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Abstract. The purpose of this study is to prove the existence of both entropy solutions and renormalized
solutions for nonlinear parabolic equations with initial data in L* and degenerate coercivity. The functional
setting involves Lebesgue and Sobolev spaces with variable exponents.

1. Introduction

Our main objective is to show that entropy and renormalized solutions exist for the following nonlinear
degenerate parabolic problem

et + Au + [u]OPO 24| VyP® = [u'®-2y  in Qr,
(P) u(0,x) =up(x) >0 inQ,
u=0 onlr.

where Q is a bounded open subset of RY (N > 2) with Lipschitz boundary denoted by dQ, T is a positive
constant, 1y € L*(Q), Qr = (0, T) X Q with the lateral boundary I'r = (0, T) X dQ, and A is the operator given
by

Au = —div(d(t, x, u)|Vul®=2Vu).
The function d : (0, T) x RN x R — R are Carathéodory functions and satisfies for almost every (¢, x) € Qr,
Vs € IR, the following:

a
— < d(t < 1
A+ e = (t,x,5) < B, 1)

where o, ff are strictly positive real numbers, g(x) € C(Q)and o(x) = 0. The variable exponents p : Q — (1, )

and r : QO — (1, o0) are continuous functions and let p~ = min p(x), p* = max p(x) such that
xeQ) xeQ)

Op~+1<r(x)<r" =maxr(x) <p (6+1), and 6> pl )
xeQ)
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Differential equations and variational problems with nonstandard growth conditions have garnered signif-
icant interest due to their applications in elastic mechanics, electro-theological fluid dynamics, and image
processing. Researchers have explored various results for such problems, and the functional spaces used to
address them include generalized Lebesgue spaces and generalized Lebesgue Sobolev spaces. The notions
of entropy solutions and renormalized solutions have been introduced to deal with these problems, as
they require less regularity than traditional weak solutions. Recent studies have focused on the existence
and uniqueness of entropy and renormalized solutions for problems with variable exponents and L! data,
relying on a priori estimates in Marcinkiewicz spaces with variable exponents. DiPerna and Lions [9]
first introduced the notion of renormalized solutions to study the Boltzmann equation. This concept was
then adapted to analyze certain nonlinear elliptic, parabolic, and fluid mechanics evolution problems. For
details, see [4-6, 12]. Concurrently, Bénilan et al. [3] proposed the idea of entropy solutions for nonlinear
elliptic problems. This framework was extended to related problems with constant p in [7, 17, 19].

As we have seen, If (1) holds true, the differential operator A is not coercive as u becomes large. Note
that the problem (P) includes a parabolic equation which is nonlinear with respect to the gradient of the
solution, and with variable exponents of nonlinearity. Thus, it is natural to solve problem (P) under the
framework of Sobolev spaces with variable exponents.

In the case of p(x) = 2, o(x) = 0 and r(x) is a constant, the authors in [1] proved the existence of global
weak solutions of problem (P) for non-negative initial data 1y € L!(Q).

In the case with g(x) = 0 and p(.) > 2 — <=, C. Zhang and S. Zhou [22] have established the existence

N+1/
and uniqueness of entropy solutions for the following nonlinear parabolic equation:

diu — div([VulPP2Vu) = f inQr = (0,T) xQ

€))] u(0,x) = ug in Q
u=20 on |0, T[xdQ
with f € LY(Qr) and ug € L'(Q) such that u € L7-(0,T; W,"(Q)) and 1 < g() < XN Beside that

Bendahmane, Wittbold and Zimmermann in [2], the authors showed the existence and uniqueness of

the renormalized solutions to the problem (1). Moreover, they proved that u € LT (O, T; W;’q(')(Q)), when

ﬁ, for all continuous variable exponents g(.) on Qsuch that 1< g(x) < W forall x € Q.

When p = p(x) € C(Q) satisfies the log-continuity condition, the existence and uniqueness of an entropy
solution to problem (1) are proved in [22].

The study aims to prove the existence of entropy and renormalized solutions for (P) and to expand upon
the findings in [2, 16, 22] to address degenerate parabolic equations with a source term. The condition of
degenerate coercivity indicates that W decreases towards zero as |u| grows. To address this challenge,
we will use truncation in 4 to obtain a coercive differential operator. An additional challenge lies in
passing to the limit within the nonlinear terms with variable exponents, d(t, x, T, (1)) |Vt P2V, and
|14, PD =211, |V, [P, Moreover, the presence of this source term in the equation makes it very difficult to
prove the uniqueness of the solution, especially in conjunction with the term [u|%®~2y|Vu[®). Consequently,
many studies that address to the uniqueness of the solution simplify the problem by considering the right-
hand side of the equation to be a simple function and excludes the lower-order term, as seenin [2, 5,7, 19, 22]
and the related references.

This paper is structured as follows: Section 2 presents basic notations and properties of Sobolev spaces
with variable exponents. Section 3 provides the definition of entropy and renormalized solutions to problem
(P), along with the main results. Finally, in Section 4, we establish the existence of entropy and renormalized
solutions.

p->2-

2. Mathematical preliminaries

In the following, we’ll revisit a few definitions and fundamental characteristics of the generalized
Lebesgue-Sobolev spaces LF0(Q), W*0(Q), and Wé’p 9(Q), with Q being an open subset of RN. For
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additional properties of the variable exponent Lebesgue-Sobolev spaces, we suggest consulting [13, 14] and
related sources. . .
Set C,(Q) ={p e C(Q): infxec@ p(x) > 1.} For any p € C(Q2), we define

p*t = sup p(x), p~ = inf p(x).
xeC(Q) xeC(Q)

We define the variable exponent Lebesgue space
LP(-)(Q) = {u :QQ > R measurable | f |u(x)|P(X)dx < +oo} .
Q

The space LP")(Q) equipped with the norm

p(x)
”u”p() = ||u||Ln<~)(Q) = inf{H >0 f dx < 1} .
Q

If p~ > 1, then LPY(Q) is reflexive and the dual space of LPV(Q) can be identified with LF0(Q) where

r% + p’%) = 1. For any u € [’)(Q) and v € LV (Q) the Hélder type inequality

u(x)
u

f|u0|dx < 2||u||LP(‘>(Q)||U||LV/(')(Q)/ 3)
Q

holds true. We may also consider the generalized Lebesgue space

u(t, x) p(x)

||1/l”Lp(-)(QT) = inf {‘U >0 | dxdt < 1} P

Qr

which, of course, shares the same type of properties as LP*)(Q). We define also the Banach spaces
WO(Q) = fu € LFQ) : [Vul € LP(Q),

Wy" Q) = {u € LPYQ) | IVul € LP)(Q) and u=0 on dQ}.
Foru e Wé’p 9(Q) with p € C(Q) and p~ > 1, the poincaré inequality holds [15]
lullpo < ClVullpog), 4)

for some constant C, which depends on Q) and the function p.

Remark 2.1. In general, the smooth functions are in general not dense in W;’p (Q), but if the exponent variable
p(-) > 1 satisfies the log-Holder continuity condition (5), that is AM > 0 :

Ip(x) — p(y)| Vx # y € Q such that [x — y| < %, (5)

“In(lx - yl)

then the smooth functions are dense in W'*0)(Q) and Wé’p (')(Q) (see [8, 13]). As in [2, 21], we do not need these
condition to prove our result and will most exclusively work with p € C,(Q).

Remark 2.2. [2]Letp(.) : Q — (1, c0) be a continuous function. We have the following continuous dense embeddings

L7 (0, T;LPQ) < LF9Qr) = L (0, T;LF(Q)). (6)
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3. Statements of results

For y > 0, let T, be the truncation at levels —y and y. This function, which is Lipschitz, meets the
conditions T, (0) = 0, |T,(r)| < y, and its primitive function ®, : R — R* is defined by

2

' L, if;lr| <y,
o.mn=| Tar=1 27 . '
(1) fo r(©) { yirl =%, iflr > y.

Throughout this paper, (.,.) denotes the duality between X and X*(dual space of X, the set of continuous
linear functional on X). We will then use the following result:

T
[ omno = [ ecm- [ o %

and
22
yirl = 03 < O, <y, VreR. ®)

Set

Té’p(')(QT) = {u :(0,TIxQ — R measurable, T,(u)eL’ (0,T; Wé’p(')(Q)),

with VT, (u) € (L"OQr)V, forevery y >0},

Next, we define the weak gradient of a measurable function u € T(l)'p (')(QT). The proof follows from ([3],
Lemma 2.1) due to the fact that W(])’p (')(Q) - Wé’p i (Q) where p~ = min p(x).
xeQ

Proposition 3.1. For every measurable function u € Té’p “(Qr), there existsa unique measurable functionv : Qr —
R such that
VT),(U) = UX{jul<y), a.e. in QT/ V)/ >0,

where x4 denotes the characteristic function of a measurable set A. The functions v are called the weak gradient of u

and are still denoted by Vu. Moreover, if u belongs to L0, T; Wé’l(Q)), then v coincides with the weak gradient of u,
that is, v = Vu.

Definition 3.1. Let ug € L®(Q). Assume that (1) holds true. We will call an entropy solution of (P) a function
ue€ Té’p(')(QT) N C([0, T]; LY(Q)) such that for every y > 0,

T
f 0, (u - @)(T)dx - f 0, (u - ¢)(0)dx + f @, T, (u — @))dt
Q Q 0

+ f d(t, x, w)| VulP®2Vu VT, (u — p)dxdt

+ fQ uPONVuPOIT, (1 - @)dxdt < f WO, (u - ), 9)
T

Qr

where u? @Yy € LY(Qr), w® € LY(Qr)and ¢ € L7 (0, T; Wy"(Q)NL®(Qr) with dyp € LF (0, T; W O(Q)+
LY(Qr).

Definition 3.2. Let ug € L*(Q). A measurable function u is a renormalized solution of the parabolic problem (P) if
T,(u) € 7y"(Qr) forall y > 0,

u € C([0, T; LY(Q)), lim f d(t, x, u)|VulPPdxdt = 0
)/—) oo B}/
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and

T
f (D, S’ (u)p)dt + f d(t, x, u)|VulPD2Vu(S" (u)pVu + S’ (u)D;¢p)dxdt
0 Qr

+ f UV PN () pdxdt = f WO (u)pdxdt, (10)

Qr

where By = {y < [u(t,x)] <y + 1}, > 0, u®?@-1Vup®, @1 € [1(Qr), @ € 7 (0, T; W"(Q)) N L™(Qr) and
any renormalization S(.) € C*(IR) such that suppS’(.) € [-M, M] for some constant M > 0.

Now we state our main results.

Theorem 3.2. If ug belongs to L=(Qr) and (1)-(2) is satisfied, then problem (P) possesses at least one an entropy
solution.

The Theorem's proof has multiple steps. Initially, we approximate problem (P) with a sequence of problems
(Py) that have smooth solutions u, and we obtain uniform estimates of u,. Then, we take the limit as n goes

to infinity. Lastly, we prove the existence of an entropy solution.

Theorem 3.3. Let ug € L®(Q2). Under the assumptions (1)-(2), the entropy solution of parabolic problem (P) is also
a renormalized solution

4. The proofs of main results

Proof of Theorem 3.2

Let n € IN be arbitrary, let us consider the following approximated problem

dpu, — div(d(t, x, Tn(un))|vun|p(x)_zvun) + |un|6p(x)—2unlvun|p(x) = Tn(lunlr(x)_zun)r inQr

(P;) uTl(Ol x) = T/lo(x), in Q
u, =0, onTI7.
Note that by (1), we have
d(t, x, T . <

)= A+ M@ = T+

so that the operator B : v > div(d(t, x, T, (0,)|V0,'®~2V0,) is coercive. Thus, the fact that |T,,(Ju,|"™2u,)| < n,
the existence of the approximate solution u, € L¥ (0, T; W;’p(')(Q)) NnC ([O, TI; Lz(Q)) is proved as in [11]. Due
to the fact that the lower-order term has the same sign of the solution, it is easy to prove by taking u;, as test
function in the weak formulation of problem (P;,) that u, > 0. Consequently, u, solves the problem

sty — Aiv(d(t, x, T (Ua)IVita PO 2Vus,) + u O Vi, p® = T, 07, in Qr
un (0, x) = up(x), in Q (11)
u, =0, onIr.

Lemma 4.1. Let uy, be the solutions to problems (11). Then we have for all y > 0

T T

—a -
T VT, (u,)PPdxdt < f fu’(x) Ydxdt + ol - 12
(1+7)° fo fo' (o) U Vol (12)
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Proof. We choose T, (i) as test function in (11) and the fact that |T), @™ < 1! we obtain

f O, (uy)(T)dx + f f d(t, x, T (1)) Vit O~V 11, V(T (4,,))dxdt
Q 0 Q

T
+f fuﬁp(x)_lIVunlp(")Ty(un)dxdt
0 Q
T
< f f ul VT () dxdt + f ®, (it,)(0)dx. (13)
Q

Op(x)-1

Since ®, > 0 and u, T, (u,) 2 0, so after dropping non-negative terms and using (8), we obtain

T
j‘jﬁ@&ﬂWMWwW”W%WDmeﬂsjﬁquAWWJMﬂ+NwM@y (14)
0 Q 0 Q

According to the conditions (1) and for n > y > 0, we get (12). [

We shall denote by C or C; various constants depending only on the structure of p~, 6, y, T, uo, |Q|, for
j€N.

Lemma 4.2. Let u, be a solution of problem (11) and suppose that (1), (2) hold true. Then, we have

o the sequence {u,} is bounded in L*(Qr),
e the sequence {T,(u,)} is bounded in LV (0, T; Wé’p(x)(Q)).
Moreover. there exist a positive constant C such that
e V1, PO g, < C.

Proof. Choosing ¢ = u, as test function in the approximated problem (11), we obtain, using (1)

T T _Vu ) Bp(x)
f (Bt uy)dt + a f f xdf + f f POV, P9 dxdt
0 0 Q (1 + |Tn(un)|)g(x)
< f f T, () dxdt. (15)
0 Q

Using that |T,, (/" Hu, < 1™ and

T
[ @ et = [ pis- 3 [ wo0p
0 2 Q 2 Q

dropping positive term, we get this inequality

T T
1
f fuﬁ(x)HIVunlp(x)dxdtsf fu:,(x)dxdt+§fu%dx.
Q Q

Remark that 1% Vi, = u% = [Vl < u? Vi, P® and 1y € L®(Q). Then, we have

f fuf,_9|Vun|dedt§f fuz(x)dxdt+f fugp_dxdt+f f|vun|dedt+Co, (16)
o o 0 Q 0 Q 0 Q

Since Op~ < r(x) and by (12), we have that

T T
f f W O \Vu,lP dxdt < Cy f f U dxdt + C,.
0 Q 0 Q
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Applying Poincaré inequality and since r(x) < r* < p~(0 + 1), it follows from Young inequality that

T
f f P O Vixdt < Cs.
0 Q

which implies that the boundedness of (u,) in LV @*Y(Qr). Now, we prove that the sequence (uy(x) 1),1
bounded in L}(Qr). To this end, we choose u"*! as test function in (11) where v > 0, we find

[V, [P f f Op()+v )
+1 wy dxdt + Vi, [POdxdt
alv )f fg @+ Tl Vit

< f f T, ()l dxdt + C.
0 Q

Dropping the non-negative term and with the same previous calculations, we find

T T
f f ul @D gt < f f ul dxdt + C. (17)
0 Ja 0 Ja

Now, we can choose v = p~(0 + 1) —r* (v > O since (2)), sop™ (0 + 1) + v = 2p~(0 + 1) — r*. Then by (17),
we obtain that u, is bounded in L% @*D=""(Qr). Consequently, an iterating procedure gives us that (u,) is
bounded in L"™(Qr) for all m < +c0. Indeed, if we consider v; > 0 such that 7" +v; = 2p~(0 + 1) —r*, by (17)
and the fact that (1, is bounded in L% @+)=""(Qr), then it is bounded in L* 9+)=3" Now consider v, > 0
such that 7" +v, = 4p~ (6 +1) - 3r* and deduce that (1,) is bounded in L% ©@*D=7""(Qr). Hence we can obtain
that (u,) is bounded in L2 ©+D-*-D" (1) for all s € IN. Since

p(0+1) -2 -1 =2°(p(O+1)—r")+1" > +00, ass — +oo,

' (p~ 1)—r+ +
s (p~ (0+1)—r*)+r >

we deduce that (1,,) is bounded in L™(Qr) for all m < +o0. Because there is s’ > 0 such that P

F + 1
rt=1y : : m N
(u;, 7*) is bounded in L"(Qr) for some m > ?; + 1. (18)

Standard parabolic estimates, performed using only the principal part of the operator (see for example
[10]), and taking advantage of the nonnegativity of the lower order gradient term, then imply that (u,), is

bounded in L*(Qr). Since r(x) — 1 < r* — 1 we have (u;(x)_l) is bounded in L}(Qr). Now, to prove that the
sequence (T, (u,)), is bounded in LV (0, T; Wcl)’p (Q)), we get using (12),(18) and the fact that uy € L¥(Q),
there exist a positive constant C such that

T, )l - OT:W(@) <C (19)

Therefore, we have

Vit PO dxdt = VT, (1,,) P dxdt + Ve, PO dxdt,
)
Qr {u,<y} {u,>y}

by L* estimate of u, and using the dominated convergence theorem
X{un>)/l|vun|p(x) — 0 as y— +oo.
Thus, by the estimate (19) we obtain

”un”Lp- (O,T;Wé'p(x)(Q)) < C. (20)
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;( n)

Moreover, if we take as test function in (11) and dropping the non-negative terms, we obtain

f f 0917, i) ) T)( ddt<f f o0 y( Uy)
Q

Ty (un)

dxdt + f 10, (14,,)(0) dx.

Using the fact that | <1and (8), we have

T Bp(x)-1 Ty(un) g r(x)-1
1,7V, P —dxdt < uy ™™ dxdt + ||l -
0 Ja V4 0 Ja

Letting y tend to 0 and by Fatou’s Lemma, we deduce

Op(x)-1
P Vit PO o,y < C. (21)

O

r(x)— )= r(x)-1

Since (u,), is bounded in L*(Qr) and taking n large enough, we get T, (1, u, and T, (u,) = uy, so

that we conclude that u,, is a weak solution of

ety — div(d(t, x, 11,) |Vt P92V, + uep(x) Wi, P® = /@7 in Qp
(Pn) 1,(0,x) = 1p(x) > 0, inQ
u, =0, on 7.

Passage to the limit.
Lemma 4.3.

VT, (u,) — VT, (u) strongly in (LPOQ)N, as n— +oo, forevery y > 0. (22)

Proof. By the estimate (20), there exist a function u € L¥ (0, T; Wé’p (X)(Q)) and a subsequence, still denoted
by {u,}, such that

uy = u weaklyin L (0, T; W,"™(Q). (23)

Moreover, going back to (P,), the sequence (d;u,) is bounded in the space

- 1y (x)
L0, T, W)+ L'(Qr), p'(x
( @) +LQn), )= 5
Using compactness argument in ([20] Corollary 4), we obtain that
u, — u strongly in LY(Qr), and a.e. in Qr. (24)

We now introduce a time-regularized truncation T, (1) that belongs to the space LV (0, T; Wé’p (x)(Q)). With
v > 0, we define
¢
(me@m:vf‘ﬂﬁmwamm+fﬁwwx (25)

where T, (u(s, x)) is the zero extension of  for s < 0 (See [22]), we have the following properties:
o (T ()v)e = v(Ty(u) — (T),(w))y)
o ((Ty(u))y)(0,x) = T)(uo)
o [(Ty())l <y
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e (VT,(u)), — VT, (u) stronglyin (L"O(Qr)Nasv — +co.

Let i > y and let us take
wy = TZ)/(un = Th(uy) + Ty(un) - (T)/(u))v)/

as test function in (P,), we have

T T
f (Osity, Wy )t + f f d(t, x, 1, ) IVt P92V, )V, dxdt
0 0 Q

T T
+f fugp(x)_1|Vun|p(")wndxdt:f fu:,(x)_lwndxdt. (26)
0 Ja 0 Ja

We will also denote by (1, v, h) any quantity I such that

Iim lim Ilim I=0.

h—>+0c0 V—>+00 n—>+00

By the same technique of [18], we can obtain that

T
f (Fiuy, wy)dt = t(n, v, h).
0

If weset M = 4y + h > h > vy, then it is easy to see that Vw, = 0 on the set {|u,| > M}. Therefore, from the
above estimate, we can write the inequality (26) as

T T
f f A(t, %, 1)V Tan ()P 2V Tog (1) Ve ddt + f f uSPO 7, PO, dxdt
0 Ja 0 Ja
T
< f f O, dxdt — t(n, v, h). (27)
0 Ja
Splitting the integral in the left-hand side on the sets where |u,| < y and where [u,| > y, we find
T
f f d(t, x, un)IV Tar ()P 2V Tag () Ve, dxdt
0 Ja
o T
22— VT (un)lp(x)_ZVT/(un)V(T (un) = (T (u))y)dxdt
ToTF by Sy 007 0=
T
6 [ VTN, .
0 “urz|>y}

It follows from the above inequality that

T
a ()2 -
T L VTP VT, ) (T i

T T
+ f f P\, PO, dxdt < B f f IVTa (it POV (T () dxdt
0 Ja 0 {lun >y}

T
+f fuz(x)_lwndxdt—’c(n,v,h).
0 Ja
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Furthermore, we have

[04

T
a7 fo fQ (VT ()P 2V T, (1) = VT ()" 2V T, ()]

XV(T, (1) — (T, (), )l

T
< f f IV T )P V(T (), et
0 {lun>y}

L

T
¢ p(x)-2y; _
axy)7 fo fQ VT, (u)| Ty (u)V(Ty () — (T, (u))y)dxdt
L
T T
_f fMSP(X)—1|Vun|P(X)wndxdt+f fuﬁ(x)_lwndxdt—r(n,v,h),
0 Ja 0 Ja

I I

Limit of I;.We observe that [VTy(u,)P®! is bounded in L”')(Qr) and using the fact that
(VT,(u)), — VT, (u) strongly in (LPYQr)Nas v — +oo,

by the dominated convergence theorem

X[Iu,,|>)/]|v(Ty(u))v| — X{lu\zy]|VTy(u)| strongly in Lp(‘)(QT)/
which is zero, as nn and v tends to infinity. Thus, we obtain

lim lim L = O. (28)

V—>+00 1—>+00

Limit of I,. Using the boundedness of VT, (i) in (LP*®(Qr))N (Since (19)), we draw a subsequence (still
denoted by {u,} ) from {u,} such that

VT,(u,) — VT,(u) weaklyin (L/*(Qn)N. (29)

and the boundedness of |V T, (1)P®~2VT, (u) in LV )(Qr), we obtain

lim lim L = 0. (30)
V—>+00 H—>+00
Limit of I3 Using that u,f”(x)‘l < u2p+_1 + 1, we have

T T
- f f uPO N PO, dadt < — f f u,f”(x)_lIVTV(un)lp(")wndxdt
0 Q 0 [OSM,,S}’]

T T
< f f uy VT ()PP, |dxdt + f f VT, (11,)lP©few, |daxdt
0 Q 0 Q

T
< (c;’,,g +1) f f IVT, ()P @ e, |dxdt. (31)
0 Jo
where C? +9 is a positive constant, such that C:;G = max,,cjo,] 4y’ . Since (19) and the fact that

|VT/(un)|p(X)|wn| < 2V||VT)/(un)||LP<X)(QT) € Ll(QT)/
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by Lebesgue dominated convergence theorem,

Iim lim lim I3=0.

h—s+00 V—>+00 1—>+00

Limit of I, By the properties of (T (1)), and (18) and we have

el < 2y (U Mliwn +1) € L'(Q1),
by Lebesgue dominated convergence theorem,

Iim Iim lim I, =0.

h—s400 V—>+00 n—>+00
Now, passing to the limits in (28) as 11, v, h tend to infinity, we deduce that

lim I =0,

n—+oo

where ;
I = f f (VT )P 2V Ty (1) — VT (w)PO2V T, () IV(T, (1) — Ty (u))dxt.
0 Q

As [22]. We recall the following well-known inequalities: for any two real vectors &, 71 and for every
e €[0.1],:

IE— P < c(PEP2E = P ?n)(& = n), ifp>2,
=\ k)= (=25 = [qP=2m)(E =) + elnl, if1<p <2,

where c(p) = Q’% and k(p) = ‘;’)2%. Therefore, we have

T
%ff IV(Ty (1) = Ty ()P Oddxdt < I,
) Jo Jieapw2) :

and

T T
f f V(T () — Ty )P dxdt < k(p™)e? 2P, + & f f IVT, (u)POdxdt
0 {xeQ,1<p(x)<2} 0 Q

Since I, — 0 as n — +0o, then using the arbitrariness of ¢ and VT, (u) is bounded in (LPOQN (see (19)
and (29)), we obtain

T
lim f f V(T (1) — Ty ()PP dxdt = 0.
0 Q

P
From this result, we can deduce that (22) holds, and consequently (up to subsequences).
Vu, — Vu almost everywherein Qr. (32)
0
Lemma 4.4. u is an entropy solution of (P).

Proof. To prove that u is an entropy solution of problem (P) in Qr, several facts are needed:
1. ™1 e LY(Qr) and u@-1|VuP® e L1(Qr),
2. u € C([0, TT; LY(Q),
3. the entropic formulation (9) holds.
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The first condition is a consequence of proving that
T strongly in  L'(Qr), (33)
and
UV, PO — POy P®  strongly in - LY(Qr). (34)

Thanks to (24), we only need to prove that the sequence @O is uniformly integrable in Qr. For this
purpose, we use T1(u,) as test function in (P,), eliminate non-negative terms, and utilize the inequality

ul VP = u® = Vi~ < uZVu,P®, (12) and 6p~ < r(x) — 1, (since (2)), it follows that

T T
f f u? VP T (uy)dxdt < C f f W () dxdt + 2ol -
0 Q 0 Q

f ugp__1|Vun|’7T1(un)dxdt2f ugp_JIVunlpfdxdt,
Qr {(u,>1}NQr

Since

and r(x) < r*, ug € L*(Q), we have

f u? NV, P dxdt < C f " VT (uy)dxdt + Co
{un>1]mQT QT

<C f ul dxdt + C f ul “Ydxdt + Co
{Hnﬁl}ﬂQT {un>1}nQT

< C.meas(Qr) + Co + C1 f (1 — 1) 'dxdt.

[un>1}nQT

Consequently, denoting Gi(r) = r — T1(r), we get the inequality

f UV VP dxdt < Cy + G f (G1(uy))” ~dxdt,
[un>1}mQT [un>1}mQT
so, that
f Vi, P” (Gi(uy) + 1)% ~dxdt < Cy + C; f (G1(uy))” ~dxdt,
{1,>1)NOr {1,>1)NOr
which yields
op~ -1\ 7" _a=00))
(1 LD )) f VG + DT
p {u,>1INQr

<C+C f (G1 (1)) ~dxdt.
{u,>1}NQr

Now Poincaré inequality implies

f (G1(u) + DO " dxdt < C3 + Cy f (G1 (1)) ~dxdt.
[un>1}nQT

{un>1}nQT

Observe that " —1 < (6 + 1)p~ — 1 (since (2)), by Young's inequality we obtain

f 1G1 ()| OHP " Vdxdt < Cs. (35)
{u,>1}NQr
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Therefore

f u O dxdt = f (Ga(uy) + 1) "'dxdt < Cq.
{un>1]mQT {un>1}nQT

From (18),(35), r(x) < (6 +1)p~ and Holder inequality, we deduce that (u:l(x)_l),1 is equi-integrable in Qr, then

by Vitali’s Theorem convergence , we have (33).

Now, we shall obtain local equi-integrability of uS”("‘)‘lwum(x) on Qr. To this end. For every n > 1, we
define the function 1, : R* — R by

dt 1 +
¢"(G)=(n_1)f00(1+t)n :(1_(1+0)W‘1)ZO' oeR". (36)

Let k > 0. We also define ¢ : R* — R by @i(0) = ¢(0 — k) if 0 > k and ¢i(0) = 0if 0 < 0 < k. We choose
@x(uy,) as test function in (P,), we obtain

1 (T,x)
f dx f prlo)do + f d(t, %, )V itn PO ] (1) dxdt + f Uy VPO oy (1) dxdt
Q 0

QT T

uﬂ(O’x)
< ()0 dxdt + f dx f pr(0)do.
Qr Q 0

As |pr] <1 and (1), we have

u,,(T,x) p(x)
f dx f pr(o)do + a f dedt+ f uSP O V11, PO oy () dxdt
Q 0 T T

1+ u”)P(x)‘”I

Sf u:,(x>_1dxdt+f updx.
QrNiu, =k} QN{u, >k}

Dropping the non negative terms and using (18), we deduce from the above inequality that

T
f f ugp(x)_lIVunlp(x)(pk(un)dxdt — 0 as k — +oo uniformly with respect to .
0 Ja

Using the properties of the function ¢y, we get as k — 400

_ 1 T _
f uPO gy, POdxdr < - f f P 10, PO oy 14, dxdt — 0. (37)
QN iy >2K) Pe(2k) Jo Ja

Consequently, we have

T T
f f Uy, PO dxdr < f f UGy, PO dxdt
0 Q 0 QNfu,>2k}

T
+H(2)" 1 4 1) f f VT o (14 P et (38)
0 Jon{u,<2k

From (37) and (19) give equi-integrability of uS” -1 Vi, [P® on Qr. By this, and (22),(24) and Vitali’s Theorem,
we obtain (34).

The second condition is a consequence of proving that the sequence (u,) is a Cauchy sequence in
C([0, T1; LY(QQ)).To do this fix t € [0, T] and we define the vector-valued functiona(t, x,s,&) : Q; x RXx RN —
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RN, wherea(t, x, s, &) = d(t, x, s)|EPW2E. Taking T) (1, — 1) as test function in (P,) for u, and ue, subtracting
up both identities, we deduce that

T
f O, () — uc(H)dx + f f [, %t Vitg) — A, %, 11, V)] VT, 16 — 1)
Q 0 Q
T
+ f f [ VP = 0w VPO Ty — )t
0 Q
T
< f f D™ — WO (y, — uie)ldxdt + f 10, (14,,(0) — (0))ldx.
0 Q Q

Note that If; is well defined and If, > 0, where

T
Ir = f f[c?(t, X, U, Vi) = alt, X, tty, Vire) [V (uy — 1) > 0.
0 Ja
Dropping non-negative terms, we get
T
f O, (1 (t) — ue(B)dx < y f f 7 Va0, — P )| e
Q 0 Ja

T
+y f 1O — O Nt + y f I(14,,(0) — 1¢(0))|dx.
0 Q Q

Next, we divide this inequality by y and let y — 0. Since (8) and by applying the monotone convergence
theorem, we obtain

T
f I (f) = ue(t)ldx < f f |u2”"‘”1|Vun|P<X>—uf”<")*1|we|r’<"> dxdt
Q 0 Q

T
+ f f @7 — O gt + f 1(14,(0) = 11(0))|dlx.
0 Q Q

T
sup f | (£) — ue(B)ldx < f f 'uﬁ”(")’lwunv’@)—uS”"”*Hwew(x) dxdt
te[0,T] JQ 0 Q

T
+ f f ™t — 3O gt + f 1(14,,(0) — 1(0)|dx.
0 Q Q

Taking into account uy € L*(€2),(33) and (34), we deduce that

Hence

[t (t) — ue(B)ldx — 0 as n,e — oo.
Q

Hence, u, is a Cauchy sequence in u € C([0, T]; L}(Q)), thus u € C([0, T]; L1(Q2)).

To finish the proof, we choose T, (i1, — ¢) with ¢ € LV (0, T; Wé’p (')(Q)) N L*®(Qr) as a test function in (P,,),
we obtain

T
fo (Dsttn, T (1t — @))dlt + fQ d(t, x, , )| Vit 2V, VT, (1, — @)
T

+ f ugp(x)_1|Vu,,|”(")Ty(un — @)dxdt = f A T, (i — ). (39)

Qr
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For the first term on the left-hand side of (39), we have
T
f (Osttn, Ty (uy — @))dt = f O, (1, — @)(T)dx - f O, (1, — @)(0)dx
0 Q Q

+ | 9Ty (u, — @)dxdt.
Qr

Because that u € C([0, T];L'(€2)), we have Vt € [0, T, u,(t) — u(t) in L'(Q), and since ©, is Lipschitz
continuous, we obtain

f O, (1, — )(T)dx — f 0, (u - @)(T)dx,
Q 0

and

| @t~ 00— | &0~ pOps.
We have d;p € L/ (0, T; W=7 0(Q)) + L}(Qr), and since

Ty (1, — @) = T),(u — @) weakly* in L*(Qr),

then,

T, (u, — @)dxdt — f T, (u — @)dxdt.
Qr Qr

Also, by the dominated convergence and observing the strong convergence of { u,ﬁ”’(")‘l |Vit,,[P®},, and {u;(’()f1 I
in L1(Qr), hence

f Uy O Vi POT, (1, — )dxdt —s | u®O\VuPOT, (4 - p)dadt,
T Qr

and

f 07T (uy — p)dxdt — fQ WONT (1 - )dxdt.

Concerning the second term on the left-hand side of (39) and let n > M = y + ||¢lli=(q,), We can be rewritten
as

R e e e
Qr

according to (22), (24) and Fatou’s Lemma, we obtain

lim inf f d(t, x, 1)V Taa () PO -2V Ta (1) VT (1t — )t
Qr

n—+00

> f d(t, x, w)VTp @) PO -2V Tou(u) VT, (u — @)dxdt
Qr

= f d(t, x, w)VulP=2VuVT, (u — @)dxdt.

Thus, we get (9) by putting all terms together, This completes the proof of Lemma 4.4 and so the proof of
Theorem 3.2 is concluded. [

Now, we are going to prove Theorem 3.3.
Proof of Theorem 3.3

We start by defining the function S,,(.) in C*(R), such that S, (x) = x for |x| < y and supp$), € [-y—1,y+1],
then suppS) C [~y —1,-y]U[y,y +1].
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The weak convergence of 9;S, () in LP (0, T; W=7 0(€2)) + LY(Qr)
Taking S/, (u,)¢ as a test function in (P,) with ¢ € LF" (0, T, W™ #'0(Q)) + L™(Qr), we obtain
T
fo (Dsttn, S, (1) p)dlt + fQ T d(t, x, 1) Vit PO 72Vt (S7) (1) Vit + S, (1) Vep)doxelt
+ fQ OV, P98 () pdxdt = f S, () pexdt.
r

Qr

Then, we have

T
‘ f (1S, (un), @)dt| < f jd(t, x, )| (1S () IVt P O] + 187 (1) Vit PO V)
0 Qr
b [ s e+ [ S, gl (40)
Qr Qr

For the first term on the right-hand side of (40), using Holder’s inequality and the fact that (VT (u,)), is
bounded in LPM(Qr) for all y > 0, we find

f A, %, )| (1S G0 IVt PO + 1) 1 IV 10,1 Vel el
Qr

T
<P f f (17 IVt P Ol] + 18, (1) Vet PO V) et
0 {lun|<y+1}

< 21187 Oll= @ Il @n IV Tye1 (4l o 1o gy
’ -1
218 Ol @IVl IV TS (W)l )
< CIVPllmgy + ll@lle@r)-

So, that
fQ Jd(t, %, )l (15 () IV PPl + 18], () V14,9 Vepl )

< C1 (19l a0y * olimion)- (41)

Concerning the last two terms on the right-hand side of (40), we get

f O 1V, PO, ) pldxdt + f 17N () pldxt
T Q

T
7] -1 -1
<118, Ollz= @l U Vi POl oy + 15 i an)
< GCollpllregm)- (42)

Using (40),(41) and (42), we obtain

T
‘f (918 (un), p)dt| < C3 (||(P||L,,— oWy ||(P||L°°(QT)) + Callgll=@p)-
0

Hence

Sy (uy) = 9;Sy(u) in LF (0, T; W #0(Q)) + LY (Qr). (43)
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Existence of renormalized solutions.
Choosing ¢, (u,) = Ty41(un) — Ty (1) as a test function in (P,), we obtain

T
[ @ e+ [ e 3 )92 90,560, )
0 Qr

+ f POV, PO, (u,)dxdt = f u I b, (uy)dxdt.

Qr

Using (7) and the definition of ©®, we can write the first term as follows

T
f sty o (1))t = f O, 11 (1))l — f 0, (un(T))ix
0 Q Q
+ f O, (1n(0))dx - f O, 1 (s (O))d, (44)
Q Q

and since

| @tz - [ @,
Q Q

|1, (T)? 2
- (—”( L (i +
{y<lun(T)l<y+1) 2 2

1
- (11(DI =y - 5) 2 0, (45)
{lun (T)|>y+1}

we have

f A(t, X, 1) Vit P + f g O Vit PO(T 41 () = T (14))

B, {un2y}

12 2
R N e
{uny} {y<uon<y+1} 2 2
1
) )
{ton>y+1}

Since uZ” (x)_1|Vun|”(") > 0, we can write (46) as

f d(t, x, )| VPO dxdt < f w7 dxdt

B}, {un>y}

L S B O ()
Z_ o—v—=]|.
{y<uo<y+1} 2 {uo>y+1} 2

Thanks to Lemma 4.2, we have
f uf N dxdt < (i, g + DIty = YN = 0 as y — +oo,
[HnZV}

and

Sz >
- - (uo—y——)—>0, as y — too.
{y<uop<y+1} 2 {up>y+1} 2

f d(t, x, u,)|Vu,PPdxdt — 0 as y —> co. 47)
B,

so, that
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In view of Fatou’s Lemma, we deduce that
f A(t, x, )| VulP®dxdt
B,

< lim inf f d(t, x,11,) |V, PPdxdt — 0 as y — oo.
n— B,

We will now focus on proving the equality (10). Let ¢ € L? (0, T; W(l)’p(')(Q)) N L®(Qr) and S(.) € C*(R) such
that suppS’(.) € [-M, M] for some constant M > 0. By Taking S’(u,)¢ as a test function in (P,), we get

T
f (st S (un))dt + f d(t, x, 1) Vit "2V (S” () Vit + S’ (1) Vep)dxdt
0 Qr

+ | WPV POS wedxdt = | w7 (uy)pdxdt. (48)
Q Y Q ’
T T

According to (43), we have
3S(uy) = 3:S(u) in LV (0, T; WO(Q)) + L'(Qr),

and
T

T T
lim (D, S’ (1) p)dt = lin;l f (9:S(uy), p)dt :f (9:S(), )dt.
0 n—-+oo 0 0

n—+00

By looking at the following :
f d(t, %, 1) Vi, PO 2V, (S (1) pVit, + S (1) Vep)
Qr

- f At %, 1)V Tag ()P0 T (1) S 1)V Ta(t) + S (16 Vp),

T

and since (24), it follows that
d(t, X, )V T (14 P2V Ta (1) —= d(t, %, ) VT (@)D 2V Ty (),

in L7’ O(Qr), and the covergence strongly of S” (,)pVTa(u,) + S’ (1) Ve in LFO(Qr), (32), we conclude that

lim d(t, x, )|V, P2V, (S” () Vi, + S’ (u,)Ve)dxdt
T

n—+oo Jo
= f d(t, x, w)| VuP®2Vu(S” (u)pVu + S’ (u)Vo)dxdt.
Moreover, since the convergence weakly* of S’ (u,)@ in L*(Qr) and (33),(34), then
lim w1, PO S () pdxdt = f U=y PO S (1) pdxdt
n—+oo QT QT
and
lir£1 w7 (u,)pdxdt = f w718 (w)pdxdt
n—-+oo I QT

Passing to the limite in (48) as n — +co and based on the previous endings, we deduce that (10). Therefore,
u is a renormalized solution to problem (P), this completes the proof of Theorem 3.3
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