∩{un≥2k}

uθp(x)−1
n |∇un|

p(x)dxdt

+((2k)θp+−1 + 1)
∫ T

0

∫
Ω∩{un≤2k}

|∇T2k(un)|pdxdt. (38)

From (37) and (19) give equi-integrability of uθp(x)−1
n |∇un|

p(x) on QT.By this, and (22),(24) and Vitali’s Theorem,
we obtain (34).

The second condition is a consequence of proving that the sequence (un) is a Cauchy sequence in
C([0,T]; L1(Ω)).To do this fix t ∈ [0,T] and we define the vector-valued function â(t, x, s, ξ) : Qt ×R×RN

−→
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RN, where â(t, x, s, ξ) = d(t, x, s)|ξ|p(x)−2ξ. Taking Tγ(un − uϵ) as test function in (Pn) for un and uϵ, subtracting
up both identities, we deduce that∫

Ω

Θγ(un(t) − uϵ(t))dx +
∫ T

0

∫
Ω

[̂
a(t, x,un,∇un) − â(t, x,un,∇uϵ)

]
∇Tγ(un − uϵ)

+

∫ T

0

∫
Ω

[
uθp(x)−1

n |∇un|
p(x)
− uθp(x)−1

ϵ |∇uϵ|p(x)
]

Tγ(un − uϵ)dxdt

≤

∫ T

0

∫
Ω

|ur(x)−1
n − ur(x)−1

ϵ ||Tγ(un − uϵ)|dxdt +
∫
Ω

|Θγ(un(0) − uϵ(0))|dx.

Note that Iϵn is well defined and Iϵn ≥ 0, where

Iϵn =
∫ T

0

∫
Ω

[̂a(t, x,un,∇un) − â(t, x,un,∇uϵ)]∇(un − uϵ) ≥ 0.

Dropping non-negative terms, we get∫
Ω

Θγ(un(t) − uϵ(t))dx ≤ γ
∫ T

0

∫
Ω

∣∣∣∣uθp(x)−1
n |∇un|

p(x)
− uθp(x)−1

ϵ |∇uϵ|p(x)
∣∣∣∣ dxdt

+γ

∫ T

0

∫
Ω

|ur(x)−1
n − ur(x)−1

ϵ |dxdt + γ
∫
Ω

|(un(0) − uϵ(0))|dx.

Next, we divide this inequality by γ and let γ → 0. Since (8) and by applying the monotone convergence
theorem, we obtain∫

Ω

|un(t) − uϵ(t)|dx ≤
∫ T

0

∫
Ω

∣∣∣∣uθp(x)−1
n |∇un|

p(x)
− uθp(x)−1

ϵ |∇uϵ|p(x)
∣∣∣∣ dxdt

+

∫ T

0

∫
Ω

|ur(x)−1
n − ur(x)−1

ϵ |dxdt +
∫
Ω

|(un(0) − uϵ(0))|dx.

Hence

sup
t∈[0,T]

∫
Ω

|un(t) − uϵ(t)|dx ≤
∫ T

0

∫
Ω

∣∣∣∣uθp(x)−1
n |∇un|

p(x)
− uθp(x)−1

ϵ |∇uϵ|p(x)
∣∣∣∣ dxdt

+

∫ T

0

∫
Ω

|ur(x)−1
n − ur(x)−1

ϵ |dxdt +
∫
Ω

|(un(0) − uϵ(0)|dx.

Taking into account u0 ∈ L∞(Ω),(33) and (34), we deduce that∫
Ω

|un(t) − uϵ(t)|dx −→ 0 as n, ϵ −→ ∞.

Hence, un is a Cauchy sequence in u ∈ C([0,T]; L1(Ω)), thus u ∈ C([0,T]; L1(Ω)).
To finish the proof, we choose Tγ(un −φ) with φ ∈ Lp− (0,T; W1,p(.)

0 (Ω))∩ L∞(QT) as a test function in (Pn),
we obtain∫ T

0
⟨∂tun,Tγ(un − φ)⟩dt +

∫
QT

d(t, x, ,un)|∇un|
p(x)−2

∇un ∇Tγ(un − φ)

+

∫
QT

uθp(x)−1
n |∇un|

p(x)Tγ(un − φ)dxdt =
∫

QT

ur(x)−1
n Tγ(un − φ). (39)
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For the first term on the left-hand side of (39), we have∫ T

0
⟨∂tun,Tγ(un − φ)⟩dt =

∫
Ω

Θγ(un − φ)(T)dx −
∫
Ω

Θγ(un − φ)(0)dx

+

∫
QT

∂tφTγ(un − φ)dxdt.

Because that u ∈ C([0,T]; L1(Ω)), we have ∀t ∈ [0,T], un(t) −→ u(t) in L1(Ω), and since Θγ is Lipschitz
continuous, we obtain ∫

Ω

Θγ(un − φ)(T)dx −→
∫
Ω

Θγ(u − φ)(T)dx,

and ∫
Ω

Θγ(un − φ)(0)dx −→
∫
Ω

Θγ(u0 − φ(0))dx.

We have ∂tφ ∈ Lp′− (0,T; W−1,p′(.)(Ω)) + L1(QT), and since

Tγ(un − φ) ⇀ Tγ(u − φ) weakly* in L∞(QT),

then, ∫
QT

∂tφTγ(un − φ)dxdt −→
∫

QT

∂tφTγ(u − φ)dxdt.

Also, by the dominated convergence and observing the strong convergence of {uθp(x)−1
n |∇un|

p(x)
}n and {ur(x)−1

n }n
in L1(QT), hence ∫

QT

uθp(x)−1
n |∇un|

p(x)Tγ(un − φ)dxdt −→
∫

QT

uθp(x)−1
|∇u|p(x)Tγ(u − φ)dxdt,

and ∫
QT

ur(x)−1
n Tγ(un − φ)dxdt −→

∫
QT

ur(x)−1Tγ(u − φ)dxdt.

Concerning the second term on the left-hand side of (39) and let n > M = γ+ ∥φ∥L∞(QT), we can be rewritten
as ∫

QT

d(t, x,un)|∇TM(un)|p(x)−2
∇TM(un)∇Tγ(un − φ)dxdt,

according to (22), (24) and Fatou’s Lemma, we obtain

lim inf
n−→+∞

∫
QT

d(t, x,un)|∇TM(un)|p(x)−2
∇TM(un)∇Tγ(un − φ)dxdt

≥

∫
QT

d(t, x,u)|∇TM(u)|p(x)−2
∇TM(u)∇Tγ(u − φ)dxdt

=

∫
QT

d(t, x,u)|∇u|p(x)−2
∇u∇Tγ(u − φ)dxdt.

Thus, we get (9) by putting all terms together, This completes the proof of Lemma 4.4 and so the proof of
Theorem 3.2 is concluded.

Now, we are going to prove Theorem 3.3.

Proof of Theorem 3.3
We start by defining the function Sγ(.) in C2(R), such that Sγ(x) = x for |x| ≤ γ and suppS′γ ⊂ [−γ−1, γ+1],

then suppS′′γ ⊂ [−γ − 1,−γ] ∪ [γ, γ + 1].
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The weak convergence of ∂tSγ(un) in Lp′− (0,T; W−1,p′(.)(Ω)) + L1(QT)

Taking S′γ(un)φ as a test function in (Pn) with φ ∈ Lp′− (0,T; W−1,p′(.)(Ω)) + L∞(QT), we obtain∫ T

0
⟨∂tun,S′γ(un)φ⟩dt +

∫
QT

d(t, x,un)|∇un|
p(x)−2

∇un(S′′γ (un)φ∇un + S′γ(un)∇φ)dxdt

+

∫
QT

uθp(x)−1
n |∇un|

p(x)S′γ(un)φdxdt =
∫

QT

ur(x)−1
n S′γ(un)φdxdt.

Then, we have∣∣∣∣∣∣
∫ T

0
⟨∂tSγ(un), φ⟩dt

∣∣∣∣∣∣ ≤
∫

QT

|d(t, x,un)|
(
|S′′γ (un)||∇un|

p(x)
|φ| + |S′γ(un)||∇un|

p(x)−1
|∇φ|

)
+

∫
QT

uθp(x)−1
n |∇un|

p(x)
|S′γ(un)φ| +

∫
QT

ur(x)−1
n |S′γ(un)φ|. (40)

For the first term on the right-hand side of (40), using Hölder’s inequality and the fact that (∇Tγ(un))n is
bounded in Lp(.)(QT) for all γ > 0, we find∫

QT

|d(t, x,un)|
(
|S′′γ (un)||∇un|

p(x)
|φ| + |S′γ(un)||∇un|

p(x)−1
|∇φ|

)
dxdt

≤ β

∫ T

0

∫
{|un |≤γ+1}

(
|S′′γ (un)||∇un|

p(x)
|φ| + |S′γ(un)||∇un|

p(x)−1
|∇φ|

)
dxdt

≤ 2β∥S′′γ (.)∥L∞(R)∥φ∥L∞(QT)∥∇Tγ+1(un)∥Lp(x)(QT)∥1∥Lp(x)(QT)

+2β∥S′γ(.)∥L∞(R)∥∇φ∥Lp(x)(QT)∥∇Tp(x)−1
γ+1 (un)∥Lp′ (x)(QT)

≤ C1(∥∇φ∥Lp(x)(QT) + ∥φ∥L∞(QT)).

So, that ∫
QT

|d(t, x,un)|
(
|S′′γ (un)||∇un|

p(x)
|φ| + |S′γ(un)||∇un|

p(x)−1
|∇φ|

)
≤ C1

(
∥φ∥Lp− (0,T;W1,p(.)

0 (Ω)) + ∥φ∥L∞(QT)

)
. (41)

Concerning the last two terms on the right-hand side of (40), we get∫
QT

uθp(x)−1
n |∇un|

p(x)
|S′γ(un)φ|dxdt +

∫
QT

ur(x)−1
n |S′γ(un)φ|dxdt

≤ ∥S′γ(.)∥L∞(R)∥φ∥L∞(QT)(∥u
θp(x)−1
n |∇un|

p(x)
∥L1(QT) + ∥u

r(x)−1
n ∥L1(QT))

≤ C2∥φ∥L∞(QT). (42)

Using (40),(41) and (42), we obtain∣∣∣∣∣∣
∫ T

0
⟨∂tSγ(un), φ⟩dt

∣∣∣∣∣∣ ≤ C3

(
∥φ∥Lp− (0,T;W1,p(.)

0 (Ω)) + ∥φ∥L∞(QT)

)
+ C2∥φ∥L∞(QT).

Hence

∂tSγ(un) ⇀ ∂tSγ(u) in Lp′− (0,T; W−1,p′(.)(Ω)) + L1(QT). (43)
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Existence of renormalized solutions.
Choosing ϕγ(un) = Tγ+1(un) − Tγ(un) as a test function in (Pn), we obtain∫ T

0
⟨∂tun, ϕγ(un)⟩dt +

∫
QT

d(t, x,un)|∇un|
p(x)−2

∇un∇(ϕγ(un))

+

∫
QT

uθp(x)−1
n |∇un|

p(x)ϕγ(un)dxdt =
∫

QT

ur(x)−1
n ϕγ(un)dxdt.

Using (7) and the definition of Θ, we can write the first term as follows∫ T

0
⟨∂tun, ϕγ(un)⟩dt =

∫
Ω

Θγ+1(un(T))dx −
∫
Ω

Θγ(un(T))dx

+

∫
Ω

Θγ(un(0))dx −
∫
Ω

Θγ+1(un(0))dx, (44)

and since ∫
Ω

Θγ+1(un(T))dx −
∫
Ω

Θγ(un(T))dx

=

∫
{γ≤|un(T)|≤γ+1}

(
|un(T)|2

2
− γ|un(T)| +

γ2

2

)
−

∫
{|un(T)|>γ+1}

(
|un(T)| − γ −

1
2

)
≥ 0, (45)

we have ∫
Bγ

d(t, x,un)|∇un|
p(x) +

∫
{un≥γ}

uθp(x)−1
n |∇un|

p(x)(Tγ+1(un) − Tγ(un))

≤

∫
{un≥γ}

ur(x)−1
n +

∫
{γ≤u0n≤γ+1}

u2
0n

2
− γu0n +

γ2

2


−

∫
{u0n>γ+1}

(
u0n − γ −

1
2

)
. (46)

Since uθp(x)−1
n |∇un|

p(x)
≥ 0, we can write (46) as∫

Bγ
d(t, x,un)|∇un|

p(x)dxdt ≤
∫
{un≥γ}

ur(x)−1
n dxdt

+

∫
{γ≤u0≤γ+1}

1
2
−

∫
{u0>γ+1}

(
u0 − γ −

1
2

)
.

Thanks to Lemma 4.2, we have∫
{un≥γ}

ur(x)−1
n dxdt ≤ (∥ur+−1

n ∥L∞ + 1)|({un ≥ γ})| → 0 as γ −→ +∞,

and ∫
{γ≤u0≤γ+1}

1
2
−

∫
{u0>γ+1}

(
u0 − γ −

1
2

)
−→ 0, as γ −→ +∞.

so, that ∫
Bγ

d(t, x,un)|∇un|
p(x)dxdt −→ 0 as γ −→ ∞. (47)
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In view of Fatou’s Lemma, we deduce that∫
Bγ

d(t, x,u)|∇u|p(x)dxdt

≤ lim inf
n−→0

∫
Bγ

d(t, x,un)|∇un|
p(x)dxdt −→ 0 as γ −→ ∞.

We will now focus on proving the equality (10). Let φ ∈ Lp− (0,T; W1,p(.)
0 (Ω))∩ L∞(QT) and S(.) ∈ C∞(R) such

that suppS′(.) ∈ [−M,M] for some constant M > 0. By Taking S′(un)φ as a test function in (Pn), we get∫ T

0
⟨∂tun,S′(un)φ⟩dt +

∫
QT

d(t, x,un)|∇un|
p(x)−2

∇un(S′′(un)φ∇un + S′(un)∇φ)dxdt

+

∫
QT

uθp(x)−1
n |∇un|

p(x)S′(un)φdxdt =
∫

QT

ur(x)−1
n S′(un)φdxdt. (48)

According to (43), we have

∂tS(un) ⇀ ∂tS(u) in Lp′− (0,T; W−1,p′(.)(Ω)) + L1(QT),

and

lim
n−→+∞

∫ T

0
⟨∂tun,S′(un)φ⟩dt = lim

n−→+∞

∫ T

0
⟨∂tS(un), φ⟩dt =

∫ T

0
⟨∂tS(u), φ⟩dt.

By looking at the following :∫
QT

d(t, x,un)|∇un|
p(x)−2

∇un(S′′(un)φ∇un + S′(un)∇φ)

=

∫
QT

d(t, x,un)|∇TM(un)|p(x)−2
∇TM(un)(S′′(un)φ∇TM(un) + S′(un)∇φ),

and since (24), it follows that

d(t, x,un)|∇TM(un)|p(x)−2
∇TM(un) ⇀ d(t, x,u)|∇TM(u)|p(x)−2

∇TM(u),

in Lp′(.)(QT), and the covergence strongly of S′′(un)φ∇TM(un) + S′(un)∇φ in Lp(.)(QT), (32), we conclude that

lim
n−→+∞

∫
QT

d(t, x,un)|∇un|
p(x)−2

∇un(S′′(un)φ∇un + S′(un)∇φ)dxdt

=

∫
QT

d(t, x,u)|∇u|p(x)−2
∇u(S′′(u)φ∇u + S′(u)∇φ)dxdt.

Moreover, since the convergence weakly* of S′(un)φ in L∞(QT) and (33),(34), then

lim
n−→+∞

∫
QT

uθp(x)−1
n |∇un|

p(x)S′(un)φdxdt =
∫

QT

uθp(x)−1
|∇u|p(x)S′(u)φdxdt

and

lim
n−→+∞

∫
QT

ur(x)−1
n S′(un)φdxdt =

∫
QT

ur(x)−1S′(u)φdxdt

Passing to the limite in (48) as n→ +∞ and based on the previous endings, we deduce that (10). Therefore,
u is a renormalized solution to problem (P), this completes the proof of Theorem 3.3
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