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Abstract. In this paper, we consider the wave equation for the fractional Sturm-Liouville operator with
lower order terms and singular coefficients and data. We prove that the problem has a very weak solution.
Furthermore, we prove the uniqueness in an appropriate sense and the consistency of the very weak
solution concept with the classical theory.

1. Introduction

In the present paper, our investigation is devoted to the wave equation generated by the fractional

Sturm-Liouville operator involving lower order terms and singularities in the coefficients and the data.

That is, for s > 0 and T > 0, we study the equation
(qu(t, xX) + LPu(t, x) + a(x)u(t, x) + b(x)u(t, x) = 0,

(t,x) € [0, T x(0,1),
subject to the initial conditions

)
u(0,x) = up(x), u/(0,x) =u1(x), x€(0,1), )
and boundary conditions
u(t,0) =u(t,1) =0, t€[0,T], 3)
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where g, b are assumed to be non-negative and .L° is the fractional differential operator associated to the
Sturm-Liouville operator defined by

Lu(t, x) := —8,2(u(t, x) + g(x)u(t, x), 4)

for a real valued function 4.

The Sturm-Liouville operator with singular potential was studied by Savchuk and Shkalikov in [30]. In
this work, asymptotic estimates for the eigenvalues and corresponding eigenfunctions, when the operator
includes singular potential were obtained. We also cite [19], [28], [29] and [31] where the Sturm-Liouville
operator with distributional potentials was explored.

So, our aim in the present work is to study the well-posedness of the initial/boundary problem (1)-(3),
where the spatially dependent coefficients 4, b and q and the initial data u and u; are allowed to be non-
regular functions, having in mind the Dirac delta function and its powers. We should mention here that
powers of delta functions will be understood in the sense of powers of their regularisations, as it will be
discussed later on. We do this study under the framework of the concept of very weak solutions. Our reasons
to get into this framework lies in the fact that when the equation under consideration contains products of
distributional terms, it is no longer possible to pose the problem in the distributional framework. This is
related to the well known work of Schwartz [27] about the impossibility of multiplication of distributions.

In order to give a neat solution to this problem, the concept of very weak solutions was introduced in
[15] for the analysis of second order hyperbolic equations with singular coefficients. Later on, this concept
of solutions has been developed for a number of problems. We cite for instance [22], [23], [20], [4], [5], [6],
[7],19], [10], [11], [32] and [8] to mention only few. In [5], [6], [7], [9], [10] and [11], arguments were based on
energy methods. In the recent works [21], [24], [25] and [26], the existence of solutions to initial/boundary
value problems for the Sturm-Liouville operator including various types of time-dependent singular coef-
ficients was considered. In these works, separation of variables techniques [16] were possible in order to
obtain explicit formulas to the classical solutions. Our aim in the present paper is to combine separation of
variables techniques with energy methods in order to extend the results obtained in [21] and [24], firstly by
considering the fractional Sturm-Liouville operator instead of the classical one, and secondly, by including
more terms in the equation under consideration. Most importantly, we allow coefficients to depend on
space, so that the previous separation of variables methods do not readily apply.

The paper is organised as follows. After some preliminaries about the classical and the fractional Sturm-
Liouville operator and about Duhamel’s principle, we establish in Section 3, energy estimates in the regular
case, which are key in proving existence and uniqueness of very weak solutions. We treat two cases. The
general case when s > 0 and the case s = 1. In Section 4, we introduce the notion of very weak solutions
adapted to our considered problem (1)-(3) and we prove that it is very weakly well-posed. Section 5 is
devoted to showing the consistency of the concept of very weak solutions with the classical theory.

2. Preliminaries
The following notations and notions will be frequently used throughout this paper.
2.1. Notation
e By the notation f < g, we mean that there exists a positive constant C, such that f < Cyg.

e We also define
luct, s == Ilut, Yz + 1 L2ult, e + Nt )lle-

2.2. Classical Sturm-Liouville operator
Here we present some spectral properties of the Sturm-Liouville operator obtained in [30]. We consider
the Sturm-Liouville operator £ generated in the interval (0,1) by the differential expression
4?

Ly=——3y+40y, (5)
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with boundary conditions
y(0)=y@)=0. (6)
We first consider the real potential g satisfying
g(x) = v'(x) > 0, such that v € L*(0,1). (7)
The domain of the operator L is
Dom(L) =y : y, ¥ —vy € W}(0,1), —y” +qy € L*(0, 1), y(0) = y(1) = 0}.
Let us introduce the quasi-derivative as follows
M) =y @ - v@yE),

then the eigenvalue equation Ly = Ay rewrites as a system

' 1
(i;) - (—AV— V2 —v) (ii)' $1(%) = y(x), Pa(x) = yM(x).
Further on, we perform the so-called modified Priifer transformation ([17])

¢1(x) = r(x)sin O(x), P2(x) = /\%r(x) cos 6(x),

where

0'(x,A) = A7 + A" 2v2(x) sin? O(x, A) + v(x) sin 20(x, A), (8)
and

Y, A) = —r(x, A) (%vz(x))\_% sin 26(x, A) + v(x) cos 26(x, )\)) . )

The solution to this equation has the form 6(x, 1) = Arx + n(x, A), where

X X

nex,A) = A2 f VX&) sin® O(E, \)dE + f V(&) sin (2A2& + 2n(&, 1)) d&.

0 0

By using the method of successive approximations, one can easily show that the last equation has a solution
that is uniformly bounded for 0 < x < 1and A > 1. Since v € LY(0,1), according to the Riemann-Lebesgue
lemma, n(x, A) = 0o(1) as A — oco. Hence,

0(x,A) = AZx + o(1),

moreover 6(0, 1) = 0.
Using the Riemann-Lebesgue lemma for the equation (9), we get

X

r(x, A) = exp [— f V(&) cos 20(&, A)dé — ﬁ f V2(&) sinze(g,A)ng.
0

0

And finally, using the Dirichlet boundary conditions (6), we obtain

(1, A) = (1, A)sinO(1,A) =0, #1,A)#0, 6(1,A)=mnn
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Then, the eigenvalues of the Sturm-Liouville operator £ generated on the interval (0, 1) by the differential
expression (5) with Dirichlet boundary conditions (6) are given by

Aw = ()1 +om™), n=12., (10)
and corresponding eigenfunctions

Pn(x) = 1,4(x) 5in O,,(x) = 1,(x) sin( VAnx + nn(x)). (11)

According to (7), vis a real valued function. Then, the eigenfunctions ¢, are real. Here and below we will
consider the positive operator (Ly, y) > 0, which implies that all eigenvalues A, are real and non-negative.
The first derivatives of ¢, have the following form

$L(0) = VAura(x) cos(0,,(x)) + v(x) Py (). (12)

By Theorem 2 in [28] we have that

1
Bu(x) = sin VA +Pu(x), n=1,2,.., Z lpal? < C f v (x)Pdx. (13)
n=1 0

The estimate for ||¢,||;> follows by taking the L% norm in (11) and by proceeding as follows

1 1
. 2
1508, = [ osin(aixs neo)| drs [k
0 0
1 X X 2
11
< expi|— | v(s)cos260,(s)ds — = 12(s) sin 20,,(s)ds dx
fp[f() s - 5= | v ()]
0 0 0
1 X X
1
< ex 2f|vs|ds+ f|v2s|ds dx
| p{[ s+ = [ 1260
0 0 0
_1
< expl2 (vl + A R )| < o (14)
In addition, according to Theorem 4 in [30], we get
Pn(x) = sin(mnx) + o(1), (15)

for sufficiently large n. Combining this with (11), we see that there exist a constant Cy > 0, such that
0 < Co < lpull2 < 00 forall n. (16)

The family of eigenfunctions of the operator £ form an orthogonal basis in L*(0,1). Moreover, we will
normalize them and denote

Pu(®)  Pu(®)

[om oy 10l

(17)

an (x) =
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2.3. Fractional Sturm-Liouville operator

.....

Sturm-Liouville operator as defined above. Then, for s € R, L* is defined in the sense that:
L= Ly, 18)
forallk=1,...

In other words, £L* is defined to be the operator having the family {/\i, Qklk=1,.., as family of eigenvalues and
corresponding eigenfunctions.

Proposition 2.2. Let L be the Sturm-Liouville operator generated in the interval (0,1) by the differential expression
(5) with boundary conditions (6). Assume that (f, g) € L*>(0,1) X L*(0, 1) with (L5 f, L°g) € L*(0,1) X L*(0, 1). Then

(Lf, e =f, L forany s € R, (19)
and

L =00 (Ls/ f) fors,s’ €R. (20)
Proof. Since for n =1,2,..., the eigenfunctions ¢, of the Sturm-Liouville operator are orthonormal in

L*(0,1) and using the fact that the operator £ is self-adjoint ([18]) and using eigenfunction expansions for
f, g € L*(0,1), we obtain

1 1
o = [ Y 5o Y auon@ix =YY [ Afin@an s
0 n=1 m=1 n=1 m=1 0
1
= Y N [ Giax=Y Nifon @1y
n=1 0 n=1
where

1

1
fo = f fOPu()dx,  gn = f 9(x)Pu(x)dx.
0

0

On the other hand, we similarly get

o Loghz =Y fukign = Y Nifadn (22)
n=1 n=1

This proves the first statement. For (20), the second statement of the proposition, we have

£s+s’f _ Z £5+S’fn¢n(x) = Z A (/\f{fn(ﬁn(x))
=1 n=1

0o

L(L fupu0) = L (L7 f),

n=1

completing the proof. [
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2.4. Sobolev spaces and embeddings

We define the Sobolev spaces WSL associated to L°, for any s € R, as the space

W5(0,1) = {f € D,(0,1) : L2f € 2(0,1)},

with the norm || f ”WZ = || L52 fll2. The global space of distributions Z)’L(O, 1) is defined as follows.

The space C7(0,1) := Dom(L*) is called the space of test functions for £, where we define

Dom(L>) := ﬂ Dom(L™),

m=1

where Dom(£™) is the domain of the operator L™, in turn defined as
Dom(L") := {f € L*(0,1) : LIf € Dom(L), j=0,1,2,..,m—1}.
The Fréchet topology of C7(0, 1) is given by the family of norms

Illcy = max|-L Pl m € No, ¢ € CZO,1).

The space of L-distributions
D,(0,1) := L(C3(0,1),C)

12560

(23)

(24)

is the space of all linear continuous functionals on C7(0,1). For w € ©/,(0,1) and ¢ € C7(0,1), we shall

write
w (@) = {w, P).
For any ¢ € C7(0,1), the functional

1
C0 36+ [ pmoed
0

is an L-distribution, which gives an embedding ¢ € C"Z(O, 1) — Z)’L(O, 1).
Proposition 2.3. Let 0 <s€ Rand f € W5(0,1). Then, we have the continuous inclusions

W3(0,1) € L*(0,1) € W/(0,1).

(25)

That is, for any f € W5(0,1), we have f € L*(0,1) and accordingly f € W7°(0,1). Moreover, there exist positive

constants Cq, C, independent of f such that
Ifllwg < Callfllez,

and

1fll2 < Callfllws,-

(26)

(27)

Proof. The first embedding is a direct consequence of the definition of W5(0,1) (see (23)). Let us prove the
second statement. According to (10), the eigenvalues of the operator L are outside the unit ball, then

A<
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foralln =1,2,...,. This leads to the following estimate

2 1
dx:f
0

1 Fubu@) dx = i i < i 1l = IFI,

n=1 n=1

1

I = WA= [

0

n=1

2

(o)

A fudn()| dx
=1

i L7 fupul)
n=1

n

N

completing the proof. O

2.5. Duhamel’s principle

Throughout this paper, we will often use the following version of Duhamel’s principle for which the
proof is given. For more details and applications about Duhamel’s principle, we refer the reader to [12].
Let us consider the following initial/boundary problem,

utt(tr x) + Lu(t/ x) + Q(X)Mt(t, .X') = f(t/ x)r (t/ .X') € (Or OO) X (0/ 1)/
M(O, .X) = Mo(X), ut(ol X) = Lll(X), xe (Or 1)/ (28)
u(t,0) =u(t,1) =0, t € (0,00),

for a given function « and L is a linear partial differential operator acting over the spatial variable x.

Proposition 2.4. The solution to the initial/boundary problem (28) is given by

t
u(t,x) = w(t, x) + f o(t, x; T)dT, (29)
0

where w(t, x) is the solution to the homogeneous problem
wy(t, x) + Lw(t, x) + a(x)w(t,x) =0, (t,x) € (0,00)%x(0,1),
w(or x) = uo(x)/ wt(or x) = ul(x)/ X € (O/ 1)/ (30)
w(t,0) = w(t,1) =0, t€(0,0),

and for fixed t € (0, 00), v(t, x; T) solves the auxiliary problem
vp(t, x;T) + Lo(t, x; 1) + a(x)vs(t, x; 1) =0, (£ x) € (1,00) X (0,1),
u(t,%;,7) =0, v(7,x7) = f(T,x), x€(0,1), (31)
o(t,0;7) =v(t,1;,7) =0, te(1,00).

Proof. Firstly, we apply d; to u in (29). We get

t
owu(t, x) = Btw(t,x)+f dyo(t, x; T)dr, (32)
0

where we used the fact that v(f, x;t) = 0 coming from the initial condition in (31). We differentiate again
(82) with respect to t having in mind that dyv(t, x; t) = f(t, x), we get

¢
duu(t, x) = dyw(t, x) + f(t,x) + f oy u(t, x; T)dr. (33)
0
Now, the operator L when applied to u in (29) gives

¢
Lu(t,x) = Lw(t, x) + f Lo(t, x; t)d. (34)
0
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Multiplying (32) by a(x) yields
t
a(x)du(t, x) = a(x)dyw(t, x) + f a(x)d;u(t, x; T)dT. (35)
0

Combining (33), (34) and (35) and taking into consideration that w and v are the solutions to (30) and (31),
we arrive at

ug(t, x) + a(x)u(t, x) + Lu(t, x) = f(t,x).

Noting that u(0,x) = w(0, x) = up(x) from (29) and that u;(0,x) = Jyw(0,x) = u1(x) from (32) and that from
(29), the boundary conditions u(t, 0) = u(t, 1) = 0 are satisfied concludes the proof. O

Remark 2.5. We should highlight here that Duhamel’s principle applies to weak solutions. This is due to the fact
that the principle involves linearity and superposition, both of which hold in the weak formulation. Moreover, in our
case we understand derivatives with respect to time as classical derivatives, and derivatives with respect to the spatial
variable in the weak sense. Furthermore, in Sections 4 and 5, Duhamel’s principle will often be applied at the level of
reqularisation, that is, for smooth solutions.

3. Classical case: Energy estimates

In this section, we consider the case when the real potential 4 and the equation coefficients a and b are
regular functions. We also assume that s > 0. In this case, we obtain the well-posedness in the Sobolev
spaces W%(0,1) associated to the operator L*. We start by proving the well-posedness of our initial/boudary
problem (1)-(3) in the case when a,b = 0. That is, for the equation

8fu(t, x)+ Lu(t,x)=0, (t,x)e[0,T]x(0,1), (36)
with initial conditions

u(0,x) = up(x), Ju(0,x) =ui(x), x€(0,1), (37)
and Dirichlet boundary conditions

u(t,0) =u(,1)=0, tel0,T], (38)
where £ is defined as in Definition 2.1.

Theorem 3.1. Assumethat q € L*(0,1)is real. For any s > 0, if the initial data satisfy (uo, u1) € WSL(O, 1)xL?(0,1),
then the equation (36) with the initial/boundary conditions (37)-(38) has a unique solution u € C([0, T, WSL(O, )N

CY([0, T1,L*(0,1)). It satisfies the estimates

It ez < Husolliz + Nluallws, (39)

luat, Mlws, < Mluollws, + lluallrz, (40)
and

l9ru(t, iz < |Iuo||Wz + [ ]2, (41)

where the constants are independent of ug, uy and q.

Before giving the proof, one observes that the assumption g € L*(0, 1) fits with (7) since L= (0, 1) is embedded
in L%(0,1).
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Proof. Following the arguments in [21], we apply the technique of the separation of variables (see, e.g. [16])
to solve the equation (36) with the initial-boundary conditions (37)-(38). We look for a solution in the form

u(t,x) = T(t)X(x),
for functions T(¢) and X(x) to be determined. Plugging u(t, x) = T(t)X(x) into (36), we arrive at the equation
T"(t)X(x) + L (T(HX(x)) = 0,
since the operator does not depend on f, we obtain
T"(HX(x) + T L X(x) = 0.
Dividing this equation by T(t)X(x), we get

T'(t)  -LX(E)

0 X (42)

for some constant u. Therefore, if there exists a solution u(t, x) = T(t)X(x) of the wave equation, then T(t)
and X(x) must satisfy the equations

TV
T "
LX)
X@

for some constant . In addition, in order for u to satisfy the boundary conditions (38), we need our function
X to satisfy the boundary conditions (6). That is, we need to find a function X and a scalar u = A*, such that

LX(x) = A°X(x), (43)

X(0) = X(1) = 0. (44)

The equation (43) with the boundary condition (44) has eigenvalues of the form (10) with corresponding
eigenfunctions as in (11) of the Sturm-Liouville operator L generated by the differential expression (5).

Further, we solve the left hand side of the equation (42) with respect to the independent variable ¢, that
is,

T'(t) = —AST(t),  te[0,TI (45)

It is well known ([16]) that the solution of the equation (45) with the initial conditions (37) is

Ty(t) = Ay cos ( )\;t)+%Bn sin (VA3),

\//\_n

where
1 1

Av= [ 8= [ @,

0 0

Thus, the solution to (36) with the initial/boundary conditions (37)-(38) has the form

u(t,x):Z[A,, cos /\i,t)+\/%Bn sin /\;t] nes) (46)
n=1 n
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Let us prove that u € C'([0,T],L*(0,1)). By using the Cauchy-Schwarz inequality and fixed ¢, we can

deduce that
1
lut, R, = f ju(t, v)Pdx
0
1 o 2
1
= A, cos \ A5t + —=B,; sin Ai,t]gbn(x) dx
[ 7
1o 2
1
< f Ay cos \JASE+ ——=B, sin \JASH | (x)Pdx
) L VT
1 o 2
1
< f (IAnllan(x)H—IBnIIan(x)I] dx
oo 1 1 2
B,
s Y| [Bonwric || 6, wp|. @)
n=1 0 0 \//\_n

By using Parseval’s identity, we get
Y f APl = Y 1AP = f juo () Pex = Il
n=1 0 n=1 0

For the second term in (47), using the properties of the eigenvalues of the operator £ and Parseval’s identity
again, we obtain the following estimate

1 2 2 1 2
. B > | B = 1
| [pa()Pdx = iy e 101 (X) P (X)dx
1 2
= f L () pn()dx
n=1 0

e

_s 2 —5 2 2
funa| = 1L 2l =l (48)

Therefore

2 2 2
i, MR < ol + lan

Now, let us estimate ||0;u(t, -)||;2. We have

1
flatu(t, x)[dt
0

I

19eut, I,

2
dx

;[— AA, sin ( Ait)+\/—A_z\/A_§ancos /\flt}cpn(x)
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1 (o] [ee]
f [Z VA AL+Y |Bn|2] b () Px
0 n=1

= n=1

Y VAL + Y 1B (49)
n=1 n=1

A

The second term in (49) gives the norm of ||ul||%2 by Parseval’s identity. Now, since A, are eigenvalues and
¢n(x) are eigenfunctions of the operator £, we have that

(e8]
n=1

2 2

gk

1
Y VAP VE [ o9,
n=1 0

1
f VA5 0 (X) () dlx
0

n=1
- Z f L3 up(x)pn(x)dx]| . (50)
n=117
It follows from Parseval’s identity that
1 2
y f Liu@pudx| = 1Ll = ol (51)
n=1 0

Thus,
é[ll t! 2~ uO W* ul

The proof of Theorem 3.1 is then complete. [J

In the case when s = 1, the above estimates can be expressed in terms of all appearing coefficients. This
will be needed later on, when the coefficients and data are singular. Let s = 1. Then the equation (36) with
initial/boundary conditions (37)-(38) goes to the explicit form

A2u(t, x) — 2u(t, x) + g(x)u(t,x) =0, (t,x)€[0,T]1x(0,1),
u(0,x) = up(x), Ju(0,x) =u1(x), x€(0,1), (52)
u(t,0)=u(t,1)=0, te[0,T].

Corollary 3.2. Let q € L~(0,1) be real, and assume that ug € L*(0,1) such that u] € L*(0,1) and that u; € L*(0,1).
Then the problem (52) has a unique solution u € C([0, T], L*(0, 1)) which satisfies the estimates

et lz2 < Nluollzz + (]2, (53)
and
N9ru(t, Mz < Nug llez + llgllzelluollz2 + lluallz2, (54)

uniformly in t € [0, T].
Proof. By using the inequality (47) for s = 1, we get
1 2

1
e s Y| [ b wpdc [
n=1 0

J IV

|pn () Pdlx | (55)
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According to (10), we have that A, > 1 forn =1,..., thus

1 ) 1
By 2 2 2
J“ﬁﬁwmmwsfMM@mwx

0

By using Parseval’s identity for (55) and taking into account the last inequality, we get
et I, < Z IA -+ 1BuP) = lluol, + N2,
n=1

implying (53). Now, from (49) we have that

1
MWM@S[&]&M#+ZB#%&
0 n=1 n=1

The second term of this sum gives the norm of ||ul||i2 by Parseval’s identity. Since A,, forn =1,..

eigenvalues of the operator £, we obtain

2 2

/\n MO(x)d)n (x)dx

1
%Efwm@mw

gk

f}ﬁhm

n=1

=
1l
—_

1
(e8]
<),
n=1 0

2

gk

=
1l
—_

1
f o (xX) + g(x)uo( x)) Pn(x)dx
0

2 2

f q(x)uo(x)py(x)dx| .

+Z

Again, using Parseval’s identity for the second term and using that g € L, we get

A
Pﬂg

1l
—_

n

f (@b ()
0

2

1
lewmwmeWr=Z]wwmm$=mm@smﬁdm@.
n=1 0 n=1

Similarly for the first term, we get

1 2
Y| [ o] = Y =g,
n=1 0 n=1
therefore
Y INVLALR < IR, + gl ol
n=1
Thus,

2 2 2
19su(t, N2 < Mg 117 + NgliF e letoll + Naaall7

This completes the proof. O

12566

(56)

., are

(57)
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Now we consider the case when a, b # 0. That is, we consider the problem

afu(t, xX) + Lou(t, x) + a(x)u(t, x) + b(x)u,(t,x) =0, (t,x) €[0,T]x(0,1),

M(O, .X') = uo(X), ut(ol .X') = ul(x)/ (58)

ut,0)=u(t,1)=0, te][0,T].
Theorem 3.3. Let T > O and s > 0. Assume a,b € L*(0,1) to be non-negative, and g € L*(0,1) is real, and let
Uy € W5,(0,1) and uy € L*(0,1). Then, there exists a unique solution u € C([0, T]; W¥,(0,1)) N C'([0, T]; L*(0, 1)) to
the problem (58) and it satisfies the estimates

{5, M e M | < (59)
(1 -+ allus + ell) ol + 2.

Proof. By multiplying the equation in (58) by u; and integrating with respect to the variable x over [0, 1], we
get

<utt(t/ ')r ut(t/ ')>L2 + <-£Su(t/ ')/ ut(tr ')>L2 + (a(-)u(t, ')/ ut(t/ ')>L2 + <b()ut(t/ ')r ut(t/ ')>L2 =0. (60)
It is easy to see that
Gt ) e, M = 33,0, Doz = Mt s, G)

and since the fractional Sturm-Liouville operator is self-adjoint (see Proposition 2.2) and by the use of the
semi-group property (20), we get

(Loult, ), wlt, N = KLU, ), Lt Ny ©2)
= SONLEu(t, .
Moreover, we have
e, ), Mz = 52l e, I, 63)
and

BCYuslt, ), welt, iz = 107 (Yust, N, (64)

By substituting all these terms in (60) we arrive at

O lhae(t, M + 1LEut, N, + lla> (Yuact, | = =200> Cuat, - (65)
By denoting
E(t) 1= llualt, I + 1L3u(t, I + la? (uct, I, (66)

it follows that the functional E(t) is decreasing over [0, 1] and thus we have E(t) < E(0), for all t € [0, T]. We
get the estimates

2 5012 31112
et 2 < el + 1L2 w0l + lla2 ol (67)
L L L L

2 2 2
S Mz + lsolliys + Mallelfsollz..
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and similarly

IL3u(t, )7, < i, + ||u0||%,\,2 + lallelluoI7, (68)
and

la® (yut, IR, < ol + ||uo||§vs£ + [lallzs ol 7. (69)
To estimate the solution u, we proceed as follows. We rewrite the equation in (58) as

Jru(t,x) + Lou(t,x) = f(t,x), (t,x)€[0,T]x(0,1), (70)
where

f(t,x) == —a(x)u(t, x) — b(x)us(t, x),

and we apply Duhamel’s principle. According to Proposition 2.4, the solution to (70) has the representation

¢
u(t,x) = w(t,x)+f o(t, x; T)dT, (71)
0

where w(t, x) is the solution to the homogeneous problem

wy(t, x) + Low(t,x) =0, (tx)€[0,T]1x(0,1),
w(0,x) = up(x), wi(0,x) =ui(x), x€(0,1), (72)
w(t,0)=wt,1)=0, te[0,T]

and v(t, x; s) solves

Utt(t/ X; T) + st(tr X; T) = O/ (t/ x) € (T/ T) X (O/ 1)/
u(t,x;1) =0, v(t,x1) = f(r,x), x€(0,1), (73)
o(t,0;7)=v(t1;,7)=0, tel0,T]

Taking the L2 norm in (71) gives

t
llut, ez < llew(t, )2 +f0 llo(, -; Dllr2d, (74)

where we used Minkowski’s integral inequality. The terms on the right hand side can be estimated as
follows:

llwo(t, ez < luollez + uallwg, (75)

which follows from (39) since w is the solution to the homogeneous problem and still by (39), the second
term is estimated by

ot Dl < 1LF(T, (76)
< ()i, Mz + 60T, s
< lla()uu(, gz + oY (z, i

.....

family of eigenfunctions is an orthonormal basis in L%(0,1), then, u; can be expanded in terms of this basis
as

(e8]

uy(t, x) = Z il (t)Pn(x), for (t,x) € [0,T] x (0,1), (77)

n=1
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where iy, = (U, Pu)2 forn = 1,...,. It follows from (77) that u(t,0) = u,(t,1) = 0 for all t € [0, T], which
allows us to use Proposition 2.3 as s > 0.
On the one hand we have

lla(-)u(z, 2 < IIQIIEMIIu%(')u(L N2 (78)
< el [l + ol + il
which comes from (69). On the other hand
I6()ue(T, Mz < Nbllzslee(T, -l (79)
< el a2, + ol + lall ol
The latter results from (67). We obtain then
lo(t, 5 Dllz < (1 + llalle + bl lutoll2 + letollws, + llealz2] (80)
We substitute (75) and (80) into (71), we get our estimate for u,
llu(t, Mz < (1 + llalls + ”b”L"")[HMOHLZ + luollws, + [luallr2 + ||”1||W25]
< (1 + llalls + 16l [Hutollw, + Nz - (81)
The last estimate follows by Proposition 2.3. This completes the proof of the theorem. [

In the case when s = 1, the estimates in Theorem 3.3 can be expressed in terms of all coefficients appearing
in (58), including the potential g. This removes the dependence of the estimates on L.

Corollary 3.4. Let T > 0. Assume a,b € L*(0,1) to be non-negative, and q € L*(0,1) is real. Let ug € L*(0,1) be
such that uf] € L*(0,1), and let uy € L*(0,1). Then, the problem

2u(t, x) + Lu(t, x) + a(x)u(t, x) + b(x)uy(t,x) =0, (t,x) € [0,T]x(0,1),
M(O, x) = Mo(x), ul‘(or x) = Ml(X), (82)
u(t,0) =u(t,1)=0, te][0,T],

has a unique solution u € C([0, T]; W0, 1)) N C'([0, T]; L*(0, 1)) and it satisfies

{nu(t,->||Lz,||1:%u<t,->||Lz,||uf(t,->||Lz} < (83)
(1 llglle=)(1 + Nl )L+ 1) [Tl + e+ e 2

Proof. We consider s = 1 and argue similarly as in the proof of Theorem 3.3. Firstly, we get the estimates

1 1
{Ilut(t, Mz, 1L2ult, 2 Moz (udt, ')||L2} (84)
1
S Mleaallez + olly, + llall ol

” 1
< el + lletgllez + llqllz=llucollez + llallfwlluollr2,

where we used that for s = 1 and by arguing as in (50) and (51), the term ||u0||W2 can be estimated by

n
2 31112
ol = 1Ll = ) [V,
n=1

2 n
< Y AL = 11 Luol,

n=1
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" 2
< (luglize + gl luollz2)

which is valid since A, > 1 forn = 1,2,..., resulting from (10). Once again, to estimate 1, we rewrite the
equation in (82) as

Jfu(t,x) + Lu(t,x) = f(t,%), (t,x) €[0,T]x(0,1), (85)
where
f(t/ x) = —Q(X)M(t, X) - b(x)ut(t/ .X),

and we apply Duhamel’s principle to get the following representation for the solution

u(t,x) = w(t,x)+f o(t, x; T)dT, (86)
0

where w(t, x) is the solution to the homogeneous problem

wtt(tl X) + LZU(t, x) = 0/ (tr JC) € [0/ T] X (Or 1)/
w(0,x) = up(x), wi0,x) =u1(x), x€(0,1), (87)
w(t,0)=wt,1)=0, te[0,T]

and v(t, x; s) solves

ot x; 1)+ Lo, x;1) =0, (t,x)e(t,T)*x(0,1),
o(t,x;1) =0, v(t,x7) = f(r,x), x€(0,1), (88)
u(t,0;7) =0, 1;1)=0, tel0,T]

By using the estimate (53) from Corollary 3.2 to estimate w and v in combination with (84) and proceeding
as in Theorem 3.3 we easily get

llut, ez < (L + [lgllz=) (1 + [lalle=)(1 + ||b||L°°)[||uO||L2 + g Nl + |Iu1|ILz],

1LEu(t, gz < (14 gl )@+ alls )@+ Wbl Motolle + o Nz + lan 2],
and
[loee(t, ez < (X + 1lgllze)(A + [lallz=)(1 + ||b||L°°)[||u0||L2 + [Jud N2 + ”ulllLZ]/

ending the proof. [

4. Very weak well-posedness
Fors > 0 and T > 0, we consider the initial/boundary problem

3fu(t, x) + Lou(t, x) + a(x)u(t, x) + b(x)u(t,x) =0, (t,x) €[0,T]x(0,1),
M(OI .X) = Mo(.X), ut(ol .X) = Ml(.X), (89)
ut,0)=u(t,1)=0, te[0,T].

Now, we want to analyse solutions to (89) for less regular coefficients a, b, g and initial data 1o, ¥ having in
mind distributions. To obtain the well-posedness in such cases, we will be using the concept of very weak
solutions. To start with, for ¢ € (0, 1] we consider families of regularised problems to (89) arising from the
regularising nets

(a¢)e = (a* l;be)sr (be)e = (b lPs)sr (qg)e = (q * l;bs)er (90)
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and

(uO,s)s = (ug * 1#8)8/ (ul,s)s = (uy * 4}5)5/

12571

1)

where 1.(x) = e '{(x/e). The function ¢ is a Friedrichs-mollifier, i.e. ¢ € CY(RY), ¢ > 0 and f P =1 We

introduce the following definitions.

Definition 4.1 (Moderateness). Let X be a normed space of functions on R endowed with the norm || - ||x.

1. A net of functions (f:)ee] from X is said to be X-moderate, if there exist N € INg such that
Ifellx s €7,

and in particular
2. a net of functions (f:)ec,1 from L*(0, 1) is said to be H>-moderate, if there exist N € Ny such that

-N
el + £ N2 s 7.

(92)

(93)

3. For T > 0, s > 0 and q smooth enough, a net of functions (u.(-,-))ee,q) from C([0,T]; W5(0,1)) N
CL([0, T]; L*(0, 1)) is said to be C([0, T1; W2(0, 1))NCY([0, T]; L*(0, 1))-moderate and we shortly write uniformly

s-moderate, if there exist N € INg such that

sup [lue(t, s < e7.
te[0,T]

(94)

4. For T > 0 and s = 1. A net of functions (u.(-,))eco from C([0, T]; W},(0,1)) N C'([0, T1; L*(0, 1)) is said to
be C([0,T7; Wll(O, 1)) N CY([0, T1; L*(0, 1))-moderate and we shortly write uniformly 1-moderate, if there exist

N € INy such that

sup lue(t, )l < e™.

te[0,T]

(95)

Remark 4.2. We note that such assumptions are natural for distributional coefficients in the sense that reqularisations
of distributions are moderate. Precisely, by the structure theorems for distributions (see, e.g. [13], [14]), we know that

D'(0,1) € {LP(0, 1) — moderate families},

(96)

for any p € [1,00), which means that a solution to an initialboundary problem may not exist in the sense of

distributions, while it may exist in the set of LP-moderate functions.

For instance, if we consider f € L?(0,1), f : (0,1) — C. We define

= | f,on(0,1),
f= 0, onR\ (0,1).

We have then f:R—C, and f € &(R). }
Let f. = f * ¢, be obtained via convolution of f with a mollifying net 1., where

1 (x o
v =19(%), fryecm, [v-1
Then the regularising net (f;) is L’-moderate for any p € [1, o), and it approximates f on (0, 1):

3 FiP ~ I £ p F 1P
0« ”ﬂ - f”U’(]R) ~ ||ﬂ _f”U’(O,l) + ”ﬂ”U’(]R\(O,l))

In order to prove uniqueness of very weak solutions to (89), we will need the following definition.
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Definition 4.3 (Negligibility). Let X be a normed space with the norm || - ||x. A net of functions (fe)eeq] from X
is said to be X-negligible, if the estimate

Ifellx < Cre", 97)

is valid for all k > 0, where Cx may depend on k. We shortly write ||f.llx < €. In particular, a net a functions

(fe)eeo1] from L* such that (f!")ee01) € L*(0, 1) is said to be H*-negligible, if the estimate

fellzz + £ llz < Cre®, (98)
is valid for all k > 0.

Now, we are ready to introduce the notion of very weak solutions adapted to our problem. We treat two
cases. Firstly, we treat the case when s > 0 and the potential g is smooth enough. We also treat the case
when s = 1 where g is allowed to be singular.

4.1. Case1:s>0

We should mention that the reason we consider here regular potential g, lies in the fact that the estimates
obtained in Theorem 3.3 depend on L.

Definition 4.4 (Very weak solution). Let a,b,up, 11 € D'(0,1) be such that a, b are non-negative (in the sense of
their representatives) and assume q € L=(0, 1) is real. A net of functions (u)ee(0,1] is said to be a very weak solution
to the initial/boundary problem (89) if there exist non-negative L*-moderate reqularisations (a.). and (b.). of a and
ba WSL(O, 1)-moderate reqularisation (). of ug and an L*(0,1)-moderate regqularisation (uy ). of uy such that the
family (u.). solves the e-dependent problems

Puc(t, x) + Lou(t, x) + ac(x)uc(t, x) + b (x)dpue(t,x) =0, (tx) €[0,T]1 % (0,1),
u:(0,x) = upe(x), ue(0,x) =uie(x), x€(0,1), (99)
u(H0)=0=u.(t,1), tel0,T]

forany € € (0,1], and (u.), is uniformly s-moderate.

Theorem 4.5 (Existence). Let a,b, 19, u1 and q as in Definition 4.4. Then the initial/boundary problem (89) has a
very weak solution.

Proof. Since a, b, 1y, u; are moderate, then, there exists N1, Na, N3, N4 € IN, such that
~N —N.
laell- < e, bell~ < €772,
and

N3

- -N
luoellws, < €™, el s €7

Using the estimate (59), we get

oo (8, Yy s &M NNl max NN

for all t € [0,T]. Thus, (u.). is uniformly s-moderate and the existence of a very weak solution follows,
ending the proof. [

The uniqueness of the very weak solution is proved in the sense of the following definition.
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Definition 4.6 (Uniqueness of very weak solutions). Wesay that the initial/boundary problem (89) has a unique
very weak solution, if for any non-negative L*-moderate nets (a;)e, (@c)e, (De)e, (be)e, such that (a, —d. ) and (be —b,),
are L*-negligible; for any WSL—moderate regularisations (U, flo,e)e, such that (uge — floe)e 15 WSL—negligible and
for any L2-moderate reqularisations (u1e, i1 ¢ )e, such that (uy. — iy c). is L*-negligible, we have that (u. — il.). is
L*-negligible for all t € [0, T], where (u.). and (ii.). are the families of solutions to the corresponding regularised
problems

8fué.(t, X) + Lou(t, x) + a.(x)uc(t, x) + be(x)su (t,x) =0, (t,x)€[0,T]x(0,1),
ue(ol X) = MO,S(x)/ atue(or .X') = ul,é:‘(x)/ x € (0/ 1)/ (100)
ue(t,0)=0=ut1), tel0,T]

and
a?ﬂé(t/ .X') + Lsﬁf(tl x) + aé‘(x)ﬁs(t/ x) + Es(x)atﬁs(t/ X) = 0/ (t/ x) € [0/ T] X (O/ 1)/
ﬁs(ol X) = ﬁO,S(x)/ afﬁf(ol x) = ﬁl,s(x)/ X e (0/ ]-)/ (101)
i:(t,0)=0=1.(1), te[0,T],

respectively.

Theorem 4.7 (Uniqueness). Let a,b,up, u1 € D’'(0,1) be such that a, b are non-negative, and assume q € L*(0, 1)
is real. In the background of Theorem 4.5, the very weak solution to the initial/boundary problem (89) is unique.

Proof. Let (u.). and (ii;). be the nets of solutions to (100) and (101) corresponding to the families of regu-
larised coefficients and initial data (115, be,ig e, 11 ¢ )g and (ﬁg, be, ilo,e, ﬁ1,5>€ respectively. Assume that the nets

(a. —d.)e and (b, — Eg)g are L*-negligible; (. — flg ). is Wi—negligible and (uy, — fi1¢)e is Lz-negligible. Let
us introduce

U&’(tl x) = uf(tl x) - ﬁf(tl x)/
then, U, (¢, x) is solution to

Ue(0,x) = (uo,e — flo,e)(x), U0, %) = (u1,e — 1l1,e)(%), (102)

8% U (t, x) + LUt x) + a.(x)U(t, x) + b (x)I: U (t, x) = fo(t, %),
U:(t,0) = Uc(t,1) =0,

for (t,x) € [0,T] x (0,1), where

folt, ) = (8e(x) = 2:00)i1e (8, x) + (Be(x) — be(x))stie (8, ).
By using Duhamel’s principle, U,(t, x) is given by

Ue(t, x) = Ws(t/x)+f Ve(t, x; )dr, (103)
0

where W,(t, x) is the solution to the problem

afws(t/ x) + LW, (t, x) + ac(x)We(t, x) + be(x)d: We(t, x) = 0,
We(0,x) = (MO,S - ﬁO,s)(x)/ &tuf(ol x) = (ul,e - ﬁl,s)(x)/ (104)
We(t,0) = W,(t, 1) =0,

for (t,x) € [0, T] X (0,1), and V.(¢, x;s) solves
afvg(t/ 7))+ LVt x;7) + ac(x)Ve(t, x;7) + be(x)0: Ve(t, x;7) = O,

Ve(t,x,1) =0, dVe(T,x7) = fe(1,X), (105)
Ve(t,0;7) = Ve(t,1,7) =0,
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for (t,x) € [, T] X (0,1) and s € [0, T]. By taking the L?>-norm in both sides in (103) we get

t
IUe(E, )z < Wt )l +f IVe(t, - Oll2d. (106)
0

Using (59) to estimate |[W,(t, -)ll2 and [|V(t, -; T)|l;2, we get

IVt e (1 el + el o = il + e = il
and
IVelt, 5 Dllz < (1+ llacll + ||be||Lm)[||ff<T,->||Lz].

It follows from (106) that

T
Ut Mz (1 el + o) o = ol + e = s + f Itz e | (107)
0
since t € [0, T]. Let us estimate || f¢(7, -)||;2. We have,

1fe(, Mz < M@ () = a:()e(T, iz + 1B () = be())dsite (1, 2 (108)

S e = acllesllZe(T, Mlpz + llbe = belle~ll0site (T, )l

Thus, we get
U (E, )l S(l + lagllzs + ||bs||L°°)[”u0,e — flg,ellws, + [l11,e — el (109)

T T
. - all f e (2, Mzt + 1B = bl f 1907t i)
0 0

Now, using the fact that (a.). and (b.), are L*-moderate by assumption, and that the net (i), is uniformly
s-moderate being a very weak solution to (89) this on one hand and from the other hand that the nets
(a. — d.)e and (be — b,), are L*-negligible; (119, — fip¢) iS WSL—negligible and (uy,. — fi1e), is Lz—negligible, it
follows from (109) that

Ut iz < €,
for all k > 0. This completes the proof. [

4.2. Case2:s=1

In this case, the energy estimates obtained in Theorem 3.3 are expressed in terms of all appearing
coefficients and initial data including the potential g4 as it was shown in Corollary 3.4. this allows us to
consider singular potentials. So, the problem to be analysed here is the initial/boundary problem

afu(t, x) + Lyu(t, x) + +a(x)u(t, x) + b(x)uy(t,x) =0, (t,x) € [0,T]x(0,1),
u(0,x) = up(x), u(0,x) =uy(x), x€(0,1), (110)
ut,0)=u(t,1)=0, te[0,T],

where
Lu(t, x) := —d2u(t, x) + q(x)ut, x). (111)

Here, the coefficients a, b and the initial data uo, 11 together with the potential g are assumed to be distribu-
tions on (0, 1). Let us first adapt our previous definitions to this case.
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Definition 4.8 (Very weak solution). Let a,b,q,up, 11 € D'(0,1) be such that a, b are non-negative and assume
that g € L*(0,1) is real. A net of functions (u)ee0,1 is said to be a very weak solution to the initial/boundary problem
(110) if there exist non-negative L™-moderate regularisations (a.)e, (b:): of a,b, and (q.). of q, an H>-moderate
reqularisation (uq.) of ug and an L*-moderate reqularisation (u1.). of uy such that the family (u.). solves the
e-dependent problems

qug(t, x) + Ly ue(t, x) +a.(x)ue(t, x) + be(x)du(t,x) =0, (t,x) €[0,T]x(0,1),
ue(0,x) = upe(x), ue(0,x) =up(x), x€(0,1), (112)
u.(t,0) =0=u.t1), tel0,T],

forany € € (0,1] and (u), is 1-moderate.

Theorem 4.9 (Existence). Let a,b,q,uo,u1 be as in Definition 4.8. Assume that there exist non-negative L*-
moderate reqularisations (a.)e, (be)e of a,b, and (g.) of q, an H?>-moderate regularisation (ug.). of uo and an
L?-moderate regularisation (u1 ). of u1. Then, the initial/boundary problem (110) has a very weak solution.

Proof. Since a,b, g, 19, u1 are moderate, this means that there exists N1, N, N3, Ng, N5 € N, such that
~N ~N. ~N
lacllce < €™, bellis < €72, |Igellee < €772,

and

—Ny —Ns
7 .

ll0,ellr2 + lluag llz> < € lluselliz < €

From (83), we have

1
loe(t, )l = Moe(t, ez + 1LZue(E, iz + uee(t, )l
< (L4 11gellee )@ + llaelle=)(1 + ||bs||L°°)[||u0,s||L2 + llug M2 + ”ul,s”LZ]
S A+e™) T+ e ™M)+ e[ 4 o]
< g—max{Nl,Nz,N3]—max{N4,N5}

for all t € [0, T]. Thus, (1), is C'-moderate and the existence of a very weak solution follows. [J

In order to prove the uniqueness of the very weak solution in the case when s = 1, we need to adapt
Definition 4.6 to this case. The definition reads,

Definition 4.10 (Uniqueness of very weak solutions). We say that the initial/boundary problem (110) has a
unique very weak solution, if for any non-negative L>-moderate nets (a;)e, (@e)e, (be)e, (be)e, and real Ge)er (Ge)es
such that (a; — d.)., (be — b.)e and (ge — §e)e are L®-negligible; for any H2-moderate regularisations (Uge, flo¢)e
such that (ug, — floe). is H>-negligible and for any L*-moderate reqularisations (u1 e, i1 ¢)e, such that (uy e — ¢ )e
is L2-negligible, we have that (u, — i), is L*>-negligible for all t € [0, T], where (u.). and (i), are the families of
solutions to the corresponding regularised problems

qug(t, x) + Ly ue(t, x) +a.(x)ue(t, x) + be(x)du(t,x) =0, (t,x) €[0,T]x(0,1),
ue(0,%) = uge(x),  Isue(0,x) = ure(x), x€(0,1), (113)
ue(t,0) =0=ut1), tel0,T]

and

(9?115(:%, x) + Ly, 1l (t, x) + a:(x)il.(t, x) + be(x)diic(t,x) =0, (t,x) €[0,T] x(0,1),
ﬁE(OI x) = Zjl(O,s(x)/ &tﬁE(O/ X) = ﬁl,e(x)/ X € (O/ 1)/ (114)
ﬂe(tr 0) =0 =1i(t, 1)/ te[0,T],

respectively.
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Theorem 4.11 (Uniqueness). Leta,b,q,ug, u; € D’'(0,1). Under the assumptions of of Theorem 4.9, the very weak
solution to the initial/boundary problem (110) is unique.

Proof. Let (u.). and (ii;). be the nets of solutions to (113) and (114) corresponding to the families of reg-
ularised coefficients and initial data (aé-, be, ge, to,e, ul,é-)S and (dé-, b,, e, Tlo e, ﬁl,g)g respectively. Assume that
the nets (2, — @), (be — b;). and (e — G.)e are L*-negligible; (i, — ilo,). is H*>-negligible and (11, — il ¢), is
L*-negligible. Then, (U, (t, x)), := (u.(t, x) — @L:(t, x)), is solution to

PU(t, x) + Ly, Ue(t, %) + a. () U (t, x) + be(x)0:Uc (£, %) = fe(t, x),
{ us(O/ x) = (”0,{ - ﬁO,a)(x)r atue(or X) = (ul,e - ﬂl,e)(x)/ (115)
U.(t,0) = U.(t,1) = 0,

for (t,x) € [0, T] X (0, 1)), where,

folt, ) = [ (@00 = 8:(x)) + (Fe(x) = 96 00) |t %) + (Be(x) = be () (£, ).

Thanks to Duhamel’s principle, U, (¢, x) can be represented as

t
mmm=m¢m+fVﬁmwm (116)
0

where W,(t, x) is the solution to the problem
W, (t, x) + Lo We(t,x) + a. (X)W (t, x) + b ()9 W, (t, x) = 0,
{ W, (0, x) = (MO,e - aO,S)(x)/ atu&'(or x) = (ul,e - ﬁl,s)(x)/ (117)
We(t,0) = We(t, 1) =0,
for (t,x) € [0, T] X (0,1), and V(¢ x; T) solves
atzvs(t/ X;T) + LqL Ve(t, %, 1) + a:(x)Ve(t, x; 1) + be(x)9: Ve(t, x; 1) = 0,
{Viwxn =0, avicxo = filr), (118)
Ve(t,0;7) = Ve(t, 1;7) =0,

for (t,x) € [t,T] X (0,1) and 7 € [0,T]. Using the estimate (83) and reasoning similarly as in the proof of
Theorem 4.7, we arrive at

uuxnmys(r+wmmX1+WJMX1+%mm{ww—awmz (119)
T
PR T R R TACR TR (120)
0
and we easily show that ||f¢(7, -)||;2 can be estimated by

I1fe(T, 2 < (Ilﬁg — el + 1 — qs“L"")Hﬂs(Tr Wiz +1be = bellp=l19se (T, Iz (121)

Combining (119) and (121) and using the moderateness and negligibility assumptions, one can easily see
that

Ut ez < €,

for all k > 0 and t € [0, T], showing the uniqueness of the very weak solution. [
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5. Consistency with classical theory

We conclude this article with the important question of proving that the classical solutions to the
initial/boundary problem (1), as given in Theorem 3.3 and Corollary 3.4, can be recaptured by the very
weak solutions as ¢ — 0. We prove the following theorems in both cases: the case when s > 0 and the case
whens =1.

Theorem 5.1 (Consistency, case: s > 0). Let T > 0 and s > 0. Assume a,b € L*(0,1) to be non-negative and
g € L*(0,1) is real and let ug € W5(0,1) and uy € L*(0,1), in such way that a classical solution to (1) exists. Then,
for any reqularising families (a.)e, (be)e for the equation coefficients, satisfying

llae —allpe = 0 and ||b, —blli> — 0, ase = 0, (122)
and any reqularising families (ug ). and (u1,¢). for the initial data, satisfying

lluo,e — uollws, = 0 and |lur,e —uslliz > 0as e =0, (123)
the net (u.). converges to the classical solution of the initial/boundary problem (1) in L as ¢ — 0.

Proof. Let u be the classical solution to (1) and (). its very weak solution. Then, for € € (0,1], U,(t, x) :=
u.(t, x) — u(t, x) is solution to

Q%Us(t, x) + LUt x) + a.(x)U(t, x) + be(x)I U (t, x) = fe(t, x),
Ue(0,x) = (uo,e — uo)(x), IU(0,x) = (u1,e — u1)(x), (124)
U.(t,0) = U.(t,1) =0,
where (t,x) € [0,T] X (0,1) and
felt, %) = ~(a:(x) — a() Ju(t, x) = (be(x) - b())Ihu(t, ).

By arguing as we did in Theorem 4.7, we obtain
U, e $(1 + llacli + ||ba||L°°)[||Mo,e — ttollws, + llur e — w2 (125)

T T
+ llae — all~ f llu(z, lr2dT + |Ibe — bl f ll9u(T, lr2d|,
0 0

uniformly in ¢ € [0, T]. Since
llac = allp> — 0, |Ibe = bllL> — 0, llug,e — tollws, = 0 and |lu,e — u1llz2 — 0

as ¢ — 0 by assumption and the terms ||a.||z~, [|bellz~, [[1(7, -)ll;2 and ||dsu(7, -)ll.2 are bounded, it follows that
IUe(t, Iz =0, ase—0,

uniformly in ¢ € [0, T]. This completes the proof of Theorem 5.1. O

In the case when s = 1, the consistency theorem reads as following.

Theorem 5.2 (Consistency, case: s =1). Let T > 0. Assume a,b € L*(0,1) to be non-negative and that q €
L>(0,1) is real. Let ug € L*(0,1) such that u} € L*(0,1) and uy € L*(0,1), in such way that a classical solution to
(1) exists. Then, for any regularising families (a.)e, (be)e and (q.). for the equation coefficients, satisfying

llae —allr= = 0, |lbe = bllt= = 0 and |lge — glli= — 0, as e = 0, (126)

and any regularising families (1o ). and (uy,¢)¢ for the initial data, the net (u.). converges to the classical solution of
the initial/boundary problem (1) in L% as ¢ — 0.
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Proof. For u being the classical solution to (1) and (u,). the very weak solution, by reasoning as in Theorem
5.1, we obtain

ULtz (1 + el ) (1 + el ) (1 + ||bs||L°°)[||uo,s — ugllp2 + Il — g ll2
T
+ e = wllz + (llae = all + llge — qlli) f (T, llp2d
0

T
+||bs_b”L°°f ”atu(Tr')”LZdT]-
0

It follows from assumptions and that

"

lluo,e = tollz = 0, lug, —uglliz >0 and  [luye —llz = O0as e =0,
and u being the classical solution to (1) that
IU.(t, )z =0, ase—0,

uniformly in ¢ € [0, T], ending the proof. [
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