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Abstract. The paper presents a novel iterative algorithm named CSAIA, which aims at finding common
fixed points in CAT(0) space using quasi non-expansive mappings along with property (E). Also, we
establish lemmas and theorems with the help of this algorithm and have demonstrated △-convergence to
a common fixed point for two operators D and C in CAT(0) space. Furthermore, the paper includes a
numerical example to support the main results.

1. Introduction

In mathematical analysis and applied mathematics, fixed point theory, approximation, and iterative
techniques are closely related fields. The idea behind fixed point theory is that, under specific circumstances,
a function f will have at least one fixed point, or a point where f (x) = x. Furthermore, a common fixed point
is defined as a point x where, given appropriate circumstances, f (x) = 1(x) = x when two functions f and
1 are taken into consideration. The idea is fundamental to both pure and practical contexts, particularly
when developing numerical techniques for problem-solving. By producing a sequence that converges
to the intended solution, iterative techniques, like the Banach contraction principle, are frequently used
to approach fixed points. These sequences are particularly useful in computational mathematics and
algorithm design because they are built so that the solution gets closer to the fixed point with each successive
approximation (See [18–20]). Strong tools for resolving nonlinear equations, evaluating dynamical systems,
and optimizing functions in both theoretical and real-world contexts are made possible by the combination
of these ideas.

A metric space (W, d) is a CAT(0) space in which a geodesic path (shortest distance between points) will
connect every pair of points, and if each geodesic triangle inW has a minimum thickness equal to that of its
corresponding triangle in Euclidean space. This means for all a′, b′ points on the sides of the triangle inW
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such that d(a′, b′) ≤ d(c′, d′) where c′, d′ are corresponding points on the comparison triangle in Euclidean
space. Some examples of CAT(0) space are all pre-Hilbert spaces, hyperbolic spacesHn or R-trees.

After being first proposed by Alexandrov in the 1950s, CAT(0) spaces gained recognition when M.
Gromov demonstrated that a significant portion of the theory of manifolds with non-positive sectional
curvature could be built without employing far more than the condition of CAT(0) [2, 11]. There are various
fields in which the CAT(0) space plays a role. Some of them are geometric group theory, non-linear analysis,
and fixed point theory (uniformly convex), Banach spaces [3, 4, 12, 14, 15], and also provide a framework
for defining △-convergence.

2. Preliminaries

Some important features of CAT(0) spaces are included in the following lemma, which will be utilized
later to support the main results of this study:

Lemma 2.1. The characteristics listed below correspond to a given CAT(0) space (W, d).

(a) Consider ǎ and b̌ of W and l ∈ [0, 1], where there exists a unique point ř ∈ [ǎ, b̌] for every l such that
d(ǎ, ř) = ld(ǎ, b̌) and d(b̌, ř) = (1 − l)d(ǎ, b̌) ([6]). We continue further by representing this unique point as
(1 − l)ǎ ⊕ lb̌.

(b) For ž, ň, ř ofW and l ∈ [0, 1] one has convex inequality ([6]):

d((1 − l)ž ⊕ lň, ř) ≤ (1 − l)d(ž, ř) + ld(ň, ř).

(c) For ž, ň, ř ∈ W and l ∈ [0, 1], the successive inequality holds ([6])

d((1 − l)ž ⊕ l(ň, ř)2
≤ (1 − l)d(ž, ř)2 + ld(ň, ř)2

− l(1 − l)d(ž, ň)2.

(d) Consider a sequence {ǎk} which is bounded inW, then the asymptotic center A({ǎk}) will consist of only a single
point[5]. And in this context, the asymptotic center has already been defined as follows:

A({ǎk}) = {ǎ ∈ W : C(ǎ, {ǎk}) = C({ǎk})},

where C(ǎ, {ǎk}) = lim
k→∞

sup d(ǎ, ǎk) and C({ǎk}) = in f {C(ǎ, {ǎk}) : ǎ ∈ W} is the asymptotic radius of {ǎk}.

(e) Let B̂ ⊆ W where B̂ is convex and closed, then the asymptotic center of {žk} ∈ B̂, which is bounded, will be in B̂
itself [6, 14].

Let { f̌k} be a subsequence of {žk} and ž be a unique asymptotic center of every { f̌k}, then the sequence {žk} in
W is said to be △-convergent to ž ∈ W, which is expressed as △ − lim

k→∞
žk = ž[14–16].

The △-convergence on a CAT(0) space (W, d) has the following properties:

Lemma 2.2. [1] (a) Every sequence inW which are bounded contains of a △-convergent subsequence.
(b) The following property is satisfied by every CAT(0) space,

lim
k→∞

sup d(žk, ž) < lim
k→∞

sup d(žk, q),

which is known as Opial property, for any sequence {žk} ⊂ W △-converges to ž and q , ž.

Definition 2.3. [1] Consider B′ ⊆ (Y, d) where B′ , ∅ and (Y, d) is a CAT(0) space. For µ ≥ 1, C : B′ →W is said
to have the enriched (Eµ) property on Y if there exists µ ≥ 1 such that for all ž, š ∈ Y,

d(ž,Cš) ≤ µd(ž,Cž) + d(ž, š).

for all š, ž ∈ Y.
C has property (E) on B′ iff C satisfied the (Eµ) property with µ ≥ 1.
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In 1967, Diaz and Metcalf [7] provided a notion of quasi non-expansive mapping.

Definition 2.4. [21] Consider B̄ ⊆ (W, d) where B̄ , ∅ and (W, d) is a CAT(0) space. A mapping D : B̄→ B̄ will
be a non-expansive mapping iff d(Dǐ,Dǰ) ≤ d(ǐ, ǰ), for all ǐ, ǰ ∈ B̄. And D will be quasi-non-expansive if K (D) , ∅,
set of fixed points of D and d(Dǐ, q) ≤ d(ǐ, q), for all ǐ ∈ B̄ and q ∈ K (D).

An example of not non-expansive mapping but quasi non-expansive was given by Dotson [8] in 1972.

Example 2.5. Let B̄ = R1 and define a mapping C : B̄→ B̄ by:

Cž =


ž
2
, i f ž , 0

0, i f ž = 0

Then C is not non-expansive but quasi non-expansive.

Proposition 2.6. [9] Consider a mapping C having property (E) on B̄, from B̄ toW. If there exists some fixed point
in C, then C is quasi non-expansive.

Very recently, Harmonchi[13] proposed a new iteration process by covering Thakur iteration [22], AK
iteration [23] and a new iteration process introduced by Piri et al. [17], which is faster than Thakur iteration,
as follows:

ž1 ∈ B̄
žk+1 = D(ξ̄kC(šk) + (1 − ξ̄k)C(řk))
šk = C(řk)
řk = C(ϑ̄kC(v̌k) + (1 − ϑ̄k)C(žk))
v̌k = (1 − φk)žk + φkC(žk)

In 2016, K. Ullah and M. Arshad introduced uk iteration[23]. In 2022, GI Usurelu, T. Turcanu and M. Posto-
lache further redefine the uk iteration algorithm for the problem of approximating common fixed points of
a pair of mappings C&D as follows:

(modified- uk iteration[24]) Consider a convex set B̄ , ∅ and D,C : B̄→ B̄ two given operators. For an arbitrary
starting point ž0 ∈ B̄, define the sequence {žk} repeatedly by

řk = (1 − ξk)žk + ξkC(žk)
šk = D((1 − ξk)Cžk + ξkDřk)
žk+1 = (1 − ηk − φk)Džk + ηkDšk + φkDřk,

where {ξk}, {ξk}, {φk}, {ηk} and {ηk + φk} ∈ R
n in (0,1).

Motivated and inspired by the iterative process of Harmonchi[13] and Usurelu[24], we introduced a
new iterative process which is known as CSAIA iteration in CAT(0) space (W, d) as below:

Two operators D,C : B̄→ B̄ where B̄ ⊆ (W, d) where B̄ , ∅ is closed convex,

ž1 ∈ B̄
žk+1 = C(ξ̄kC(šk) ⊕ (1 − ξ̄k)D(řk))
šk = D((1 − φk)D(v̌k) ⊕ φkC(řk))
řk = C(ϑ̄kC(v̌k) ⊕ (1 − ϑ̄k)D(žk))
v̌k = (1 − ζ̄k)žk ⊕ ζ̄kD(žk)

(1)

where k ∈Nwhere {ξ̄k}, {φk}, {ϑ̄k} and {ζ̄k} ∈ R
n in (0,1).
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3. Main results

In this paper, the CSAIA (1) iteration which was previously described in a CAT(0) space (W, d) will be
studied in terms of its convergence and common fixed point for certain D and C operators which satisfy
property (E). And letK be the set of common fixed points of C & D.

Lemma 3.1. Consider B̄ ⊆ (W, d) where B̄ , ∅ is convex and (W, d) is complete. Let D,C : B̄ → B̄ have property
(E) withK , ∅. Consider a sequence {žk} defined by (1). Then lim

k→∞
d(žk, q) exists, for all q ∈ K .

Proof. Here, D and C are quasi non-expansive mappings as both D and C satisfy property (E) withK (C) , ∅,
K (D) , ∅.

Now, by the convexity property, that is, by (b) of Lemma 2.1 and the quasi non-expansiveness of D, we
get

d(v̌k, q) = d((1 − ζ̄k)žk ⊕ ζ̄kD(žk), q)
≤ (1 − ζ̄k)d(žk, q) + ζ̄kd(D(žk), q)
≤ (1 − ζ̄k)d(žk, q) + ζ̄kd(žk, q)
= d(žk, q)

(2)

By (2), we continue

d(řk, q) = d(C(ϑ̄kC(v̌k) ⊕ (1 − ϑ̄k)D(žk)), q)
≤ d(ϑ̄kC(v̌k) ⊕ (1 − ϑ̄k)D(žk), q)
≤ ϑ̄kd(C(v̌k), q) + (1 − ϑ̄k)d(D(žk), q)
≤ ϑ̄kd(v̌k, q) + (1 − ϑ̄k)d(žk, q)
≤ ϑ̄kd(žk, q) + (1 − ϑ̄k)d(žk, q)
= d(žk, q)

(3)

By (2) and (3), we get

d(šk, q) = d(T((1 − φk)D(v̌k) ⊕ φkC(řk)), q)
≤ d((1 − φk)D(v̌k) ⊕ φkC(řk)), q)
≤ (1 − φk)d(D(v̌k), q) + φkd(C(řk), q)
≤ (1 − φk)d(v̌k, q) + φkd(řk, q))
≤ (1 − φk)d(žk, q) + φkd(žk, q)
= d(žk, q)

(4)

From (3) and (4), we get

d(žk+1, q) = d(C(ξ̄kC(šk) ⊕ (1 − ξ̄k)D(řk)), q)
≤ d(ξ̄kC(šk) ⊕ (1 − ξ̄k)D(řk), q)
≤ ξ̄kd(C(šk), q) + (1 − ξ̄k)d(D(řk), q)
≤ ξ̄kd(šk, q) + (1 − ξ̄k)d(řk, q)
≤ ξ̄kd(žk, q) + (1 − ξ̄k)d(žk, q)
= d(žk, q)

According to (??), we can conclude

d(žk+1, q) ≤ d(žk, q). (5)

Therefore, {d(žk, q)} is a nonincreasing sequence that belongs to Rn. Hence, {d(žk, q)} is convergent as it is
nonincreasing and bounded.
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Lemma 3.2. Consider B̄ ⊆ (W, d) where B̄ , ∅ is convex and (W, d) is complete. Let D,C : B̄ → B̄ have
property (E) with K , ∅. Consider a sequence {žk} defined by (1). Suppose {ξ̄k}, {ϑ̄k}, {ξ̄k} and {φk} are in order that
0 < h ≤ ξ̄k, ϑ̄k, ξ̄k, φk ≤ 1 < 1, while 0 < h, 1 > 1, then lim

k→∞
d(žk,Cžk) = 0 and lim

k→∞
d(žk,Džk) = 0.

Proof. By previous Lemma 3.1, we got, for each common fixed point s of D and C, there exists lim
k→∞

d(žk, q).

Let

lim
k→∞

d(žk, q) = e (6)

By (2), (3), (4) and (5), we have

d(žk+1, q) ≤ ξ̄kd(šk, q) + (1 − ξ̄k)d(řk, q)
≤ ξ̄k[(1 − φk)d(v̌k, q) + φkd(řk, q)] + (1 − ξ̄k)d(řk, q)
≤ ξ̄k[d(v̌k, q) − φkd(v̌k, q) + φkd(řk, q)] + (1 − ξ̄k)d(řk, q)
≤ ξ̄k[d(v̌k, q) − φkd(žk, q) + φkd(žk, q)] + (1 − ξ̄k)d(žk, q)
≤ ξ̄kd(v̌k, q) + (1 − ξ̄k)d(žk, q)

Then,

ξ̄kd(žk, q) ≤ ξ̄kd(v̌k, q) + d(žk, q) − d(žk+1, q)

which implies

d(žk, q) ≤ d(v̌k, q) +
1
ξ̄k

(d(žk, q) − d(žk+1, q))

≤ d(v̌k, q) +
1
f

(d(žk, q) − d(žk+1, q))

Having limit inf in this previous inequality, we get

e ≤ lim
k→∞

inf d(v̌k, q). (7)

Also by (2)

lim
k→∞

sup d(v̌k, q) ≤ lim
k→∞

sup d(žk, q) = e (8)

By (7) and (8), we conclude that

lim
k→∞

d(v̌k, q) = e (9)

By (c) Lemma 2.1, we can define

d(v̌k, q)2 = d((1 − ζ̄k)žk ⊕ ζ̄kD(žk), q)2

≤ (1 − ζ̄k)d(žk, q)2 + ζ̄kd(D(žk), q)2
− ζ̄k(1 − ζ̄k)d(žk,D(žk))2

≤ d(žk, q)2
− ζ̄k(1 − ζ̄k)d(žk,D(žk))2

This shows that
ζ̄k(1 − ζ̄k)d(žk,D(žk))2

≤ d(žk, q)2
− d(v̌k, q)2.

For further, we have

d(žk,D(žk))2
≤

1
ζ̄k(1 − ζ̄k)

(d(žk, q)2
− d(v̌k, q)2)

≤
1

h(1 − 1)
(d(žk, q)2

− d(v̌k, q)2).
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Using (6) and (9), we get
lim
k→∞

d(žk,D(žk)) = 0.

By (1), we get

d(v̌k, žk) = d((1 − ζ̄k)žk ⊕ ζ̄kD(žk), žk)
≤ (1 − ζ̄k)d(žk, žk) + ζ̄kd(D(žk), žk)
= ζ̄kd(D(žk), žk)

We also obtain

lim
k→∞

d(žk, v̌k) = 0. (10)

By quasi non-expansiveness of C and (c) Lemma 2.1, we get

d(žk+1, q)2 = d(C(ξ̄kC(šk) ⊕ (1 − ξ̄k)D(řk)), q)2

≤ d(ξ̄kC(šk) ⊕ (1 − ξ̄k)D(řk), q)2

≤ ξ̄kd(C(šk), q)2 + (1 − ξ̄k)d(D(řk), q)2
− ξ̄k(1 − ξ̄k)d(C(šk),D(řk))2

Again, according to the quasi non-expansiveness of D and C, we say that

ξ̄k(1 − ξ̄k)d(C(šk),D(řk))2
≤ ξ̄kd(šk, q)2 + (1 − ξ̄k)d(řk, q)2

− d(žk+1, q)2.

With the help of (2) and (3), we get

h(1 − 1)d(C(šk),D(řk))2
≤ ξ̄kd(žk, q)2 + (1 − ξ̄k)d(žk, q)2

− d(žk+1, q)2

= d(žk, q)2
− d(žk+1, q)2.

(11)

Taking limit in (11), we get

lim
k→∞

d(C(šk),D(řk)) = 0. (12)

Since D has property (E), we have

d(žk,D(řk)) = µd(žk,D(žk) + d(žk, řk). (13)

By the definition of CSAIA iteration (1) and quasi expansiveness of C and D, we conclude

d(řk, žk) = d(C(ϑ̄kC(v̌k) ⊕ (1 − ϑ̄k)D(žk), žk))
≤ d(ϑ̄kC(v̌k) ⊕ (1 − ϑ̄k)D(žk), žk)
≤ ϑ̄kd(C(v̌k), žk) + (1 − ϑ̄k)d(D(žk), žk)
≤ ϑ̄kd(v̌k, žk) + (1 − ϑ̄k)d(žk, žk)
≤ ϑ̄kd(v̌k, žk)
≤ hd(v̌k, žk).

(14)

From (10), (13) and (14), we get

lim
k→∞

d(žk,D(řk)) = 0. (15)

As
d(C(šk), žk) ≤ d(C(šk),D(řk)) + d(D(řk), žk)
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and using (12) and (15), we get

lim
k→∞

d(C(šk), žk) = 0. (16)

Furthermore,
d(šk,C(šk)) ≤ d(šk, žk) + d(žk,C(šk))

and again by CSAIA (1) and quasi non-expansiveness of C and D, we can say that

d(šk, žk) ≤ d(C(φkC(v̌k) ⊕ (1 − φk)D(žk)), žk)
≤ d(C(φkC(v̌k) + (1 − φk)D(žk)), žk)
≤ φkd(v̌k, žk) + (1 − φk)d(žk, žk)
≤ 1d(v̌k, žk)

(17)

using (10), (16) and (17), we get

lim
k→∞

d(šk,C(šk)) = 0.

Again, as operator C has property (E)

d(C(žk), šk)) ≤ µd(šk,C(šk)) + d(žk, šk) (18)

Therefore, by using from (17) to (18), we can say

lim
k→∞

d(C(žk), šk) = 0.

At last, we use the following inequality

d(žk,C(žk)) ≤ d(žk, šk)) + d(šk,C(žk))

to obtain that
lim
k→∞

d(žk,C(žk)) = 0

which proves the theorem.

Theorem 3.3. Consider B̄ ⊆ (W, d) where B̄ , ∅ is closed and convex and (W, d) is complete. Let D,C : B̄ → B̄
have property (E) with K , ∅. Consider a sequence {žk} defined by (1). Suppose {ξ̄k}, {ϑ̄k}, {ξ̄k} and {φk} are in order
that 0 < h ≤ ξ̄k, ϑ̄k, ξ̄k, φk ≤ 1 < 1, as 0 < h, 1 > 1, then {žk} △-converges to a common fixed point s of C and D.

Proof. By Lemma 3.1, there exists lim
k→∞

d(žk, q), for all q ∈ F. Therefore, {žk} is a bounded sequence and by

Lemma 3.2, the successive equalities hold true:

lim
k→∞

d(žk,C(žk)) = lim
k→∞

d(žk,D(žk)) = 0.

Consider a set of all asymptotic centers of all the subsequences { f̌k} of {žk} which is named as ŵ△({žk}) =
∪A({ f̌k}. By (e) Lemma 2.1, ŵ△({žk}) ⊆ B̄. Initially, we want to prove that ŵ△({žk}) ⊆ K . Let f̌ ∈ ŵ△({žk}).
Then, there exists a subsequence f̌k of žk such that A({ f̌k}) = { f̌ }.

As it is given, C has property (E), we get

d( f̌k,C f̌ ) ≤ µd( f̌k,C( f̌k)) + d( f̌k, f̌ ).

Using the above inequality and since lim
k→∞

d( f̌k,C( f̌k)) = 0, taking limit sup on both sides, we get

lim
k→∞

sup d( f̌k,C f̌ ) ≤ lim
k→∞

sup d( f̌k, f̌ )
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Therefore, we get
u(C f̌ , { f̌k}) ≤ u( f̌ , { f̌k}).

But as f̌ is the unique asymptotic center of { f̌k}, which means f̌ = C f̌ , that is, f̌ ∈ K (C). Thus, we can
conclude that f̌ ∈ K (D), hence f̌ ∈ K .

Now, we have to show that there exists only one common fixed point in ŵ△({žk}). Let f̌ , c̈ ∈ ŵ△({žk})
and let { f̌k} and {c̈k} be subsequences of {žk} such that A({ f̌k}) = { f̌ }. Similarly A({c̈k}) = {c̈}. Let us
assume that f̌ , c̈. Due to (a) Lemma 2.1, there exists a subsequence { f̌ ′k } which △-converges to f̌ ′k of { f̌k}.
Definitely, f̌ ′ ∈ ŵ△({žk}) ⊂ K . Thus, lim

k→∞
d(žk, f̌ ), lim

k→∞
d(žk, f̌ ′) will exist definitely, and for furtherlim

k→∞
d(žk, f̌ ) =

lim
k→∞

d( f̌k, f̌ ) = lim
k→∞

d( f̌ ′k , f̌ ) and in this same way lim
k→∞

d(žk, f̌ ′) = lim
k→∞

d( f̌k, f̌ ′) = lim
k→∞

d( f̌ ′k , f̌ ′). Considering that

f̌ ′ , f̌ , then the inequality (b) of Lemma 2.2 implies that

lim
k→∞

sup d( f̌k, f̌ ′) = lim
k→∞

sup d( f̌ ′k , f̌ ′) < lim
k→∞

sup d( f̌ ′k , f̌ ) = lim
k→∞

sup d( f̌k, f̌ ),

that is,
u( f̌ ′, { f̌k}) < u( f̌ , { f̌k}),

which is not possible. Hence,△− lim
k→∞

f̌ ′k = f̌ . Likewise, {c̈k} contains a subsequence {c̈′k}, that is,△− lim
k→∞

c̈′k = c̈.

Again with (b) of Lemma 2.2, we get

lim
k→∞

d(žk, c̈) = lim
k→∞

d(c̈′k, c̈) < lim
k→∞

d(c̈′k, f̌ ) = lim
k→∞

d(žk, f̌ ) = lim
k→∞

d( f̌ ′k , f̌ )

< lim
k→∞

d( f̌ ′k , c̈) = lim
k→∞

d(žk, c̈),

which is not a possible inequality. This shows that our assumption f̌ , c̈ is wrong. Therefore, f̌ = c̈. In the
end, ŵ△({žk}) is a singleton set, and f̌ is a common fixed point of C and D. This proves the △-convergence
of {žk}.

Corollary 3.4. Consider B̄ ⊆ (W, d) where B̄ , ∅ is convex and closed and (W, d) is complete. Let C : B̄ → B̄ has
property (E) with K (C) , ∅. Consider a sequence {žk} defined by (1). Suppose {ξ̄k}, {ϑ̄k}, {ξ̄k} and {φk} are in order
that 0 < h ≤ ξ̄k, ϑ̄k, ξ̄k, φk ≤ 1 < 1, as 0 < h, 1 > 1, then {žk} △-converges to a fixed point of C.

Proof. If D = C in Theorem 2.1, then the exact conclusion will be obtained.

Next, we will use a further condition, that is, (A′) condition[1, 10] to prove a strong convergence result.

Definition 3.5. [1] Let B̂ ⊆ (W, d) where B̂ , ∅ and (W, d) is a CAT(0) space. Let D,C : B̂ → B̂ along with
K , ∅ be said to satisfy the condition (A′) if there exists a function l : [0,∞)→ [0,∞) which is increasing along with
l(0) = 0, l(u) > 0, for all u ∈ (0,∞), that is, either

d(y̌,Cy̌) ≥ l(d(y̌,K ))

or
d(ž,Dy̌) ≥ l(d(y̌,K )),

for all y̌ ∈ B̂. If D = C, then the above definition will be define with mappings which satisfy (A) condition.

Theorem 3.6. Consider B̄ ⊆ (W, d) where B̄ , ∅ is convex, closed, and bounded and (W, d) is complete. Let
D,C : B̄→ B̄, which have the property (E) along with K , ∅. And consider a sequence {žk} defined by (1). Suppose
{ξ̄k}, {ϑ̄k}, {ξ̄k} and {φk} are in order that 0 < h ≤ ξ̄k, ϑ̄k, ξ̄k, φk ≤ 1 < 1, while 0 < h, 1 > 1 and, moreover, C&D
satisfy the (A′) condition, then {žk} converges strongly to a common fixed point of C and D.
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Proof. By Lemma 3.1, there exists lim
k→∞

d(žk, z̈), for all z̈ ∈ K . Let e ≥ 0 be its value. If e = 0, the end is clear.

Hence, moreover we consider that e > 0.
As d(žk+1, z̈) ≤ d(žk, z̈), we get

inf
z̈∈K

d(žk+1, z̈) ≤ inf
z̈∈K

d(žk, z̈).

Therefore, d(žk+1,K ) ≤ d(žk,K ) and it is simple to declare that lim
k→∞

d(žk,K ) exists. By the (A′) condition,

whether
lim
k→∞

h(d(žk,K )) ≤ lim
k→∞

d(žk,C(žk)) = 0

or
lim
k→∞

h(d(žk,K )) ≤ lim
k→∞

d(žk,D(žk)) = 0.

In these two cases, we get lim
k→∞

h(d(žk,K )) = 0. Further, since h is a nondecreasing function with h(0) = 0, it

pursue that lim
k→∞

d(žk,K ) = 0. According to this, we able to conclude that for each ξ > 0, there exists a p ∈ Z

such that
d(žk,K ) <

ξ
4
, for all k ≥ p.

Starting with, inf{d(žp, v̂) : v̂ ∈ K} <
ξ

4
, so there exists v̈ ∈ K , that is, d(žs, v̈) <

ξ

2
. Further, for all a, b ≥ p, we

have

d(ža, v̌b) < d(ža, v̈) + d(v̈, žb) ≤ 2d(žp, v̈) < 2.
ξ

2
= ξ.

Therefore, {žk} is a Cauchy in B̄ ⊆ (W, d), hence it converges to ž ∈ B̄. We get d(ž,K ) = 0 since lim
k→∞

d(žk,K ) = 0.

AsK is closed, that means ž ∈ K , which concludes the proof.

Corollary 3.7. Consider B̄ ⊆ (W, d) where B̄ , ∅ is convex, closed and bounded and (W, d) is complete. Let
C : B̄ → B̄ which has property (E) with K (C) , ∅. Consider a sequence {žk} defined by (1). Suppose {ξ̄k}, {ϑ̄k}, {ξ̄k}

and {φk} are in order that 0 < h ≤ ξ̄k, ϑ̄k, ξ̄k, φk ≤ 1 < 1, while 0 < h, 1 > 1 and, moreover, C satisfies the (A)
condition, then {žk} converges strongly to a fixed point of C.

Proof. If D = C in Theorem 2.2, then one can obtain the exact conclusion.

Example 3.8. LetW = R2 be a CAT(0) space and B̄ = [0, 1]2 be a convex bounded and closed subset ofW. We
define D,C : [0, 1]2

→ [0, 1]2 as follows (say, ž = (x, y)):

C((x, y)) =


(

x
2 ,

y
2

)
, i f
(
x, y
)
∈

[
0,

1
2

]2
(0, 0), otherwise

and

D((x, y)) =


(
x, y
)
, i f
(
x, y
)
∈

[
0,

1
2

]2
(0, 0), otherwise

.

Here, it is very easy to verify that both C and D are quasi non-expansive (but not non-expansive), and that their
common fixed point is (0, 0). They also satisfy property (E).Determine a sequence {žk}with respect to (1) by initiating
from arbitrary ž1 = (1, 1) ∈ B̄,

ž1 ∈ B̄
žk+1 = C(ξ̄kC(šk) + (1 − ξ̄k)D(řk))
šk = C((1 − φk)D(v̌k) + φkC(řk))
řk = C(ϑ̄kC(v̌k) + (1 − ϑ̄k)D(žk))
v̌k = (1 − ζ̄k)žk + ζ̄kD(žk)



S. S. Chauhan et al. / Filomat 39:35 (2025), 12581–12591 12590

where k ∈ N, {ξ̄k}, {φk}, {ϑ̄k} and {ζ̄k} ∈ R
2 such that 0 < ξ̄k, ϑ̄k, ξ̄k, φk, ζ̄k < 1. Considering ξ̄k = ϑ̄k = ξ̄k = φk =

ζ̄k =
1
2

. Next, we create a sequence {žk} . Initiating from ž1 = 1, we continue

v1 =
1
2

z1 +
1
2

D(z1) =
1
2

(1, 1) +
1
2

(1
2
,

1
2

)
=
(3

4
,

3
4

)
,

r1 = C
(1

2
C(v1) +

1
2

D(z1)
)
= C
(1

2
(0, 0) +

1
2

(1
2
,

1
2

))
= C
(1

4
,

1
4

)
=
(1

8
,

1
8

)
,

s1 = D
(1

2
D(v1) +

1
2

C(r1)
)
= D
(1

2

(1
2
,

1
2

)
+

1
2

( 1
16
,

1
16

))
= D
(( 9

32
,

9
32

))
=
( 9

32
,

9
32

)
,

we get

z2 = C
(1

2
C(s1) +

1
2

D(r1)
)
= C
(1

2

( 9
64
,

9
64

)
+

1
2

(1
8
,

1
8

))
=
( 41

1024
,

41
1024

)
≈ (0.04, 0.04),

v2 =
1
2

z2 +
1
2

D(z2) =
1
2
·

( 41
1024

,
41

1024

)
+

1
2
·

( 41
1024

,
41

1024

)
=
( 41

1024
,

41
1024

)
,

r2 = C
(1

2
C(v2) +

1
2

D(z2)
)
= C
(1

2
·

( 41
2048

,
41

2048

)
+

1
2
·

( 41
1024

,
41

1024

))
=
( 123

8192
,

123
8192

)
,

s2 = D
(1

2
D(v2) +

1
2

C(r2)
)
= D
(1

2

( 41
1024

,
41

1024

)
+

1
2

( 123
16384

,
123

16384

))
=
( 943

16384
,

943
16384

)
,

we get

z3 = C
(1

2
C(s2) +

1
2

D(r2)
)
= C
(( 943

32768
+

123
8192

))
=
( 3619

65536
,

3619
65536

)
≈ (0.055, 0.055).

Ongoing in this way, we will obtain {žk} ⊂ B̄ which converges to the common fixed point

žk → 0̌ = (0, 0) ∈ B̄ as k→∞.

This confirms the convergence of the CS AIA iterative algorithm in R2 with piecewise-defined quasi non-expansive
mappings C and D, which converges to 0̌ ∈ B̄ (as shown in Figure), the common fixed point of C and D.
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4. Conclusion

This paper introduces a new iterative algorithm called CSAIA, which is designed for mappings T and S
that satisfy property (E) in a CAT(0) space. The algorithm is specifically intended for quasi non-expansive
mappings. It is used to find common fixed points of two operators, which is a key result in the field of
operator theory. The CSAIA iteration is used for two mappings, and the paper presents two lemmas and
two theorems that are obtained by using this iteration. Additionally, the paper provides two corollaries
that apply the CSAIA iteration for a single mapping. Furthermore, to support the findings related to the
CSAIA iteration, a numerical example in a CAT(0) space is provided.
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