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Point-wise Semi-Slant Riemannian maps from Riemannian manifolds
into Kaehler Manifolds

Rajendra Prasad?®, Saroj Kumar®”

*Department of mathematics and Astronomy, University of Lucknow, Lucknow, India

Abstract. In this paper, we introduce PSSRM from Riemannian manifold to Kaehler manifolds. We
provide examples and characterizations of these maps, along with an investigation into their harmonicity.
Additionally, we derive a Chen-Ricci inequality for PSSRM, and explore curvature relations in complex
space forms, particularly involving the Casorati curvatures for PSSRM.

1. Introduction
We will use some abbreviations in this article as follows:

RM: Riemannian Map
PRM: Pointwise Riemannian Map:
PSSRM: Pointwise Semi-Slant Riemannian Map:

In mathematical physics, complex techniques have proven to be highly effective tools for understanding
spacetime geometry. complex manifolds have two interesting classes of Kaehler manifolds. One is Calabi-
Yau manifolds, which have their applications in superstring theory [8] and the other one is Teichmuller
spaces applicable to relativity [44]. The theory of submanifolds of complex manifolds plays a central role in
submanifold geometry. Submanifolds are classified based on how their tangent spaces behaves in relation
to the complex structure of the manifold. Some important families of complex submanifolds: holomorphic
(invariant) submanifolds, totally real submanifolds, semi-invariant submanifolds, CR-submanifolds, slant
submanifolds. Semi-slant submanifolds were introduced as a generalization of slant and CR-submanifolds
[27]. In [9], Casorati introduced Casorati curvature which is a very natural concept of regular surfaces in
the three-dimensional Euclidean space. For the general framework of manifolds, the Casorati curvature
in the context of submanifold withen the Riemannian manifold is defined as the normalized square of the
length of the second fundamental form, and it is well known that is an extrinsic invariant. Such a curvature
is applied to the visual perception of shapes and appearances [18]. Recently, many geometers published
some optimal inequalities involving Casorati curvatures in different spaces: [5}22]43] 45, 47]. On the other
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hand, in [12], F. Etayo defined pointwise slant submanifolds (as a generalization of holomorphic (invariant),
totally real and slant submanifolds,) under the name of quasi-slant submanifolds and in [11]], B. Y. Chen and
A. Gray studied this kind of manifolds and obtained simple characterizations. See also: [20}29]]. In this case,
the angle between tangent space and non-zero vector field under the almost complex structure depends
on the point. The angle was called the slant function. As a generalization of pointwise slant submani-
folds, B. Sahin defined the notion of pointwise semi-slant submanifolds in [39]. Riemannian submersions
were independently introduced by B. O. Neill in 1960s [25] and A. Gray [16] (see also: [38]). In [37], B.
Sahin introduced slant submersions from almost Hermitian submersions onto Riemannian manifolds as
a natural generalization of some important families of Riemannian submersions: invariant, anti-invariant
and semi-invariant submersions. As a generalization of these submersions, semi-slant submersions have
been introduced by K. S. Park and R. Prasad in [30], who explored their properties, including the inte-
grability of distributions, foliation geometry, harmonic conditions, and totally geodesic maps. For further
developments on semi-slant submersions in different spaces, see [30} 41]. As a natural generalization of
slant submersions, J. W. Lee and B. Sahin defined the notion of pointwise slant submersions. C. Sayar et
al.defined the notion of pointwise semi-slant submersions as a generalization of pointwise slant submer-
sions and obtained many new results for the submersions in [41,42]. Riemannian maps, which generalize
both Riemannian submersions and isometric immersions, were introduced by A. Fischer [14]. Given two
Riemannian manifolds (N1, g1) and (N3, g2) and 7 is smooth map between them Then the tangent bundle
of Ni has the following decompostion

TN = kerrt, ® (kerr.)*

where kermt, denotes the kernel space of 7. and (kerm.)* is the orthogonal complementary space to kerm.. In
a similar way, the tangent bundle of N, has the following decompostion

TN, = ranger, & (rangert.)*

where rangert, denotes range of 7. and (ranger.)* is the orthogonal complementary space to ranger.. Now,
if the horizontal restriction
ni’,p : (kerm.)t — (ranger. )

is a linear isometry between the inner product spaces (kerr;,,, g1(p)) and (ranger. p, g2(q)), 7(p) = q then a
smooth map

1i: (N1, 91) = (N2, 92)
is called RM at p € Nj. One can see that Riemannian submersions and isometric immersions are the
particular Riemannian maps with
(rangert,)* = {0} and kerm. = {0}, respectively. Taking into account of by Fischer’s article, B. Sahin introduced
new kinds of RM: holomorphic Riemannian maps and anti invariant Riemannian maps [40], semi-invariant
Riemannian maps [38] and slant Riemannian maps [36]. These concepts have opened new avenues in
Riemannian map theory. In [31], K. S. Park and B. Sahin introduced the concept of semi-slant Riemannian
maps as a natural extension of semi-slant submanifolds and semi-slant submersions. Since then, many
geometers have studied Riemannian maps in various spaces: [1} 3, 4, [15] 18} 19, 21) 28| 32} 33, [35] [42].
In the Figure 1, one can see the progress of the theory of RM. In 2022, the authors of [18] introduced
the notion of pointwise slant Riemannian maps, as a natural generalization many notions: holomorphic
(invariant) submanifold, holomorphic submersions, anti-invariant Riemannian submersions, anti invariant
submanifolds, slant submanifolds, slant Riemannian submersions etc. The purpose of the present paper
is to introduce and study a new class of RM which are called PSSRM as a generalization of many
concepts mentioned in the figure 2. The structure of the paper is as follows: Section 2 outlines essential
preliminary concepts needed for the subsequent sections. In Section 3, the concept of pointwise semi-slant
Riemannian maps PSSRM from Riemannian manifolds to almost Hermitian manifolds is introduced,
and key properties of these maps are explored. This section also provides examples of this new category
of Riemannian maps and examines the geometry of the foliations related to the distributions involved.
Sections 4 and 5 focus on presenting the Chen-Ricci and Casorati inequalities relevant to pointwise semi-
slant Riemannian maps.
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Figure 1. The class of RM

We also give a method to obtain examples for these maps.

2. Preliminaries

In this section we provide an overview of fundamental concepts and results related to geometric
structures for Riemannian maps. Let(Nj, 1) represent a Riemannian manifold and (N3, 2, J) denote an
almost Hermitian manifold, meaning N, supports a tensor field ] of type (1, 1) on N; such that

P=-1, 9UX]Y)=9nXY), XYeI(TN,). (1)

An almost Hermitian manifold N is called Kdhler manifold [46] if

(Vx))Y =0, X,Y eTI(TNy) 2)

where V denotes the Riemannian connection of the metric g, on N». Let (N1, 1) and (N2, g2) be Riemannian
manifolds and 7t is a differentiable map between them. Then the differential 7. of 7 can be viewed a
section of the bundle Hom(TNy, 7 'TN,) — N is the pullback bundle which has fibres (n‘lTNz)p = TrpN2,
p € No. Hom(TNy, 71"1TN,) has a connection V induced from the Levi-civita connection V¥ and the pullback
connection. The second fundamental form of 7 is given by [6} 26]

(V1)(X1, X2) = Vi 1.X5 — m.(Vx, Xo) (©)

for Xi, X, € I'(TN1), where V™ is the pullback connection. the second fundamental form is symmetric if V
and V7 is torsion free.
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The map 7 is hormonic if we get the tension field 7(n) = trace(Vr.) = 0 and we call the map is totally
geodesic if (Vr.)(X1, X5) =0

meanwhile, it is shown in [40] that V7.(X;, X>) has no components in I'(rangemn.), provided that X;, X, €
T'(kerm.)*. That is,

(V) (X4, X3) € T(rangert.)*, ¥ Xy, Xa € T'(kermt,)* 4)

here ['(ranger.)* is the subbundle of 7~(TN,) with fiber I'(rt.(T,N1)*), p € Ni.
Now we define Sy as

2
VixV = =Sy X + ViV ()

where V denotes both levi-civita and its pullback connection of (Nz, g2) along . Where Sym.X is tangent1al

component of V .xV and VIV is an orthogonal projection of V xV on (1. ((T,N1))*- such that Vg, =
Sym.X is bilinear in V and 7. X and Sym. X at p depends only on V), and 7., X,. Hence, for Xy, X, € I'(kerm. )L
and V € I'(rangem.)*, we get

2(Sym. X1, . X2) = 92(V, (V) (X1, X2)) (6)

since (V) is symmetric, Consequently Sy is a symmetric linear transformation of rangen..

3. PSSRM to Kaehler Manifolds

Let 7t : (N1, 91) = (N2, g2, ]) represent a Riemannian map. Where (N1, g1) is a Riemannian manifold and
(N2, g2, ]) is an almost Hermitian manifold. If, for every point g € N, the angle 6(X) between |7.(X) and the
subspace ranger. called Wirtinger angle does not depend on the particular choice of the 0 # 7.(X) within
rangert,, then m is referred to as a pointwise slant Riemannian map PSSRM. The angle 0 is defined as a
function on N> and is called the slant function of the PSRM

Definition 3.1. Let (N1, 1) is a Riemannian manifold and (N3, 9>, ]) be an almost Hermitian manifold. Then
we say thata RM 7 : (N1, 91) = (N2, 92, ]) is a PSSRM if T a pair of orthogonal distributions D7 and D?
on rangert, such that

i. The space rangern. = D" & D°.
ii. The distribution D7 is invarient under J.

iii. The distribution D? is pointwise slant with semi-slant function 6.In this case, the angle 6 can be
regarded as a function on N, which is known as semi-slant function of the PSSRM.

Now we say that the PSSR map 7 is proper if DY # {0} and 0 # 0, £
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FIGURE 2. Class of PSSRMs.
Let 7t : (N1,91) = (N2, g2, ]) be a PSSRM Then for n.(X) € T'(rangem.), X € T'(kerm.)*, we write
J.(X) = ¢pr.(X) + wn.(X) 7)
where 11.(X) € T(D”) and wn.(X) € [(DY). On the other hand, for V € (ranger.)*, we have
JV =8V +CV, (8)
where BV € I'(rangen,) and CV € I'(rangem.)*.
Define the O’'Neill tensors A and 7 by

AgF = thEZJF + Z)VhEhF (9)
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T&F = oVyghF + hVgoF (10)

for every E,F € I'(TN;), where V is the Levi-Civita connection of g;. Here /i and v are the orthogonal
projections on horizontal and vertical distributions, respectively. It is known that tensor fields 7 is symetric
and A is anti-symetric tensors.

By using (9) and (10), we get

Vx, Xo = Tx, X2 + vVx, Xo; (11)
Vx, Y1 =Tx Y1 +hVx, Yq; (12)
Vy, X1 = Ay, X1 +0Vy, X1; (13)
Vy, Yo = Ay, Yo + hVy, Ys; (14)

for any Y1, Y, € T'((kerm.)*t), X3, X, € T(kerm.)
Theorem 3.1. Let v : (N1, g1) = (N2, 92, ]) be a PSSRM with semi-slant function 6. Then we have

d*1.X = —cos*(0)r. X (15)
for any 1. X € T(DP)

Proof. Since,
gZ(IZR*Xr (PT(*X) _ _gZ(N*Xr (PZR*X)
[or.X|pm.X| | X|lpr.X]

cosf =
Hence,
¢*r.X = —cos*Om. X
also convers of the above theorem, it can be directly verified. [

Moreover, for any 7.X, .Y € T(DY) we have

72(p1.X, 1. Y) = cos*0gy (1. X, 71.Y) (16)

Po(wn.X, oY) = sinzegz(mX, 1.Y) (17)

Example 3.1. Let (R8, ggs) is an Euclidean space. Consider {], ]’} an almost complex structures on R® satisfying
JJ' =]'], here
J(x1, .., Xg) = (=2, X1, =X4, X3, X6, X5, =Xg, X7)
and
J'(x1,....8) = (=X3, X4, X1, =X, —X7, =X, X5, X5
forany f : R® — R, a real-valued function we introduce a new almost complex structure Jy on R® by J; =

(cos(f))] + (sin(f))]".

Then, ]Rii = (R, J1, grs) is an almost Hermitian manifold. Consider a Riemannian map 1 : R® — lR? by

70 (X1, .., X8) = (X1, X2, X3, X4, €, X6, 0, Xg)
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Then, the map 1 is a proper PSSRM with the semi-slnat function f such that
DY = span{ds, ds),

and
D7 =1{01,0,,03,94)

Also, we obtain
(ranger)" = span{ds, d7}

here {0; = aiy,-} and {y;} are the local coordinates on R8.

Theorem 3.2. [34] Let 111 : (N1, 91) = (N2, g2, J1) be a Riemannian submersion and 1z : (N2, g2, J1) = (N3, 93, J2)
a pointwise semi-slant immersion. Then 1, o 11 is a PSSRM.

As an application of the above theorem, we give the fallowing example of proper PSSRM

Example 3.2. Let (R, ggs) be the Euclid space. Consider {], ]’} be two almost complex structures on R® satisfying
JI" = =T'], here

](xlr cey xS) = (_x2/ X1, —X4,X3, —X6, X5, —X8, x7)

],(X1, weey x8) = (_x3/ X4,X1, —X2, —X7, —X8, X5, X6)

For any real valued function u : R® — R®, we construct new almost complex structure J, on R® by

Ju = (cosp)] + (siny)]’

Then, ]Rﬁ = (R, J,., grs) is an almost Hermitian manifold. suppose the map

s (Rglg) - (IRS/]W!]]RS)
by

(X1, ..., Xg) = (X1, X2, X3, X4, 4, X6, 0, Xs)
which is the composition of the Riemannian submersion
. (IR® 6
m: (R%g) > R
by
T(l(‘xll e xs) = (xll X2,X3, X4, X6, xs)

followed by the pointwise semi-slant immersion
T @ IR6 - (RSI ]y/ !71R8)

by
T12(X1, X2, X3, X4, X5, X6) = (X1, X2,X3,%4,0,%5,0, x6)

It is easy to verify that 7t = 1, o 111 is a PSSRM with the semi-slant function 0 = y such that

d
DY = span{—, —},
P {9% 3%}

and

d d I 4

Z)T =\3_ /3 3 _ 3
{8y1 Ay’ dy3” Ay

1.
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Also, we obtain

(rangem.)* = span{— 9

3]/5, 8_y7}/

here {y1, ..., ys} are the local coordinates on R8.

We note that for m.uwq € DY and maw, € DT, we get gr(m.wy, mawyp) = 0. Then, Riemannian map 1t implies
that g1(w1, wy) = 0. So we obtain two orthogonal distributions DO and D7 such that

(kerr,)t = D @ DT

Let 7 be a C*— map from (N1, g1) to Riemannian manifold (N3, 2). Then, the adjoint map *(7.), of the
differential (7t.),, p € N1, is given by

92(()p X, Y) = g1(X/" (10.),Y)

forany X € T,Ny and Y € Ty, N>. Furthermore if the map 7 is a Riemannian map, then for X € I'(rangert.) )
and Y € (ker(m.),)*, We obtain
*(n*)p(n*)px =X, *(ﬂ*)p(’l'(,,)pY =Y,

thus the linear map *(7.), : (rangert.)r(,) — (ker(t.),)* is an isomorphism. Define C =" (1t.),¢(7t.).

Corollary 3.1. Let 1t : (N1, 91) = (N, g2, J2) be a PSSRM. Where (N1, g1) Riemannian manifold and (N2, g2, J2)
is an almost Hermitian manifold with the semi-slant function 6. Then, X € T (DY) we have

C*X = —cos*6X (18)
For Y1,Y,Y3 € T((kerm.),)* with 7.Y3 = ¢m.Y>, we define
(V’;la))mYz = C(VT[*)(Yl, Yz) - (Vﬂ*)(Yl, Yg) (19)

Proposition 3.1. Let © be a PSSRM from a Riemannian manifold (N1, g1) to a Kiehler manifold (N, g2, |2) with
semi-slant function 0. If the tensor w is parallel, then for Uy, U, € (DY), we obtain

(V) (CUy, CUy) = —cos?0(Uy, Uy) (20)
Proof. Given that w is parallel that is Vw = 0. Then using , for Uy, U, € T(D?) we get
C(Vr.)(Uy, Uz) = (V) (Uq, CUy)
by interchanging U, , U, we have
C(Vr.)(Uz, Uy) = (Vr.)(Uz, CU4)
Since the tensor (V) is symmetric, we obtain
(Vr)(Uy, CUy) = (Vr.)(Uy, CUy)
Thus, we have
(Vr.)(CUy, CUp) = (Vr.)(Uy, CPU,) = —cos*O(Vr.)(Uy, Up)
U

Now, we are going to investigate the geometry of the leaves of the invarient distribution D7 and the slant
distribution DY.
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Theorem 3.3. Let i be a PSSRM from a Riemannian manifold (N1, g1) to a Kiehler manifold (N», g2, |2). Then
the invarient distribution D7 defines totally geodesic foliation on Ny iff

i. Scym.(X1) — .(Vx, Z) has no component in T(D”")
ii. ¢(r.(Vx, W) = Swn.w, X1). has no component in ro”).

for any X1, X2, Z, W € T'(kerm.,)* such that 7. X1, m. Xy € (D7), m.Wy € T(DY) and V € T(ranger.)*: m.Z = BV
Proof. For X1, 7.Xp € (D) and V € [(ranger.)*, since 1t is a PSSRM, using (1) and (8) we have
92V, 7.X2, V) = =g2(Vy, BV, J. X3) — 92(V, CV, J7. X5)

from (2.3) and (2.5) we get

PV, 1.X2, V) = —g2((Vr) (X1, Z) + m.Vx,Z, J1.X2) = g2(=Scym. X1 + Vi CV, Jr.X2)
= 92(_SCVT(*X1 - T(*Vxlz, ]T(*Xz)
where .Z = BV € T(D?) for Z € T(kerm,)*. Since [n.X, € T(D”), we obtain (i) On the other hand, for
. Wy € T(DY), by using (7), we get
92V, X, 1.Wh) = =g2(Vy, ¢t Wi, JT1.X2) — 92(V, 0. Wi, J1.X5)

from (2.3) and (2.5) we obtain
gz(V;}l . X2, .W1) = —g2((V)(Xy, W) + m.(Vx, W), J11.X2)
—2(=Sepmw, T (X1) + V;llwmwl, J.X5)
where ¢, Wy = ,W’ for W} € T'(kerm.)*. Then by using (I) and (7), we get

92(Vy, X2, 1.W1) = g2(P(m(Vi, W) = S . X1), 1. X32)
This completes the proof. [

Theorem 3.4. Let it be a PSSRM from a Riemannian manifold (N1, g1) to a Kaehler manifold (N2, g2, J2). Then
the slant distribution D° defines totally geodesic foliation on Ny iff

i. —sin*0[Wy, V] + sin(20)V(O)W; + Viwpm. Wy + ¢pViwr. Wy has no components in I'(rangert.).
ii. (Swrw, W1 — nglgbmwz) has no components in T(D).
for any Wy, Wy € T'(kerm.)* such that m.W1, m.W, € T(D?) and V € T(rangert.)*.

Proof. Given that for any Wy, Wy € T(kerr.)* such that m.Wq, .W, € T(D%) and V € T(ranger.)*, by using
and (7) we have

(Vi W, V) = —go([Wy, V], mW2) + 2(V5¢* Wi, 1. W2)
+ g (Viwer. Wi, m.Ws) + g2(pViwm. Wy, . W5)
using (3.9), we obtain
(Vi W2, V) = —ga2([Wh, V], .W5) + sin(20)V(0)g2 (1. W1, 7. W»)
—  c0s*0g2(Vim.W1, T.Wa) + g2 (Viwdm, Wy, 1. Wa)
+  g(PViwn. Wy, .W5)
obviously, we have

92 (V;\ll Tl WZ/ V)

—sinZng([Wl, V], n.Wa) + coszegz(Vg\,1 w.Ws, V)
sin(20)V(0)g2(m. W1, m.Wa) + g2(Viwdpr. Wy, . W2)
g2(¢v7\;wn*wl/ T[*WZ)

+ +
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sin*0ga(Viy, . Wa, V) 92(—sin*O[Wy, V] + sin20)V(O)m. W1 + Viwdm. W,
+ ¢Vywrn Wi, .Ws)
which gives (i) Now, by using (), (7) and () we obtain
92(Viy, 1. W2, 1.X1) 72(Viy, @1t Wo, Jt. X1) + g2(Viy, 0. Wo, J1.X1)
~g2(JViy, 01 W2, t.X1) + g2(=Samw, Wi + V%a)mwz, Jr.Xq)
72 Swnw, W1 = Vi, p1.Wa), 1.X1)

which gives (ii). This completes the proof. [

Now, we investigate the geometry of the leaves of the distribution (ranger.)*.

Theorem 3.5. Let i be a PSSRM from a Riemannian manifold (N1, g1) to a Kaehler manifold (N», g2, |2). Then
the distribution (ranger.)* defines totally geodesic foliation on N if and only if

i [mXq, V] - nggliV has no components in I (ranger.)*
il. Viwpn.Xs + wViwn.X, has no components in I'(ranger.)*

for any X1, Xy € T(kerr.)*, . Xy € T(D”), m.Xp € T(DY) and V, W € T(rangem.)*,

Proof. Given for any X; € T(kerm,)*, m. X1 € T(D”) and V,W € T(ranger.)*, since the connection is metric and
using (), we have

(VW nX1) = -—g(-[rXy, V]+Vy V,W)
92([. X1, VL, W) = 2(Sym.Xs + ViV, W)

obviously, we get

P(VEW, .X1) = ga([1. X1, V] = VTV, W)

which gives (i). Now for any 1. X, € (D% by using , @) and , we get
RVIW X)) = -q(Vi¢rnXs, JW) — g(Viwn.Xs, JW)
= sin20V0g;(m.X, W) — coszegz(vvrc*Xz, W) + g2(Viwpm.Xo, W) + g2(wVi,wm.Xa, W)
By straight computations, we obtain
sinZng(V‘}W, 1.X2) = g(Viwpn.Xo + oViwn. Xz, W)
which gives (ii). This completes the proof. [J
As a consequence of the Theorem (3.3), (3:4)and (3.5), we derive the following.

Corollary 3.2. Let © be a PSSRM from a Riemannian manifold (N1, g1) to a Kaehler manifold (N», g2, |2). Then
the total space Ny is a locally product manifold of the leaves of D7, D and (rangert.)*, i.e.
N, = NZDT X NZZ)H X N2(rangen*)l/ lf&l?’ld Oi’lly lf
L Scyvm.(X1) — .(Vx, Z) has no component in T(D”),
IL. ¢(m.(Vx, W) = Swn.w, X1). has no component in (o),
1. —sin?0[Wy, V] + sin(20)V(O)W; + Viwpm. Wy + ¢pViwm. Wy has no components in I'(rangert.),
IV. ¢(Swnw, W1 — ng] ¢1.Wa) has no components in r(o7),
V. [n.X1, V] - V;llV has no components in I'(ranger,)*,
VI. Viw¢n.X; + wViwmn.X, has no components in T (rangert.)*.

forany X1,Xo,Z, W1, W, € T'(kerm.)* and V € T'(ranger,)*.

Now, we give necessary and sufficient conditions for a PSSRM 7 to be totally geodesic.
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Theorem 3.6. Let 1t be a PSSRM from a Riemannian manifold (N1, g1) to a Kaehler manifold (N2, g2, J2) with the
semi-slant function 0. Then, T is totally geodesic if and only if following condition are satisfied:

a. all the fibers " 1(p) are totally geodesic for p € Ny,

b. (kerrt.)* defines a totally geodesic foliation on Ny,

c. C(Vr)(X,Y') — wn.(VxY’) has no components in T (rangert,)*,

d. for m.X, .Y € T(DP) for any X, Y € T(kern.)* and Z € T(rangem.)*, the following equality is satisfied.

sin(20)Z(0)go(mt.X1.Y) = —go(mY, [nX Z]) - cosZng(mY.ngX)
+  g(n.Y, BViwn.X) + g2(n.Y, Viwpn.X)

Theorem 3.7. Let 1t be a PSSRM from a Riemannian manifold (N1, g1) to a Kaehler manifold (Na, g», ]) with the
semi-slant function 0. Then, 1t is harmonic if and only if the following conditions are satisfiedd:

a. the fiberes are minimal.
b. trace{VZ)la)gbm(.) + wSom()(.) - CVZ)Lam*(.)} =0

4. Chen-Ricci inequality

Let (N2, g2, ]) be a Kaekler manifold. The Riemannian- cristoffel curvature tensor of a complex space
form N(v) of constant holomorphic sectional curvature v satisfies

v
Ro(Y1,Y2,Y3,Ys) = Z{!Jz(Yl, Y3)92(Y2, Ya) — 92(Y2, Y3)g92(Y1, Ya) + g2 (Y1, JY3)g2(Y2, JY4)
= 92(Y2, JY3)g2 (Y1, JY4) + 292(Y1, JY2)g2(Y3, JY4)} (21)
Y Y1,Y, Y3, Y, € T(TN,)[46].
Let © be a RM from a Riemannian manifold (N, g1) to a Riemannian manifold (N3, g2). Let Ry and R,

be the curvature tensor fields of VN! and V™2, respectively. Then, ¥ Y1,Y5, Y3, Yy € I'(kerm.)*, we obtain the
Gauss formula given by [35]

Ro(m.Y1, Yo, Y3, mYs) = Ri(Y1,Y2, Y3, Ya)+ g2((V) (Y1, Y3), (V)(Ya, Ya))
- ((Vr)(Y1, Ya), (V)(Y2, Y3)) (22)

Now, we suppose that 7t is a PSSRM from a Riemannian manifold (Ni’l, g1) to the complex space form
(N%’”(v), g2) such that 3 < r = rankent < (b1, 2m). Using in we get for all Yy, Y5, Y3, Yy € T(kerm.)*.

Ri(Y1,Y2,Y3,Yy)

Z{gl(Yl, Y4)g1(Ya, Y3) — g1(Y1, Y3)g1(Y2, Ya)

+ g1, JY3)g2(J. Y2, Y s)

= (Y2, J1.Y3)g2(J 7. Y1, 7. Ye)

+  2g2(1.Y1, J1.Y2)ga(J. Y3, 0. Ya)}

- ((Vr)(Y1, Ys), (Vi)(Yz, Ys))

+  ga((Vr)(Y1, Ya), (Vr.)(Y2, Y3)) (23)

Let p € Ny and consider

{61, 62 = JTU.1, o) Ty -1, ThC2y = T0COr -1, TL€2ry 41,

T2 42 = SECOPTLCr 41, ooy TCry 421y-1, TCr = JT0Cry 421,-1}

and {e;+1, €42, ..., €2} be an orthonormal bases for ranger, and (ranger.)*, respectively. Then, the dimension
of range of 7. is ¥ = 2r1 + 2r,.

e o) - 1 iefl,..2rn -1}
gz #Ci, 1G:Ei4+1) — COSZQ i€ {21"1 + 1,...,27"1 + 272 - 1}
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Then
Z g%(]me,', T.es) = 211 + 21»c05°0
1<k<s<r
Let’s denote
Ui = (Vi) (ex, es),ea), k,s = 1,..,r,a=1+1,..,2m (24)
IIP = g2((V7.) (e es), (V) (e, s)) (25)
tracey = V.(ex, ex) (26)
|Itace¢||2 = gy(tracey, trace) (27)

Now, for (kermt.)* using , since 7t is PSSRM then, for every unit vector field E; € I'(kerm.)" we arrive at
Ric®er™)* (E) = E[r +2 + 3c0s20] — ||V (e;, EDI? + rga(H, Vri.(Eq, E1))

H denotes the mean curvature vector field of the fiber.

Theorem 4.1. Let 70 : Ny, g1 — (N3"(v), 2, ]) be a PSSRM then, we have
Ricker™)* (E}) > Z[r +2 + 3c0520] — [V (e;, Ex)IP2

For a unit horizontal vector field E; € T(kermt.)*, the equality status of the inequality satisfies if and only if every fiber
is totally geodesic.

Theorem 4.2. Let m: N1, g1 — (N%m(v), g2, ]) be a PSSRM then, the Ricci tensor Sk on kerr,* satisfies

S (B, Ey) > E[” +2 + 3c05*0]g2(E1, E2) — g2((V.)(ei, Ea), (VT)(Ex, €))

For a unit horizontal vector field E1,E, € I'(kerm.)*, the equality status of the inequality satisfies if and only if
every fiber is totally geodesic.

similarly, for kern} using (23) we obtain

2k = Z[r(r = 1) +3(2r1 + 2r2c08*0)] + PIHIP — g2(V7e.) ex, e5), (VL) (ex, es) (28)

1. .
7' is scalar curvature of horizontal space.

Theorem 4.3. Let 70 : Ny, g1 — (N3"(v), g2, ]) be a PSSRM then, we have

27k > [r(r = 1) + 3(2r1 + 2ryc0s%0)] — g2((V7e.)(ex, es), (V) (ex, es))

v
4

the equality status of the inequality satisfies if and only if every fiber is totally geodesic.
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Now, we give Chen-Ricci inequality on kerm;-
from (24) and (28) we arrive at

2m r
ogkert _ Z[r(r — 1) + 3211 + 2r2c05*0)] + | H|I> - Z Z Vis

a=r+1k,s=1
From [17], we know that
2m r
Y, Ywir = PP Z [0 = 9% = = Y3
a=r+1k;s=1 a r+1
v o2 Z Z(%) —2 2 Yy - @)l

a=r+1 s=2 a=r+12<k<s<r

if we put this value in (29), we get

20 = Z[r(r = 1) + 321 +2rc050)] + 5 r2||7—{||2—— an U8, — o — 2

a=r+1
2m
-2 Z Ywr+2Y Y et - L
a=r+1 s=2 a=r+12<k<s<r

From here we get

2m
27k < Z[r(r—1)+3(2r1 + 2ryc0526)] + %rz||7{||2+2 YY) vt - )

a=r+12<k<s<r

Now from

2m
2 ) Rolmey me, e, me) = 2 ). R (ege e,e)+2 Y Y [0S - (907

2<k<s<r 2<k<s<r a=r+12<k<s<r

from the last inequality, we can write

L
2 ,.[kern*

IA

1
Z[r(r — 1) + 3(2r1 + 2r2c0s%0)] + §r2||7—(||2 +2 Z Ry(Tt.6x, Tt Es, TTLEs, TT.EK)

2<k<s<r

L
2 ) R (e e e )

2<k<s<r

Also, using

r
1 L :
2Tker7‘£* =2 Z Rkern” (Ek, €s,6s, ek) +2 Z Rker T (61/ €s,Es, 61).

2<k<s<r s=1

we get,

2RIk (1)

IA

E[r(r —-1)+32r + 21’2C0529)]

1
+ §r2||7{||2+2 Z Ry (1.8, .85, TeCs, TTLCF)

2<k<s<r

kermt-
- 4 Z R™™ (ek/eS/eS/ek)

2<k<s<r

12549

(29)
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if we put value of R, from we get
. _kermi: 4 3v 2 1 2 2
Ric™™ (eq) < Z[(r -(r—-2)+ Z{4r1 — 3+ (4ry — 3)cos~0} + 1" (1H

Thus we can give the following result:

Theorem 4.4. Let 70 : Ny, g1 — (N3"(v), 2, ]) be a PSSRM then, we have
Ric®™ (e1) < Z[(r -1(r—-2)+ %V{zm =3+ (4r, — 3)cos”0} + jIrZHWHZ
the equality of the inequality satisfies if and only if
Y = P e Y
Y, =0,5=2,..,r
Corollary 4.1. Let 1 : N1, g1 = (N3"™(v), g2, ]) be a PSSRM and the semi-slant function 6 = & then, we get
L 1
Ric™ (e) < L[(r = 1)(r - 2) + “L{4r, - 3) + ~2H|P
4 4 4
the equality of the inequality satisfies if and only if
=Yty
Y, =0,5=2,..,r1

Corollary 4.2. Let : Ny, g1 — (N%m(v), 92, ]) be a PSSRM and the semi-slant function 6 = 7 then, we get
Ric*™ (e) < 2[(r = 1)(r - 2) + 3—V{r —3}+ 1r2||7{||2
4 2 4
the equality of the inequality satisfies if and only if

Vh =¥+t
Y1, =0,5=2,..,r

5. Casorati curvatures
The lemma below is crucial for the proof of our theorem.

Lemma 5.1. Let W = {(x1, ..., x,) € R" : x1 + X2+, ..., X, = k} be a hyperplane of R”, and f : R" — R is a quadratic
form

n—1
Fery ooy X)) = aZ(x,-)2 +b(x)? =2 Z xpxj,a>0,b> 0.
i=1 1<i<j<n
Thus, the constrained optimization problem
min
(X1, Xy )E
has a global solution given by
k k k
= = ..= = = — = - 2)——
e it = g = gy @ S

provided that b = =1 [43]

a—n+2
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Let m be a PSSRM from a Riemannian manifold (N1, g1) to a complex space form (N%m (v), ], 92) suppose
{n.e1, ..., m.e,} is an orthonormal basis of the vertical space (rangemn.)r(), for p € N1, and {e;41, €42, .., €2m} be
an orthonormal basis the horizontal space (rangen.)*. We define scalar curvature 7™ on the horizontal
space (kerrt.)* by

kermt.)t _
glerm)” = Z Ri(ex, es, e, ex) (30)
1<k<s<r
. kerm,* 1L
and the normalized scalar curvature 7 * of kerm.™ as
kerm.*
,L_kermL — 2T (31)
Nor 7”(7” — 1)

Casorati curvature of the horizontal space kerrt;" is the normalised squared length of second fundamental
form Vr, of the horizontal space kermt;- over the manifold (Nﬁm(v), J,92) and it is denoted by C Thus, from

we get

2m r
c= =1 Y Y Wy 2)
a=r+1k,s=1

Now, assume that L*'™ is a t—dimensional subspace (kerm);, 2 <t and let {eq, ..., &;} be an orthonormal
basis of L, Then the casorati curvature Ck'™ (L¥'™") of L¥'™ defined as

2m

t
L n 1 1
kermih (7 kermhy _ 2 _ -~ a2
Corm (L) = SITIP = 5 ) Y (T

a=r+1k,s=1

The normalized 6— casorati curvature 8™ (r — 1), 5™ (r — 1) of kerr* are given by
[ (r = 1)],=2C)"™ — Z=LSup(Cler (Lk™) : L™ is a hyperplane of (kerm), |

[6';””*l (r- 1)];,:%Cem*L + Hinf {Crerm (Lkermy . [k is a hyperplane of (kerrt),)

Using and we get

27 = Z[r2 — 7+ 6(r1 + 12005%0)] — rC*"™ + ||tracey|? (33)

Now we define a function Q'™ associated with the following quadratic polynomial with respect to the
components of 1:

1 ]. 1 1 1 3
lern, — E[(],.2 _ r)ckern* + (1,2 _ 1)ckerm (Lkern* )] _ ZTkern* + 2(72 _ },) + 71/(7,1 + 7’260529).

Without loss of genrality, by supposing that the hyperplane L' is spanned by {ey, ..., » — 1}, using (33) one
can produce

2m  r-1 2m

r=1
Q= Y Y+ D@L - Y R+ 1) Y @l + s
a=r+1 r=1 a=r+1 1=k<s
- -1
- 2 s+ )
1=k<s

2m  r=1

YLD+ L -2 Z Y]

a=r+1 k=1 1=k<s

v
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Fora =r+1,...,2m, let us consider the quadratic form g, : R?" — R defined by

1

<

N r—1 -
Gl W) = Y R+ = (WP =2 ) YR
k=1 1=k<s
and the constrained extrimum problem, ming,, subject to
WP+, Yy = K

here k* is a real constant. From Lemma (5.I) we obtain a = r, b = 5. Thus, by Lemma (5.1) we get the
critical point (Y, ..., ¥},), given by

k* 2k

a
r+1’l’b”_ r+1

Vi =¥ = Y, =
is a global minimum point. Also, 7. (Y5, .-, ¥},) = 0. Moreover we obtain
Q™ >0 (34)
Which gives
27k < %[(r2 —1)CFr 4 (2 = 1)CR (LR )] + jz/[r2 — 7+ 6(r1 + 12005%0)]

using (31)

Tt < [%c"”ﬂf + %ckemf L]+ 5 + —31’(;;7_2?)526) (35)
for all hyperplane Lrrm of (kermt). Similarly, we can write

Frems = (2 — Pkt - %(zﬂ — 3r + 1)glkerm)t (Lkerm)®y _ pplkern)® o Z[rz — 7+ 6(r + 12005%0)],
here hyperplane L*™)" is a hyperplane of kerr:. From here,

Flem) > 0 (36)
which implies

Tgsrrm)i < pCtkern)t _ % Qlkerm)* ( (eer )y 4 E + 31’(712 :;:2_ Cf)sz 0) (37)

Now taking the infimum in and the supremum in (37) over all hyperplanes L™ of kerm we get
Theorem 5.1. Let 1t be a PSSRM a Riemannian manifold (N"91) to a complex space form (NZ"(v), ], g2) with semi-

slant function 0, 3 < r = rankm < min{by, 2m}. Then the normalized & casorati curvatures K (r = 1) 5K (r — 1)
on kerm- satisfy

ker )" kerm 3 20
1. T( er 1.) < 6Cern (1’—1)+ E + V(11 +712008%0)

Nor 2r(r-1)
(ker 7t.)* ckermt v 3v(ri+rc0s20)
2.1y, | <o T(r=D+1+ =555

Furthermore, equality case holds in any inequalities at a point p € Ny iff with respect to suitable orthonormal basis
{e, ..., e,} on kerrtt and {e,41, ..., eam} on rangemy, the components of \ satisfy

1
Y= ==, = Ez,bf‘r,a efr+1,..,2m}

Ve =0,k se{l,..,rik£s),ae{r+1,..,2m}
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Corollary 5.1. Let 7 be a PSSRM a Riemannian manifold (N®9') to a complex space form (N%’”(v),], g2) with
semi-slant function 0 = %, 3 < r = rankn < min{by, 2m}. Then the normalized & casorati curvatures 5’;””% (r-=1)
S8 (r = 1) on kermit satisfy

(ker 7t,)t kermt v 3v(ry
1. 7y, <o (r=1)+3 50-D

(ker 7t.)* ckerm: 3v(r
2. TNor S(SC (7"—1)+£+W:1)

Furthermore, equality holds in any inequalities at p € Ny iff with respect to appropriate orthonormal basis {e;, ..., e;}
on kerrt) and {eys1, ..., €2} o1 rangertt, the components of \ satisfy

1
Vh=vn=. =Y, = Elabfr/a el{r+1,..,2m}
YL =0,ksell, . rik#s)ac{r+1,..2m)

Corollary 5.2. Let 7 be a PSSRM a Riemannian manifold (N®9') to a complex space form (N%’”(v), 1, 92) with

semi-slant function 6 = 0, 3 < r = ranknt < min{by, 2m}. Then the normalized 6 casorati curvatures Sl(fem*l (r-1)
kerm- n .

O " (r—1)on kerm; satisfy

1. T(kerm)i < 6’;€er (7’ _ 1) + v(r+2)

Nor 4(r-1)
2. e < G 1) + Zg:ﬁ;

Furthermore, equality holds in any inequalities at p € Ny iff with respect to appropriate orthonormal basis {e;, ..., e;}
on kermi and {ey41, ..., eam} O rangemn, the components of U satisfy

. 1
Y= ==, = Egbf‘,,a efr+1,..,2m}
U, =0,kse{l, . rik#s),a€f{r+1,..,2m}

Corollary 5.3. Let 1 : (N, g1) — (N2"(v), ], g2) be a PSSRM, where (N3"(v), ], g2) is complex space form with
semi-slant function 0, 3 < r = rankn < min{by, 2m} then we get

1. et < g (- 1)

2. et < G- 1)
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