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into Kaehler Manifolds
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Abstract. In this paper, we introduce PSSRM from Riemannian manifold to Kaehler manifolds. We
provide examples and characterizations of these maps, along with an investigation into their harmonicity.
Additionally, we derive a Chen-Ricci inequality for PSSRM, and explore curvature relations in complex
space forms, particularly involving the Casorati curvatures for PSSRM.

1. Introduction

We will use some abbreviations in this article as follows:

RM: Riemannian Map
PRM: Pointwise Riemannian Map:

PSSRM: Pointwise Semi-Slant Riemannian Map:

In mathematical physics, complex techniques have proven to be highly effective tools for understanding
spacetime geometry. complex manifolds have two interesting classes of Kaehler manifolds. One is Calabi-
Yau manifolds, which have their applications in superstring theory [8] and the other one is Teichmuller
spaces applicable to relativity [44]. The theory of submanifolds of complex manifolds plays a central role in
submanifold geometry. Submanifolds are classified based on how their tangent spaces behaves in relation
to the complex structure of the manifold. Some important families of complex submanifolds: holomorphic
(invariant) submanifolds, totally real submanifolds, semi-invariant submanifolds, CR-submanifolds, slant
submanifolds. Semi-slant submanifolds were introduced as a generalization of slant and CR-submanifolds
[27]. In [9], Casorati introduced Casorati curvature which is a very natural concept of regular surfaces in
the three-dimensional Euclidean space. For the general framework of manifolds, the Casorati curvature
in the context of submanifold withen the Riemannian manifold is defined as the normalized square of the
length of the second fundamental form, and it is well known that is an extrinsic invariant. Such a curvature
is applied to the visual perception of shapes and appearances [18]. Recently, many geometers published
some optimal inequalities involving Casorati curvatures in different spaces: [5, 22, 43, 45, 47]. On the other
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hand, in [12], F. Etayo defined pointwise slant submanifolds (as a generalization of holomorphic (invariant),
totally real and slant submanifolds,) under the name of quasi-slant submanifolds and in [11], B. Y. Chen and
A. Gray studied this kind of manifolds and obtained simple characterizations. See also: [20, 29]. In this case,
the angle between tangent space and non-zero vector field under the almost complex structure depends
on the point. The angle was called the slant function. As a generalization of pointwise slant submani-
folds, B. Sahin defined the notion of pointwise semi-slant submanifolds in [39]. Riemannian submersions
were independently introduced by B. O. Neill in 1960s [25] and A. Gray [16] (see also: [38]). In [37], B.
Sahin introduced slant submersions from almost Hermitian submersions onto Riemannian manifolds as
a natural generalization of some important families of Riemannian submersions: invariant, anti-invariant
and semi-invariant submersions. As a generalization of these submersions, semi-slant submersions have
been introduced by K. S. Park and R. Prasad in [30], who explored their properties, including the inte-
grability of distributions, foliation geometry, harmonic conditions, and totally geodesic maps. For further
developments on semi-slant submersions in different spaces, see [30, 41]. As a natural generalization of
slant submersions, J. W. Lee and B. Sahin defined the notion of pointwise slant submersions. C. Sayar et
al.defined the notion of pointwise semi-slant submersions as a generalization of pointwise slant submer-
sions and obtained many new results for the submersions in [41, 42]. Riemannian maps, which generalize
both Riemannian submersions and isometric immersions, were introduced by A. Fischer [14]. Given two
Riemannian manifolds (N1, 11) and (N2, 12) and π is smooth map between them Then the tangent bundle
of N1 has the following decompostion

TN1 = kerπ∗ ⊕ (kerπ∗)⊥

where kerπ∗ denotes the kernel space of π∗ and (kerπ∗)⊥ is the orthogonal complementary space to kerπ∗. In
a similar way, the tangent bundle of N2 has the following decompostion

TN2 = ran1eπ∗ ⊕ (ran1eπ∗)⊥

where ran1eπ∗ denotes range of π∗ and (ran1eπ∗)⊥ is the orthogonal complementary space to ran1eπ∗. Now,
if the horizontal restriction

πh
∗,p : (kerπ∗)⊥ → (ran1eπ∗,p)

is a linear isometry between the inner product spaces (kerπ⊥∗,p, 11(p)) and (ran1eπ∗,p, 12(q)), π(p) = q then a
smooth map

π : (N1, 11)→ (N2, 12)

is called RM at p ∈ N1. One can see that Riemannian submersions and isometric immersions are the
particular Riemannian maps with
(ran1eπ∗)⊥ = {0} and kerπ∗ = {0}, respectively. Taking into account of by Fischer’s article, B. Sahin introduced
new kinds ofRM : holomorphic Riemannian maps and anti invariant Riemannian maps [40], semi-invariant
Riemannian maps [38] and slant Riemannian maps [36]. These concepts have opened new avenues in
Riemannian map theory. In [31], K. S. Park and B. Sahin introduced the concept of semi-slant Riemannian
maps as a natural extension of semi-slant submanifolds and semi-slant submersions. Since then, many
geometers have studied Riemannian maps in various spaces: [1, 3, 4, 15, 18, 19, 21, 28, 32, 33, 35, 42].
In the Figure 1, one can see the progress of the theory of RM. In 2022, the authors of [18] introduced
the notion of pointwise slant Riemannian maps, as a natural generalization many notions: holomorphic
(invariant) submanifold, holomorphic submersions, anti-invariant Riemannian submersions, anti invariant
submanifolds, slant submanifolds, slant Riemannian submersions etc. The purpose of the present paper
is to introduce and study a new class of RM which are called PSSRM as a generalization of many
concepts mentioned in the figure 2. The structure of the paper is as follows: Section 2 outlines essential
preliminary concepts needed for the subsequent sections. In Section 3, the concept of pointwise semi-slant
Riemannian maps PSSRM from Riemannian manifolds to almost Hermitian manifolds is introduced,
and key properties of these maps are explored. This section also provides examples of this new category
of Riemannian maps and examines the geometry of the foliations related to the distributions involved.
Sections 4 and 5 focus on presenting the Chen-Ricci and Casorati inequalities relevant to pointwise semi-
slant Riemannian maps.
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Figure 1. The class of RM

We also give a method to obtain examples for these maps.

2. Preliminaries

In this section we provide an overview of fundamental concepts and results related to geometric
structures for Riemannian maps. Let(N1, 11) represent a Riemannian manifold and (N2, 12, J) denote an
almost Hermitian manifold, meaning N2 supports a tensor field J of type (1, 1) on N2 such that

J2 = −I, 12(JX, JY) = 12(X,Y), X,Y ∈ Γ(TN2). (1)

An almost Hermitian manifold N2 is called Kähler manifold [46] if

(∇X J)Y = 0, X,Y ∈ Γ(TN2) (2)

where ∇ denotes the Riemannian connection of the metric 12 on N2. Let (N1, 11) and (N2, 12) be Riemannian
manifolds and π is a differentiable map between them. Then the differential π∗ of π can be viewed a
section of the bundle Hom(TN1, π−1TN2)→ N1 is the pullback bundle which has fibres (π−1TN2)p = Tπ(p)N2,
p ∈ N2.Hom(TN1, π−1TN2) has a connection∇ induced from the Levi-civita connection∇N1 and the pullback
connection. The second fundamental form of π is given by [6, 26]

(∇π∗)(X1,X2) = ∇πX1
π∗X2 − π∗(∇X1 X2) (3)

for X1,X2 ∈ Γ(TN1), where ∇π is the pullback connection. the second fundamental form is symmetric if ∇
and ∇π is torsion free.
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The map π is hormonic if we get the tension field τ(π) = trace(∇π∗) = 0 and we call the map is totally
geodesic if (∇π∗)(X1,X2) = 0.
meanwhile, it is shown in [40] that ∇π∗(X1,X2) has no components in Γ(ran1eπ∗), provided that X1,X2 ∈

Γ(kerπ∗)⊥. That is,

(∇π∗)(X1,X2) ∈ Γ(ran1eπ∗)⊥,∀X1,X2 ∈ Γ(kerπ∗)⊥ (4)

here Γ(ran1eπ∗)⊥ is the subbundle of π−1(TN2) with fiber Γ(π∗(TpN1)⊥), p ∈ N1.
Now we define SV as

2
∇
π

XV = −SVπ∗X + ∇π⊥X V (5)

where
2
∇ denotes both levi-civita and its pullback connection of (N2, 12) along π. Where SVπ∗X is tangential

component of
2
∇π∗XV and ∇π⊥X V is an orthogonal projection of

2
∇π∗XV on (π∗ ((TpN1))⊥- such that ∇π⊥12 = 0.

SVπ∗X is bilinear in V and π∗X and SVπ∗X at p depends only on Vp and π∗pXp.Hence, for X1,X2 ∈ Γ(kerπ∗)⊥

and V ∈ Γ(ran1eπ∗)⊥, we get

12(SVπ∗X1, π∗X2) = 12(V, (∇π∗)(X1,X2)) (6)

since (∇π∗) is symmetric, Consequently SV is a symmetric linear transformation of ran1eπ∗.

3. PSSRM to Kaehler Manifolds

Let π : (N1, 11)→ (N2, 12, J) represent a Riemannian map. Where (N1, 11) is a Riemannian manifold and
(N2, 12, J) is an almost Hermitian manifold. If, for every point q ∈ N2, the angle θ(X) between Jπ∗(X) and the
subspace ran1eπ∗ called Wirtinger angle does not depend on the particular choice of the 0 , π∗(X) within
ran1eπ∗, then π is referred to as a pointwise slant Riemannian map PSSRM. The angle θ is defined as a
function on N2 and is called the slant function of the PSRM

Definition 3.1. Let (N1, 11) is a Riemannian manifold and (N2, 12, J) be an almost Hermitian manifold. Then
we say that a RM π : (N1, 11)→ (N2, 12, J) is a PSSRM if ∃ a pair of orthogonal distributionsDT andDθ

on ran1eπ∗ such that

i. The space ran1eπ∗ = DT ⊕Dθ.

ii. The distributionDT is invarient under J.

iii. The distribution Dθ is pointwise slant with semi-slant function θ.In this case, the angle θ can be
regarded as a function on N2, which is known as semi-slant function of the PSSRM.

Now we say that the PSSRmap π is proper ifDθ , {0} and θ , 0, π2 .



R. Prasad, S. Kumar / Filomat 39:35 (2025), 12537–12554 12541

Pointwise semi-slant Riemannian maps

Pointwise slant Riemannian maps

Pointwise semi-slant Submersions

Pointwise slant Submersions

slant Riemannian Submersions

Pointwise semi-slant submanifold

Pointwise slant submanifold

slant submanifold

slant Riemannian maps

(ran1eπ∗)⊥ = {0}

DT = {0}

θ is constant.

(ran1eπ∗)⊥ = {0} kerπ∗ = {0}

DT = {0}

kerπ∗ = {0}

DT = {0}

θ is constant

θ is constant

(ran1eπ∗)⊥ = {0} kerπ∗ = {0}

FIGURE 2. Class of PSSRMs.

Let π : (N1, 11)→ (N2, 12, J) be a PSSRM Then for π∗(X) ∈ Γ(ran1eπ∗),X ∈ Γ(kerπ∗)⊥, we write

Jπ∗(X) = ϕπ∗(X) + ωπ∗(X) (7)

where π∗(X) ∈ Γ(DT ) and ωπ∗(X) ∈ Γ(Dθ). On the other hand, for V ∈ (ran1eπ∗)⊥, we have

JV = BV + CV, (8)

where BV ∈ Γ(ran1eπ∗) and CV ∈ Γ(ran1eπ∗)⊥.

Define the O’Neill tensorsA and T by

AEF = h∇hEvF + v∇hEhF (9)
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TEF = v∇vEhF + h∇vEvF (10)

for every E,F ∈ Γ(TN1), where ∇ is the Levi-Civita connection of 11. Here h and v are the orthogonal
projections on horizontal and vertical distributions, respectively. It is known that tensor fieldsT is symetric
andA is anti-symetric tensors.
By using (9) and (10), we get

∇X1 X2 = TX1 X2 + v∇X1 X2; (11)

∇X1 Y1 = TX1 Y1 + h∇X1 Y1; (12)

∇Y1 X1 = AY1 X1 + v∇Y1 X1; (13)

∇Y1 Y2 = AY1 Y2 + h∇Y1 Y2; (14)

for any Y1,Y2 ∈ Γ((kerπ∗)⊥), X1,X2 ∈ Γ(kerπ∗)

Theorem 3.1. Let π : (N1, 11)→ (N2, 12, J) be a PSSRM with semi-slant function θ. Then we have

ϕ2π∗X = −cos2(θ)π∗X (15)

for any π∗X ∈ Γ(Dθ)

Proof. Since,

cosθ =
12(J2π∗X, ϕπ∗X)
|J2π∗X||ϕπ∗X|

= −
12(π∗X, ϕ2π∗X)
|π∗X||ϕπ∗X|

Hence,
ϕ2π∗X = −cos2θπ∗X

also convers of the above theorem, it can be directly verified.

Moreover, for any π∗X, π∗Y ∈ Γ(Dθ) we have

12(ϕπ∗X, ϕπ∗Y) = cos2θ12(π∗X, π∗Y) (16)

12(ωπ∗X, ωπ∗Y) = sin2θ12(π∗X, π∗Y) (17)

Example 3.1. Let (R8, 1R8 ) is an Euclidean space. Consider {J, J′} an almost complex structures on R8 satisfying
JJ′ = J′ J, here

J(x1, ..., x8) = (−x2, x1,−x4, x3,−x6, x5,−x8, x7)

and
J′(x1, ...,8 ) = (−x3, x4, x1,−x2,−x7,−x8, x5, x6)

for any f : R8
→ R, a real-valued function we introduce a new almost complex structure J f on R8 by J f =

(cos( f ))J + (sin( f ))J′.
Then, R8

f = (R8, J f , 1R8 ) is an almost Hermitian manifold. Consider a Riemannian map π : R8
→ R8

f by

π : (x1, ..., x8) = (x1, x2, x3, x4, e, x6, a, x8)
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Then, the map π is a proper PSSRM with the semi-slnat function f such that

D
θ = span{∂6, ∂8},

and
D
T = {∂1, ∂2, ∂3, ∂4}

Also, we obtain
(ran1eπ∗)⊥ = span{∂5, ∂7}

here {∂i =
∂
∂yi
} and {yi} are the local coordinates on R8.

Theorem 3.2. [34] Let π1 : (N1, 11)→ (N2, 12, J1) be a Riemannian submersion and π2 : (N2, 12, J1)→ (N3, 13, J2)
a pointwise semi-slant immersion. Then π2 ◦ π1 is a PSSRM.

As an application of the above theorem, we give the fallowing example of proper PSSRM

Example 3.2. Let (R8, 1R8 ) be the Euclid space. Consider {J, J′} be two almost complex structures on R8 satisfying
JJ′ = −J′ J, here

J(x1, ..., x8) = (−x2, x1,−x4, x3,−x6, x5,−x8, x7)

.
J′(x1, ..., x8) = (−x3, x4, x1,−x2,−x7,−x8, x5, x6)

For any real valued function µ : R8
→ R8, we construct new almost complex structure Jµ on R8 by

Jµ = (cosµ)J + (sinµ)J′

Then, R8
µ = (R8, Jµ, 1R8 ) is an almost Hermitian manifold. suppose the map

π : (R8, 1)→ (R8, Jµ, 1R8 )

by
π(x1, ..., x8) = (x1, x2, x3, x4, a, x6, 0, x8)

which is the composition of the Riemannian submersion

π1 : (R8, 1)→ R6

by
π1(x1, ..., x8) = (x1, x2, x3, x4, x6, x8)

followed by the pointwise semi-slant immersion

π2 : R6
→ (R8, Jµ, 1R8 )

by
π2(x1, x2, x3, x4, x5, x6) = (x1, x2, x3, x4, 0, x5, 0, x6)

It is easy to verify that π = π2 ◦ π1 is a PSSRM with the semi-slant function θ = µ such that

D
θ = span{

∂
∂y6

,
∂
∂y8
},

and

D
T = {

∂
∂y1

,
∂
∂y2

,
∂
∂y3

,
∂
∂y4
}.
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Also, we obtain

(ran1eπ∗)⊥ = span{
∂
∂y5

,
∂
∂y7
},

here {y1, ..., y8} are the local coordinates on R8.

We note that for π∗w1 ∈ D
θ and π∗w2 ∈ D

T , we get 12(π∗w1, π∗w2) = 0. Then, Riemannian map π implies
that 11(w1,w2) = 0. So we obtain two orthogonal distributions D̃θ and D̃T such that

(kerπ∗)⊥ = D̃θ
⊕ D̃

T

Let π be a C∞− map from (N1, 11) to Riemannian manifold (N2, 12). Then, the adjoint map ∗(π∗)p of the
differential (π∗)p, p ∈ N1, is given by

12((π∗)pX,Y) = 11(X,∗ (π∗)pY)

for any X ∈ TpN1 and Y ∈ Tπ(p)N2. Furthermore if the mapπ is a Riemannian map, then for X ∈ Γ(ran1eπ∗)π(p)
and Y ∈ (ker(π∗)p)⊥, We obtain

∗(π∗)p(π∗)pX = X, ∗(π∗)p(π∗)pY = Y,

thus the linear map ∗(π∗)p : (ran1eπ∗)π(p) → (ker(π∗)p)⊥ is an isomorphism. Define C =∗ (π∗)pϕ(π∗).

Corollary 3.1. Let π : (N1, 11)→ (N2, 12, J2) be a PSSRM. Where (N1, 11) Riemannian manifold and (N2, 12, J2)
is an almost Hermitian manifold with the semi-slant function θ. Then, X ∈ Γ(Dθ) we have

C2X = −cos2θX (18)

For Y1,Y2,Y3 ∈ Γ((kerπ∗)p)⊥ with π∗Y3 = ϕπ∗Y2, we define

(∇πY1
ω)π∗Y2 = C(∇π∗)(Y1,Y2) − (∇π∗)(Y1,Y3) (19)

Proposition 3.1. Let π be a PSSRM from a Riemannian manifold (N1, 11) to a Käehler manifold (N2, 12, J2) with
semi-slant function θ. If the tensor ω is parallel, then for U1,U2 ∈ Γ(Dθ), we obtain

(∇π∗)(CU1,CU2) = −cos2θ(U1,U2) (20)

Proof. Given that ω is parallel that is ∇ω = 0. Then using (19), for U1,U2 ∈ Γ(Dθ) we get

C(∇π∗)(U1,U2) = (∇π∗)(U1,CU2)

by interchanging U1,U2, we have

C(∇π∗)(U2,U1) = (∇π∗)(U2,CU1)

Since the tensor (∇π∗) is symmetric, we obtain

(∇π∗)(U1,CU2) = (∇π∗)(U2,CU1)

Thus, we have

(∇π∗)(CU1,CU2) = (∇π∗)(U1,C2U2) = −cos2θ(∇π∗)(U1,U2)

Now, we are going to investigate the geometry of the leaves of the invarient distributionDT and the slant
distributionDθ.
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Theorem 3.3. Let π be a PSSRM from a Riemannian manifold (N1, 11) to a Käehler manifold (N2, 12, J2). Then
the invarient distributionDT defines totally geodesic foliation on N2 iff

i. SCVπ∗(X1) − π∗(∇X1 Z) has no component in Γ(DT )
ii. ϕ(π∗(∇X1 W′

1) − Sωπ∗W1 X1). has no component in Γ(DT ).

for any X1,X2,Z,W1 ∈ Γ(kerπ∗)⊥ such that π∗X1, π∗X2 ∈ Γ(DT ), π∗W1 ∈ Γ(Dθ) and V ∈ Γ(ran1eπ∗)⊥: π∗Z = BV

Proof. For π∗X1, π∗X2 ∈ Γ(DT ) and V ∈ Γ(ran1eπ∗)⊥, since π is a PSSRM, using (1) and (8) we have

12(∇πX1
π∗X2,V) = −12(∇πX1

BV, Jπ∗X2) − 12(∇πX1
CV, Jπ∗X2)

from (2.3) and (2.5) we get

12(∇πX1
π∗X2,V) = −12((∇π∗)(X1,Z) + π∗∇X1 Z, Jπ∗X2) − 12(−SCVπ∗X1 + ∇

π⊥
X1
CV, Jπ∗X2)

= 12(−SCVπ∗X1 − π∗∇X1 Z, Jπ∗X2)

where π∗Z = BV ∈ Γ(Dθ) for Z ∈ Γ(kerπ∗)⊥. Since Jπ∗X2 ∈ Γ(DT ), we obtain (i) On the other hand, for
π∗W1 ∈ Γ(Dθ), by using (7), we get

12(∇πX1
π∗X2, π∗W1) = −12(∇πX1

ϕπ∗W1, Jπ∗X2) − 12(∇πX1
ωπ∗W1, Jπ∗X2)

from (2.3) and (2.5) we obtain

12(∇πX1
π∗X2, π∗W1) = −12((∇π∗)(X1,W′) + π∗(∇X1 W′), Jπ∗X2)

−12(−Sωπ∗W1π∗(X1) + ∇π⊥X1
ωπ∗W1, Jπ∗X2)

where ϕπ∗W1 = π∗W′ for W′

1 ∈ Γ(kerπ∗)⊥. Then by using (1) and (7), we get

12(∇πX1
π∗X2, π∗W1) = 12(ϕ(π∗(∇X1 W′) − Sωπ∗W1π∗X1), π∗X2)

This completes the proof.

Theorem 3.4. Let π be a PSSRM from a Riemannian manifold (N1, 11) to a Kaehler manifold (N2, 12, J2). Then
the slant distributionDθ defines totally geodesic foliation on N2 iff

i. −sin2θ[W1,V] + sin(2θ)V(θ)W1 + ∇
π
Vωϕπ∗W1 + ϕ∇πVωπ∗W1 has no components in Γ(ran1eπ∗).

ii. ϕ(Sωπ∗W2π∗W1 − ∇
π
W1
ϕπ∗W2) has no components in Γ(DT ).

for any W1,W2 ∈ Γ(kerπ∗)⊥ such that π∗W1, π∗W2 ∈ Γ(Dθ) and V ∈ Γ(ran1eπ∗)⊥.

Proof. Given that for any W1,W2 ∈ Γ(kerπ∗)⊥ such that π∗W1, π∗W2 ∈ Γ(Dθ) and V ∈ Γ(ran1eπ∗)⊥, by using (1)
and (7) we have

12(∇πW1
π∗W2,V) = −12([W1,V], π∗W2) + 12(∇πVϕ

2π∗W1, π∗W2)
+ 12(∇πVωϕπ∗W1, π∗W2) + 12(ϕ∇πVωπ∗W1, π∗W2)

using (3.9), we obtain

12(∇πW1
π∗W2,V) = −12([W1,V], π∗W2) + sin(2θ)V(θ)12(π∗W1, π∗W2)

− cos2θ12(∇πVπ∗W1, π∗W2) + 12(∇πVωϕπ∗W1, π∗W2)
+ 12(ϕ∇πVωπ∗W1, π∗W2)

obviously, we have

12(∇πW1
π∗W2,V) = −sin2θ12([W1,V], π∗W2) + cos2θ12(∇πW1

π∗W2,V)
+ sin(2θ)V(θ)12(π∗W1, π∗W2) + 12(∇πVωϕπ∗W1, π∗W2)
+ 12(ϕ∇πVωπ∗W1, π∗W2)
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sin2θ12(∇πW1
π∗W2,V) = 12(−sin2θ[W1,V] + sin(2θ)V(θ)π∗W1 + ∇

π
Vωϕπ∗W1

+ ϕ∇πVωπ∗W1, π∗W2)

which gives (i) Now, by using (1), (7) and (5) we obtain

12(∇πW1
π∗W2, π∗X1) = 12(∇πW1

ϕπ∗W2, Jπ∗X1) + 12(∇πW1
ωπ∗W2, Jπ∗X1)

= −12(J∇πW1
ϕπ∗W2, π∗X1) + 12(−Sωπ∗W2π∗W1 + ∇

π⊥
W1
ωπ∗W2, Jπ∗X1)

= 12(ϕ(Sωπ∗W2π∗W1 − ∇
π
W1
ϕπ∗W2), π∗X1)

which gives (ii). This completes the proof.

Now, we investigate the geometry of the leaves of the distribution (ran1eπ∗)⊥.

Theorem 3.5. Let π be a PSSRM from a Riemannian manifold (N1, 11) to a Kaehler manifold (N2, 12, J2). Then
the distribution (ran1eπ∗)⊥ defines totally geodesic foliation on N2 if and only if

i. [π∗X1,V] − ∇π⊥X1
V has no components in Γ(ran1eπ∗)⊥

ii. ∇πVωϕπ∗X2 + ω∇πVωπ∗X2 has no components in Γ(ran1eπ∗)⊥

for any X1,X2 ∈ Γ(kerπ∗)⊥, π∗X1 ∈ Γ(DT ), π∗X2 ∈ Γ(Dθ) and V,W ∈ Γ(ran1eπ∗)⊥,

Proof. Given for any X1 ∈ Γ(kerπ∗)⊥, π∗X1 ∈ Γ(DT ) and V,W ∈ Γ(ran1eπ∗)⊥, since the connection is metric and
using (5), we have

12(∇πVW, π∗X1) = −12(−[π∗X1,V] + ∇πX1
V,W)

= 12([π∗X1,V],W) − 12(SVπ∗X1 + ∇
π⊥
X1

V,W)

obviously, we get

12(∇πVW, π∗X1) = 12([π∗X1,V] − ∇π⊥X1
V,W)

which gives (i). Now for any π∗X2 ∈ Γ(Dθ) by using (1), (7) and (11), we get

12(∇πVW, π∗X2) = −12(∇πVϕπ∗X2, JW) − 12(∇πVωπ∗X2, JW)

= sin2θVθ12(π∗X2,W) − cos2θ12(∇Vπ∗X2,W) + 12(∇πVωϕπ∗X2,W) + 12(ω∇πVωπ∗X2,W)

By straight computations, we obtain

sin2θ12(∇πVW, π∗X2) = 12(∇πVωϕπ∗X2 + ω∇
π
Vωπ∗X2,W)

which gives (ii). This completes the proof.

As a consequence of the Theorem (3.3), (3.4)and (3.5), we derive the following.

Corollary 3.2. Let π be a PSSRM from a Riemannian manifold (N1, 11) to a Kaehler manifold (N2, 12, J2). Then
the total space N2 is a locally product manifold of the leaves ofDT ,Dθ and (ran1eπ∗)⊥, i.e.
N2 = N2DT ×N2Dθ ×N2(ran1eπ∗)⊥ , if and only if

I. SCVπ∗(X1) − π∗(∇X1 Z) has no component in Γ(DT ),
II. ϕ(π∗(∇X1 W′

1) − Sωπ∗W1 X1). has no component in Γ(DT ),
III. −sin2θ[W1,V] + sin(2θ)V(θ)W1 + ∇

π
Vωϕπ∗W1 + ϕ∇πVωπ∗W1 has no components in Γ(ran1eπ∗),

IV. ϕ(Sωπ∗W2π∗W1 − ∇
π
W1
ϕπ∗W2) has no components in Γ(DT ),

V. [π∗X1,V] − ∇π⊥X1
V has no components in Γ(ran1eπ∗)⊥,

VI. ∇πVωϕπ∗X2 + ω∇πVωπ∗X2 has no components in Γ(ran1eπ∗)⊥.

for any X1,X2,Z,W1,W2 ∈ Γ(kerπ∗)⊥ and V ∈ Γ(ran1eπ∗)⊥.

Now, we give necessary and sufficient conditions for a PSSRM π to be totally geodesic.
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Theorem 3.6. Let π be a PSSRM from a Riemannian manifold (N1, 11) to a Kaehler manifold (N2, 12, J2) with the
semi-slant function θ. Then, π is totally geodesic if and only if following condition are satisfied:

a. all the fibers π−1(p) are totally geodesic for p ∈ N1,
b. (kerπ∗)⊥ defines a totally geodesic foliation on N1,
c. C(∇π∗)(X,Y′) − ωπ∗(∇XY′) has no components in Γ(ran1eπ∗)⊥,
d. for π∗X, π∗Y ∈ Γ(Dθ) for any X,Y ∈ Γ(kerπ∗)⊥ and Z ∈ Γ(ran1eπ∗)⊥, the following equality is satisfied.

sin(2θ)Z(θ)12(π∗X.π∗Y) = −12(π∗Y, [π∗X,Z]) − cos2θ12(π∗Y.∇πZπ∗X)
+ 12(π∗Y,B∇πZωπ∗X) + 12(π∗Y,∇πZωϕπ∗X)

Theorem 3.7. Let π be a PSSRM from a Riemannian manifold (N1, 11) to a Kaehler manifold (N2, 12, J) with the
semi-slant function θ. Then, π is harmonic if and only if the following conditions are satisfiedd:

a. the fiberes are minimal.
b. trace{∇π⊥(.) ωϕπ∗(.) + ωSωπ∗(.)(.) − C∇π⊥(.) ωπ∗(.)} = 0

4. Chen-Ricci inequality

Let (N2, 12, J) be a Kaekler manifold. The Riemannian- cristoffel curvature tensor of a complex space
form N2(ν) of constant holomorphic sectional curvature ν satisfies

R2(Y1,Y2,Y3,Y4) =
ν
4
{12(Y1,Y3)12(Y2,Y4) − 12(Y2,Y3)12(Y1,Y4) + 12(Y1, JY3)12(Y2, JY4)

− 12(Y2, JY3)12(Y1, JY4) + 212(Y1, JY2)12(Y3, JY4)} (21)

∀ Y1,Y2,Y3,Y4 ∈ Γ(TN2)[46].

Let π be a RM from a Riemannian manifold (N1, 11) to a Riemannian manifold (N2, 12). Let R1 and R2
be the curvature tensor fields of ∇N1 and ∇N2 , respectively. Then, ∀ Y1,Y2,Y3,Y4 ∈ Γ(kerπ∗)⊥, we obtain the
Gauss formula given by [35]

R2(π∗Y1, π∗Y2, π∗Y3, π∗Y4) = R1(Y1,Y2,Y3,Y4) + 12((∇π∗)(Y1,Y3), (∇π∗)(Y2,Y4))
− 12((∇π∗)(Y1,Y4), (∇π∗)(Y2,Y3)) (22)

Now, we suppose that π is a PSSRM from a Riemannian manifold (Nb1
1 , 11) to the complex space form

(N2m
2 (ν), 12) such that 3 ≤ r = rankeπ ≤ (b1, 2m). Using (21) in (22) we get for all Y1,Y2,Y3,Y4 ∈ Γ(kerπ∗)⊥.

R1(Y1,Y2,Y3,Y4) =
ν
4
{11(Y1,Y4)11(Y2,Y3) − 11(Y1,Y3)11(Y2,Y4)

+ 12(π∗Y1, Jπ∗Y3)12(Jπ∗Y2, π∗Y4)
− 12(π∗Y2, Jπ∗Y3)12(Jπ∗Y1, π∗Y4)
+ 212(π∗Y1, Jπ∗Y2)12(Jπ∗Y3, π∗Y4)}
− 12((∇π∗)(Y1,Y3), (∇π∗)(Y2,Y4))
+ 12((∇π∗)(Y1,Y4), (∇π∗)(Y2,Y3)) (23)

Let p ∈ N1 and consider

{π∗e1, π∗e2 = Jπ∗e1, ..., π∗e2r1−1, π∗e2r1 = Jπ∗e2r1−1, π∗e2r1+1,
π∗e2r1+2 = secθϕπ∗e2r1+1, ..., π∗e2r1+2r2−1, π∗er = Jπ∗e2r1+2r2−1}

and {er+1, er+2, ..., e2m} be an orthonormal bases for ran1eπ∗ and (ran1eπ∗)⊥, respectively. Then, the dimension
of range of π∗ is r = 2r1 + 2r2.

12
2(Jπ∗ei, π∗ei+1) =

1 i ∈ {1, ..., 2r1 − 1};
cos2θ i ∈ {2r1 + 1, ..., 2r1 + 2r2 − 1}
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Then ∑
1≤k<s≤r

12
2(Jπ∗ei, π∗es) = 2r1 + 2r2cos2θ

Let’s denote

ψαks = 12((∇π∗)(ek, es), eα), k, s = 1, ..., r, α = r + 1, ..., 2m (24)

||ψ||2 = 12((∇π∗)(ek, es), (∇π∗)(ek, es)) (25)

traceψ = ∇π∗(ek, ek) (26)

||taceψ||2 = 12(traceψ, traceψ) (27)

Now, for (kerπ∗)⊥ using (23), since π is PSSRM then, for every unit vector field E1 ∈ Γ(kerπ∗)⊥ we arrive at

Ric(kerπ∗)⊥ (E1) =
ν
4

[r + 2 + 3cos2θ] − ||∇π∗(ei,E1)||2 + r12(H ,∇π∗(E1,E1))

H denotes the mean curvature vector field of the fiber.

Theorem 4.1. Let π : N1, 11 → (N2m
2 (ν), 12, J) be a PSSRM then, we have

Ric(kerπ∗)⊥ (E1) ≥
ν
4

[r + 2 + 3cos2θ] − ||∇π∗(ei,E1)||2

For a unit horizontal vector field E1 ∈ Γ(kerπ∗)⊥, the equality status of the inequality satisfies if and only if every fiber
is totally geodesic.

Theorem 4.2. Let π : N1, 11 → (N2m
2 (ν), 12, J) be a PSSRM then, the Ricci tensor Skerπ∗⊥ on kerπ∗⊥ satisfies

Skerπ∗⊥ (E1,E2) ≥
ν
4

[r + 2 + 3cos2θ]12(E1,E2) − 12((∇π∗)(ei,E2), (∇π∗)(E1, ei))

For a unit horizontal vector field E1,E2 ∈ Γ(kerπ∗)⊥, the equality status of the inequality satisfies if and only if
every fiber is totally geodesic.

similarly, for kerπ⊥∗ using (23) we obtain

2τkerπ⊥∗ =
ν
4

[r(r − 1) + 3(2r1 + 2r2cos2θ)] + r2
||H||

2
− 12((∇π∗)(ek, es), (∇π∗)(ek, es)) (28)

τkerπ⊥∗ is scalar curvature of horizontal space.

Theorem 4.3. Let π : N1, 11 → (N2m
2 (ν), 12, J) be a PSSRM then, we have

2τkerπ⊥∗ ≥
ν
4

[r(r − 1) + 3(2r1 + 2r2cos2θ)] − 12((∇π∗)(ek, es), (∇π∗)(ek, es))

the equality status of the inequality satisfies if and only if every fiber is totally geodesic.
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Now, we give Chen-Ricci inequality on kerπ⊥∗
from (24) and (28) we arrive at

2τkerπ⊥∗ =
ν
4

[r(r − 1) + 3(2r1 + 2r2cos2θ)] + r2
||H||

2
−

2m∑
α=r+1

r∑
k,s=1

ψαks (29)

From [17], we know that

2m∑
α=r+1

r∑
k,s=1

(ψαks)
2 =

1
2

r2
||H||

2 +
1
2

2m∑
α=r+1

[ψα11 − ψ
α
22 − ... − ψ

α
rr]

2

+ 2
2m∑

α=r+1

r∑
s=2

(ψ1s)2
− 2

2m∑
α=r+1

∑
2≤k<s≤r

[ψalpha
kk ψαss − (ψαks)

2]

if we put this value in (29), we get

2τkerπ⊥∗ =
ν
4

[r(r − 1) + 3(2r1 + 2r2cos2θ)] +
1
2

r2
||H||

2
−

1
2

2m∑
α=r+1

[ψα11 − ψ
α
22 − ... − ψ

α
rr]

2

− 2
2m∑

α=r+1

r∑
s=2

(ψ1s)2 + 2
2m∑

α=r+1

∑
2≤k<s≤r

[ψαkkψ
α
ss − (ψαks)

2]

From here we get

2τkerπ⊥∗ ≤
ν
4

[r(r − 1) + 3(2r1 + 2r2cos2θ)] +
1
2

r2
||H||

2 + 2
2m∑

α=r+1

∑
2≤k<s≤r

[ψαkkψ
α
ss − (ψαks)

2]

Now from (22)

2
∑

2≤k<s≤r

R2(π∗ek, π∗es, π∗es, π∗ek) = 2
∑

2≤k<s≤r

Rkerπ⊥∗ (ek, es, es, ek) + 2
2m∑

α=r+1

∑
2≤k<s≤r

[ψαkkψ
α
ss − (ψαks)

2]

from the last inequality, we can write

2τkerπ⊥∗ ≤
ν
4

[r(r − 1) + 3(2r1 + 2r2cos2θ)] +
1
2

r2
||H||

2 + 2
∑

2≤k<s≤r

R2(π∗ek, π∗es, π∗es, π∗ek)

− 2
∑

2≤k<s≤r

Rkerπ⊥∗ (ek, es, es, ek)

Also, using

2τkerπ⊥∗ = 2
∑

2≤k<s≤r

Rkerπ⊥∗ (ek, es, es, ek) + 2
r∑

s=1

Rkerπ⊥∗ (e1, es, es, e1).

we get,

2Rickerπ⊥∗ (e1) ≤
ν
4

[r(r − 1) + 3(2r1 + 2r2cos2θ)]

+
1
2

r2
||H||

2 + 2
∑

2≤k<s≤r

R2(π∗ek, π∗es, π∗es, π∗ek)

− 4
∑

2≤k<s≤r

Rkerπ⊥∗ (ek, es, es, ek)
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if we put value of R2 from (21) we get

Rickerπ⊥∗ (e1) ≤
ν
4

[(r − 1)(r − 2) +
3ν
4
{4r1 − 3 + (4r2 − 3)cos2θ} +

1
4

r2
||H||

2

Thus we can give the following result:

Theorem 4.4. Let π : N1, 11 → (N2m
2 (ν), 12, J) be a PSSRM then, we have

Rickerπ⊥∗ (e1) ≤
ν
4

[(r − 1)(r − 2) +
3ν
4
{4r1 − 3 + (4r2 − 3)cos2θ} +

1
4

r2
||H||

2

the equality of the inequality satisfies if and only if

ψα11 = ψ22 + ... + ψ
α
rr

ψα1s = 0, s = 2, ..., r.

Corollary 4.1. Let π : N1, 11 → (N2m
2 (ν), 12, J) be a PSSRM and the semi-slant function θ = π

2 then, we get

Rickerπ⊥∗ (e1) ≤
ν
4

[(r − 1)(r − 2) +
3ν
4
{4r1 − 3} +

1
4

r2
||H||

2

the equality of the inequality satisfies if and only if

ψα11 = ψ22 + ... + ψ
α
rr

ψα1s = 0, s = 2, ..., r.

Corollary 4.2. Let π : N1, 11 → (N2m
2 (ν), 12, J) be a PSSRM and the semi-slant function θ = π

2 then, we get

Rickerπ⊥∗ (e1) ≤
ν
4

[(r − 1)(r − 2) +
3ν
2
{r − 3} +

1
4

r2
||H||

2

the equality of the inequality satisfies if and only if

ψα11 = ψ22 + ... + ψ
α
rr

ψα1s = 0, s = 2, ..., r.

5. Casorati curvatures

The lemma below is crucial for the proof of our theorem.

Lemma 5.1. LetW = {(x1, ..., xn) ∈ Rn : x1 + x2+, ..., xn = k} be a hyperplane ofRn, and f : Rn
→ R is a quadratic

form

f (x1, ..., xn) = a
n−1∑
i=1

(xi)2 + b(xn)2
− 2

∑
1≤i< j≤n

xix j, a > 0, b > 0.

Thus, the constrained optimization problem
min

(x1,...,xn)∈W
f

has a global solution given by

x1 = x2 = ... = xn−1 =
k

a + 1
, xn =

k
b + 1

= (a − n + 2)
k

a + 1

provided that b = n−1
a−n+2 [43]
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Let π be a PSSRM from a Riemannian manifold (N1, 11) to a complex space form (N2m
2 (ν), J, 12) suppose

{π∗e1, ..., π∗er} is an orthonormal basis of the vertical space (ran1eπ∗)π(p), for p ∈ N1, and {er+1, er+2, .., e2m} be
an orthonormal basis the horizontal space (ran1eπ∗)⊥. We define scalar curvature τ(ran1eπ∗) on the horizontal
space (kerπ∗)⊥ by

τ(kerπ∗)⊥ =
∑

1≤k<s≤r

R1(ek, es, es, ek) (30)

and the normalized scalar curvature τkerπ∗⊥

Nor of kerπ∗⊥ as

τkerπ∗⊥

Nor =
2τkerπ∗⊥

r(r − 1)
(31)

Casorati curvature of the horizontal space kerπ⊥∗ is the normalised squared length of second fundamental
form ∇π∗ of the horizontal space kerπ⊥∗ over the manifold (N2m

2 (ν), J, 12) and it is denoted by C Thus, from
(25) we get

C =
1
r
||ψ||2 =

1
r

2m∑
α=r+1

r∑
k,s=1

(ψαks)
2 (32)

Now, assume that Lkerπ⊥∗ is a t−dimensional subspace (kerπ∗)⊥p , 2 ≤ t and let {e1, ..., et} be an orthonormal
basis of Lkerπ⊥∗ . Then the casorati curvature Ckerπ⊥∗ (Lkerπ⊥∗ ) of Lkerπ⊥∗ defined as

C
kerπ⊥∗ (Lkerπ⊥∗ ) =

1
t
||T||2 =

1
t

2m∑
α=r+1

t∑
k,s=1

(Tαks)
2.

The normalized δ− casorati curvature δ̂kerπ⊥∗
c (r − 1), δkerπ⊥∗

c (r − 1) of kerπ⊥∗ are given by
[δ̂kerπ⊥∗

c (r − 1)]p=2Ckerπ⊥∗
p −

2r−1
2r Sup{Ckerπ⊥∗ (Lkerπ⊥∗ ) : Lkerπ⊥∗ is a hyperplane of (kerπ⊥∗ )p }

[δkerπ⊥∗
c (r − 1)]p=

1
2C

kerπ⊥∗
p + r+1

2r in f {Ckerπ⊥∗ (Lkerπ⊥∗ ) : Lkerπ⊥∗ is a hyperplane of (kerπ⊥∗ )p}

Using (23) and (32) we get

2τkerπ⊥∗ =
ν
4

[r2
− r + 6(r1 + r2cos2θ)] − rCkerπ⊥∗ + ||traceψ||2 (33)

Now we define a function Qkerπ⊥∗ associated with the following quadratic polynomial with respect to the
components of ψ:

Qkerπ⊥∗ =
1
2

[(r2
− r)Ckerπ⊥∗ + (r2

− 1)Ckerπ∗ (Lkerπ⊥∗ )] − 2τkerπ⊥∗ +
ν
4

(r2
− r) +

3ν
2

(r1 + r2cos2θ).

Without loss of genrality, by supposing that the hyperplane Lkerπ⊥∗ is spanned by {e1, ..., r− 1}, using (33) one
can produce

Qkerπ⊥∗ =

2m∑
α=r+1

r−1∑
r=1

[r(ψαkk)2 + (r + 1)(ψαkr)
2] −

2m∑
α=r+1

[2(r + 1)
r−1∑

1=k<s

(ψαks)
2 +

r − 1
2

(ψαrr)
2]

− 2
r∑

1=k<s

ψαkkψ
α
ss +

r − 1
2

(ψαrr)
2

≥

2m∑
α=r+1

[
r−1∑
k=1

r(ψαkk)2 +
r − 1

2
(ψαrr)

2
− 2

r∑
1=k<s

ψαkkψ
α
ss]
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For α = r + 1, ..., 2m, let us consider the quadratic form 1α : R2m
→ R defined by

1α(ψα11, ..., ψ
α
rr) =

r−1∑
k=1

r(ψαkk)2 +
r − 1

2
(ψαrr)

2
− 2

r∑
1=k<s

ψαkkψ
α
ss

and the constrained extrimum problem, min1α, subject to

W
α : ψα11+, ..., ψ

α
rr = kα

here kα is a real constant. From Lemma (5.1) we obtain a = r, b = r−1
2 . Thus, by Lemma (5.1) we get the

critical point (ψα11, ..., ψ
α
rr), given by

ψα11 = ψ
α
22 =, .., ψ

α
r−1r−1 =

kα

r + 1
, ψαrr =

2kα

r + 1

is a global minimum point. Also, 1α(ψα11, ..., ψ
α
rr) = 0. Moreover we obtain

Q
kerπ⊥∗ ≥ 0 (34)

Which gives

2τkerπ⊥∗ ≤
1
2

[(r2
− r)Ckerπ⊥∗ + (r2

− 1)Ckerπ⊥∗ (Lkerπ⊥∗ )] +
ν
4

[r2
− r + 6(r1 + r2cos2θ)]

using (31)

τkerπ∗⊥

Nor ≤ [
1
2
C

kerπ⊥∗ +
r + 1

2r
C

kerπ⊥∗ (Lkerπ⊥∗ )] +
ν
4
+

3ν(r1 + r2cos2θ)
2r(r − 1)

(35)

for all hyperplane Lkerπ⊥∗ of (kerπ⊥∗ ). Similarly, we can write

F
kerπ⊥∗ = 2(r2

− r)C(kerπ∗)⊥ −
1
2

(2r2
− 3r + 1)C(kerπ∗)⊥ (L(kerπ∗)⊥ ) − 2τ(kerπ∗)⊥ +

ν
4

[r2
− r + 6(r1 + r2cos2θ)],

here hyperplane L(kerπ∗)⊥ is a hyperplane of kerπ⊥∗ . From here,

F
(kerπ∗)⊥ ≥ 0 (36)

which implies

τ(kerπ∗)⊥

Nor ≤ 2C(kerπ∗)⊥ −
2r − 1

2r
C

(kerπ∗)⊥ (L(kerπ∗)⊥ ) +
ν
4
+

3ν(r1 + r2 cos2 θ)
2r(r − 1)

(37)

Now taking the infimum in (35) and the supremum in (37) over all hyperplanes Lkerπ⊥∗ of kerπ⊥∗ we get

Theorem 5.1. Letπ be aPSSRM a Riemannian manifold (Nb1,11 ) to a complex space form (N2m
2 (ν), J, 12) with semi-

slant function θ, 3 ≤ r = rankπ < min{b1, 2m}. Then the normalized δ casorati curvatures δ̂kerπ⊥∗
c (r − 1) δkerπ⊥∗

c (r − 1)
on kerπ⊥∗ satisfy

1. τ(kerπ∗)⊥

Nor ≤ δkerπ⊥∗
c (r − 1) + ν

4 +
3ν(r1+r2cos2θ)

2r(r−1)

2. τ(kerπ∗)⊥

Nor ≤ δ̂kerπ⊥∗
c (r − 1) + ν

4 +
3ν(r1+r2cos2θ)

2r(r−1)

Furthermore, equality case holds in any inequalities at a point p ∈ N1 iff with respect to suitable orthonormal basis
{e1, ..., er} on kerπ⊥∗ and {er+1, ..., e2m} on ran1eπ⊥∗ , the components of ψ satisfy

ψα11 = ψ
α
22 =, ...,= ψ

α
r−1r−1 =

1
2
ψαrr, α ∈ {r + 1, ..., 2m}

ψαks = 0, k, s ∈ {1, ..., r}(k , s), α ∈ {r + 1, ..., 2m}
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Corollary 5.1. Let π be a PSSRM a Riemannian manifold (Nb1,11 ) to a complex space form (N2m
2 (ν), J, 12) with

semi-slant function θ = π
2 , 3 ≤ r = rankπ < min{b1, 2m}. Then the normalized δ casorati curvatures δ̂kerπ⊥∗

c (r − 1)
δkerπ⊥∗

c (r − 1) on kerπ⊥∗ satisfy

1. τ(kerπ∗)⊥

Nor ≤ δkerπ⊥∗
c (r − 1) + ν

4 +
3ν(r1

2r(r−1)

2. τ(kerπ∗)⊥

Nor ≤ δ̂kerπ⊥∗
c (r − 1) + ν

4 +
3ν(r1

2r(r−1)

Furthermore, equality holds in any inequalities at p ∈ N1 iff with respect to appropriate orthonormal basis {e1, ..., er}

on kerπ⊥∗ and {er+1, ..., e2m} on ran1eπ⊥∗ , the components of ψ satisfy

ψα11 = ψ
α
22 =, ...,= ψ

α
r−1r−1 =

1
2
ψαrr, α ∈ {r + 1, ..., 2m}

ψαks = 0, k, s ∈ {1, ..., r}(k , s), α ∈ {r + 1, ..., 2m}

Corollary 5.2. Let π be a PSSRM a Riemannian manifold (Nb1,11 ) to a complex space form (N2m
2 (ν), J, 12) with

semi-slant function θ = 0, 3 ≤ r = rankπ < min{b1, 2m}. Then the normalized δ casorati curvatures δ̂kerπ⊥∗
c (r − 1)

δkerπ⊥∗
c (r − 1) on kerπ⊥∗ satisfy

1. τ(kerπ∗)⊥

Nor ≤ δkerπ⊥∗
c (r − 1) + ν(r+2)

4(r−1)

2. τ(kerπ∗)⊥

Nor ≤ δ̂kerπ⊥∗
c (r − 1) + ν(r+2)

4(r−1)

Furthermore, equality holds in any inequalities at p ∈ N1 iff with respect to appropriate orthonormal basis {e1, ..., er}

on kerπ⊥∗ and {er+1, ..., e2m} on ran1eπ⊥∗ , the components of ψ satisfy

ψα11 = ψ
α
22 =, ...,= ψ

α
r−1r−1 =

1
2
ψαrr, α ∈ {r + 1, ..., 2m}

ψαks = 0, k, s ∈ {1, ..., r}(k , s), α ∈ {r + 1, ..., 2m}

Corollary 5.3. Let π : (Nb1 , 11) → (N2m
2 (ν), J, 12) be a PSSRM, where (N2m

2 (ν), J, 12) is complex space form with
semi-slant function θ, 3 ≤ r = rankπ < min{b1, 2m} then we get

1. τ(kerπ∗)⊥

Nor ≤ δkerπ⊥∗
c (r − 1)

2. τ(kerπ∗)⊥

Nor ≤ δ̂kerπ⊥∗
c (r − 1)
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