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Abstract. In this paper, we consider the wave equation for the fractional Sturm-Liouville operator with
lower order terms and singular coefficients and data. We prove that the problem has a very weak solution.
Furthermore, we prove the uniqueness in an appropriate sense and the consistency of the very weak
solution concept with the classical theory.

1. Introduction

In the present paper, our investigation is devoted to the wave equation generated by the fractional
Sturm-Liouville operator involving lower order terms and singularities in the coefficients and the data.
That is, for s ≥ 0 and T > 0, we study the equation

∂2
t u(t, x) +Lsu(t, x) + a(x)u(t, x) + b(x)ut(t, x) = 0, (t, x) ∈ [0,T] × (0, 1), (1)

subject to the initial conditions

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ (0, 1), (2)

and boundary conditions

u(t, 0) = u(t, 1) = 0, t ∈ [0,T], (3)
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where a, b are assumed to be non-negative and Ls is the fractional differential operator associated to the
Sturm-Liouville operator defined by

Lu(t, x) := −∂2
xu(t, x) + q(x)u(t, x), (4)

for a real valued function q.
The Sturm-Liouville operator with singular potential was studied by Savchuk and Shkalikov in [30]. In

this work, asymptotic estimates for the eigenvalues and corresponding eigenfunctions, when the operator
includes singular potential were obtained. We also cite [19], [28], [29] and [31] where the Sturm-Liouville
operator with distributional potentials was explored.

So, our aim in the present work is to study the well-posedness of the initial/boundary problem (1)-(3),
where the spatially dependent coefficients a, b and q and the initial data u0 and u1 are allowed to be non-
regular functions, having in mind the Dirac delta function and its powers. We should mention here that
powers of delta functions will be understood in the sense of powers of their regularisations, as it will be
discussed later on. We do this study under the framework of the concept of very weak solutions. Our reasons
to get into this framework lies in the fact that when the equation under consideration contains products of
distributional terms, it is no longer possible to pose the problem in the distributional framework. This is
related to the well known work of Schwartz [27] about the impossibility of multiplication of distributions.

In order to give a neat solution to this problem, the concept of very weak solutions was introduced in
[15] for the analysis of second order hyperbolic equations with singular coefficients. Later on, this concept
of solutions has been developed for a number of problems. We cite for instance [22], [23], [20], [4], [5], [6],
[7], [9], [10], [11], [32] and [8] to mention only few. In [5], [6], [7], [9], [10] and [11], arguments were based on
energy methods. In the recent works [21], [24], [25] and [26], the existence of solutions to initial/boundary
value problems for the Sturm-Liouville operator including various types of time-dependent singular coef-
ficients was considered. In these works, separation of variables techniques [16] were possible in order to
obtain explicit formulas to the classical solutions. Our aim in the present paper is to combine separation of
variables techniques with energy methods in order to extend the results obtained in [21] and [24], firstly by
considering the fractional Sturm-Liouville operator instead of the classical one, and secondly, by including
more terms in the equation under consideration. Most importantly, we allow coefficients to depend on
space, so that the previous separation of variables methods do not readily apply.

The paper is organised as follows. After some preliminaries about the classical and the fractional Sturm-
Liouville operator and about Duhamel’s principle, we establish in Section 3, energy estimates in the regular
case, which are key in proving existence and uniqueness of very weak solutions. We treat two cases. The
general case when s ≥ 0 and the case s = 1. In Section 4, we introduce the notion of very weak solutions
adapted to our considered problem (1)-(3) and we prove that it is very weakly well-posed. Section 5 is
devoted to showing the consistency of the concept of very weak solutions with the classical theory.

2. Preliminaries

The following notations and notions will be frequently used throughout this paper.

2.1. Notation
• By the notation f ≲ 1, we mean that there exists a positive constant C, such that f ≤ C1.

• We also define

∥u(t, ·)∥s := ∥u(t, ·)∥L2 + ∥L
s
2 u(t, ·)∥L2 + ∥ut(t, ·)∥L2 .

2.2. Classical Sturm-Liouville operator
Here we present some spectral properties of the Sturm-Liouville operator obtained in [30]. We consider

the Sturm-Liouville operator L generated in the interval (0,1) by the differential expression

Ly := −
d2

dx2 y + q(x)y, (5)
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with boundary conditions

y(0) = y(1) = 0. (6)

We first consider the real potential q satisfying

q(x) = ν′(x) ≥ 0, such that ν ∈ L2(0, 1). (7)

The domain of the operator L is

Dom(L) =
{
y : y, y′ − νy ∈W1

1(0, 1), −y′′ + qy ∈ L2(0, 1), y(0) = y(1) = 0
}
.

Let us introduce the quasi-derivative as follows

y[1](x) = y′(x) − ν(x)y(x),

then the eigenvalue equation Ly = λy rewrites as a system(
ϕ1
ϕ2

)′
=

(
ν 1

−λ − ν2
−ν

) (
ϕ1
ϕ2

)
, ϕ1(x) = y(x), ϕ2(x) = y[1](x).

Further on, we perform the so-called modified Prüfer transformation ([17])

ϕ1(x) = r(x) sinθ(x), ϕ2(x) = λ
1
2 r(x) cosθ(x),

where

θ′(x, λ) = λ
1
2 + λ−

1
2 ν2(x) sin2 θ(x, λ) + ν(x) sin 2θ(x, λ), (8)

and

r′(x, λ) = −r(x, λ)
(1

2
ν2(x)λ−

1
2 sin 2θ(x, λ) + ν(x) cos 2θ(x, λ)

)
. (9)

The solution to this equation has the form θ(x, λ) = λ
1
2 x + η(x, λ), where

η(x, λ) = λ−
1
2

x∫
0

ν2(ξ) sin2 θ(ξ, λ)dξ +

x∫
0

ν(ξ) sin
(
2λ

1
2 ξ + 2η(ξ, λ)

)
dξ.

By using the method of successive approximations, one can easily show that the last equation has a solution
that is uniformly bounded for 0 ≤ x ≤ 1 and λ > 1. Since |ν|2 ∈ L1(0, 1), according to the Riemann-Lebesgue
lemma, η(x, λ) = o(1) as λ→∞. Hence,

θ(x, λ) = λ
1
2 x + o(1),

moreover θ(0, λ) = 0.
Using the Riemann-Lebesgue lemma for the equation (9), we get

r(x, λ) = exp

−
x∫

0

ν(ξ) cos 2θ(ξ, λ)dξ −
1

2
√
λ

x∫
0

ν2(ξ) sin 2θ(ξ, λ)dξ

 .
And finally, using the Dirichlet boundary conditions (6), we obtain

ϕ1(1, λ) = r(1, λ) sinθ(1, λ) = 0, r(1, λ) , 0, θ(1, λ) = πn.
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Then, the eigenvalues of the Sturm-Liouville operator L generated on the interval (0, 1) by the differential
expression (5) with Dirichlet boundary conditions (6) are given by

λn = (πn)2(1 + o(n−1)), n = 1, 2, ..., (10)

and corresponding eigenfunctions

ϕ̃n(x) = rn(x) sinθn(x) = rn(x) sin
(√
λnx + ηn(x)

)
. (11)

According to (7), ν is a real valued function. Then, the eigenfunctions ϕ̃n are real. Here and below we will
consider the positive operator ⟨Ly, y⟩ ≥ 0, which implies that all eigenvalues λn are real and non-negative.
The first derivatives of ϕ̃n have the following form

ϕ̃′n(x) =
√
λnrn(x) cos(θn(x)) + ν(x)ϕ̃n(x). (12)

By Theorem 2 in [28] we have that

ϕ̃n(x) = sin
√
λnx + ψn(x), n = 1, 2, ...,

∞∑
n=1

∥ψn∥
2
≤ C

1∫
0

|ν(x)|2dx. (13)

The estimate for ∥ϕ̃n∥L2 follows by taking the L2 norm in (11) and by proceeding as follows

∥ϕ̃n∥
2
L2 =

1∫
0

∣∣∣∣∣rn(x) sin
(
λ

1
2
n x + ηn(x)

)∣∣∣∣∣2 dx ≲

1∫
0

|rn(x)|2 dx

≲

1∫
0

∣∣∣∣∣∣∣∣exp


−

x∫
0

ν(s) cos 2θn(s)ds −
1
2

1
√
λn

x∫
0

ν2(s) sin 2θn(s)ds



∣∣∣∣∣∣∣∣
2

dx

≲

1∫
0

exp


2

x∫
0

|ν(s)|ds +
1
√
λn

x∫
0

|ν2(s)|ds


dx

≲ exp
{
2
(
∥ν∥L2 + λ

−
1
2

n ∥ν∥
2
L2

)}
< ∞. (14)

In addition, according to Theorem 4 in [30], we get

ϕ̃n(x) = sin(πnx) + o(1), (15)

for sufficiently large n. Combining this with (11), we see that there exist a constant C0 > 0, such that

0 < C0 ≤ ∥ϕ̃n∥L2 < ∞ for all n. (16)

The family of eigenfunctions of the operator L form an orthogonal basis in L2(0, 1). Moreover, we will
normalize them and denote

ϕn(x) =
ϕ̃n(x)√
⟨ϕ̃n, ϕ̃n⟩

=
ϕ̃n(x)

∥ϕ̃n∥L2

. (17)
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2.3. Fractional Sturm-Liouville operator

Definition 2.1. Let {λk, ϕk}k=1,...,∞ be the family of eigenvalues and corresponding eigenfunctions to the classical
Sturm-Liouville operator as defined above. Then, for s ∈ R, Ls is defined in the sense that:

L
sϕk := λsϕk, (18)

for all k = 1, . . ..

In other words,Ls is defined to be the operator having the family {λs
k, ϕk}k=1,..., as family of eigenvalues and

corresponding eigenfunctions.

Proposition 2.2. Let L be the Sturm-Liouville operator generated in the interval (0,1) by the differential expression
(5) with boundary conditions (6). Assume that ( f , 1) ∈ L2(0, 1)× L2(0, 1) with (Ls f ,Ls1) ∈ L2(0, 1)× L2(0, 1). Then

⟨L
s f , 1⟩L2 = ⟨ f ,Ls1⟩L2 for any s ∈ R, (19)

and

L
s+s′ f = Ls

(
L

s′ f
)

for s, s′ ∈ R. (20)

Proof. Since for n = 1, 2, . . . , the eigenfunctions ϕn of the Sturm-Liouville operator are orthonormal in
L2(0, 1) and using the fact that the operator L is self-adjoint ([18]) and using eigenfunction expansions for
f , 1 ∈ L2(0, 1), we obtain

⟨L
s f , 1⟩L2 =

1∫
0

∞∑
n=1

λs
n fnϕn(x)

∞∑
m=1

1mϕm(x)dx =
∞∑

n=1

∞∑
m=1

1∫
0

λs
n fnϕn(x)1mϕm(x)dx

=

∞∑
n=1

λs
n fn1n

1∫
0

ϕ2
n(x)dx =

∞∑
n=1

λs
n fn1n, (21)

where

fn =

1∫
0

f (x)ϕn(x)dx, 1n =

1∫
0

1(x)ϕn(x)dx.

On the other hand, we similarly get

⟨ f ,Ls1⟩L2 =

∞∑
n=1

fnλs
n1n =

∞∑
n=1

λs
n fn1n. (22)

This proves the first statement. For (20), the second statement of the proposition, we have

L
s+s′ f =

∞∑
n=1

L
s+s′ fnϕn(x) =

∞∑
n=1

λs
n

(
λs′

n fnϕn(x)
)

=

∞∑
n=1

L
s
(
L

s′ fnϕn(x)
)
= Ls

(
L

s′ f
)
,

completing the proof.
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2.4. Sobolev spaces and embeddings

We define the Sobolev spaces Ws
L

associated to Ls, for any s ∈ R, as the space

Ws
L

(0, 1) :=
{

f ∈ D′
L

(0, 1) : Ls/2 f ∈ L2(0, 1)
}
, (23)

with the norm ∥ f ∥Ws
L

:= ∥Ls/2 f ∥L2 . The global space of distributionsD′
L

(0, 1) is defined as follows.
The space C∞

L
(0, 1) := Dom(L∞) is called the space of test functions for L, where we define

Dom(L∞) :=
∞⋂

m=1

Dom(Lm),

where Dom(Lm) is the domain of the operator Lm, in turn defined as

Dom(Lm) :=
{

f ∈ L2(0, 1) : L j f ∈ Dom(L), j = 0, 1, 2, ...,m − 1
}
.

The Fréchet topology of C∞
L

(0, 1) is given by the family of norms

∥ϕ∥Cm
L

:= max
j≤m
∥L

jϕ∥L2(0,1), m ∈N0, ϕ ∈ C∞
L

(0, 1). (24)

The space of L-distributions
D
′

L
(0, 1) := L

(
C∞
L

(0, 1),C
)

is the space of all linear continuous functionals on C∞
L

(0, 1). For ω ∈ D′
L

(0, 1) and ϕ ∈ C∞
L

(0, 1), we shall
write

ω(ϕ) = ⟨ω,ϕ⟩.

For any ψ ∈ C∞
L

(0, 1), the functional

C∞
L

(0, 1) ∋ ϕ 7→

1∫
0

ψ(x)ϕ(x)dx

is an L-distribution, which gives an embedding ψ ∈ C∞
L

(0, 1) ↪→D′
L

(0, 1).

Proposition 2.3. Let 0 < s ∈ R and f ∈Ws
L

(0, 1). Then, we have the continuous inclusions

Ws
L

(0, 1) ⊂ L2(0, 1) ⊂W−s
L

(0, 1). (25)

That is, for any f ∈ Ws
L

(0, 1), we have f ∈ L2(0, 1) and accordingly f ∈ W−s
L

(0, 1). Moreover, there exist positive
constants C1, C2 independent of f such that

∥ f ∥W−s
L
≤ C1∥ f ∥L2 , (26)

and

∥ f ∥L2 ≤ C2∥ f ∥Ws
L
. (27)

Proof. The first embedding is a direct consequence of the definition of Ws
L

(0, 1) (see (23)). Let us prove the
second statement. According to (10), the eigenvalues of the operator L are outside the unit ball, then

λ
−

s
2

n ≤ 1
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for all n = 1, 2, . . . ,. This leads to the following estimate

∥ f ∥2W−s
L

= ∥L
−

s
2 f ∥2L2 =

1∫
0

∣∣∣∣∣∣∣
∞∑

n=1

L
−

s
2 fnϕn(x)

∣∣∣∣∣∣∣
2

dx =

1∫
0

∣∣∣∣∣∣∣
∞∑

n=1

λ
−

s
2

n fnϕn(x)

∣∣∣∣∣∣∣
2

dx

≲
∞∑

n=1

1∫
0

∣∣∣∣λ− s
2

n fnϕn(x)
∣∣∣∣2 dx =

∞∑
n=1

∣∣∣∣λ− s
2

n fn
∣∣∣∣2 ≤ ∞∑

n=1

| fn|2 = ∥ f ∥2L2 ,

completing the proof.

2.5. Duhamel’s principle
Throughout this paper, we will often use the following version of Duhamel’s principle for which the

proof is given. For more details and applications about Duhamel’s principle, we refer the reader to [12].
Let us consider the following initial/boundary problem,

utt(t, x) + Lu(t, x) + α(x)ut(t, x) = f (t, x), (t, x) ∈ (0,∞) × (0, 1),
u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ (0, 1),
u(t, 0) = u(t, 1) = 0, t ∈ (0,∞),

(28)

for a given function α and L is a linear partial differential operator acting over the spatial variable x.

Proposition 2.4. The solution to the initial/boundary problem (28) is given by

u(t, x) = w(t, x) +
∫ t

0
v(t, x; τ)dτ, (29)

where w(t, x) is the solution to the homogeneous problem
wtt(t, x) + Lw(t, x) + α(x)wt(t, x) = 0, (t, x) ∈ (0,∞) × (0, 1),
w(0, x) = u0(x), wt(0, x) = u1(x), x ∈ (0, 1),
w(t, 0) = w(t, 1) = 0, t ∈ (0,∞),

(30)

and for fixed τ ∈ (0,∞), v(t, x; τ) solves the auxiliary problem
vtt(t, x; τ) + Lv(t, x; τ) + a(x)vt(t, x; τ) = 0, (t, x) ∈ (τ,∞) × (0, 1),
v(τ, x; τ) = 0, vt(τ, x; τ) = f (τ, x), x ∈ (0, 1),
v(t, 0; τ) = v(t, 1; τ) = 0, t ∈ (τ,∞).

(31)

Proof. Firstly, we apply ∂t to u in (29). We get

∂tu(t, x) = ∂tw(t, x) +
∫ t

0
∂tv(t, x; τ)dτ, (32)

where we used the fact that v(t, x; t) = 0 coming from the initial condition in (31). We differentiate again
(32) with respect to t having in mind that ∂tv(t, x; t) = f (t, x), we get

∂ttu(t, x) = ∂ttw(t, x) + f (t, x) +
∫ t

0
∂ttv(t, x; τ)dτ. (33)

Now, the operator L when applied to u in (29) gives

Lu(t, x) = Lw(t, x) +
∫ t

0
Lv(t, x; τ)dτ. (34)
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Multiplying (32) by a(x) yields

a(x)∂tu(t, x) = a(x)∂tw(t, x) +
∫ t

0
a(x)∂tv(t, x; τ)dτ. (35)

Combining (33), (34) and (35) and taking into consideration that w and v are the solutions to (30) and (31),
we arrive at

utt(t, x) + a(x)ut(t, x) + Lu(t, x) = f (t, x).

Noting that u(0, x) = w(0, x) = u0(x) from (29) and that ut(0, x) = ∂tw(0, x) = u1(x) from (32) and that from
(29), the boundary conditions u(t, 0) = u(t, 1) = 0 are satisfied concludes the proof.

Remark 2.5. We should highlight here that Duhamel’s principle applies to weak solutions. This is due to the fact
that the principle involves linearity and superposition, both of which hold in the weak formulation. Moreover, in our
case we understand derivatives with respect to time as classical derivatives, and derivatives with respect to the spatial
variable in the weak sense. Furthermore, in Sections 4 and 5, Duhamel’s principle will often be applied at the level of
regularisation, that is, for smooth solutions.

3. Classical case: Energy estimates

In this section, we consider the case when the real potential q and the equation coefficients a and b are
regular functions. We also assume that s ≥ 0. In this case, we obtain the well-posedness in the Sobolev
spaces Ws

L
(0, 1) associated to the operatorLs. We start by proving the well-posedness of our initial/boudary

problem (1)-(3) in the case when a, b ≡ 0. That is, for the equation

∂2
t u(t, x) +Lsu(t, x) = 0, (t, x) ∈ [0,T] × (0, 1), (36)

with initial conditions

u(0, x) = u0(x), ∂tu(0, x) = u1(x), x ∈ (0, 1), (37)

and Dirichlet boundary conditions

u(t, 0) = u(t, 1) = 0, t ∈ [0,T], (38)

where Ls is defined as in Definition 2.1.

Theorem 3.1. Assume that q ∈ L∞(0, 1) is real. For any s ≥ 0, if the initial data satisfy (u0, u1) ∈Ws
L

(0, 1)×L2(0, 1),
then the equation (36) with the initial/boundary conditions (37)-(38) has a unique solution u ∈ C([0,T],Ws

L
(0, 1)) ∩

C1([0,T],L2(0, 1)). It satisfies the estimates

∥u(t, ·)∥L2 ≲ ∥u0∥L2 + ∥u1∥W−s
L
, (39)

∥u(t, ·)∥Ws
L
≲ ∥u0∥Ws

L
+ ∥u1∥L2 , (40)

and

∥∂tu(t, ·)∥L2 ≲ ∥u0∥Ws
L

+ ∥u1∥L2 , (41)

where the constants are independent of u0, u1 and q.

Before giving the proof, one observes that the assumption q ∈ L∞(0, 1) fits with (7) since L∞(0, 1) is embedded
in L2(0, 1).
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Proof. Following the arguments in [21], we apply the technique of the separation of variables (see, e.g. [16])
to solve the equation (36) with the initial-boundary conditions (37)-(38). We look for a solution in the form

u(t, x) = T(t)X(x),

for functions T(t) and X(x) to be determined. Plugging u(t, x) = T(t)X(x) into (36), we arrive at the equation

T′′(t)X(x) +Ls (T(t)X(x)) = 0,

since the operator does not depend on t, we obtain

T′′(t)X(x) + T(t)LsX(x) = 0.

Dividing this equation by T(t)X(x), we get

T′′(t)
T(t)

=
−L

sX(x)
X(x)

= −µ, (42)

for some constant µ. Therefore, if there exists a solution u(t, x) = T(t)X(x) of the wave equation, then T(t)
and X(x) must satisfy the equations

T′′(t)
T(t)

= −µ,

L
sX(x)
X(x)

= µ,

for some constant µ. In addition, in order for u to satisfy the boundary conditions (38), we need our function
X to satisfy the boundary conditions (6). That is, we need to find a function X and a scalar µ = λs, such that

L
sX(x) = λsX(x), (43)

X(0) = X(1) = 0. (44)

The equation (43) with the boundary condition (44) has eigenvalues of the form (10) with corresponding
eigenfunctions as in (11) of the Sturm-Liouville operator L generated by the differential expression (5).

Further, we solve the left hand side of the equation (42) with respect to the independent variable t, that
is,

T′′(t) = −λsT(t), t ∈ [0,T]. (45)

It is well known ([16]) that the solution of the equation (45) with the initial conditions (37) is

Tn(t) = An cos
(√
λs

nt
)
+

1√
λs

n

Bn sin
(√
λs

nt
)
,

where

An =

1∫
0

u0(x)ϕn(x)dx, Bn =

1∫
0

u1(x)ϕn(x)dx.

Thus, the solution to (36) with the initial/boundary conditions (37)-(38) has the form

u(t, x) =
∞∑

n=1

An cos
(√
λs

nt
)
+

1√
λs

n

Bn sin
√
λs

nt

ϕn(x). (46)
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Let us prove that u ∈ C1([0,T],L2(0, 1)). By using the Cauchy-Schwarz inequality and fixed t, we can
deduce that

∥u(t, ·)∥2L2 =

1∫
0

|u(t, x)|2dx

=

1∫
0

∣∣∣∣∣∣∣
∞∑

n=1

An cos
√
λs

nt +
1√
λs

n

Bn sin
√
λs

nt

ϕn(x)

∣∣∣∣∣∣∣
2

dx

≲

1∫
0

∞∑
n=1

∣∣∣∣∣∣∣An cos
√
λs

nt +
1√
λs

n

Bn sin
√
λs

nt

∣∣∣∣∣∣∣
2

|ϕn(x)|2dx

≤

1∫
0

∞∑
n=1

|An||ϕn(x)| +
1√
λs

n

|Bn||ϕn(x)|

2

dx

≲
∞∑

n=1


1∫

0

|An|
2
|ϕn(x)|2dx +

1∫
0

∣∣∣∣∣∣∣ Bn√
λs

n

∣∣∣∣∣∣∣
2

|ϕn(x)|2dx

 . (47)

By using Parseval’s identity, we get

∞∑
n=1

1∫
0

|An|
2
|ϕn(x)|2dx =

∞∑
n=1

|An|
2 =

1∫
0

|u0(x)|2dx = ∥u0∥
2
L2 .

For the second term in (47), using the properties of the eigenvalues of the operatorL and Parseval’s identity
again, we obtain the following estimate

∞∑
n=1

1∫
0

∣∣∣∣∣∣∣ Bn√
λs

n

∣∣∣∣∣∣∣
2

|ϕn(x)|2dx =

∞∑
n=1

∣∣∣∣∣∣∣ Bn√
λs

n

∣∣∣∣∣∣∣
2

=

∞∑
n=1

∣∣∣∣∣∣∣∣
1∫

0

1√
λs

n

u1(x)ϕn(x)dx

∣∣∣∣∣∣∣∣
2

=

∞∑
n=1

∣∣∣∣∣∣∣∣
1∫

0

L
−

s
2 u1(x)ϕn(x)dx

∣∣∣∣∣∣∣∣
2

=

∞∑
n=1

∣∣∣L− s
2 u1,n

∣∣∣2 = ∥L− s
2 u1∥

2
L2
= ∥u1∥

2
W−s
L

. (48)

Therefore
∥u(t, ·)∥2L2 ≲ ∥u0∥

2
L2 + ∥u1∥

2
W−s
L

.

Now, let us estimate ∥∂tu(t, ·)∥L2 . We have

∥∂tu(t, ·)∥2L2 =

1∫
0

|∂tu(t, x)|2dt

=

1∫
0

∣∣∣∣∣∣∣
∞∑

n=1

−√
λs

nAn sin
(√
λs

nt
)
+

1√
λs

n

√
λs

nBn cos
√
λs

nt

ϕn(x)

∣∣∣∣∣∣∣
2

dx
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≲

1∫
0

 ∞∑
n=1

|

√
λs

nAn|
2 +

∞∑
n=1

|Bn|
2

 |ϕn(x)|2dx

=

∞∑
n=1

|

√
λs

nAn|
2 +

∞∑
n=1

|Bn|
2. (49)

The second term in (49) gives the norm of ∥u1∥
2
L2 by Parseval’s identity. Now, since λn are eigenvalues and

ϕn(x) are eigenfunctions of the operator L, we have that

∞∑
n=1

|

√
λs

nAn|
2 =

∞∑
n=1

∣∣∣∣∣∣∣∣
√
λs

n

1∫
0

u0(x)ϕn(x)dx

∣∣∣∣∣∣∣∣
2

=

∞∑
n=1

∣∣∣∣∣∣∣∣
1∫

0

√
λs

nu0(x)ϕn(x)dx

∣∣∣∣∣∣∣∣
2

=

∞∑
n=1

∣∣∣∣∣∣∣∣
1∫

0

L
s
2 u0(x)ϕn(x)dx

∣∣∣∣∣∣∣∣
2

. (50)

It follows from Parseval’s identity that

∞∑
n=1

∣∣∣∣∣∣∣∣
1∫

0

L
s
2 u0(x)ϕn(x)dx

∣∣∣∣∣∣∣∣
2

= ∥L
s
2 u0∥

2
L2 = ∥u0∥

2
Ws
L

. (51)

Thus,
∥∂tu(t, ·)∥2L2 ≲ ∥u0∥

2
Ws
L

+ ∥u1∥
2
L2 .

The proof of Theorem 3.1 is then complete.

In the case when s = 1, the above estimates can be expressed in terms of all appearing coefficients. This
will be needed later on, when the coefficients and data are singular. Let s = 1. Then the equation (36) with
initial/boundary conditions (37)-(38) goes to the explicit form

∂2
t u(t, x) − ∂2

xu(t, x) + q(x)u(t, x) = 0, (t, x) ∈ [0,T] × (0, 1),
u(0, x) = u0(x), ∂tu(0, x) = u1(x), x ∈ (0, 1),
u(t, 0) = u(t, 1) = 0, t ∈ [0,T].

(52)

Corollary 3.2. Let q ∈ L∞(0, 1) be real, and assume that u0 ∈ L2(0, 1) such that u′′0 ∈ L2(0, 1) and that u1 ∈ L2(0, 1).
Then the problem (52) has a unique solution u ∈ C([0,T],L2(0, 1)) which satisfies the estimates

∥u(t, ·)∥L2 ≲ ∥u0∥L2 + ∥u1∥L2 , (53)

and

∥∂tu(t, ·)∥L2 ≲ ∥u′′0 ∥L2 + ∥q∥L∞∥u0∥L2 + ∥u1∥L2 , (54)

uniformly in t ∈ [0,T].

Proof. By using the inequality (47) for s = 1, we get

∥u(t, ·)∥2L2 ≲
∞∑

n=1


1∫

0

|An|
2
|ϕn(x)|2dx +

1∫
0

∣∣∣∣∣∣ Bn
√
λn

∣∣∣∣∣∣2 |ϕn(x)|2dx

 . (55)
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According to (10), we have that λn > 1 for n = 1, . . . , thus

1∫
0

∣∣∣∣∣∣ Bn
√
λn

∣∣∣∣∣∣2 |ϕn(x)|2dx ≤

1∫
0

|Bn|
2
|ϕn(x)|2dx. (56)

By using Parseval’s identity for (55) and taking into account the last inequality, we get

∥u(t, ·)∥2L2 ≲
∞∑

n=1

(
|An|

2 + |Bn|
2
)
= ∥u0∥

2
L2 + ∥u1∥

2
L2 ,

implying (53). Now, from (49) we have that

∥∂tu(t, ·)∥2L2 ≲

1∫
0

 ∞∑
n=1

|

√
λnAn|

2 +

∞∑
n=1

|Bn|
2

 dx.

The second term of this sum gives the norm of ∥u1∥
2
L2 by Parseval’s identity. Since λn, for n = 1, . . . , are

eigenvalues of the operator L, we obtain

∞∑
n=1

|

√
λnAn|

2 =

∞∑
n=1

∣∣∣∣∣∣∣∣
√
λn

1∫
0

u0(x)ϕn(x)dx

∣∣∣∣∣∣∣∣
2

≤

∞∑
n=1

∣∣∣∣∣∣∣∣
1∫

0

λnu0(x)ϕn(x)dx

∣∣∣∣∣∣∣∣
2

=

∞∑
n=1

∣∣∣∣∣∣∣∣
1∫

0

(
−u′′0 (x) + q(x)u0(x)

)
ϕn(x)dx

∣∣∣∣∣∣∣∣
2

≲
∞∑

n=1

∣∣∣∣∣∣∣∣
1∫

0

u′′0 (x)ϕn(x)dx

∣∣∣∣∣∣∣∣
2

+

∞∑
n=1

∣∣∣∣∣∣∣∣
1∫

0

q(x)u0(x)ϕn(x)dx

∣∣∣∣∣∣∣∣
2

.

Again, using Parseval’s identity for the second term and using that q ∈ L∞, we get

∞∑
n=1

∣∣∣∣∣∣∣∣
1∫

0

q(x)u0(x)ϕn(x)dx

∣∣∣∣∣∣∣∣
2

=

∞∑
n=1

∣∣∣⟨(qu0), ϕn⟩
∣∣∣2 = ∥qu0∥

2
L2 ≤ ∥q∥2L∞∥u0∥

2
L2 .

Similarly for the first term, we get

∞∑
n=1

∣∣∣∣∣∣∣∣
1∫

0

u′′0 (x)ϕn(x)dx

∣∣∣∣∣∣∣∣
2

=

∞∑
n=1

|u′′0,n|
2 = ∥u′′0 ∥

2
L2 ,

therefore
∞∑

n=1

|

√
λnAn|

2 ≲ ∥u′′0 ∥
2
L2 + ∥q∥2L∞∥u0∥

2
L2 . (57)

Thus,
∥∂tu(t, ·)∥2L2 ≲ ∥u′′0 ∥

2
L2 + ∥q∥2L∞∥u0∥

2
L2 + ∥u1∥

2
L2 .

This completes the proof.
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Now we consider the case when a, b . 0. That is, we consider the problem
∂2

t u(t, x) +Lsu(t, x) + a(x)u(t, x) + b(x)ut(t, x) = 0, (t, x) ∈ [0,T] × (0, 1),
u(0, x) = u0(x), ut(0, x) = u1(x),
u(t, 0) = u(t, 1) = 0, t ∈ [0,T].

(58)

Theorem 3.3. Let T > 0 and s ≥ 0. Assume a, b ∈ L∞(0, 1) to be non-negative, and q ∈ L∞(0, 1) is real, and let
u0 ∈Ws

L
(0, 1) and u1 ∈ L2(0, 1). Then, there exists a unique solution u ∈ C([0,T]; Ws

L
(0, 1)) ∩ C1([0,T]; L2(0, 1)) to

the problem (58) and it satisfies the estimates{
∥u(t, ·)∥L2 ,∥L

s
2 u(t, ·)∥L2 , ∥ut(t, ·)∥L2

}
≲ (59)

(1 + ∥a∥L∞ + ∥b∥L∞ )
[
∥u0∥Ws

L
+ ∥u1∥L2

]
.

Proof. By multiplying the equation in (58) by ut and integrating with respect to the variable x over [0, 1], we
get

⟨utt(t, ·),ut(t, ·)⟩L2 + ⟨Lsu(t, ·),ut(t, ·)⟩L2 + ⟨a(·)u(t, ·),ut(t, ·)⟩L2 + ⟨b(·)ut(t, ·),ut(t, ·)⟩L2 = 0. (60)

It is easy to see that

⟨utt(t, ·),ut(t, ·)⟩L2 =
1
2
∂t⟨ut(t, ·),ut(t, ·)⟩L2 =

1
2
∂t∥ut(t, ·)∥2L2 , (61)

and since the fractional Sturm-Liouville operator is self-adjoint (see Proposition 2.2) and by the use of the
semi-group property (20), we get

⟨L
su(t, ·),ut(t, ·)⟩L2 =

1
2
∂t⟨L

s
2 u(t, ·),L

s
2 ut(t, ·)⟩L2 (62)

=
1
2
∂t∥L

s
2 u(t, ·)∥2L2 .

Moreover, we have

⟨a(·)u(t, ·),ut(t, ·)⟩L2 =
1
2
∂t∥a

1
2 (·)u(t, ·)∥2L2 , (63)

and

⟨b(·)ut(t, ·),ut(t, ·)⟩L2 = ∥b
1
2 (·)ut(t, ·)∥2L2 . (64)

By substituting all these terms in (60) we arrive at

∂t

[
∥ut(t, ·)∥2L2 + ∥L

s
2 u(t, ·)∥2L2 + ∥a

1
2 (·)u(t, ·)∥2L2

]
= −2∥b

1
2 (·)ut(t, ·)∥2L2 . (65)

By denoting

E(t) := ∥ut(t, ·)∥2L2 + ∥L
s
2 u(t, ·)∥2L2 + ∥a

1
2 (·)u(t, ·)∥2L2 , (66)

it follows that the functional E(t) is decreasing over [0, 1] and thus we have E(t) ≤ E(0), for all t ∈ [0,T]. We
get the estimates

∥ut(t, ·)∥2L2 ≲ ∥u1∥
2
L2 + ∥L

s
2 u0∥

2
L2 + ∥a

1
2 u0∥

2
L2 (67)

≲ ∥u1∥
2
L2 + ∥u0∥

2
Ws
L

+ ∥a∥L∞∥u0∥
2
L2 ,
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and similarly

∥L
s
2 u(t, ·)∥2L2 ≲ ∥u1∥

2
L2 + ∥u0∥

2
Ws
L

+ ∥a∥L∞∥u0∥
2
L2 , (68)

and

∥a
1
2 (·)u(t, ·)∥2L2 ≲ ∥u1∥

2
L2 + ∥u0∥

2
Ws
L

+ ∥a∥L∞∥u0∥
2
L2 . (69)

To estimate the solution u, we proceed as follows. We rewrite the equation in (58) as

∂2
t u(t, x) +Lsu(t, x) = f (t, x), (t, x) ∈ [0,T] × (0, 1), (70)

where

f (t, x) := −a(x)u(t, x) − b(x)ut(t, x),

and we apply Duhamel’s principle. According to Proposition 2.4, the solution to (70) has the representation

u(t, x) = w(t, x) +
∫ t

0
v(t, x; τ)dτ, (71)

where w(t, x) is the solution to the homogeneous problem
wtt(t, x) +Lsw(t, x) = 0, (t, x) ∈ [0,T] × (0, 1),
w(0, x) = u0(x), wt(0, x) = u1(x), x ∈ (0, 1),
w(t, 0) = w(t, 1) = 0, t ∈ [0,T].

(72)

and v(t, x; s) solves
vtt(t, x; τ) +Lsv(t, x; τ) = 0, (t, x) ∈ (τ,T) × (0, 1),
v(τ, x; τ) = 0, vt(τ, x; τ) = f (τ, x), x ∈ (0, 1),
v(t, 0; τ) = v(t, 1; τ) = 0, t ∈ [0,T].

(73)

Taking the L2 norm in (71) gives

∥u(t, ·)∥L2 ≤ ∥w(t, ·)∥L2 +

∫ t

0
∥v(t, ·; τ)∥L2 dτ, (74)

where we used Minkowski’s integral inequality. The terms on the right hand side can be estimated as
follows:

∥w(t, ·)∥L2 ≲ ∥u0∥L2 + ∥u1∥W−s
L
, (75)

which follows from (39) since w is the solution to the homogeneous problem and still by (39), the second
term is estimated by

∥v(t, ·; τ)∥L2 ≲ ∥ f (τ, ·)∥W−s
L

(76)

≤ ∥a(·)u(τ, ·)∥W−s
L
+ ∥b(·)ut(τ, ·)∥W−s

L

≲ ∥a(·)u(τ, ·)∥L2 + ∥b(·)ut(τ, ·)∥L2 .

The last inequality follows from the fact that from (67) we have that ut ∈ L2(0, 1), and since {ϕn}n=1,...,, the
family of eigenfunctions is an orthonormal basis in L2(0, 1), then, ut can be expanded in terms of this basis
as

ut(t, x) =
∞∑

n=1

ũt,n(t)ϕn(x), for (t, x) ∈ [0,T] × (0, 1), (77)
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where ũt,n = ⟨ut, ϕn⟩L2 for n = 1, . . . ,. It follows from (77) that ut(t, 0) = ut(t, 1) = 0 for all t ∈ [0,T], which
allows us to use Proposition 2.3 as s ≥ 0.
On the one hand we have

∥a(·)u(τ, ·)∥L2 ≤ ∥a∥
1
2
L∞∥a

1
2 (·)u(τ, ·)∥L2 (78)

≲ ∥a∥
1
2
L∞

[
∥u1∥

2
L2 + ∥u0∥

2
Ws
L

+ ∥a∥L∞∥u0∥
2
L2

] 1
2 ,

which comes from (69). On the other hand

∥b(·)ut(τ, ·)∥L2 ≤ ∥b∥L∞∥ut(τ, ·)∥L2 (79)

≲ ∥b∥L∞
[
∥u1∥

2
L2 + ∥u0∥

2
Ws
L

+ ∥a∥L∞∥u0∥
2
L2

] 1
2 .

The latter results from (67). We obtain then

∥v(t, ·; τ)∥L2 ≲ (1 + ∥a∥L∞ + ∥b∥L∞ )
[
∥u0∥L2 + ∥u0∥Ws

L
+ ∥u1∥L2

]
. (80)

We substitute (75) and (80) into (71), we get our estimate for u,

∥u(t, ·)∥L2 ≲ (1 + ∥a∥L∞ + ∥b∥L∞ )
[
∥u0∥L2 + ∥u0∥Ws

L
+ ∥u1∥L2 + ∥u1∥W−s

L

]
≲ (1 + ∥a∥L∞ + ∥b∥L∞ )

[
∥u0∥Ws

L
+ ∥u1∥L2

]
. (81)

The last estimate follows by Proposition 2.3. This completes the proof of the theorem.

In the case when s = 1, the estimates in Theorem 3.3 can be expressed in terms of all coefficients appearing
in (58), including the potential q. This removes the dependence of the estimates on L.

Corollary 3.4. Let T > 0. Assume a, b ∈ L∞(0, 1) to be non-negative, and q ∈ L∞(0, 1) is real. Let u0 ∈ L2(0, 1) be
such that u′′0 ∈ L2(0, 1), and let u1 ∈ L2(0, 1). Then, the problem

∂2
t u(t, x) +Lu(t, x) + a(x)u(t, x) + b(x)ut(t, x) = 0, (t, x) ∈ [0,T] × (0, 1),

u(0, x) = u0(x), ut(0, x) = u1(x),
u(t, 0) = u(t, 1) = 0, t ∈ [0,T],

(82)

has a unique solution u ∈ C([0,T]; W1
L

(0, 1)) ∩ C1([0,T]; L2(0, 1)) and it satisfies{
∥u(t, ·)∥L2 ,∥L

1
2 u(t, ·)∥L2 , ∥ut(t, ·)∥L2

}
≲ (83)

(1 + ∥q∥L∞ )(1 + ∥a∥L∞ )(1 + ∥b∥L∞ )
[
∥u0∥L2 + ∥u′′0 ∥L2 + ∥u1∥L2

]
.

Proof. We consider s = 1 and argue similarly as in the proof of Theorem 3.3. Firstly, we get the estimates{
∥ut(t, ·)∥L2 , ∥L

1
2 u(t, ·)∥L2 ,∥a

1
2 (·)u(t, ·)∥L2

}
(84)

≲ ∥u1∥L2 + ∥u0∥W1
L

+ ∥a∥
1
2
L∞∥u0∥L2

≲ ∥u1∥L2 + ∥u
′′

0∥L2 + ∥q∥L∞∥u0∥L2 + ∥a∥
1
2
L∞∥u0∥L2 ,

where we used that for s = 1 and by arguing as in (50) and (51), the term ∥u0∥W1
L

can be estimated by

∥u0∥
2
W1
L

= ∥L
1
2 u0∥

2
L2 =

n∑
n=1

∣∣∣∣ √λnAn

∣∣∣∣2 ≤ n∑
n=1

|λnAn|
2 = ∥Lu0∥

2
L2
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≤

(
∥u
′′

0∥L2 + ∥q∥L∞∥u0∥L2

)2
,

which is valid since λn > 1 for n = 1, 2, . . . , resulting from (10). Once again, to estimate u, we rewrite the
equation in (82) as

∂2
t u(t, x) +Lu(t, x) = f (t, x), (t, x) ∈ [0,T] × (0, 1), (85)

where

f (t, x) := −a(x)u(t, x) − b(x)ut(t, x),

and we apply Duhamel’s principle to get the following representation for the solution

u(t, x) = w(t, x) +
∫ t

0
v(t, x; τ)dτ, (86)

where w(t, x) is the solution to the homogeneous problem
wtt(t, x) +Lw(t, x) = 0, (t, x) ∈ [0,T] × (0, 1),
w(0, x) = u0(x), wt(0, x) = u1(x), x ∈ (0, 1),
w(t, 0) = w(t, 1) = 0, t ∈ [0,T].

(87)

and v(t, x; s) solves
vtt(t, x; τ) +Lv(t, x; τ) = 0, (t, x) ∈ (τ,T) × (0, 1),
v(τ, x; τ) = 0, vt(τ, x; τ) = f (τ, x), x ∈ (0, 1),
v(t, 0; τ) = v(t, 1; τ) = 0, t ∈ [0,T].

(88)

By using the estimate (53) from Corollary 3.2 to estimate w and v in combination with (84) and proceeding
as in Theorem 3.3 we easily get

∥u(t, ·)∥L2 ≲ (1 + ∥q∥L∞ )(1 + ∥a∥L∞ )(1 + ∥b∥L∞ )
[
∥u0∥L2 + ∥u′′0 ∥L2 + ∥u1∥L2

]
,

∥L
1
2 u(t, ·)∥L2 ≲ (1 + ∥q∥L∞ )(1 + ∥a∥L∞ )(1 + ∥b∥L∞ )

[
∥u0∥L2 + ∥u′′0 ∥L2 + ∥u1∥L2

]
,

and

∥ut(t, ·)∥L2 ≲ (1 + ∥q∥L∞ )(1 + ∥a∥L∞ )(1 + ∥b∥L∞ )
[
∥u0∥L2 + ∥u′′0 ∥L2 + ∥u1∥L2

]
,

ending the proof.

4. Very weak well-posedness

For s ≥ 0 and T > 0, we consider the initial/boundary problem
∂2

t u(t, x) +Lsu(t, x) + a(x)u(t, x) + b(x)ut(t, x) = 0, (t, x) ∈ [0,T] × (0, 1),
u(0, x) = u0(x), ut(0, x) = u1(x),
u(t, 0) = u(t, 1) = 0, t ∈ [0,T].

(89)

Now, we want to analyse solutions to (89) for less regular coefficients a, b, q and initial data u0,u1 having in
mind distributions. To obtain the well-posedness in such cases, we will be using the concept of very weak
solutions. To start with, for ε ∈ (0, 1] we consider families of regularised problems to (89) arising from the
regularising nets

(aε)ε = (a ∗ ψε)ε, (bε)ε = (b ∗ ψε)ε, (qε)ε = (q ∗ ψε)ε, (90)
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and

(u0,ε)ε = (u0 ∗ ψε)ε, (u1,ε)ε = (u1 ∗ ψε)ε, (91)

where ψε(x) = ε−1ψ(x/ε). The function ψ is a Friedrichs-mollifier, i.e. ψ ∈ C∞0 (Rd), ψ ≥ 0 and
∫
ψ = 1. We

introduce the following definitions.

Definition 4.1 (Moderateness). Let X be a normed space of functions on R endowed with the norm ∥ · ∥X.

1. A net of functions ( fε)ε∈(0,1] from X is said to be X-moderate, if there exist N ∈N0 such that

∥ fε∥X ≲ ε−N, (92)

and in particular
2. a net of functions ( fε)ε∈(0,1] from L2(0, 1) is said to be H2-moderate, if there exist N ∈N0 such that

∥ fε∥L2 + ∥ f ′′ε ∥L2 ≲ ε−N. (93)

3. For T > 0, s ≥ 0 and q smooth enough, a net of functions (uε(·, ·))ε∈(0,1] from C([0,T]; Ws
L

(0, 1)) ∩
C1([0,T]; L2(0, 1)) is said to be C([0,T]; Ws

L
(0, 1))∩C1([0,T]; L2(0, 1))-moderate and we shortly write uniformly

s-moderate, if there exist N ∈N0 such that

sup
t∈[0,T]

∥uε(t, ·)∥s ≲ ε−N. (94)

4. For T > 0 and s = 1. A net of functions (uε(·, ·))ε∈(0,1] from C([0,T]; W1
L

(0, 1)) ∩ C1([0,T]; L2(0, 1)) is said to
be C([0,T]; W1

L
(0, 1)) ∩ C1([0,T]; L2(0, 1))-moderate and we shortly write uniformly 1-moderate, if there exist

N ∈N0 such that

sup
t∈[0,T]

∥uε(t, ·)∥1 ≲ ε−N. (95)

Remark 4.2. We note that such assumptions are natural for distributional coefficients in the sense that regularisations
of distributions are moderate. Precisely, by the structure theorems for distributions (see, e.g. [13], [14]), we know that

D
′(0, 1) ⊂ {Lp(0, 1) −moderate families}, (96)

for any p ∈ [1,∞), which means that a solution to an initial/boundary problem may not exist in the sense of
distributions, while it may exist in the set of Lp-moderate functions.

For instance, if we consider f ∈ L2(0, 1), f : (0, 1)→ C. We define

f̃ =
{

f , on (0, 1),
0, on R \ (0, 1).

We have then f̃ : R→ C, and f̃ ∈ E′(R).
Let f̃ε = f̃ ∗ ψε be obtained via convolution of f̃ with a mollifying net ψε, where

ψε(x) =
1
ε
ψ

(x
ε

)
, for ψ ∈ C∞0 (R),

∫
ψ = 1.

Then the regularising net ( f̃ε) is Lp-moderate for any p ∈ [1,∞), and it approximates f on (0, 1):

0← ∥ f̃ε − f̃ ∥pLp(R) ≈ ∥ f̃ε − f ∥pLp(0,1) + ∥ f̃ε∥
p
Lp(R\(0,1)).

In order to prove uniqueness of very weak solutions to (89), we will need the following definition.
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Definition 4.3 (Negligibility). Let X be a normed space with the norm ∥ · ∥X. A net of functions ( fε)ε∈(0,1] from X
is said to be X-negligible, if the estimate

∥ fε∥X ≤ Ckε
k, (97)

is valid for all k > 0, where Ck may depend on k. We shortly write ∥ fε∥X ≲ εk. In particular, a net a functions
( fε)ε∈(0,1] from L2 such that ( f ′′ε )ε∈(0,1] ∈ L2(0, 1) is said to be H2-negligible, if the estimate

∥ fε∥L2 + ∥ f ′′ε ∥L2 ≤ Ckε
k, (98)

is valid for all k > 0.

Now, we are ready to introduce the notion of very weak solutions adapted to our problem. We treat two
cases. Firstly, we treat the case when s ≥ 0 and the potential q is smooth enough. We also treat the case
when s = 1 where q is allowed to be singular.

4.1. Case 1: s ≥ 0

We should mention that the reason we consider here regular potential q, lies in the fact that the estimates
obtained in Theorem 3.3 depend on L.

Definition 4.4 (Very weak solution). Let a, b,u0,u1 ∈ D
′(0, 1) be such that a, b are non-negative (in the sense of

their representatives) and assume q ∈ L∞(0, 1) is real. A net of functions (uε)ε∈(0,1] is said to be a very weak solution
to the initial/boundary problem (89) if there exist non-negative L∞-moderate regularisations (aε)ε and (bε)ε of a and
b, a Ws

L
(0, 1)-moderate regularisation (u0,ε)ε of u0 and an L2(0, 1)-moderate regularisation (u1,ε)ε of u1 such that the

family (uε)ε solves the ε-dependent problems
∂2

t uε(t, x) +Lsuε(t, x) + aε(x)uε(t, x) + bε(x)∂tuε(t, x) = 0, (t, x) ∈ [0,T] × (0, 1),
uε(0, x) = u0,ε(x), ∂tuε(0, x) = u1,ε(x), x ∈ (0, 1),
uε(t, 0) = 0 = uε(t, 1), t ∈ [0,T],

(99)

for any ε ∈ (0, 1], and (uε)ε is uniformly s-moderate.

Theorem 4.5 (Existence). Let a, b,u0,u1 and q as in Definition 4.4. Then the initial/boundary problem (89) has a
very weak solution.

Proof. Since a, b,u0,u1 are moderate, then, there exists N1,N2,N3,N4 ∈N, such that

∥aε∥L∞ ≲ ε−N1 , ∥bε∥L∞ ≲ ε−N2 ,

and

∥u0,ε∥Ws
L
≲ ε−N3 , ∥u1,ε∥L2 ≲ ε−N4 .

Using the estimate (59), we get

∥uε(t, ·)∥1 ≲ ε−max{N1,N2}−max{N3,N4},

for all t ∈ [0,T]. Thus, (uε)ε is uniformly s-moderate and the existence of a very weak solution follows,
ending the proof.

The uniqueness of the very weak solution is proved in the sense of the following definition.
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Definition 4.6 (Uniqueness of very weak solutions). We say that the initial/boundary problem (89) has a unique
very weak solution, if for any non-negative L∞-moderate nets (aε)ε, (ãε)ε, (bε)ε, (b̃ε)ε, such that (aε− ãε)ε and (bε− b̃ε)ε
are L∞-negligible; for any Ws

L
-moderate regularisations (u0,ε, ũ0,ε)ε, such that (u0,ε − ũ0,ε)ε is Ws

L
-negligible and

for any L2-moderate regularisations (u1,ε, ũ1,ε)ε, such that (u1,ε − ũ1,ε)ε is L2-negligible, we have that (uε − ũε)ε is
L2-negligible for all t ∈ [0,T], where (uε)ε and (ũε)ε are the families of solutions to the corresponding regularised
problems

∂2
t uε(t, x) +Lsuε(t, x) + aε(x)uε(t, x) + bε(x)∂tuε(t, x) = 0, (t, x) ∈ [0,T] × (0, 1),

uε(0, x) = u0,ε(x), ∂tuε(0, x) = u1,ε(x), x ∈ (0, 1),
uε(t, 0) = 0 = uε(t, 1), t ∈ [0,T],

(100)

and 
∂2

t ũε(t, x) +Lsũε(t, x) + ãε(x)ũε(t, x) + b̃ε(x)∂tũε(t, x) = 0, (t, x) ∈ [0,T] × (0, 1),
ũε(0, x) = ũ0,ε(x), ∂tũε(0, x) = ũ1,ε(x), x ∈ (0, 1),
ũε(t, 0) = 0 = ũε(t, 1), t ∈ [0,T],

(101)

respectively.

Theorem 4.7 (Uniqueness). Let a, b,u0,u1 ∈ D
′(0, 1) be such that a, b are non-negative, and assume q ∈ L∞(0, 1)

is real. In the background of Theorem 4.5, the very weak solution to the initial/boundary problem (89) is unique.

Proof. Let (uε)ε and (ũε)ε be the nets of solutions to (100) and (101) corresponding to the families of regu-
larised coefficients and initial data

(
aε, bε,u0,ε,u1,ε

)
ε

and
(
ãε, b̃ε, ũ0,ε, ũ1,ε

)
ε

respectively. Assume that the nets

(aε − ãε)ε and (bε − b̃ε)ε are L∞-negligible; (u0,ε − ũ0,ε)ε is Ws
L

-negligible and (u1,ε − ũ1,ε)ε is L2-negligible. Let
us introduce

Uε(t, x) := uε(t, x) − ũε(t, x),

then, Uε(t, x) is solution to
∂2

t Uε(t, x) +LsUε(t, x) + aε(x)Uε(t, x) + bε(x)∂tUε(t, x) = fε(t, x),
Uε(0, x) = (u0,ε − ũ0,ε)(x), ∂tUε(0, x) = (u1,ε − ũ1,ε)(x),
Uε(t, 0) = Uε(t, 1) = 0,

(102)

for (t, x) ∈ [0,T] × (0, 1), where

fε(t, x) :=
(
ãε(x) − aε(x)

)
ũε(t, x) +

(
b̃ε(x) − bε(x)

)
∂tũε(t, x).

By using Duhamel’s principle, Uε(t, x) is given by

Uε(t, x) =Wε(t, x) +
∫ t

0
Vε(t, x; τ)dτ, (103)

where Wε(t, x) is the solution to the problem
∂2

t Wε(t, x) +LsWε(t, x) + aε(x)Wε(t, x) + bε(x)∂tWε(t, x) = 0,
Wε(0, x) = (u0,ε − ũ0,ε)(x), ∂tUε(0, x) = (u1,ε − ũ1,ε)(x),
Wε(t, 0) =Wε(t, 1) = 0,

(104)

for (t, x) ∈ [0,T] × (0, 1), and Vε(t, x; s) solves
∂2

t Vε(t, x; τ) +LsVε(t, x; τ) + aε(x)Vε(t, x; τ) + bε(x)∂tVε(t, x; τ) = 0,
Vε(τ, x; τ) = 0, ∂tVε(τ, x; τ) = fε(τ, x),
Vε(t, 0; τ) = Vε(t, 1; τ) = 0,

(105)
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for (t, x) ∈ [τ,T] × (0, 1) and s ∈ [0,T]. By taking the L2-norm in both sides in (103) we get

∥Uε(t, ·)∥L2 ≤ ∥Wε(t, ·)∥L2 +

∫ t

0
∥Vε(t, ·; τ)∥L2 dτ. (106)

Using (59) to estimate ∥Wε(t, ·)∥L2 and ∥Vε(t, ·; τ)∥L2 , we get

∥Wε(t, ·)∥L2 ≲
(
1 + ∥aε∥L∞ + ∥bε∥L∞

)[
∥u0,ε − ũ0,ε∥Ws

L
+ ∥u1,ε − ũ1,ε∥L2

]
,

and

∥Vε(t, ·; τ)∥L2 ≲
(
1 + ∥aε∥L∞ + ∥bε∥L∞

)[
∥ fε(τ, ·)∥L2

]
.

It follows from (106) that

∥Uε(t, ·)∥L2 ≲
(
1 + ∥aε∥L∞ + ∥bε∥L∞

)[
∥u0,ε − ũ0,ε∥Ws

L
+ ∥u1,ε − ũ1,ε∥L2 +

∫ T

0
∥ fε(τ, ·)∥L2 dτ

]
, (107)

since t ∈ [0,T]. Let us estimate ∥ fε(τ, ·)∥L2 . We have,

∥ fε(τ, ·)∥L2 ≤ ∥(ãε(·) − aε(·))ũε(τ, ·)∥L2 + ∥(b̃ε(·) − bε(·))∂tũε(τ, ·)∥L2 (108)

≲ ∥ãε − aε∥L∞∥ũε(τ, ·)∥L2 + ∥b̃ε − bε∥L∞∥∂tũε(τ, ·)∥L2 .

Thus, we get

∥Uε(t, ·)∥L2 ≲
(
1 + ∥aε∥L∞ + ∥bε∥L∞

)[
∥u0,ε − ũ0,ε∥Ws

L
+ ∥u1,ε − ũ1,ε∥L2 (109)

+ ∥ãε − aε∥L∞
∫ T

0
∥ũε(τ, ·)∥L2 dτ + ∥b̃ε − bε∥L∞

∫ T

0
∥∂tũε(τ, ·)∥L2 dτ

]
.

Now, using the fact that (aε)ε and (bε)ε are L∞-moderate by assumption, and that the net (ũε)ε is uniformly
s-moderate being a very weak solution to (89) this on one hand and from the other hand that the nets
(aε − ãε)ε and (bε − b̃ε)ε are L∞-negligible; (u0,ε − ũ0,ε)ε is Ws

L
-negligible and (u1,ε − ũ1,ε)ε is L2-negligible, it

follows from (109) that

∥Uε(t, ·)∥L2 ≲ εk,

for all k > 0. This completes the proof.

4.2. Case 2: s = 1
In this case, the energy estimates obtained in Theorem 3.3 are expressed in terms of all appearing

coefficients and initial data including the potential q as it was shown in Corollary 3.4. this allows us to
consider singular potentials. So, the problem to be analysed here is the initial/boundary problem

∂2
t u(t, x) +Lqu(t, x) + +a(x)u(t, x) + b(x)ut(t, x) = 0, (t, x) ∈ [0,T] × (0, 1),

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ (0, 1),
u(t, 0) = u(t, 1) = 0, t ∈ [0,T],

(110)

where

Lqu(t, x) := −∂2
xu(t, x) + q(x)u(t, x). (111)

Here, the coefficients a, b and the initial data u0,u1 together with the potential q are assumed to be distribu-
tions on (0, 1). Let us first adapt our previous definitions to this case.
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Definition 4.8 (Very weak solution). Let a, b, q,u0,u1 ∈ D
′(0, 1) be such that a, b are non-negative and assume

that q ∈ L∞(0, 1) is real. A net of functions (uε)ε∈(0,1] is said to be a very weak solution to the initial/boundary problem
(110) if there exist non-negative L∞-moderate regularisations (aε)ε, (bε)ε of a, b, and (qε)ε of q, an H2-moderate
regularisation (u0,ε)ε of u0 and an L2-moderate regularisation (u1,ε)ε of u1 such that the family (uε)ε solves the
ε-dependent problems

∂2
t uε(t, x) +Lqεuε(t, x) + aε(x)uε(t, x) + bε(x)∂tuε(t, x) = 0, (t, x) ∈ [0,T] × (0, 1),

uε(0, x) = u0,ε(x), ∂tuε(0, x) = u1,ε(x), x ∈ (0, 1),
uε(t, 0) = 0 = uε(t, 1), t ∈ [0,T],

(112)

for any ε ∈ (0, 1] and (uε)ε is 1-moderate.

Theorem 4.9 (Existence). Let a, b, q,u0,u1 be as in Definition 4.8. Assume that there exist non-negative L∞-
moderate regularisations (aε)ε, (bε)ε of a, b, and (qε)ε of q, an H2-moderate regularisation (u0,ε)ε of u0 and an
L2-moderate regularisation (u1,ε)ε of u1. Then, the initial/boundary problem (110) has a very weak solution.

Proof. Since a, b, q,u0,u1 are moderate, this means that there exists N1,N2,N3,N4,N5 ∈N, such that

∥aε∥L∞ ≲ ε−N1 , ∥bε∥L∞ ≲ ε−N2 , ∥qε∥L∞ ≲ ε−N3 ,

and

∥u0,ε∥L2 + ∥u′′0,ε∥L2 ≲ ε−N4 , ∥u1,ε∥L2 ≲ ε−N5 .

From (83), we have

∥uε(t, ·)∥1 = ∥uε(t, ·)∥L2 + ∥L
1
2 uε(t, ·)∥L2 + ∥ut,ε(t, ·)∥L2

≲ (1 + ∥qε∥L∞ )(1 + ∥aε∥L∞ )(1 + ∥bε∥L∞ )
[
∥u0,ε∥L2 + ∥u′′0,ε∥L2 + ∥u1,ε∥L2

]
≲ (1 + ε−N3 )(1 + ε−N1 )(1 + ε−N2 )

[
ε−N4 + ε−N5

]
≲ ε−max{N1,N2,N3}−max{N4,N5},

for all t ∈ [0,T]. Thus, (uε)ε is C1-moderate and the existence of a very weak solution follows.

In order to prove the uniqueness of the very weak solution in the case when s = 1, we need to adapt
Definition 4.6 to this case. The definition reads,

Definition 4.10 (Uniqueness of very weak solutions). We say that the initial/boundary problem (110) has a
unique very weak solution, if for any non-negative L∞-moderate nets (aε)ε, (ãε)ε, (bε)ε, (b̃ε)ε, and real (qε)ε, (q̃ε)ε,
such that (aε − ãε)ε, (bε − b̃ε)ε and (qε − q̃ε)ε are L∞-negligible; for any H2-moderate regularisations (u0,ε, ũ0,ε)ε
such that (u0,ε − ũ0,ε)ε is H2-negligible and for any L2-moderate regularisations (u1,ε, ũ1,ε)ε, such that (u1,ε − ũ1,ε)ε
is L2-negligible, we have that (uε − ũε)ε is L2-negligible for all t ∈ [0,T], where (uε)ε and (ũε)ε are the families of
solutions to the corresponding regularised problems

∂2
t uε(t, x) +Lqεuε(t, x) + aε(x)uε(t, x) + bε(x)∂tuε(t, x) = 0, (t, x) ∈ [0,T] × (0, 1),

uε(0, x) = u0,ε(x), ∂tuε(0, x) = u1,ε(x), x ∈ (0, 1),
uε(t, 0) = 0 = uε(t, 1), t ∈ [0,T],

(113)

and 
∂2

t ũε(t, x) +Lq̃ε ũε(t, x) + ãε(x)ũε(t, x) + b̃ε(x)∂tũε(t, x) = 0, (t, x) ∈ [0,T] × (0, 1),
ũε(0, x) = ũ0,ε(x), ∂tũε(0, x) = ũ1,ε(x), x ∈ (0, 1),
ũε(t, 0) = 0 = ũε(t, 1), t ∈ [0,T],

(114)

respectively.
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Theorem 4.11 (Uniqueness). Let a, b, q,u0,u1 ∈ D
′(0, 1). Under the assumptions of of Theorem 4.9, the very weak

solution to the initial/boundary problem (110) is unique.

Proof. Let (uε)ε and (ũε)ε be the nets of solutions to (113) and (114) corresponding to the families of reg-
ularised coefficients and initial data

(
aε, bε, qε,u0,ε,u1,ε

)
ε

and
(
ãε, b̃ε, q̃ε, ũ0,ε, ũ1,ε

)
ε

respectively. Assume that

the nets (aε − ãε)ε, (bε − b̃ε)ε and (qε − q̃ε)ε are L∞-negligible; (u0,ε − ũ0,ε)ε is H2-negligible and (u1,ε − ũ1,ε)ε is
L2-negligible. Then, (Uε(t, x))ε := (uε(t, x) − ũε(t, x))ε is solution to

{ ∂2
t Uε(t, x) +LqεUε(t, x) + aε(x)Uε(t, x) + bε(x)∂tUε(t, x) = fε(t, x),

Uε(0, x) = (u0,ε − ũ0,ε)(x), ∂tUε(0, x) = (u1,ε − ũ1,ε)(x),
Uε(t, 0) = Uε(t, 1) = 0,

(115)

for (t, x) ∈ [0,T] × (0, 1)), where,

fε(t, x) :=
[(

ãε(x) − aε(x)
)
+

(
q̃ε(x) − qε(x)

)]
ũε(t, x) +

(
b̃ε(x) − bε(x)

)
∂tũε(t, x).

Thanks to Duhamel’s principle, Uε(t, x) can be represented as

Uε(t, x) =Wε(t, x) +
∫ t

0
Vε(t, x; τ)dτ, (116)

where Wε(t, x) is the solution to the problem

{ ∂2
t Wε(t, x) +LqεWε(t, x) + aε(x)Wε(t, x) + bε(x)∂tWε(t, x) = 0,

Wε(0, x) = (u0,ε − ũ0,ε)(x), ∂tUε(0, x) = (u1,ε − ũ1,ε)(x),
Wε(t, 0) =Wε(t, 1) = 0,

(117)

for (t, x) ∈ [0,T] × (0, 1), and Vε(t, x; τ) solves

{ ∂2
t Vε(t, x; τ) +LqεVε(t, x; τ) + aε(x)Vε(t, x; τ) + bε(x)∂tVε(t, x; τ) = 0,

Vε(τ, x; τ) = 0, ∂tVε(τ, x; τ) = fε(τ, x),
Vε(t, 0; τ) = Vε(t, 1; τ) = 0,

(118)

for (t, x) ∈ [τ,T] × (0, 1) and τ ∈ [0,T]. Using the estimate (83) and reasoning similarly as in the proof of
Theorem 4.7, we arrive at

∥Uε(t, ·)∥L2 ≲
(
1 + ∥aε∥L∞

)(
1 + ∥bε∥L∞

)(
1 + ∥bε∥L∞

)[
∥u0,ε − ũ0,ε∥L2 (119)

+ ∥u′′0,ε − ũ′′0,ε∥L2 + ∥u1,ε − ũ1,ε∥L2 +

∫ T

0
∥ fε(τ, ·)∥L2 dτ

]
, (120)

and we easily show that ∥ fε(τ, ·)∥L2 can be estimated by

∥ fε(τ, ·)∥L2 ≤

(
∥ãε − aε∥L∞ + ∥q̃ε − qε∥L∞

)
∥ũε(τ, ·)∥L2 + ∥b̃ε − bε∥L∞∥∂tũε(τ, ·)∥L2 . (121)

Combining (119) and (121) and using the moderateness and negligibility assumptions, one can easily see
that

∥Uε(t, ·)∥L2 ≲ εk,

for all k > 0 and t ∈ [0,T], showing the uniqueness of the very weak solution.
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5. Consistency with classical theory

We conclude this article with the important question of proving that the classical solutions to the
initial/boundary problem (1), as given in Theorem 3.3 and Corollary 3.4, can be recaptured by the very
weak solutions as ε→ 0. We prove the following theorems in both cases: the case when s ≥ 0 and the case
when s = 1.

Theorem 5.1 (Consistency, case: s ≥ 0). Let T > 0 and s ≥ 0. Assume a, b ∈ L∞(0, 1) to be non-negative and
q ∈ L∞(0, 1) is real and let u0 ∈ Ws

L
(0, 1) and u1 ∈ L2(0, 1), in such way that a classical solution to (1) exists. Then,

for any regularising families (aε)ε, (bε)ε for the equation coefficients, satisfying

∥aε − a∥L∞ → 0 and ∥bε − b∥L∞ → 0, as ε→ 0, (122)

and any regularising families (u0,ε)ε and (u1,ε)ε for the initial data, satisfying

∥u0,ε − u0∥Ws
L
→ 0 and ∥u1,ε − u1∥L2 → 0 as ε→ 0, (123)

the net (uε)ε converges to the classical solution of the initial/boundary problem (1) in L2 as ε→ 0.

Proof. Let u be the classical solution to (1) and (uε)ε its very weak solution. Then, for ε ∈ (0, 1], Uε(t, x) :=
uε(t, x) − u(t, x) is solution to

∂2
t Uε(t, x) +LsUε(t, x) + aε(x)Uε(t, x) + bε(x)∂tUε(t, x) = fε(t, x),

Uε(0, x) = (u0,ε − u0)(x), ∂tUε(0, x) = (u1,ε − u1)(x),
Uε(t, 0) = Uε(t, 1) = 0,

(124)

where (t, x) ∈ [0,T] × (0, 1) and

fε(t, x) := −
(
aε(x) − a(x)

)
u(t, x) −

(
bε(x) − b(x)

)
∂tu(t, x).

By arguing as we did in Theorem 4.7, we obtain

∥Uε(t, ·)∥L2 ≲
(
1 + ∥aε∥L∞ + ∥bε∥L∞

)[
∥u0,ε − u0∥Ws

L
+ ∥u1,ε − u1∥L2 (125)

+ ∥aε − a∥L∞
∫ T

0
∥u(τ, ·)∥L2 dτ + ∥bε − b∥L∞

∫ T

0
∥∂tu(τ, ·)∥L2 dτ

]
,

uniformly in t ∈ [0,T]. Since

∥aε − a∥L∞ → 0, ∥bε − b∥L∞ → 0, ∥u0,ε − u0∥Ws
L
→ 0 and ∥u1,ε − u1∥L2 → 0

as ε→ 0 by assumption and the terms ∥aε∥L∞ , ∥bε∥L∞ , ∥u(τ, ·)∥L2 and ∥∂tu(τ, ·)∥L2 are bounded, it follows that

∥Uε(t, ·)∥L2 → 0, as ε→ 0,

uniformly in t ∈ [0,T]. This completes the proof of Theorem 5.1.

In the case when s = 1, the consistency theorem reads as following.

Theorem 5.2 (Consistency, case: s = 1). Let T > 0. Assume a, b ∈ L∞(0, 1) to be non-negative and that q ∈
L∞(0, 1) is real. Let u0 ∈ L2(0, 1) such that u′′0 ∈ L2(0, 1) and u1 ∈ L2(0, 1), in such way that a classical solution to
(1) exists. Then, for any regularising families (aε)ε, (bε)ε and (qε)ε for the equation coefficients, satisfying

∥aε − a∥L∞ → 0, ∥bε − b∥L∞ → 0 and ∥qε − q∥L∞ → 0, as ε→ 0, (126)

and any regularising families (u0,ε)ε and (u1,ε)ε for the initial data, the net (uε)ε converges to the classical solution of
the initial/boundary problem (1) in L2 as ε→ 0.
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Proof. For u being the classical solution to (1) and (uε)ε the very weak solution, by reasoning as in Theorem
5.1, we obtain

∥Uε(t, ·)∥L2 ≲
(
1 + ∥aε∥L∞

)(
1 + ∥bε∥L∞

)(
1 + ∥bε∥L∞

)[
∥u0,ε − u0∥L2 + ∥u′′0,ε − u′′0 ∥L2

+ ∥u1,ε − u1∥L2 +
(
∥aε − a∥L∞ + ∥qε − q∥L∞

) ∫ T

0
∥u(τ, ·)∥L2 dτ

+ ∥bε − b∥L∞
∫ T

0
∥∂tu(τ, ·)∥L2 dτ

]
.

It follows from assumptions and that

∥u0,ε − u0∥L2 → 0, ∥u′′0,ε − u′′0 ∥L2 → 0 and ∥u1,ε − u1∥L2 → 0 as ε→ 0,

and u being the classical solution to (1) that

∥Uε(t, ·)∥L2 → 0, as ε→ 0,

uniformly in t ∈ [0,T], ending the proof.
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