

$h_p(X)$ class of X -valued harmonic functions and applications

Bilal T. Bıyalov^{a,b,c,d,*}, Sabina R. Sadigova^{b,a}, Yonca Sezer^c, Umit Ildiz^{c,e}, Afra Buyukarslan^{c,f}

^aOdlar Yurdu University, Department of Mathematics and Digital Technologies, Baku, Azerbaijan

^bThe Ministry of Science and Education the Republic of Azerbaijan, Institute of Mathematics and Mechanics, Baku, Azerbaijan

^cYıldız Technical University, Department of Mathematics, İstanbul, Türkiye

^dAzerbaijan University of Architecture and Construction, Department of Functional Analysis and applications, Baku, Azerbaijan

^eMarmara University, İstanbul, Türkiye

^fIstanbul Nişantaşı Üniversitesi, İstanbul, Türkiye

Abstract. The concept of t -basis (generated by the tensor product) from the exponential system $\mathcal{E} = \{e^{int}\}_{n \in \mathbb{Z}}$ is considered for Bochner space $L_p(I_0; X)$, $1 < p < +\infty$, on $I_0 = [-\pi, \pi]$, where X is a Banach space with UMD (Unconditional Martingale Difference) property. We assume that X is endowed with the involution (*). Using the t -basicity of the system \mathcal{E} , we introduce the class $h_p^{+,\mathbb{R}}(X)$ of X -valued harmonic functions in the unit ball, generated by involution (*). The $*$ -analogues of the Cauchy-Riemann conditions are obtained, and the relations between the class $h_p^{+,\mathbb{R}}(X)$ and the Hardy-Bochner class $H_p(X)$ of analytic functions are established. A new method for establishing X -valued Sokhotski-Plemelj's formulas is presented. Additionally, we establish the correctness of the Dirichlet problem for X -valued harmonic functions in the class $h_p(X)$.

1. Introduction

With applications in various areas of mathematics (e.g., operator theory, partial differential equations, abstract harmonic analysis, stochastic evolution equations, etc.), there is a growing interest in the investigation of X -valued differential equations, and many works have been devoted to this direction (see e.g., the works [1, 2, 4, 5, 13–15, 17, 20, 21], monographs [3, 19] and master's and doctoral theses [22, 23, 25]). Specifically, note that when $X = \mathbb{C}$ (the complex field), these classes are applied in establishing the basis properties (completeness, minimality and basicity) of certain perturbed trigonometric systems, which may be eigenfunctions of second-order differential operators (see, e.g., the works [6–8, 10, 11]). In [12], this approach is developed regarding the Hardy spaces generated by the norm of a Banach Function Space. In studies [9, 16, 26], the analytical properties of solutions to boundary value problems defined in function spaces have been examined.

2020 Mathematics Subject Classification. Primary 30E25; Secondary 41A58, 42B30.

Keywords. X -valued harmonic functions, X -valued Cauchy-Riemann conditions, Dirichlet problem.

Received: 10 August 2025; Revised: 03 October 2025; Accepted: 20 October 2025

Communicated by Ljubiša D. R. Kočinac

This work has been supported by Yıldız Technical University Scientific Research Projects Coordination Unit under project number FBA-2025-6700.

This work has been supported by Azerbaijan Science Foundation - Grant No: AEF-MGC-2024-2(50)-16/02/1-17 M-02.

* Corresponding author: Bilal T. Bıyalov

Email addresses: bilal.bıyalov@yıldız.edu.tr, b_bıyalov@mail.ru (Bilal T. Bıyalov), s_sadigova@mail.ru (Sabina R. Sadigova), ysezer@yıldız.edu.tr (Yonca Sezer), umit.ildiz@marmara.edu.tr (Umit Ildiz), afrabuyukarslan.std@yıldız.edu.tr (Afra Buyukarslan)

The concept of t -basis (generated by the tensor product) from the exponential system $\mathcal{E} = \{e^{int}\}_{n \in \mathbb{Z}}$ is considered for Bochner space $L_p(I_0; X)$, $1 < p < +\infty$, on $I_0 = [-\pi, \pi]$, where X is a Banach space with UMD (Unconditional Martingale Difference) property. We assume that X is endowed with an involution (*). Using the t -basicity of the system \mathcal{E} , we introduce the class $h_p^{+, \mathbb{R}}(X)$ of X -valued harmonic functions in the unit ball, generated by involution (*). The *-analogues of the Cauchy-Riemann conditions are obtained, and relations between the class $h_p^{+, \mathbb{R}}(X)$ and the Hardy-Bochner class $H_p(X)$ of analytic functions are established. A new method for establishing X -valued Sokhotski-Plemelj's formulas is presented. We also establish the correctness of the Dirichlet problem for X -valued harmonic functions in the class $h_p^{+, \mathbb{R}}(X)$.

2. Notations and auxiliary facts

2.1. Notations

We accept the following notations used in this work. \mathbb{N} —positive integers; \mathbb{Z} —integers; $\mathbb{Z}_+ = \{0\} \cup \mathbb{N}$; \mathbb{R} —real numbers; \mathbb{C} —complex numbers; $\gamma = \partial\omega = \{z \in \mathbb{C} : |z| = 1\}$; B -space—Banach space; $\omega = \{z \in \mathbb{C} : |z| < 1\}$; $\omega^c = \{z \in \mathbb{C} : |z| > 1\}$; $\|\cdot\|_X$ —norm in X ; $[X; Y]$ — B -space of bounded linear operators acting from X to Y ; $[X] = [X; X]$; X^* —dual space of X ; \overline{M} —closure of the set M ; $d\sigma$ —length element on γ ; (\cdot) —complex conjugation; δ_{ij} —Kronecker's symbol; p' —conjugate to p number: $\frac{1}{p} + \frac{1}{p'} = 1$; $I_0 \equiv [-\pi, \pi]$; $i = \sqrt{-1}$. The symbol $\not\rightarrow$ denotes nontangential convergence.

We use $c; C$ to denote constants whose values can vary in different places. Note that all considered B -spaces here are defined over the field \mathbb{C} .

2.2. t -basis properties

Let X, Y, Z be B -spaces and $t : X \times Y \rightarrow Z$ be a bilinear operator satisfying the following condition

$$\exists \delta > 0 : \delta \|x\|_X \|y\|_Y \leq \|t(x; y)\|_Z \leq \delta^{-1} \|x\|_X \|y\|_Y, \forall (x; y) \in X \times Y.$$

For simplicity, future presentation accepts the notation $xy := t(x; y)$ for every $(x; y) \in X \times Y$.

We denote t -span of M by $L_t[M]$ for the set $M \subset Y$ and define it as

$$L_t[M] = \left\{ z \in Z : \exists \{(x_k; y_k)\}_1^{n_0} \subset X \times M \Rightarrow z = \sum_{k=1}^{n_0} x_k y_k \right\}.$$

Let $\vec{y} \equiv \{y_k\}_{k \in \mathbb{N}} \subset Y$ be some system. Accept the following concepts.

System \vec{y} is t -complete in Z , if $\overline{L_t[\vec{y}]} = Z$ (closure is taken in Z).

The system of operators $\{T_n\}_{n \in \mathbb{N}} \subset [Z; X]$ is called t -biorthogonal to $\vec{y} \subset Y$, if $T_n(xy_k) = x\delta_{nk}$, $\forall x \in X$ & $\forall n, k \in \mathbb{N}$.

The system $\vec{y} \subset Y$ forms t -basis for Z if $\forall z \in Z$ has a unique expansion in the form

$$z = \sum_{k=1}^{\infty} x_k y_k,$$

with $\{x_k\}_{k \in \mathbb{N}} \subset X$.

We call a triple $(X; Y; Z)$ be t_Y -invariant if $\{(x_k; \tilde{y}_k)\} \subset X \times Y : \sum_k x_k \tilde{y}_k = 0 \Rightarrow \sum_k \vartheta(\tilde{y}_k) x_k = 0$, $\forall \vartheta \in Y^*$.

A triple (X, Y, Z) is t -dense if $\overline{L[X \times Y]} = Z$ (closure is taken in Z).

The following criterion for t -basicity is valid.

Theorem 2.1. *Let the triple $(X; Y; Z)$ be t_Y -invariant and t -dense. Then the system \vec{y} forms a t -basis for Z if and only if the following assertions hold:*

(i) \vec{y} is t -complete in Z ;

(ii) \vec{y} has t -biorthogonal system $\{T_n\}_{n \in \mathbb{N}} \subset [Z; X]$;

(iii) the projectors $\{P_m\}_{m \in \mathbb{N}}$:

$$P_m(z) = \sum_{n=1}^m T_n(z)y_n, \quad \forall z \in Z \quad \& \quad \forall m \in \mathbb{N},$$

are uniformly bounded, i.e. $\sup_m \|P_m\|_{[Z]} < \infty$.

We consider Z as the some Banach tensor product $X \overline{\otimes} Y$ of B -spaces X and Y . Denote the algebraic tensor product of X & Y by $X \otimes Y$ and the elementary tensor product of elements $x \in X$ & $y \in Y$ by $x \otimes y$. In this case, it is obvious that the triple $(X; Y; Z)$ is t -dense and t_Y -invariant regarding the bilinear map $t(x, y) = x \otimes y$. Thus, according to the Theorem 2.1 we have the following

Corollary 2.2. *Let $X; Y$ be B -spaces and $Z = X \overline{\otimes} Y$. Then the system $\vec{y} \subset Y$ forms t -basis for Z if and only if the assertions (i) – (iii) of Theorem 2.1 hold.*

2.3. Bochner spaces and UMD spaces

Let $(\mathcal{S}, \mathcal{A}, \mu)$ be a measure space and X be B -space. As usual, denote by $L_p(\mathcal{S}; X)$, $1 \leq p < +\infty$, the Bochner space generated by measure space $(\mathcal{S}; \mathcal{A}; \mu)$ with norm

$$\|f\|_{L_p(\mathcal{S}; X)} = \left(\int_{\mathcal{S}} \|f\|_X^p d\mu \right)^{\frac{1}{p}}.$$

The Bochner space $L_p(\gamma; X)$ is defined similarly. We identify the segment I_0 and unit circle γ by mapping $e^{it} : I_0 \rightarrow \gamma$. This allows us to identify also the spaces $L_p(I_0; X)$ and $L_p(\gamma; X)$.

We provide the definition of the UMD property and the associated space.

Definition 2.3. A Banach space X is said to have the property of UMD, if for all $p \in (1, \infty)$ there exists a finite constant $\beta \geq 0$ (depending on p and X) such that the following holds: whenever $(\mathcal{S}; \mathcal{A}; \mu)$ is a σ -finite measure space, $\{\mathcal{F}_n\}_{n=0}^N$ is a σ -finite filtration and $\{f_n\}_{n=0}^N$ is a finite martingale in $L_p(\mathcal{S}; X)$, then for all scalar $|\varepsilon_n| = 1$, $n = \overline{1, N}$; we have

$$\left\| \sum_{n=1}^N \varepsilon_n d f_n \right\|_{L_p(\mathcal{S}; X)} \leq \beta \left\| \sum_{n=1}^N d f_n \right\|_{L_p(\mathcal{S}; X)},$$

where $d f_n = f_n - f_{n-1}$ is a martingale difference.

Let the set of all B -spaces that possess the UMD property be denoted by the symbol UMD.

To establish an analogous of the classical Fatou's theorem regarding harmonic functions on ω , we will need the following lemma from the monograph [18] (see p.127, Lemma 2.5.8).

Lemma 2.4. ([18]) *Let $g \in L_1^{loc}(\mathbb{R}; X)$ and $a \in \mathbb{R}$ and define $f : \mathbb{R} \rightarrow X$ by*

$$f(t) =: \int_a^t g(s) ds.$$

Then the weak derivative ∂f and almost everywhere derivative f' of f both exist in $L_1^{loc}(\mathbb{R}; X)$ and are given by the $\partial f = f' = g$.

The set of all X -valued trigonometric polynomials $P_n : I_0 \rightarrow X$ of the form

$$P_n(t) = \sum_{k=-n}^n a_k e^{ikt},$$

with coefficients $\{a_k\} \subset X$, denote by $\mathcal{P}(X)$.

The following proposition is valid.

Proposition 2.5. *Let X be B -space. Then $\overline{\mathcal{P}(X)} = L_p(I_0; X)$, $1 \leq p < \infty$, (closure is taken in $L_p(I_0; X)$).*

We define on $\mathcal{P}(X)$ the multiplier operator $m : \mathcal{P}(X) \rightarrow L_p(I_0; X)$ by expression

$$(mP)(t) = \tilde{P}(t) = -i \sum_{k \in \mathbb{Z}} \text{sign}(k) a_k e^{ikt},$$

where

$$P(t) = \sum_{k \in \mathbb{Z}} a_k e^{ikt} \in \mathcal{P}(X),$$

and

$$\text{sign}(k) = \begin{cases} 1, & \text{if } k > 0, \\ 0, & \text{if } k = 0, \\ -1, & \text{if } k < 0. \end{cases}$$

We also consider the subspace $L_p^0(I_0; X)$ of $L_p(I_0; X)$ defined by

$$L_p^0(I_0; X) = \{f \in L_p(I_0; X) : \int_{I_0} f(t) dt = 0\}.$$

Let H be the X -valued Hilbert transform on \mathbb{R} :

$$(Hf)(x) = \frac{1}{\pi} \int_{\mathbb{R}} \frac{f(y)}{x - y} dy, x \in \mathbb{R},$$

defined in a singular sense. The following H -characterization of UMD property is known.

Theorem 2.6. *[Burkholder-Bourgain] Let X be a B -space & $p \in (1, \infty)$. The following assertions are equivalent:*

- (1) $X \in \text{UMD}$;
- (2) $H \in [L_p(\mathbb{R}; X)]$.

In future, we strongly will use the following proposition.

Proposition 2.7. *Let X be a B -space & $p \in (1, \infty)$. If $H \in [L_p(\mathbb{R}; X)]$, then $m \in [L_p^0(I_0; X)]$ & $m \in [L_p(I_0; X)]$.*

Further details regarding these and related results can be found, for example, in the monograph [18].

In what follows, for function $f \in L_1(I_0; X)$, we denote by $\{\hat{f}_k\}_{k \in \mathbb{Z}}$ (also written as $\{T_k(f)\}_{k \in \mathbb{Z}}$) the sequence of its X -valued Fourier coefficients, given by

$$\hat{f}_k := T_k(f) := \frac{1}{2\pi} \int_{I_0} f(t) e^{-ikt} dt, k \in \mathbb{Z}.$$

In work [13], the following theorem is proved.

Theorem 2.8. ([13]) Let $X \in \text{UMD}$ & $p \in (1, \infty)$. Then the exponential system \mathcal{E} forms t -basis for $L_p(I_0; X)$, i.e. $\forall f \in L_p(I_0; X)$ has a unique expansion in the form

$$f(t) = \sum_{n \in \mathbb{Z}} \hat{f}_n e^{int}, \quad (2.1)$$

in $L_p(I_0; X)$. Moreover, for $\forall m \in \mathbb{Z}$, the following series

$$(R_m^+ f)(t) = f_+(t) = \sum_{n=m}^{\infty} \hat{f}_n e^{int},$$

$$(R_m^- f)(t) = f_-(t) = \sum_{n=-\infty}^{m-1} \hat{f}_n e^{int},$$

also converges in $L_p(I_0; X)$ (so-called t -Riesz property) and $R_m^\pm \in [L_p(I_0; X)]$.

3. Main results

3.1. $\mathcal{H}(X)$ and $\mathcal{A}(X)$ classes

We firstly define X -valued harmonic function in ω . Let X be B -space. For $z \in \omega$ define the following limits

$$\partial_x f(z) := \lim_{\mathbb{R} \ni h \rightarrow 0} \frac{f(z+h) - f(z)}{h},$$

$$\partial_y f(z) := \lim_{\mathbb{R} \ni h \rightarrow 0} \frac{f(z+ih) - f(z)}{h}.$$

Assume

$$C^1(\omega; X) = \{f : \omega \rightarrow X : \partial_x f, \partial_y f \in C(\omega; X)\},$$

where $C(\omega; X)$ is the set of all continuous X -valued functions, defined on ω . Analogously, define

$$C^2(\omega; X) = \{f : \omega \rightarrow X : \partial_{xx} f, \partial_{xy} f, \partial_{yy} f \in C(\omega; X)\}.$$

Let

$$\Delta f(z) = \partial_{xx} f(z) + \partial_{yy} f(z),$$

where $z = x + iy$, and accept

$$\mathcal{H}(X) = \mathcal{H}(\omega; X) = \{f \in C^2(\omega; X) : \Delta f(z) = 0, \forall z \in \omega\}.$$

Further, we will consider the case, when X endowed with involution, i.e. $\exists * : X^* \rightarrow X$, with the following properties:

(i) $* : X \leftrightarrow X$ is bijective and $\|w^*\|_X = \|w\|_X, \forall w \in X$;

(ii) $w^{**} = (w^*)^* = w, \forall w \in X$;

(iii) $(\lambda w)^* = \bar{\lambda} w^*, \forall \lambda \in \mathbb{C}, \forall w \in X$.

We refer to the elements of

$$X^{\mathbb{R}} = \{w \in X : w^* = w\},$$

as $*$ -real, and the elements of

$$X^{i\mathbb{R}} = iX^{\mathbb{R}} = \{w \in X : w = iv, v \in X^{\mathbb{R}}\},$$

as purely $*$ -imaginary.

Thus, it is evident that for $\forall w \in X : u = \frac{w+w^*}{2} \in X^{\mathbb{R}}$ and $v = \frac{w-w^*}{2i} \in X^{i\mathbb{R}}$, and in result w has a representation $w = u + iv$ with $u, v \in X^{\mathbb{R}}$. Moreover, such representation is unique.

In reality, let $u_1 + iv_1 = u_2 + iv_2$, where $u_k, v_k \in X^{\mathbb{R}}, k = 1, 2$. Consequently, we have $u = u_1 - u_2 = i(v_2 - v_1) = iv$, where $u, v \in X^{\mathbb{R}}$. Thus

$$u^* = u = (iv)^* = -iv^* = -iv = iv \implies v = 0 \implies u = 0 \implies u_1 = u_2 \text{ & } v_1 = v_2.$$

Therefore we obtain that the following direct sum is true.

$$X = X^{\mathbb{R}} \dot{+} iX^{\mathbb{R}}. \quad (3.1)$$

It is evident that $X^{\mathbb{R}}$ is the closure under the norm $\|\cdot\|_X$. Moreover, it is a real linear space and consequently, $X^{\mathbb{R}}$ is a B -space with the norm $\|\cdot\|_X$ over the field \mathbb{R} . We define the norm in X

$$\|w\|_X^{(1)} = \sqrt{\|u\|_X^2 + \|v\|_X^2}, \quad w = u + iv,$$

with $u, v \in X^{\mathbb{R}}$. It is not hard to see that X with the norm $\|\cdot\|_X^{(1)}$ is also B -space. Moreover, the following inequality holds

$$\|w\|_X \leq \|u\|_X + \|v\|_X \leq \sqrt{2} \sqrt{\|u\|_X^2 + \|v\|_X^2} = \sqrt{2} \|w\|_X^{(1)}, \quad \forall w \in X.$$

Then, from Banach's Theorem it follows that the norms $\|\cdot\|_X$ and $\|\cdot\|_X^{(1)}$ are equivalent in X , i.e.

$$\exists \delta > 0 : \delta \|w\|_X^{(1)} \leq \|w\|_X \leq \delta^{-1} \|w\|_X^{(1)}, \quad \forall w \in X.$$

According to the classical case accept notations $u = Re^*w$ and $v = Im^*w$. So, it's evident that $w = Re^*w + iIm^*w$ and $w = 0 \iff Re^*w, Im^*w = 0$. $w^* = u - iv$ holds.

Now, let $w \in \mathcal{H}(\omega; X)$ be X -valued harmonic function. Then it is not hard to see that Re^*w and Im^*w are X -valued harmonic functions and the class of all such functions is denoted by $\mathcal{H}^{\mathbb{R}}(\omega; X)$. Thus, the following direct sum holds.

$$\mathcal{H}(\omega; X) = \mathcal{H}^{\mathbb{R}}(\omega; X) \dot{+} i\mathcal{H}^{\mathbb{R}}(\omega; X).$$

For future presentation, we also need the class $\mathcal{A}(\omega; X)$ of all X -valued analytic functions on ω . In other words, if $f \in \mathcal{A}(\omega; X)$ then there exists continuous limit

$$f'(z) = \lim_{\Delta z \rightarrow 0} \frac{f(z + \Delta z) - f(z)}{\Delta z},$$

at every point $z \in \omega$.

As usual, we define weak cases of these concepts. Namely, the function $w : \omega \rightarrow X$ is said to be weakly harmonic if $x^*(w)$ is a harmonic function (in general, a complex-valued harmonic function) on ω for every $x^* \in X^*$. Analogously, weak analyticity is defined. The corresponding classes are denoted by $\mathcal{H}^w(\omega; X)$ and $\mathcal{A}^w(\omega; X)$. It is well known that $\mathcal{A}(\omega; X) = \mathcal{A}^w(\omega; X)$. Moreover, the equality $\mathcal{H}(\omega; X) = \mathcal{H}^w(\omega; X)$ also holds (see, e.g., [2]). Let the real part (induced by the involution $*$) of the class $\mathcal{A}(\omega; X)$ be denoted by $\mathcal{A}^{\mathbb{R}}(\omega; X)$. The following relations hold: $\mathcal{H}^{\mathbb{R}}(\omega; X) \subset \mathcal{H}(\omega; X)$ and $\mathcal{A}^{\mathbb{R}}(\omega; X) \subset \mathcal{A}(\omega; X)$.

Let $f = u + iv$, with $u, v \in \mathcal{A}^{\mathbb{R}}(\omega; X)$. For $z = x + iy \in \omega$ and $\Delta z = \Delta x + i\Delta y$, completely analogously to the scalar case, we have

$$\begin{aligned} f'(z) &= \partial_x u + i\partial_x v = \frac{1}{i}(\partial_y u + i\partial_y v) \Rightarrow \\ \left. \begin{aligned} \partial_x u &= \partial_y v, \\ \partial_x v &= -\partial_y u. \end{aligned} \right\} \end{aligned} \quad (3.2)$$

We will call the function v as the $*$ -conjugation to the function u . The conditions (3.2) are the X -valued analogues of the Cauchy-Riemann conditions regarding B -space X with the involution operation $(*)$. From (3.1), it directly follows that $u, v \in \mathcal{H}(\omega; X)$, and as a result, $f \in \mathcal{H}(\omega; X)$. Conversely, let $w = u + iv$ and $u, v \in \mathcal{H}^{\mathbb{R}}(\omega; X)$. Then, from the results of the work [2], it follows that u and v are real analytic functions on ω , i.e., they have power series expansions at every point $z \in \omega$ with coefficients from $X^{\mathbb{R}}$. Thus, if X -valued Cauchy-Riemann conditions (3.2) hold, then completely analogously to the classical case, it is proved that the function $w(z)$ is differentiable at $\forall z \in \omega$, i.e. there exists

$$\lim_{\Delta z \rightarrow 0} \frac{w(z + \Delta z) - w(z)}{\Delta z} = w'(z) \implies w \in \mathcal{A}(\omega; X).$$

It is evident that $\mathcal{A}(\omega; X) \subset \mathcal{H}(\omega; X)$ and $\mathcal{A}^{\mathbb{R}}(\omega; X) \subset \mathcal{H}^{\mathbb{R}}(\omega; X)$. If the function $w = u + iv \in \mathcal{H}(\omega; X)$ does not satisfy the conditions (3.2), then $w \notin \mathcal{A}(\omega; X)$ and as a result, it is obvious that

$$\mathcal{H}(\omega; X) \setminus \mathcal{A}(\omega; X) \neq \emptyset.$$

Let $u \in \mathcal{H}^{\mathbb{R}}(\omega; X)$. According to the scalar case, consider the following X -valued integral

$$v(x; y) = \int_{(x_0; y_0)}^{(x; y)} -\frac{\partial u}{\partial y} dx + \frac{\partial u}{\partial x} dy + v_0, \quad (3.3)$$

where $(x_0; y_0) \in \omega$ be a fixed point, $v_0 \in X^{\mathbb{R}}$ arbitrary constant and the integral is taken over any smooth curve connecting in ω the points $(x_0; y_0)$ and $(x; y) \in \omega$. Since $u \in C^{\infty}(\omega)$ (see e.g., [2]), then it follows immediately from (3.3) that $v \in C^{\infty}(\omega)$. Moreover the following relations hold

$$\left. \begin{aligned} \frac{\partial v}{\partial x} &= -\frac{\partial u}{\partial y}, \\ \frac{\partial v}{\partial y} &= \frac{\partial u}{\partial x}. \end{aligned} \right\} \quad (3.4)$$

As a result, $\Delta v = 0$. It is evident that $v \in \mathcal{H}^{\mathbb{R}}(\omega; X)$. Set $f(z) = u(z) + iv(z)$, for $z \in \omega$. From (3.4), it follows that $f \in \mathcal{A}(\omega; X)$ and consequently, $u, v \in \mathcal{A}^{\mathbb{R}}(\omega; X)$. Therefore, we obtain the identity $\mathcal{A}^{\mathbb{R}}(\omega; X) \equiv \mathcal{H}^{\mathbb{R}}(\omega; X)$.

Set

$$\mathcal{H}_0^{\mathbb{R}}(\omega; X) = \{v \in \mathcal{H}^{\mathbb{R}}(\omega; X) : v(0) = 0\},$$

and consider the operator $\mathcal{J} : \mathcal{H}^{\mathbb{R}}(\omega; X) \rightarrow \mathcal{H}_0^{\mathbb{R}}(\omega; X)$, defined by expression

$$(\mathcal{J}u)(x; y) = \int_0^{(x; y)} -\frac{\partial u}{\partial y} dx + \frac{\partial u}{\partial x} dy, \quad \forall (x; y) \in \omega,$$

where the integral is taken over a smooth curve in ω . Thus, it is obvious that for $\forall u \in \mathcal{H}^{\mathbb{R}}(\omega; X)$ the function $w = u + i\mathcal{J}u$ is analytic in ω , that is, $w \in \mathcal{A}(\omega; X)$. Assume

$$\mathcal{A}_0(\omega; X) = \{w \in \mathcal{A}(\omega; X) : (Im^* w)(0) = 0\}. \quad (3.5)$$

It is not hard to see that the operator $\mathcal{T} = I + i\mathcal{J}$ implements a bijective mapping $\mathcal{H}^{\mathbb{R}}(\omega; X)$ on $\mathcal{A}_0(\omega; X)$.

Summarizing the above consideration, we arrive at the following main lemma.

Lemma 3.1. Let X be a B -space over a field \mathbb{C} with involution operation $(*)$, and let $\mathcal{H}(\omega; X)$ & $\mathcal{A}(\omega; X)$ be the class of X -valued harmonic and analytic functions on ω , correspondingly. Then:

- (i) $\mathcal{H}(\omega; X) = \mathcal{H}^{\mathbb{R}}(\omega; X) + i\mathcal{H}^{\mathbb{R}}(\omega; X)$ and $\mathcal{A}(\omega; X) \subset \mathcal{A}^{\mathbb{R}}(\omega; X) + i\mathcal{A}^{\mathbb{R}}(\omega; X)$, where $\mathcal{H}^{\mathbb{R}}(\omega; X)$ ($\mathcal{A}^{\mathbb{R}}(\omega; X)$) is a $*$ -real part of $\mathcal{H}(\omega; X)$ (of $\mathcal{A}(\omega; X)$);
- (ii) $\mathcal{A}(\omega; X) \subset \mathcal{H}(\omega; X)$ & $\mathcal{H}(\omega; X) \setminus \mathcal{A}(\omega; X) \neq \emptyset$;
- (iii) Let $w \in \mathcal{H}(\omega; X)$. Then $w \in \mathcal{A}(\omega; X)$ if and only if $u = Re^*w$ & $v = Im^*w$ satisfies the X -valued Cauchy-Riemann conditions (3.2);
- (iv) $\mathcal{A}^{\mathbb{R}}(\omega; X) \equiv \mathcal{H}^{\mathbb{R}}(\omega; X)$;
- (v) The spaces $\mathcal{H}^{\mathbb{R}}(\omega; X)$ and $\mathcal{A}_0(\omega; X)$ are linearly isomorphic and the operator $\mathcal{T} = I + i\mathcal{J}$ implements the corresponding isomorphism.

For simplicity, in what follows, we accept the notations $\mathcal{H}(X) =: \mathcal{H}(\omega; X)$, $\mathcal{A}(X) := \mathcal{A}(\omega; X)$, and so on. Also, for function $f : \omega \rightarrow X$, we denote $f_{\tau}(t) = f(\tau e^{it})$, $\forall \tau e^{it} \in \omega$.

3.2. ${}_mH_p^{\pm}(X)$ & ${}_mH_p^{\pm}(X)$ classes

Accept ${}_mL_p^{\pm}(X) := R_m^{\pm}(L_p(X))$, where R_m^{\pm} are t -Riesz projectors defined above. According to the work [13], introduce

$${}_mH_p^{\pm}(X) = \{F \in \mathcal{A}(X) : \exists f \in {}_mL_p^{\pm}(X) \Rightarrow F = \mathcal{K}f\},$$

where \mathcal{K} is a X -valued Cauchy-type integral

$$F(z) = (\mathcal{K}f)(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\xi)}{\xi - z} d\xi, z \in \omega.$$

Take attention to the following simple relation. Let $f = u + iv$ & $z = x + iy$: $u; v \in X^{\mathbb{R}}$, $x; y \in \mathbb{R} \Rightarrow zf = \tilde{u} + i\tilde{v}$, with $\tilde{u}; \tilde{v} \in X^{\mathbb{R}}$: $\tilde{u} = xu - yv$, $\tilde{v} = yu + xv$.

Let $F \in {}_mH_p^{\pm}(X)$. So, $F = u + iv$, where $u; v \in \mathcal{H}^{\mathbb{R}}(X)$. Based on this relation, assume

$${}_mH_p^{\pm;\mathbb{R}}(X) = Re^*({}_mH_p^{\pm}(X)),$$

and set

$${}_mH_p^{\pm}(X) = {}_mH_p^{\pm;\mathbb{R}}(X) + i {}_mH_p^{\pm;\mathbb{R}}(X).$$

According to the results of [13], F possesses non-tangential limit values $F^{\pm}(\cdot)$ a.e. on γ , where the sign “+” means the limit taken from inside of ω , and the sign “-” means the limit taken from outside of ω . Moreover, it holds that $F^{\pm}(\xi) = \pm(R_0^{\pm}f)(\xi)$, for a.e. $\xi \in \gamma$, where R_0^{\pm} are the t -Riesz operators. This result follows from Statement 3.1 of the work [13]. As proved in [13], for the function $F \in {}_0H_p^+(X)$, the following X -valued Poisson integral representation holds

$$F(\rho e^{it}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_{\rho}(t-s)F^+(s)ds, \forall \rho e^{it} \in \omega,$$

where

$$P_{\rho}(s) = \frac{1 - \rho^2}{1 + \rho^2 - 2\rho \cos s}, \rho e^{is} \in \omega,$$

is a Poisson Kernel for the unit disk. It immediately follows that

$$u(\rho e^{it}) = Re^*F(\rho e^{it}) = (\mathcal{P}u^+)(\rho e^{it}) =: \frac{1}{2\pi} \int_{-\pi}^{\pi} P_{\rho}(t-s)u^+(s)ds, \forall \rho e^{it} \in \omega, \quad (3.6)$$

where $u^+(s) = Re^*F^+(s)$. Assume

$$L_p^{+;\mathbb{R}}(X) = Re^*(L_p^+(X)),$$

where $L_p^+(X) = R^+(L_p(X))$, $R^+ = R_0^+$ is a t -Riesz operator, defined by the Theorem 2.8. Consequently, from results of the work [13], we obtain that every function from the class $h_p^{+;\mathbb{R}}(X)$ has X -valued Poisson integral representation (3.6) with density $u^+ \in L_p^{+;\mathbb{R}}(X)$, where $h_p^{+;\mathbb{R}}(X) = {}_0h_p^{+;\mathbb{R}}(X)$. Also set

$$H_p^+(X) = {}_0H_p^+(X); H_p^-(X) = {}_{-1}H_p^-(X).$$

Denote by $\mathcal{P}_m^\pm(X)$ the set of all polynomials of order $\leq m \in \mathbb{Z}_+$, with X -valued coefficients of the form

$$\mathcal{P}_m^\pm(z) = \sum_{k=0}^m a_k^\pm z^{\pm k}, \quad a_0^\pm = 0, \quad z \in \mathbb{C} \setminus \{0\}, \quad \{a_k^\pm\} \subset X.$$

As established in the work [13], the following direct sums hold

$${}_{-m}H_p^+(X) = H_p^+(X) \dot{+} \mathcal{P}_m^-(X),$$

$${}_mH_p^+(X) = H_p^-(X) \dot{+} \mathcal{P}_m^+(X).$$

It follows from here that

$$\left. \begin{aligned} {}_{-m}h_p^{+;\mathbb{R}}(X) &= h_p^{+;\mathbb{R}}(X) \dot{+} Re^*(\mathcal{P}_m^-(X)), \\ {}_m h_p^{+;\mathbb{R}}(X) &= h_p^{+;\mathbb{R}}(X) \dot{+} Re^*(\mathcal{P}_m^+(X)), \end{aligned} \right\}$$

where $h_p^-(X) = {}_{-1}h_p^-(X)$.

3.3. X -valued Fatou's & Zygmund theorems

Let $f \in L_1(I_0; X)$ and consider the following X -valued Poisson integral. For simplicity, without loss of generality, we will consider the segment $[0, 2\pi)$ instead of the segment $[-\pi, \pi)$ in this section.

$$u(\rho; \varphi) = \frac{1}{2\pi} \int_0^{2\pi} P_\rho(s - \varphi) f(s) ds, \quad \rho e^{i\varphi} \in \omega. \quad (3.7)$$

The following X -valued analogue of Fatou's theorem is valid.

Theorem 3.2. *Let $f \in L_1(I_0; X)$. Then for a.e. $\varphi_0 \in [0, 2\pi]$ the X -valued harmonic in ω function $u(\rho; \varphi)$, defined by Poisson formula (3.7), has a non-tangential limit*

$$\lim_{\substack{\omega \ni \rho e^{i\varphi_0} \rightarrow e^{i\varphi_0}}} u(\rho; \varphi) = f(\varphi_0).$$

Indeed, based on Lemma 2.4, $u(\rho; \varphi)$ can be represented by the following X -valued Poisson-Stieltjes integral.

$$u(\rho; \varphi) = \frac{1}{2\pi} \int_0^{2\pi} P_\rho(s - \varphi) d\mu(s),$$

where

$$\mu(s) = \int_0^s f(t) dt.$$

By this lemma, we have $\mu'(s) = f(s)$, a.e. $s \in (0, 2\pi)$. The further proof is carried out in a completely analogous way to the proof of the classical Fatou's theorem (see, f.e. [24]).

The fact that the point $z \in \omega$ tends non-tangential to the point $\tau \in \gamma$ is denoted as $z \xrightarrow{*} \tau$. The operator corresponding to a harmonic function $u(\cdot)$ in ω and its non-tangential limit values $u^+(\cdot)$ a.e. on ω (if they exist) is denoted by θ : $\theta u = u^+$.

We now introduce the following subspaces of $L_p(I_0; X)$.

$$L_p^{\mathbb{R}}(I_0; X) = \{f \in L_p(I_0; X) : f(t) \in X^{\mathbb{R}}, \forall t \in I_0\},$$

and

$$L_p^I(I_0; X) = \{f \in L_p(I_0; X) : f(t) \in X^{i\mathbb{R}}, \forall t \in I_0\}.$$

So, $L_p^I(I_0; X) = i L_p^{\mathbb{R}}(I_0; X)$, and it is evident that

$$L_p(I_0; X) = L_p^{\mathbb{R}}(I_0; X) + i L_p^{\mathbb{R}}(I_0; X).$$

Let $f \in L_p^{\mathbb{R}}(I_0; X)$ and consider the following X -valued Poisson integral

$$u(\rho; \varphi) = \frac{1}{2\pi} \int_0^{2\pi} P_r(s - \varphi) f(s) ds, \quad re^{i\varphi} \in \omega. \quad (3.8)$$

Let $x \in X^{\mathbb{R}}$. Then it is evident that

$$Re^*[(a + ib)x] = a x, \quad \forall a, b \in \mathbb{R}.$$

Taking into account the fact that

$$P_\rho(s - \varphi) = Re\left(\frac{e^{is} + \rho e^{i\varphi}}{e^{is} - \rho e^{i\varphi}}\right) = Re(K(s; \rho e^{i\varphi})),$$

where

$$K(s; z) = \frac{e^{is} + z}{e^{is} - z},$$

is a Schwartz kernel, the integral (3.8) we can represent in the form

$$u(z) = Re^*\left[\frac{1}{2\pi} \int_0^{2\pi} K(s; z) f(s) ds\right].$$

From the Cauchy-Riemann conditions (3.2) it follows that the $*$ -conjugation to u function v is defined up to a $*$ -real constant $a \in X^{\mathbb{R}}$.

Since, the function

$$w(z) = \frac{1}{2\pi} \int_0^{2\pi} K(s; z) f(s) ds, \quad (3.9)$$

is analytic in ω , then it is evident that

$$v(z) = \frac{1}{2\pi} \int_0^{2\pi} Im(K(s; z)) f(s) ds + i v_0,$$

where $v_0 \in X^{\mathbb{R}}$ is an arbitrary constant. The integral (3.9) we will call a $*$ -Schwartz integral. We have

$$ctg \frac{s - s_0}{2} = -Im \frac{e^{is} + e^{is_0}}{e^{is} - e^{is_0}} = \lim_{\rho \rightarrow 1} Q(\rho; s - s_0),$$

where

$$Q(\rho; s - s_0) = -\operatorname{Im} \left(\frac{e^{is} + \rho e^{is_0}}{e^{is} - \rho e^{is_0}} \right) = \frac{2\rho \sin(s - s_0)}{1 + \rho^2 - 2\rho \cos(s - s_0)}.$$

Consequently

$$P(\rho; \sigma - s) + iQ(\rho; \sigma - s) = \frac{e^{is} + \rho e^{is_0}}{e^{is} - \rho e^{is_0}}.$$

The kernel $Q(\rho; \sigma)$ is a conjugate Poisson's kernel. Consider the following X -valued singular integral with kernel $\operatorname{ctg} \frac{s}{2}$:

$$\begin{aligned} (Hf)(\sigma) &= \int_0^{2\pi} \frac{1}{2} \operatorname{ctg} \frac{s - \sigma}{2} f(s) ds = \\ &= \int_0^\pi \frac{1}{2} \operatorname{ctg} \frac{s}{2} [f(\sigma + s) - f(\sigma - s)] ds = \\ &= \lim_{\varepsilon \rightarrow 0} \int_\varepsilon^\pi \frac{1}{2} \operatorname{ctg} \frac{s}{2} [f(\sigma + s) - f(\sigma - s)] ds. \end{aligned}$$

H is called the X -valued periodic Hilbert transformation or conjugate function operator. The following X -valued analogue of Zygmund's theorem is proved.

Theorem 3.3. *Let $X \in \mathcal{B}$ and $f \in L_p(I_0; X)$. Then for a.a. $\sigma \in (0, 2\pi)$ it holds*

$$\lim_{\rho \rightarrow 1} \left[v(\rho; \sigma) + \frac{1}{2\pi} \int_{1-\rho}^\pi \operatorname{ctg} \frac{s}{2} [f(\sigma + s) - f(\sigma - s)] ds \right] = 0,$$

where

$$v(\rho; \sigma) = \frac{1}{2\pi} \int_0^{2\pi} Q(\rho; \sigma - s) f(s) ds. \quad (3.10)$$

Proof. For completeness of presentation, let us give a short outline of the proof. Taking attention to the Lemma 2.4, set

$$\mu(s) = \int_0^s f(\sigma) d\sigma,$$

and therefore $\mu'(s) = f(s)$, a.e. $s \in (0, 2\pi)$. Let $\sigma \in [0, 2\pi]$ such that at this point $\mu'(\sigma)$ exists. Denote

$$\mathcal{E}(s) = \frac{\mu(\sigma + s) - \mu(\sigma)}{s} - \frac{\mu(\sigma - s) - \mu(\sigma)}{-s}, \quad \forall s \neq 0.$$

Assume that the functions f and μ periodically continued to \mathbb{R} with period 2π . It is obvious that $\mathcal{E}(s) \rightarrow 0$, $s \rightarrow 0$. Also, set

$$\nu(s) = \mu(\sigma + s) + \mu(\sigma - s) - 2\mu(\sigma), \quad \forall s \neq 0.$$

Thus, it holds

$$\nu(s) = \bar{o}(s), s \rightarrow 0, \text{ i.e. } \lim_{s \rightarrow 0} \frac{\nu(s)}{s} = 0.$$

We have

$$\frac{1}{2\pi} \int_{\delta}^{\pi} ds \left[(\mu(\sigma+s) + \mu(\sigma-s)) \operatorname{ctg} \frac{s}{2} \right] = -\frac{1}{2\pi} \nu(\delta) \operatorname{ctg} \frac{\delta}{2} + \frac{1}{4\pi} \int_{\delta}^{\pi} \frac{\nu(s)}{\sin^2 \frac{s}{2}} ds, \quad \delta = 1 - \rho.$$

It is evident that $\lim_{\delta \rightarrow 0} \nu(\delta) \operatorname{ctg} \frac{\delta}{2} = 0$. Thus, it is sufficient to prove

$$\lim_{\rho \rightarrow 1} \left(\nu(\rho; \sigma) + \frac{1}{4\pi} \int_{1-\rho}^{\pi} \frac{\nu(s)}{\sin^2 \frac{s}{2}} ds \right) = 0.$$

We have

$$\left. \begin{aligned} Q'_s(\rho; s) &= \frac{2\rho[(1+\rho^2)\cos s - 2\rho]}{(1+\rho^2 - 2\rho \cos s)^2}, \\ Q'_s(1; s) &= \frac{-1}{1 - \cos s} = \frac{-1}{2 \sin^2 \frac{s}{2}}, \\ |Q'_s(\rho; s)| &\leq \frac{2\rho}{(1-\rho)^2} = \frac{2\rho}{\delta^2}. \end{aligned} \right\} \quad (3.11)$$

Integration by parts gives

$$\nu(\rho; \sigma) = \frac{1}{2\pi} \int_0^{\pi} \nu(s) Q'_s(\rho; s) ds,$$

and we can split this integral into two parts

$$\mathcal{J}_1 = \frac{1}{2\pi} \int_0^{\delta} \nu(s) Q'_s(\rho; s) ds; \quad \mathcal{J}_2 = \frac{1}{2\pi} \int_{\delta}^{\pi} \nu(s) Q'_s(\rho; s) ds.$$

Due to the relations (3.11), we have

$$2\pi \mathcal{J}_1 \leq \frac{2\rho}{\delta^2} \int_0^{\delta} s \|\mathcal{E}(s)\|_X ds \leq \rho \sup_{0 \leq s \leq \delta} \|\mathcal{E}(s)\|_X \rightarrow 0, \quad \delta \rightarrow 0.$$

Represent the integral \mathcal{J}_2 in the form

$$\mathcal{J}_2 = \frac{1}{2\pi} \int_{\delta}^{\pi} \nu(s) Q'_s(1; s) ds + \frac{1}{2\pi} \int_{\delta}^{\pi} \nu(s) [Q'_s(\rho; s) - Q'_s(1; s)] ds.$$

Due to the second relation in (3.11), we have

$$\lim_{\rho \rightarrow 1} \left(\nu(\rho; \sigma) + \frac{1}{4\pi} \int_{1-\rho}^{\pi} \frac{\nu(s)}{\sin^2 \frac{s}{2}} ds \right) = \lim_{\rho \rightarrow 1} \frac{1}{2\pi} \int_{\delta}^{\pi} \nu(s) [Q'_s(\rho; s) - Q'_s(1; s)] ds.$$

It holds

$$Q'_s(\rho; s) - Q'_s(1; s) = \frac{\delta^2 [(1+\rho^2 - 2\rho \cos s) + 2\rho \sin^2 s]}{(1 - \cos s) [(1+\rho^2 - 2\rho \cos s)]^2}.$$

Moreover

$$1 + \rho^2 \geq 2\rho \Rightarrow 1 + \rho^2 - 2\rho \cos s \geq 2\rho(1 - \cos s) = 4\rho \sin^2 \frac{s}{2}.$$

Consequently, it follows that

$$\left\| \frac{1}{2\pi} \int_{\delta}^{\pi} \nu(s) [Q'_s(\rho; s) - Q'_s(1; s)] ds \right\|_X \leq \frac{C}{2\pi} \delta^2 \int_{\delta}^{\pi} \|\mathcal{E}(s)\|_X \frac{ds}{s^3}.$$

Let $\eta > 0$ be an arbitrary number. It is obvious that $\exists \delta_0 > 0$: $\|\mathcal{E}(s)\|_X \leq \eta$, $\forall s$. Assume $\delta^2 = \eta\delta_0^2$ & $\delta < \delta_0$. Then we have

$$\begin{aligned} \delta^2 \int_{\delta}^{\pi} \frac{\|\mathcal{E}(s)\|_X}{s^3} ds &= \delta^2 \int_{\delta}^{\delta_0} \frac{\|\mathcal{E}(s)\|_X}{s^3} ds + \delta^2 \int_{\delta_0}^{\pi} \frac{\|\mathcal{E}(s)\|_X}{s^3} ds \leq \\ &\leq \frac{\delta^2 \eta}{2} \left(\frac{1}{\delta^2} - \frac{1}{\delta_0^2} \right) + \frac{\delta^2}{\delta_0^3} \int_0^{\pi} \frac{\|\mathcal{E}(s)\|_X}{s^3} ds \leq \\ &\leq \frac{\eta}{2} + \eta \int_0^{\pi} \|\mathcal{E}(s)\|_X ds. \end{aligned} \tag{3.12}$$

Since $\|\mathcal{E}(s)\|_X$ is a bounded function, then it follows from (3.12) that

$$\left\| \frac{1}{2\pi} \int_{\delta}^{\pi} \nu(s) [Q'_s(\rho; s) - Q'_s(1; s)] ds \right\|_X \leq C\eta,$$

where $C > 0$ is independent of δ constant.

The theorem is proved. \square

In particular, the following result follows from this theorem.

Corollary 3.4. *Let $X \in \mathcal{B}$ and $f \in L_1(I_0; X)$. Then for $\sigma \in I_0$ the X -valued Hilbert transform $(Hf)(\sigma)$ exists if and only if the limit $\lim_{\rho \rightarrow 1} v(\rho; \sigma)$ exists, where $v(\rho; \sigma)$ is defined by the integral (3.10).*

Now, consider the case when $X \in UMD$ and $1 < p < +\infty$. Let $u \in h_p^{+; \mathbb{R}}(X) \Rightarrow \exists f \in H_p^+(X) : u = Re^* f$. Let $v : v(0) = 0$, is a $*$ -conjugate to u function. Consequently, $f = u + iv$. It is evident that $f \in H_p^+(X) \Leftrightarrow if \in H_p^+(X)$. Since $v = -Re^*(if)$, then $v \in h_p^{+; \mathbb{R}}(X)$.

Conversely, let $u; v \in h_p^{+; \mathbb{R}}(X)$ and $v : v(0) = 0$, $*$ -conjugate to u function. Let $\hat{f} \in H_p^+(X)$ such that $u = Re^* \hat{f}$. Set $f = u + iv$. It is evident that $\hat{f} = f + iv_0$, where $v_0 \in X^{\mathbb{R}}$ is a constant. From here follows that $f \in H_p^+(X)$. Thus, the following relation is true

$$f \in H_p^+(X) \Leftrightarrow Re^* f, Im^* f \in h_p^{+; \mathbb{R}}(X).$$

From this, it follows that $v(\cdot)$ has non-tangential values a.e. on γ , denoted by $v^+(\xi)$, $\xi \in \gamma$. Represent $f(\cdot)$ via the X -valued Poisson integral

$$f(re^{it}) = \frac{1}{2\pi} \int_0^{2\pi} P_r(s - t) f^+(s) ds, \quad re^{it} \in \omega,$$

where $f^+(\cdot)$ is the non-tangential values of $f(\cdot)$ on γ . From this formula direct follows that

$$u(re^{it}) = \frac{1}{2\pi} \int_0^{2\pi} P_r(s - t) u^+(s) ds,$$

$$v(re^{it}) = \frac{1}{2\pi} \int_0^{2\pi} P_r(s - t) v^+(s) ds,$$

where $u^+(\cdot) = Re^* f^+(\cdot)$ and $v^+(\cdot) = Im^* f^+(\cdot)$. From the above consideration, we arrive at the following

Statement 3.5. Let $X \in \text{UMD}$ and $f \in L_p(I_0; X)$, $1 < p < +\infty$. Then for a.e. $\sigma \in (0, 2\pi)$, it holds

$$\lim_{\rho \xrightarrow{\text{e}^{it}} e^{i\sigma}} v(\rho; t) = \frac{1}{2\pi} \int_0^{2\pi} f(s) \operatorname{ctg} \frac{\sigma - s}{2} ds, \quad (3.13)$$

where

$$v(\rho; t) = \frac{1}{2\pi} \int_0^{2\pi} Q(\rho; t - s) f(s) ds,$$

that is, the function $v(\cdot)$ has non-tangential values (3.13) a.e. on γ .

3.4. Sokhotski-Plemelj's formula

Let $X \in \text{UMD}$ and $f \in L_p(I_0; X)$, $1 < p < +\infty$. Consider the following Schwartz-Bochner integral.

$$F(z) = \frac{1}{2\pi} \int_0^{2\pi} K(s; z) f(s) ds, \quad z \in \omega. \quad (3.14)$$

Represent this integral in the following form

$$F(z) = \frac{1}{2\pi} \int_0^{2\pi} P(r; \sigma - s) f(s) ds + \frac{i}{2\pi} \int_0^{2\pi} Q(r; \sigma - s) f(s) ds,$$

where $z = re^{i\sigma}$. Taking attention to the Theorem 3.2 and Statement 3.5, from here we obtain

$$F^+(e^{i\sigma}) = \lim_{z \xrightarrow{\text{e}^{i\sigma}}} F(z) = f(\sigma) + i(Hf)(\sigma), \quad \text{a.e. } \sigma \in (0, 2\pi). \quad (3.15)$$

Now, consider the integral (3.14) in the case when $|z| > 1$. Introduce a new function for consideration, $\Phi(z_1) = F^* \left(\frac{1}{z_1} \right)$, $|z_1| < 1$. Where $z = \frac{1}{z_1}$. We have

$$\Phi(z_1) = -\frac{1}{2\pi} \left(\int_0^{2\pi} \frac{e^{-is} + \overline{z_1}}{e^{-is} - \overline{z_1}} f(s) ds \right) = -\frac{1}{2\pi} \int_0^{2\pi} \frac{e^{is} + z_1}{e^{is} - z_1} f^+(s) ds, \quad |z_1| < 1.$$

It is evident that $\omega \ni z_1 \xrightarrow{\text{e}^{i\sigma}} e^{i\sigma} \iff \omega^c \ni z \xrightarrow{\text{e}^{i\sigma}} e^{i\sigma}$. Then according to the formula (3.15) for $\Phi(\cdot)$ we obtain

$$\Phi^+(e^{i\sigma}) = -f^*(\sigma) - i(Hf^*)(\sigma) \Rightarrow F^-(e^{i\sigma}) = (\Phi^+(e^{i\sigma}))^* = -f(\sigma) + i(Hf)(\sigma),$$

a.e. $\sigma \in (0, 2\pi)$, where

$$F^-(e^{i\sigma}) = \lim_{\omega^c \ni z \xrightarrow{\text{e}^{i\sigma}} e^{i\sigma}} F(z).$$

Thus, the following theorem is valid.

Theorem 3.6. Let $X \in \text{UMD}$ and $f \in L_p(I_0; X)$, $1 < p < +\infty$. Then, for the Schwartz-Bochner integral (3.14), the following X -valued Sokhotsky-Plemelj's formulas are valid.

$$F^\pm(e^{i\sigma}) = \pm f(\sigma) + i(Hf)(\sigma), \quad \text{a.e. } \sigma \in (0, 2\pi).$$

Note that this formula is established in the work [13] by a different approach, under stronger conditions.

3.5. t -basis for $h_p^+(X)$ and Dirichlet problem for Laplace equation

Let $X \in UMD$ and $u \in h_p^{+;\mathbb{R}}(X)$, $1 < p < +\infty$. Firstly, define the norm in $h_p^{+;\mathbb{R}}(X)$ by the following expression

$$\|u\|_{h_p^{+;\mathbb{R}}(X)} = \|u^+\|_{L_p(\gamma;X)}, \quad (3.16)$$

where $u^+ = \theta u$ is the non-tangential values function of u on γ . From the Poisson-Bochner formula for $u(\cdot)$, it directly follows that the expression (3.16) defines the norm in $h_p^{+;\mathbb{R}}(X)$.

Let $w \in H_p^+(X)$ such that $u = Re^*w$. Via the results of the work [13], the system $\{z^n\}_{n \in \mathbb{Z}_+}$ forms a t -basis for $H_p^+(X)$. Let

$$w(z) = \sum_{n=0}^{\infty} w_n z^n, \quad z \in \omega,$$

$\{w_n\} \subset X$. From here it immediately follows

$$u(z) = \sum_{n=0}^{\infty} Re^*(w_n z^n), \quad z \in \omega.$$

Let $w_n = u_n + iv_n$, with $u_n, v_n \in X^{\mathbb{R}}$, $\forall n \in \mathbb{Z}_+$. Consequently

$$u(z) = u_0 + \sum_{n=1}^{\infty} (u_n \cos n\varphi - v_n \sin n\varphi) r^n, \quad z = re^{i\varphi} \in \omega.$$

By results of the work [13], we have

$$w^+(e^{i\varphi}) = \sum_{n=0}^{\infty} w_n e^{in\varphi},$$

and in result

$$u^+(e^{i\varphi}) = u_0 + \sum_{n=1}^{\infty} (u_n \cos n\varphi - v_n \sin n\varphi).$$

Therefore (see, [13])

$$\left\| w(z) - \sum_{n=0}^m w_n z^n \right\|_{H_p^+(X)} = \left\| w^+(\xi) - \sum_{n=0}^m w_n z^n \right\|_{L_p(\gamma;X)} \rightarrow 0, \quad m \rightarrow \infty.$$

It follows from here that

$$\begin{aligned} & \left\| u(re^{i\varphi}) - u_0 - \sum_{n=1}^m (u_n \cos n\varphi - v_n \sin n\varphi) z^n \right\|_{h_p^+(X)} = \\ & = \left\| u^+(e^{i\varphi}) - u_0 - \sum_{n=1}^m (u_n \cos n\varphi - v_n \sin n\varphi) \right\|_{L_p(\gamma;X)} \rightarrow 0, \quad m \rightarrow \infty. \end{aligned}$$

It is not hard to see that the operators $\{\tau_n^{\pm}\} \subset [h_p^{+;\mathbb{R}}(X); X]$, defined by the expressions

$$\tau_0^+(u) = \frac{1}{2\pi} \int_0^{2\pi} u^+(e^{it}) dt;$$

$$\tau_n^+(u) = \frac{1}{\pi} \int_0^{2\pi} u^+(e^{it}) \cos nt dt;$$

$$\tau_n^-(u) = \frac{1}{\pi} \int_0^{2\pi} u^-(e^{it}) \sin nt dt,$$

are t -biorthogonal to the system $\{1; r^n \cos nt; r^n \sin nt\}_{n \in \mathbb{N}}$. Summarizing the previous results, we obtain the validity of the following statement.

Statement 3.7. *Let $X \in \text{UMD}$. Then the system*

$$\{1; r^n \cos nt; r^n \sin nt\}_{n \in \mathbb{N}},$$

forms a t -basis for $h_p^{+;\mathbb{R}}(X)$, $1 < p < +\infty$.

Let $X \in \text{UMD}$ and $u \in h_p^{+;\mathbb{R}}(X)$, $1 < p < +\infty$. Then, by Statement 3.7 the function $u(\cdot)$ has the following expansion

$$u(re^{it}) = u_0^+ + \sum_{n=1}^{\infty} (u_n^+ \cos nt + u_n^- \sin nt) r^n.$$

Since $\theta \in [h_p^{+;\mathbb{R}}(X); L_p(\gamma; X)]$, we have

$$\begin{aligned} \theta u(re^{it}) = u^+(e^{it}) &= u_0^+ + \sum_{n=1}^{\infty} [\theta(u_n^+ \cos nt r^n) + \theta(u_n^- \sin nt r^n)] = \\ &= u_0^+ + \sum_{n=1}^{\infty} (u_n^+ \cos nt + u_n^- \sin nt). \end{aligned}$$

From these considerations, we obtain the correct solvability of the following X -valued Dirichlet problem for the Laplace equation in the class $h_p^{+;\mathbb{R}}(X)$.

Consider the problem

$$\left. \begin{aligned} \Delta u &= 0, & \text{in } \omega, \\ \theta u &= f, & \text{on } \gamma, \end{aligned} \right\} \quad (3.17)$$

where $f \in L_p^{\mathbb{R}}(\gamma; X)$ is a given function. By the solution of the problem (3.17), we mean the function $u \in h_p^{+;\mathbb{R}}(X)$ for which $\theta u = f$, where θ is the corresponding trace operator.

The following statement holds.

Statement 3.8. *Let $X \in \text{UMD}$. Then for $\forall f \in L_p^{\mathbb{R}}(\gamma; X)$, $1 < p < +\infty$, the problem (3.17) is uniquely solvable in the class $h_p^{+;\mathbb{R}}(X)$ and for the solution $u \in h_p^{+;\mathbb{R}}(X)$, it holds*

$$\|u\|_{h_p^{+;\mathbb{R}}(X)} = \|f\|_{L_p(\gamma; X)}.$$

The last relation directly follows from (3.16).

Acknowledgement

The authors express their deep gratitude to the respected reviewer for his/her constructive comments and contributions to enhancing this manuscript.

References

- [1] H. Amann, *Elliptic operators with infinite-dimensional state space*, J. Evolution Equat. **1** (2001), 143–188.
- [2] W. Arendt, *Vector-valued holomorphic and harmonic functions*, Concrete Oper. **3** (2016), 68–76.
- [3] W. Arendt, C. Batty, M. Hieber, et al. *Vector-valued laplace transforms and Cauchy problems*, Birkhäuser, Basel, 2011.
- [4] W. Arendt, N. Nikolski, *Vector-valued holomorphic functions revisited*, Math. Z. **234** (2000), 777–805.
- [5] W. Arendt, N. Nikolski, *Addendum: Vector-valued holomorphic functions revisited*, Math. Z. **252** (2006), 687–689.
- [6] B. T. Bilalov, *The basis property of a perturbed system of exponentials in Morrey-type spaces*, Siberian Math. J. **60** (2019), 249–271.
- [7] B. T. Bilalov, *Basis properties of some systems of exponents, cosines and sines*, Sibirsk. Mat. Zh. **45** (2004), 264–273.
- [8] B. T. Bilalov, *Basicity of some exponents, cosines and sines systems*, Differ. Urav. **26** (1990), 10–16.
- [9] B. T. Bilalov, T. M. Ahmadov, Y. Zeren, et al. *Solution in the small and interior Schauder-type estimate for the m -th order elliptic operator in Morrey-Sobolev spaces*, Azerbaijan J. Math. **12** (2022), 190–219.
- [10] B. T. Bilalov, Z. G. Guseynov, *Basicity criterion for perturbed systems of exponents in Lebesgue spaces with variable summability*, Dokl. RAN **436** (2011), 586–589.
- [11] B. T. Bilalov, Z. G. Guseynov, *Basicity of a system of exponents with a piece-wise linear phase in variable spaces*, Mediterr. J. Math. **9** (2012), 487–498.
- [12] B. T. Bilalov, S. R. Sadigova, V. G. Alili. *The method of boundary value problems in the study of the basis properties of perturbed system of exponents in Banach function spaces*, Comput. Methods Function Theory **24** (2014), 101–120.
- [13] B. T. Bilalov, S. R. Sadigova, *The Concept of t - basis and vector valued Hardy classes*, Turkish J. Math. **49** (2025): 261–286
- [14] B. T. Bilalov, S. R. Sadigova, N. Nasibova, et al. *X -valued Smirnov classes and t -basicity of Faber polynomials*, Results Math **80**, 215 (2025). <https://doi.org/10.1007/s00025-025-02525-z>
- [15] B. T. Bilalov, S. R. Sadigova, Y. Sezer, *Vector-valued grand Hardy classes*, J. Contem. Appl. Math. **15** (2025), 122–155.
- [16] B. T. Bilalov, Y. Sezer, F. A. Alizadeh, et al. *Solvability of Riemann boundary value problems and applications to approximative properties of perturbed exponential system in Orlicz spaces*, Azerbaijan J. Math. **14** (2024), 164–185.
- [17] J. Bonet, L. Frerick, A. E. Jord, *Extension of vector-valued holomorphic and harmonic functions*, Studia Math. **183** (2007), 225–248.
- [18] T. Hytönen, J. Neerven, M. Veraar, et al. *Analysis in Banach Spaces*, Springer. V. I, 2016.
- [19] T. Hytönen, J. V. Neerven, M. Veraar, et al. *Analysis in Banach Spaces*, V. II, 2017.
- [20] N. Katzourakis, *On a vector-valued generalisation of viscosity solutions for general PDE systems*, Z. Anal. Anwendungen **41** (2022), 93–132.
- [21] M. Kreuter, *The Perron solution for vector-valued equations*, arXiv: 1804.01370v1 [math.FA], 2018.
- [22] V. M. Kreuter, *Sobolev spaces of Vector-Valued Functions*, Master Thesis, Ulm University, 2015.
- [23] V. M. Kreuter, *Vector-Valued Elliptic Boundary Value Problems on Rough Domains*, Universitat Ulm, 2018.
- [24] P. Kusis, *Introduction to H_p Spaces*, Cambridge University Press, 2nd edition, 2008
- [25] E. Lorist, *Vector-valued harmonic analysis with applications to SPDE*, Dissertation, Delft University of Technology, Netherlands, 2021.
- [26] T. J. Mammadov, *Strong Solvability of a Nonlocal Problem for the Laplace Equation in Weighted Grand Sobolev Spaces*, Azerbaijan J. Math. **13** (2023), 188–204.