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Abstract. The concept of t-basis (generated by the tensor product) from the exponential system & = €™}z
is considered for Bochner space L,(Iy;X), 1 < p < +oo, on Iy = [-7, 1), where X is a Banach space with
UMD (Unconditional Martingale Difference) property. We assume that X is endowed with the involution ().
Using the t-basicity of the system &, we introduce the class h;”]R(X) of X-valued harmonic functions in the unit
ball, generated by involution (+). The *-analogues of the Cauchy-Riemann conditions are obtained, and the
relations between the class /1, R(X) and the Hardy-Bochner class H,(X) of analytic functions are established.
A new method for establishing X-valued Sokhotski-Plemelj’s formulas is presented. Additionally, we
establish the correctness of the Dirichlet problem for X-valued harmonic functions in the class h,(X).

1. Introduction

With applications in various areas of mathematics (e.g., operator theory, partial differential equations,
abstract harmonic analysis, stochastic evolution equations, etc.), there is a growing interest in the investi-
gation of X-valued differential equations, and many works have been devoted to this direction (see e.g.,
the works [1} 2} 4, 5 13415} 17| 20, [2T]], monographs [3} [19] and master’s and doctoral theses [22] 23} 25]).
Specifically, note that when X = C (the complex field), these classes are applied in establishing the basis
properties (completeness, minimality and basicity) of certain perturbed trigonometric systems, which may
be eigenfunctions of second-order differential operators (see, e.g., the works [6H8] 10, 11]). In [12], this
approach is developed regarding the Hardy spaces generated by the norm of a Banach Function Space. In
studies [9, (16} [26], the analytical properties of solutions to boundary value problems defined in function
spaces have been examined.
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The concept of t-basis (generated by the tensor product) from the exponential system & = {¢"},cz is
considered for Bochner space L,(Iy; X), 1 < p < +oo, on Iy = [-7, 1), where X is a Banach space with UMD
(Unconditional Martingale Difference) property. We assume that X is endowed with an involution (*).

Using the t-basicity of the system &, we introduce the class h;,”]R(X) of X-valued harmonic functions in the

unit ball, generated by involution (). The *-analogues of the Cauchy-Riemann conditions are obtained, and
relations between the class h; R(X) and the Hardy-Bochner class H,(X) of analytic functions are established.
A new method for establishing X-valued Sokhotski-Plemelj’s formulas is presented. We also establish the
correctness of the Dirichlet problem for X-valued harmonic functions in the class h;,’ R(x).

2. Notations and auxiliary facts

2.1. Notations

We accept the following notations used in this work. IN—positive integers; Z—integers; Z. = {0} U
IN; R-real numbers; C—complex numbers; y = dw = {z € C : |z| = 1}; B-space—Banach space; v =
[zeC: |zl <1}, 0 = {z € C: |z| > 1}; ||-|lx—norm in X; [X; Y]— B-space of bounded linear operators acting
from X to Y; [X] = [X; X]; X*—dual space of X; M—closure of the set M; do—length element on y; (*)—complex
conjugation; 6;;—Kronecker’s symbol; p’—conjugate to p number: % + l% =1, I =[-nn);i= V-1. The
symbol %, denotes nontangential convergence.

We use ¢; C to denote constants whose values can vary in different places. Note that all considered
B-spaces here are defined over the field C.

2.2. t-basis properties
Let X, Y, Z be B-spaces and ¢ : X X Y — Z be a bilinear operator satisfying the following condition
36 > 0 : lixllxllylly < [l iz < 67 IxdIxliylly, Y(x;y) € X X Y.

For simplicity, future presentation accepts the notation xy := t(x; y) for every (x;y) € X X Y.
We denote t-span of M by L;[M] for the set M C Y and define it as

o

Li{M] = {z e’: 3{(xk; yk)}ro CXXM=z= 2 xkyk}.
k=1

Let ¥ = {yilten C Y be some system. Accept the following concepts.

System 7 is t-complete in Z, if Lt[_y)] = Z (closure is taken in Z).

The system of operators {T,}nen C [Z; X] is called t-biorthogonal to _y> CY,if Ty(xyx) = x6k, Vx € X &
Vn,k € N.

The system  C Y forms t-basis for Z if ¥z € Z has a unique expansion in the form

(o8]

z = Z Xk Yk,

k=1

with {x ey € X.
We call a triple (X; Y; Z) be ty-invariant if {(xi; 7i)} C X XY : Y %7k = 0= Y, d(Wi)xx =0, V9 € Y.
k k

A triple (X, Y, Z) is t-dense if L[X X Y] = Z (closure is taken in Z).
The following criterion for t-basicity is valid.

Theorem 2.1. Let the triple (X;Y; Z) be ty-invariant and t-dense. Then the system 3 forms a t-basis for Z if and
only if the following assertions hold:

(i)Y is t-complete in Z;
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(ii) 7 has t-biorthogonal system {T,}nen C [Z; X];

(iii) the projectors {Ppy}men :

Pu(z) =) Tu@)yn, V2€Z & VmeN,

n=1

are uniformly bounded, i.e. supl|Pylljz; < oo.
m

We consider Z as the some Banach tensor product X®Y of B-spaces X and Y. Denote the algebraic tensor
product of X & Y by X®Y and the elementary tensor product of elements x € X & y € Y by x®y. In this
case, it is obvious that the triple (X; Y; Z) is t-dense and ty-invariant regarding the bilinear map t(x, y) = x®y.
Thus, according to the Theorem 2.1 we have the following

Corollary 2.2. Let X;Y be B-spaces and Z = X®Y. Then the system y C Y forms t-basis for Z if and only if the
assertions (i) — (iii) of Theorem 2.1 hold.

2.3. Bochner spaces and UMD spaces

Let (S, A, u) be a measure space and X be B-space. As usual, denote by L,(S;X), 1 < p < +oo, the
Bochner space generated by measure space (S; A; u) with norm

1fll 50 = ( f IIfllidy);.
S

The Bochner space L,(y; X) is defined similarly. We identify the segment Iy and unit circle yy by mapping
e : Iy — y. This allows us to identify also the spaces Ly(Io; X) and Ly(y; X).
We provide the definition of the UMD property and the associated space.

Definition 2.3. A Banach space X is said to have the property of UMD, if for all p € (1, o) there exists a

finite constant § > 0 (depending on p and X) such that the following holds: whenever (S; A; ) is a o-finite
measure space, {#,}) is a o-finite filtration and {f,}IY is a finite martingale in L,(S; X), then for all scalar

leal =1,n= 1,N; we have

N N
|2 e Y.,
n=1 n=1

where df, = f, — fu-1 is a martingale difference.

<p
)

7
Ly(S:X L,(S:X)

Let the set of all B—spaces that possess the UMD property be denoted by the symbol UMD.
To establish an analogous of the classical Fatou’s theorem regarding harmonic functions on w, we will
need the following lemma from the monograph [18] (see p.127, Lemma 2.5.8).

Lemma 2.4. ([18]) Let g € L(RR; X) and a € R and define f : R — X by

t
s = [ g

Then the weak derivative df and almost everywhere derivative f' of f both exist in L*(IR; X) and are given by the

o= =9
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The set of all X-valued trigonometric polynomials P, : Iy — X of the form

n

Pu) = ) axe™,

k=—n

with coefficients {a;} C X, denote by Z(X).
The following proposition is valid.

Proposition 2.5. Let X be B-space. Then (X) = L,(lp; X),1 < p < o0), (closure is taken in L,(Io; X)).

We define on #(X) the multiplier operator m : Z(X) — L,(Io; X) by expression
(mP)(t) = D(t) = —iz sign(k)axe™,

keZ.
where
P(t) = Z ae™ € P(X),
keZ
and
1, ifk>0,
sign(k) =40, ifk=0,
-1, ifk<0.

We also consider the subspace LS(IO ; X) of Ly(Ip; X) defined by

Ly(Io; X) = {f € Ly(lo; X) : flf(t)dt =0).

Let H be the X-valued Hilbert transform on R :

HA) = ) ;[(_—yidy,x R,

defined in a singular sense. The following H-characterization of UMD property is known.

12596

Theorem 2.6. [Burkholder-Bourgain] Let X be a B-space & p € (1, o0). The following assertions are equivalent:

(1) X € UMD;
(2) H € [L,(R; X)].

In future, we strongly will use the following proposition.

Proposition 2.7. Let X be a B-space & p € (1,00). If H € [L,(R; X)], then m € [LS(IO; X)] & m e [Ly(Io; X)].

Further details regarding these and related results can be found, for example, in the monograph [18].
In what follows, for function f € Li(l; X), we denote by { fk}kez (also written as {Tk(f)}kez) the sequence

of its X-valued Fourier coefficients, given by

fi=Tu(f) = % flo f(He ™dt, k € Z.

In work [13], the following theorem is proved.
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Theorem 2.8. ([13]]) Let X € UMD & p € (1,00). Then the exponential system & forms t-basis for Ly(Io; X), i.e.
Vf € L,(lo; X) has a unique expansion in the form

fO =Y fue™, @.1)

nez

in Ly(lo; X). Moreover, for Vm € Z, the following series

RLA® = o))=Y fue™,

m—1
RuH®) = f-() = Y, foe™,

n=—00

also converges in Ly(Io; X) (so-called t-Riesz property) and R;;, € [Ly(Io; X)].

3. Main results

3.1. H(X) and A(X) classes

We firstly define X-valued harmonic function in w. Let X be B-space. For z € w define the following
limits

%:f (@)= ]Rlail?—1>0 W'

0,f(2) = ]Rlsihnlo w

Assume
CHw; X) = {f : w = X : d1f; 9y f € C(w; X)},

where C(w; X) is the set of all continuous X-valued functions, defined on w. Analogously, define

CHw; X) = {f 10— X: 0uf;0vyf;dyyf € Clw; X))
Let
Af(z) = dxx f(2) + dyy f(2),

where z = x + iy, and accept

H(X) = H(w; X) = {f € CX(w; X) : Af(z) = 0,Yz € w}.

Further, we will consider the case, when X endowed with involution, i.e. 3 * : X* —» X, with the
following properties:

(i) * : X & Xis bijective and [[w*||x= [lwl|x, Yw € X;
(i) w* = W) =w,Ywe X;

(iil) (Aw)* = Aw*, YA € C,Vw € X.
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We refer to the elements of
XR=fweX:w =w)},
as =-real, and the elements of
XR=iXR={weX:w=ivve X},

as purely *-imaginary.

Thus, it is evident that for Yw € X : u = % e XRand v = % € X® and in result w has a
representation w = u + iv with ;v € XR  Moreover, such representation is unique.

In reality, let u; +ivy = up +iv,, where uy; vy € XR k=1,2. Consequently, we have u = u; —uy = i(vp—v1) =
iv, where u; v € XX, Thus

%

' =u=(iv)

*

=-w=-w=v=v=0=u=0=u; = uy &v1 = 0v,.
Therefore we obtain that the following direct sum is true.
X = XR4ix®, (3.1)

It is evident that X® is the closure under the norm || - ||x. Moreover, it is a real linear space and consequently,
XRisa B-space with the norm || - ||x over the field R. We define the norm in X

1 .
Wl = \Jlull + ol w = u+iv,

with ;v € XR. It is not hard to see that X with the norm || - |I(§) is also B-space. Moreover, the following
inequality holds

Iwllx < llullx + llollx < V2 \fllull + [0l = V2Iwll, Yw e X.

Then, from Banach’s Theorem it follows that the norms ||.||x and ||.||(;) are equivalent in X, i.e.
35> 0: slwll) < lIwllx < 57w, YweX.

According to the classical case accept notations u = Re'w and v = Im*w. So, it’s evident that w =
Re'w + ilm*wand w =0 < Re*w;Im'w = 0. w* = u — iv holds.

Now, let w € H(w; X) be X-valued harmonic function. Then it is not hard to see that Re*w and Im*w
are X-valued harmonic functions and the class of all such functions is denoted by H ]R(a); X). Thus, the
following direct sum holds.

H(w; X) = H¥(w; X) + iHR (w; X).

For future presentation, we also need the class A(w; X) of all X-valued analytic functions on w. In other
words, if f € A(w; X) then there exists continuous limit

, . fz+ A7) - f(2)
fe = Al;r_r}o Az ’
at every point z € w.

As usual, we define weak cases of these concepts. Namely, the function w : @ — X is said to be weakly
harmonic if x*(w) is a harmonic function (in general, a complex-valued harmonic function) on w for every
x* € X*. Analogously, weak analyticity is defined. The corresponding classes are denoted by H"(w; X) and
AV (w; X). It is well known that A(w; X) = AY(w; X).Moreover, the equality H(w; X) = H" (w; X) also holds
(see, e.g., [2]). Let the real part (induced by the involution #) of the class A(w; X) be denoted by AR(w; X).
The following relations hold: H®(w; X) ¢ H(w; X) and AX(w; X) c A(w; X).
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Let f = u +iv, with u;v € AR(w; X). For z = x + iy € w and Az = Ax + iAy, completely analogously to the
scalar case, we have

f'(z) = Dyt + idyv = %(%u +1idyv) =

e } 32)

0,0 = —dyu.

We will call the function v as the *-conjugation to the function u. The conditions are the X-valued
analogues of the Cauchy-Riemann conditions regarding B-space X with the involution operation (+). From
, it directly follows that u;v € H(w; X), and as a result, f € H(w;X). Conversely, let w = u + iv and
u; v € H®(w; X). Then, from the results of the work [2], it follows that u and v are real analytic functions on
w, i.e., they have power series expansions at every point z € w with coefficients from X®. Thus, if X-valued
Cauchy-Riemann conditions hold, then completely analogously to the classical case, it is proved that
the function w(z) is differentiable at Vz € w, i.e. there exists

. Wz + Az) —w(z)
lim =
Az—0 Az

It is evident that A(w; X) € H(w; X) and AR(w; X) ¢ HR(w; X). If the function w = u + iv € H(w; X)
does not satisfy the conditions (3.2), then w ¢ A(w; X) and as a result, it is obvious that

H(w; X)\ A(w; X) £ 0.

Let u € H®(w; X). According to the scalar case, consider the following X-valued integral

w'(z) = w € A(w; X).

) gy ou
v(xy) = f ———dx+ =—dy + vy, (3.3)
(x0530) 8y dx

where (xo; ¥0) € w be a fixed point, vy € X® arbitrary constant and the integral is taken over any smooth
curve connecting in w the points (xy; o) and (x;y) € w. Since u € C*(w) (see e.g., [2]), then it follows
immediately from that v € C*(w). Moreover the following relations hold

o _ _ou
dx —  dy’

(3.4)
Jdu _ Ju
dy ~— ox’

As a result, Av = 0. It is evident that v € H®(w; X). Set f(z) = u(z) + iv(z), for z € w. From (34), it follows
that f € A(w; X) and consequently, u; v € AR(w; X). Therefore, we obtain the identity AR (w; X) = HR(w; X).
Set

Hi (w; X) = {v € H®w; X) : v(0) = 0},
and consider the operator J : H®(w; X) — ?{éR(w ; X), defined by expression

Y oy ou
(Ju)(xy) = [) —@dx + ady, Y y) € w,

where the integral is taken over a smooth curve in w. Thus, it is obvious that for Vu € HR(w; X) the function
w = u +1Ju is analytic in w, thatis, w € A(w; X). Assume
Ag(w; X) = {w € A(w; X) : (Im*w)(0) = 0}. (3.5)

It is not hard to see that the operator 7~ = I + i implements a bijective mapping H®(w; X) on Ay(w; X).
Summarizing the above consideration, we arrive at the following main lemma.
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Lemma 3.1. Let X be a B-space over a field C with involution operation (+), and let H(w; X) & A(w; X) be the
class of X-valued harmonic and analytic functions on w, correspondingly. Then:

(i) H(w; X) = HR(w; X)+HHR(w; X) and A(w; X) € AR(w; X)+i AR (w; X), where HR(w; X) (AR(w; X)) is
a #-real part of H(w; X) (of Aw; X));

(ii) A(w; X) € H(w; X) & H(w; X) \ A(w; X) # 0;

(iii) Let w € H(w; X). Then w € A(w; X) if and only if u = Re'w & v = Im'w satisfies the X-valued
Cauchy-Riemann conditions (3.2);

(i) AR (w; X) = HR(w; X);

(v) The spaces H®(w; X) and Ay(w; X) are linearly isomorphic and the operator T~ = 1 + i implements the

corresponding isomorphism.

For simplicity, in what follows, we accept the notations H(X) =: H(w; X), AX) := A(w; X), and so on.
Also, for function f : w — X, we denote f(t) = f(te"), V' € w. .

3.2. wH;(X) & mhy (X) classes
Accept mL;*(X) := R;,(Ly(X)), where R;, are t-Riesz projectors defined above. According to the work [13],
introduce
mH;f(X) ={Fe AX):3f e mL;;’(X) = F=%Kf},
where K is a X-valued Cauchy-type integral

F(z) = (Kf)(z) = ﬁ %d&,z € w.
YV

Take attention to the following simple relation. Let f =u+iv&z=x+iy: ;v € XX, x;ye R= zf =
il +i0, with ;0 € X® : i = xu — yv, ¥ = yu + xo.
LetF e mH; (X). So, F = u + iv, where u; v € H®(X). Based on this relation, assume
N (X) = Re'(,,Hy (X)),
and set
Wy (X) = R () +i 1R (X).
According to the results of [13], F possesses non-tangential limit values F*(-) a.e. on y, where the sign ”+”
means the limit taken from inside of w, and the sign ”—" means the limit taken from outside of w. Moreover,

it holds that F*(&) = £(R5 f)(&), for a.e. & € y, where R are the t-Riesz operators. This result follows from
Statement 3.1 of the work [13]. As proved in [13], for the function F € 0H;(X), the following X-valued

Poisson integral representation holds
A 1 (7 ,
F(pe'") = —f P,(t —s)F*(s)ds, Vpe' € w,
2n J_,
where
1-p?
1+ p2—2pcoss’

is

Py(s) = pe’ € w,

is a Poisson Kernel for the unit disk. It immediately follows that

TU

u(pe) = Re*F(pe'') = (2u)(pe') =: %f P,(t — s)u*(s)ds, Ype" € w, (3.6)
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where u*(s) = Re*F*(s). Assume
LX) = Re'(Ly (X)),

where L; (X) = R*(Ly(X)), R* = R; is a t-Riesz operator, defined by the Theorem Consequently, from
results of the work [13], we obtain that every function from the class h;f;]R(X) has X-valued Poisson integral
representation (3.6) with density u* € L, R(X), where h;;]R(X) = 0h;;]R(X). Also set

H (X) = o} (X); Hy () = 1H, (X).
Denote by #7;,(X) the set of all polynomials of order < m € Z,, with X-valued coefficients of the form

m
P(z) = Za,fzik, a, =0, z€ C\{0}, {g}cX
k=0

As established in the work [13], the following direct sums hold
-mHy (X) = Hy (X)+2,,(X),
nH, (X) = H, (X)+2,,(X).

It follows from here that
by R (X) = Iy R (X)+Re (2,(X),
mhyR(X) = I, (X)+Re'(24(X)),
where h; (X) =21 h; (X).

3.3. X-valued Fatou’s & Zygmund theorems

Let f € Li(lp; X) and consider the following X-valued Poisson integral. For simplicity, without loss of
generality, we will consider the segment [0, 277) instead of the segment [—7, ) in this section.

1 .
u(p; @) = Z—f Py(s —@)f(s)ds, pe'? € w. (3.7)
T Jo
The following X-valued analogue of Fatou’s theorem is valid.

Theorem 3.2. Let f € Li(lp; X). Then for a.e. g € [0,27] the X-valued harmonic in w function u(p; @), defined by
Poisson formula (3.7), has a non-tangential limit

lim  u(p; ) = f(@o).

w3pe'?o ZLeivo

Indeed, based on Lemma u(p; @) can be represented by the following X-valued Poisson-Stieltjes
integral.

27T
u(p; ) = % fo Pp(s = @)du(s),

where

we) = [ s



B. Bilalov et al. / Filomat 39:35 (2025), 1259312609 12602

By this lemma, we have u’(s) = f(s), a.e. s € (0,2rm). The further proof is carried out in a completely
analogous way to the proof of the classical Fatou’s theorem (see, f.e. [24]).

The fact that the point z € w tends non-tangential to the point 7 € y is denoted as z % 1. The operator
corresponding to a harmonic function u(-) in @ and its non-tangential limit values u#*(:) a.e. on w (if they
exist) is denoted by 0: Ou = u*.

We now introduce the following subspaces of L,(Io; X).

Ly (lo; X) = {f € Ly(Io; X) : f(t) € X®, ¥t € L),
and

Li(Io; X) = {f € Ly(lo; X) : f(t) € X%, ¥t € I).
So, LL(Io; X) = iL}lf(Io; X), and it is evident that

Ly(I; X) = Ly (Io; X)+i Ly (Io; X).

Let f € Lff(lo ; X) and consider the following X-valued Poisson integral

271
u(p; @) = %]0‘ P.(s — @)f(s)ds, re' € w. (3.8)

Let x € XR. Then it is evident that
Re*[(a + ib)x] =ax, VYabel.
Taking into account the fact that

eis + pei(p .
Py(s—¢) =Re (m) = Re(K(s; pe "’)),

where

is a Schwartz kernel, the integral (3.8) we can represent in the form

27T
u(z) :Re*[%fo K(s;z)f(s)ds}.

From the Cauchy-Riemann conditions (3.2) it follows that the *-conjugation to u function v is defined up to
a »-real constant a € XR.
Since, the function

27
w(z) = %‘fo K(s;z)f(s)ds, (3.9)

is analytic in w, then it is evident that

27
v(z) = %jo‘ Im(K(s;z))f(s) ds + i v,

where vy € XR is an arbitrary constant. The integral (3.9) we will call a *-Schwartz integral. We have

s—sp es e
= —Im— — = lim Q(p; s — sop),
elS — eZS(] P"l

ctg
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where
s + pe 2psin(s — sp)
-5 —s59) = —Im|— — | = .
Qpis = s0) " (els - pe‘SO) 1+ p? —2pcos(s — sp)
Consequently
eis + peiso

P(p;0—s) +iQ(p;0 —s) = o poo’

The kernel Q(p; 0) is a conjugate Poisson’s kernel. Consider the following X-valued singular integral with
kernel ctg3:

-0

2711 s
H = Zct
(Hf)(0) L ch 5

fls)ds =

_ fon %ctgg[f(o +5) = flo—9)]ds =

= lim f; %ctg%[f(o +5) = f(o - 9)]ds.

H is called the X-valued periodic Hilbert transformation or conjugate function operator. The following
X-valued analogue of Zygmund's theorem is proved.

Theorem 3.3. Let X € #and f € L,(lo; X). Then for a.a. o € (0,2m) it holds

. 1 ("
}Jlil’ll [v(p;o) + o= fl_p ctg%[f(a +5)— f(o —s)] ds] =0,

where

271
o) = 5 | Qpro-s)f0)ds. (3.10)

Proof. For completeness of presentation, let us give a short outline of the proof. Taking attention to the
Lemma|2.4} set

ue) = | o)
and therefore p’(s) = f(s), a.e. s € (0,2mn). Let 0 € [0,27] such that at this point u’(0) exists. Denote

&) = Vs # 0.

(o +5) — (o) plo —s) - uo)
s -5 !

Assume that the functions f and p periodically continued to R with period 27. It is obvious that &(s) — 0,
s — 0. Also, set

v(s) = u(o +s) + u(o —s) —2u(o), VYs=#0.

Thus, it holds
v(s) _

v(s) = 5(5),5 -0, ie. lirr(} - = 0.
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We have

1 ™ 1 5 1 n
7 fé ds[(y(a +8) + (o - s))ctgg] =5 v(O)ctgy + 1 v(z)

ds, 6=1-p.

1 EX
5 SlIl2

)
It is evident that }Sing v(é)ctgz = 0. Thus, it is sufficient to prove

) 1 ™ v(s)
lim|v(p;0) + — ds|=0.
p—)l( (‘0 ) 47 jl‘—p Sin2 % ]

We have
Zp[(l + p?)coss — Zp]
Qilprs) = T
(1 + p? —2pcos s)
-1 -1
"(1:s) = = 3.11
QS(]-IS) 1 — COS S Zsinz %/ ( )
2 2
1Q:(p; s)l < —pz = 6—2)-
(1-r)

Integration by parts gives
v(p;0) = L fﬂ v(s)Qi(p;s)ds
p; - 277 0 s\P; ’
and we can split this integral into two parts

) i
Ji= %fo v(8)Qs(p;s)ds; Ja = if@ v(8)Q;(p; s) ds.

Due to the relations (3.11), we have

2 O
21T, < 5_5 f SIEE)lx ds < p sup IEG)Ix = 0, 6 — 0.
0

0<5<6

Represent the integral > in the form

Iy = % f: v(s)QL(1;8) ds + % Ln v(s)[Q;(p; s) — Q;(l;s)] ds.

Due to the second relation in (3.11)), we have

m(u(p;mj—n [ 2 ds)=hmi [ ol - s)as

-p sin’ 2 p—1 2n
It holds

8*[(1 + p*> = 2pcoss) + 2psin’s
Qs(p;s) — Qi(1;s) = [ ]

(1 - cos s)[(l + p2 —2p cos s)]2 '
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Moreover
1+p?>2p= 1+ p*—2pcoss >2p(1 — coss) = 4p sin’ %

Consequently, it follows that

1 " 4 ’ C T ds
‘EE£1“*U“”‘Qﬂ”WBXS5§{Lnammg.

Let i > 0 be an arbitrary number. It is obvious that 3 &y > 0: [|E(s)llx < 7, ¥s. Assume 6% = 1765 & 6 < 6.
Then we have

" ”8(S)HX % ||8(S)”X ||3(5)||x
¥nf1 1 ||5(S)||X
<%~ 5—2] f s

<3+n [ 18k (3.12)
0

Since ||&

—~

s)|lx is a bounded function, then it follows from (3.12) that

<(y,

1 " 4 ’
5= [ ol -qas)as|

where C > 0 is independent of 0 constant.

The theorem is proved. [

In particular, the following result follows from this theorem.
Corollary 3.4. Let X € % and f € Li(lo; X). Then for o € Iy the X-valued Hilbert transform (H f)(o) exists if and
only if the limit lin} v(p; 0) exists, where v(p; o) is defined by the integral (3.10).

p—)

Now, consider the case when X € UMD and 1 < p < +oo. Letu € h;;]R(X) = df e Hy(X) : u = Re'f. Let
v : v(0) = 0,isa *-conjugate to u function. Consequently, f = u+iv. Itisevidentthat f € H;(X) & if € H)(X).

Since v = —Re'(if), then v € ;"™ (X).
Conversely, letu;v € h;;]R(X) and v : v(0) = 0, *-conjugate to u function. Let f € H;; (X) such thatu = Re* f

Set f = u + iv. It is evident that f = f + ivy, where vy € XR is a constant. From here follows that f € Hy (X).
Thus, the following relation is true

feH;(X) & Re'f, Im'f € hy™"(X).

From this, it follows that v(-) has non-tangential values a.e. on y, denoted by v*(£), & € y. Represent f()
via the X-valued Poisson integral

271
f(re') = % fo P(s—t)f*(s)ds, re' € w,

where f*(-) is the non-tangential values of f(-) on y. From this formula direct follows that

27
u(re'y = if P.(s — u*(s)ds,
0

27
where u*(-) = Re’ f*(-) and v*(-) = Im" f*(-). From the above consideration, we arrive at the following

27
v(re') = if P,(s — ot (s)ds,
0
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Statement 3.5. Let X € UMD and f € L,(Ip; X), 1 < p < +o0. Then for a.e. o € (0,2m), it holds
27
lim o(p;t) = f(s) ctg —_— ds (3.13)

pezt i}el o

where

27

1
wpit) =5z | Q- 9fe) s
that is, the function v(-) has non-tangential values (3.13) a.e. on y.

3.4. Sokhotski-Plemelj’s formula
Let X € UMD and f € L,(Ip; X), 1 < p < +oo. Consider the following Schwartz-Bochner integral.

27T
F(z) = %jo‘ K(s;z)f(s)ds, ze€w. (3.14)

Represent this integral in the following form
270

27T .
F(z)z% fo P(r;a—s)f(s)ds+i 0 Q(r;0 —5)f(s)ds,

where z = re”. Taking attention to the Theorem 3.2|and Statement from here we obtain

F*(e) = hm F(z) = f(o) +i(Hf)(0), a.e. o€ (0,2n). (3.15)

250

Now, consider the integral (3.14) in the case when |z| > 1. Introduce a new function for consideration,
D(z1) = P*( ) |z1] < 1. Where z = é We have

1 M pmis 17 1 [ e’s+z
Q(Zl)z_%(fo - 1f()d) 2nf0 1f+(s)ds |z1] < 1.

s —7
Itis evident that w 5 z; 5 €% «= ° 3 z 5 ¢, Then according to the formula (3.15) for ®(-) we obtain
(€)= —f*(0) — i(Hf)(0) = F(¢) = (®7(¢)) = —f(0) +i(Hf)(0),
a.e. 0 € (0,2n), where

F(¢°) = lim F(2).

w3z’

Thus, the following theorem is valid.

Theorem 3.6. Let X € UMD and f € L,(lp; X), 1 < p < +oo. Then, for the Schwartz—Bochner integral (3.14), the
following X-valued Sokhotsky—Plemelj’s formulas are valid.

F*(e") = +f(0) + i(Hf)(0), a.e. o€ (0,2n).

Note that this formula is established in the work [13]] by a different approach, under stronger conditions.
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3.5. t-nasis for h; (X) and Dirichlet problem for Laplace equation

Let X € UMD and u € I"(X), 1 < p < +co. Firstly, define the norm in h;"®(X) by the following
expression

||u||h;;R(X) = ||M+||L,,(;/;X), (3.16)

where u* = Ou is the non-tangential values function of u on y. From the Poisson-Bochner formula for u(-),
it directly follows that the expression defines the norm in h, R(x).

Letw € H; (X) such that u = Re*w. Via the results of the work [13], the system {z"},cz, forms a t-basis
for H; (X). Let

(o]
w(z) = Z wz", z€w,
n=0

{w,} C X. From here it immediately follows

u(z) = i Re*(wnz”), Z € w.

n=0
Let w, = u, + iv,, with u,;v, € X®, ¥ n € Z,. Consequently
(o]
u(z) = up + Z (un COS NP — vy, Sin n(p)r”, z=re'? € w.

n=1

By results of the work [13], we have
w* () = Z w,e"?,
n=0

and in result

(o)
ut(e) = ug + Z (un COS N — vy, Sin n(p).

n=1

Therefore (see, [13]])

m m
w(z) — Z w,z" = |lw* (&) — Z wyz" -0, m—o o
n=0 Hy (X) n=0 L,(y;X)
It follows from here that
m
u(re'?) — uy — Z(un COs nQp — v, sinng)z" =
n=1 I (X)
m
= [u*(€?) — ug — Z(un Cos N — v, sinne) -0, m-—> o
n=1 Lp(y;:X)

It is not hard to see that the operators {t;} C [h;,r Rx); X], defined by the expressions

1 27T )
TS(M)=Ef ut (") dt;
0



B. Bilalov et al. / Filomat 39:35 (2025), 12593-12609 12608
1 27T )
(M (NES ;f ut(e") cosntdt;
0

1 270 )
T, (u) = gfo u~(e")sinntdt,

are t-biorthogonal to the system {1; 7" cos nt; r" sin nt},en. Summarizing the previous results, we obtain the
validity of the following statement.

Statement 3.7. Let X € UMD. Then the system
{1;7" cos nt; r" sin nt},en,

forms a t-basis for Iy ™ (X), 1 < p < +o0.
Let X € UMD and u € h;;]R(X), 1 < p < +oc0. Then, by Statement|3.7| the function u(-) has the following
expansion

00

u(re") = uf + Z (u:; cos nt + u;, sin nt)r".
n=1

Since 0 € [h;;]R(X);L,,(y; X)], we have

Ou(re’) = u*(e") = ul+ Z [G(u; cos ntr") + O(u,, sin ntr“)] =

n=1
(oY)

_ + + - o}

= Uy + E (un cosnt + u, sin nt).
n=1

From these considerations, we obtain the correct solvability of the following X-valued Dirichlet problem
for the Laplace equation in the class h;,”]R(X).

Consider the problem
Au=0, ino, (3.17)
Ou=f, ony, ’

where f € L;lf(y; X) is a given function. By the solution of the problem (3.17), we mean the function

ue h;,"']R(X) for which Ou = f, where 0 is the corresponding trace operator.
The following statement holds.

Statement 3.8. Let X € UMD. Then for ¥V f € Lg{(y; X), 1 < p < +oo, the problem (3.17)) is uniquely solvable in
the class h;;]R(X) and for the solution u € h;;]R(X), it holds

“u”h;ﬂR(m = ”f”Lp(y;X)-

The last relation directly follows from (3.16).
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