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Abstract. The concept of t-basis (generated by the tensor product) from the exponential systemE = {eint
}n∈Z

is considered for Bochner space Lp(I0; X), 1 < p < +∞, on I0 = [−π, π), where X is a Banach space with
UMD (Unconditional Martingale Difference) property. We assume that X is endowed with the involution (∗).
Using the t-basicity of the systemE, we introduce the class h+;R

p (X) of X-valued harmonic functions in the unit
ball, generated by involution (∗). The ∗-analogues of the Cauchy-Riemann conditions are obtained, and the
relations between the class h+;R

p (X) and the Hardy-Bochner class Hp(X) of analytic functions are established.
A new method for establishing X-valued Sokhotski-Plemelj’s formulas is presented. Additionally, we
establish the correctness of the Dirichlet problem for X-valued harmonic functions in the class hp(X).

1. Introduction

With applications in various areas of mathematics (e.g., operator theory, partial differential equations,
abstract harmonic analysis, stochastic evolution equations, etc.), there is a growing interest in the investi-
gation of X-valued differential equations, and many works have been devoted to this direction (see e.g.,
the works [1, 2, 4, 5, 13–15, 17, 20, 21], monographs [3, 19] and master’s and doctoral theses [22, 23, 25]).
Specifically, note that when X = C (the complex field), these classes are applied in establishing the basis
properties (completeness, minimality and basicity) of certain perturbed trigonometric systems, which may
be eigenfunctions of second-order differential operators (see, e.g., the works [6–8, 10, 11]). In [12], this
approach is developed regarding the Hardy spaces generated by the norm of a Banach Function Space. In
studies [9, 16, 26], the analytical properties of solutions to boundary value problems defined in function
spaces have been examined.
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The concept of t-basis (generated by the tensor product) from the exponential system E = {eint
}n∈Z is

considered for Bochner space Lp(I0; X), 1 < p < +∞, on I0 = [−π, π), where X is a Banach space with UMD
(Unconditional Martingale Difference) property. We assume that X is endowed with an involution (∗).
Using the t-basicity of the system E, we introduce the class h+;R

p (X) of X-valued harmonic functions in the
unit ball, generated by involution (∗). The ∗-analogues of the Cauchy-Riemann conditions are obtained, and
relations between the class h+;R

p (X) and the Hardy-Bochner class Hp(X) of analytic functions are established.
A new method for establishing X-valued Sokhotski-Plemelj’s formulas is presented. We also establish the
correctness of the Dirichlet problem for X-valued harmonic functions in the class h+;R

p (X).

2. Notations and auxiliary facts

2.1. Notations
We accept the following notations used in this work. N−positive integers; Z−integers; Z+ = {0} ∪

N; R−real numbers; C−complex numbers; γ = ∂ω = {z ∈ C : |z| = 1}; B-space−Banach space; ω =
{z ∈ C : |z| < 1}; ωc = {z ∈ C : |z| > 1}; ∥·∥X−norm in X; [X; Y]− B-space of bounded linear operators acting
from X to Y; [X] = [X; X]; X∗−dual space of X; M−closure of the set M; dσ−length element on γ; (·)−complex
conjugation; δi j−Kronecker’s symbol; p′−conjugate to p number: 1

p +
1
p′ = 1; I0 ≡ [−π, π); i =

√
−1. The

symbol ⊁→ denotes nontangential convergence.
We use c; C to denote constants whose values can vary in different places. Note that all considered

B-spaces here are defined over the field C.

2.2. t-basis properties
Let X,Y,Z be B-spaces and t : X × Y→ Z be a bilinear operator satisfying the following condition

∃δ > 0 : δ∥x∥X∥y∥Y ≤ ∥t(x; y)∥Z ≤ δ−1
∥x∥X∥y∥Y, ∀(x; y) ∈ X × Y.

For simplicity, future presentation accepts the notation xy := t(x; y) for every (x; y) ∈ X × Y.
We denote t-span of M by Lt[M] for the set M ⊂ Y and define it as

Lt[M] =
{
z ∈ Z : ∃

{
(xk; yk)

}n0

1
⊂ X ×M⇒ z =

n0∑
k=1

xkyk

}
.

Let −→y ≡ {yk}k∈N ⊂ Y be some system. Accept the following concepts.

System −→y is t-complete in Z, if Lt

[
−→y

]
= Z (closure is taken in Z).

The system of operators {Tn}n∈N ⊂ [Z; X] is called t-biorthogonal to −→y ⊂ Y, if Tn(xyk) = xδnk, ∀x ∈ X &
∀n, k ∈N.

The system −→y ⊂ Y forms t-basis for Z if ∀z ∈ Z has a unique expansion in the form

z =
∞∑

k=1

xkyk,

with {xk}k∈N ⊂ X.
We call a triple (X; Y; Z) be tY-invariant if {(xk; ỹk)} ⊂ X × Y :

∑
k

xk ỹk = 0⇒
∑
k
ϑ(ỹk)xk = 0, ∀ϑ ∈ Y∗.

A triple (X,Y,Z) is t-dense if L[X × Y] = Z (closure is taken in Z).
The following criterion for t-basicity is valid.

Theorem 2.1. Let the triple (X; Y; Z) be tY-invariant and t-dense. Then the system −→y forms a t-basis for Z if and
only if the following assertions hold:

(i) −→y is t-complete in Z;
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(ii) −→y has t-biorthogonal system {Tn}n∈N ⊂ [Z; X];

(iii) the projectors {Pm}m∈N :

Pm(z) =
m∑

n=1

Tn(z)yn, ∀z ∈ Z & ∀m ∈N,

are uniformly bounded, i.e. sup
m
∥Pm∥[Z] < ∞.

We consider Z as the some Banach tensor product X⊗Y of B-spaces X and Y. Denote the algebraic tensor
product of X & Y by X⊗Y and the elementary tensor product of elements x ∈ X & y ∈ Y by x⊗y. In this
case, it is obvious that the triple (X; Y; Z) is t-dense and tY-invariant regarding the bilinear map t(x, y) = x⊗y.
Thus, according to the Theorem 2.1 we have the following

Corollary 2.2. Let X; Y be B-spaces and Z = X⊗Y. Then the system −→y ⊂ Y forms t-basis for Z if and only if the
assertions (i) − (iii) of Theorem 2.1 hold.

2.3. Bochner spaces and UMD spaces

Let (S,A, µ) be a measure space and X be B-space. As usual, denote by Lp(S; X), 1 ≤ p < +∞, the
Bochner space generated by measure space (S;A;µ) with norm

∥ f ∥Lp(S;X) =

(∫
S

∥ f ∥pX dµ
) 1

p

.

The Bochner space Lp(γ; X) is defined similarly. We identify the segment I0 and unit circle γ by mapping
eit : I0 → γ. This allows us to identify also the spaces Lp(I0; X) and Lp(γ; X).

We provide the definition of the UMD property and the associated space.

Definition 2.3. A Banach space X is said to have the property of UMD, if for all p ∈ (1,∞) there exists a
finite constant β ≥ 0 (depending on p and X) such that the following holds: whenever (S;A;µ) is a σ-finite
measure space, {Fn}

N
n=0 is a σ-finite filtration and { fn}Nn=0 is a finite martingale in Lp(S; X), then for all scalar

|εn| = 1, n = 1,N; we have∥∥∥∥∥ N∑
n=1

εnd fn

∥∥∥∥∥
Lp(S;X)

≤ β

∥∥∥∥∥ N∑
n=1

d fn

∥∥∥∥∥
Lp(S;X)

,

where d fn = fn − fn−1 is a martingale difference.

Let the set of all B−spaces that possess the UMD property be denoted by the symbol UMD.
To establish an analogous of the classical Fatou’s theorem regarding harmonic functions on ω, we will

need the following lemma from the monograph [18] (see p.127, Lemma 2.5.8).

Lemma 2.4. ([18]) Let 1 ∈ Lloc
1 (R; X) and a ∈ R and define f : R→ X by

f (t) =:
∫ t

a
1(s)ds.

Then the weak derivative ∂ f and almost everywhere derivative f ′ of f both exist in Lloc
1 (R; X) and are given by the

∂ f = f ′ = 1.



B. Bilalov et al. / Filomat 39:35 (2025), 12593–12609 12596

The set of all X-valued trigonometric polynomials Pn : I0 → X of the form

Pn(t) =
n∑

k=−n

akeikt,

with coefficients {ak} ⊂ X, denote by P(X).
The following proposition is valid.

Proposition 2.5. Let X be B-space. Then P(X) = Lp(I0; X), 1 ≤ p < ∞), (closure is taken in Lp(I0; X)).

We define on P(X) the multiplier operator m : P(X)→ Lp(I0; X) by expression

(mP)(t) = P̃(t) = −i
∑
k∈Z

si1n(k)akeikt,

where

P(t) =
∑
k∈Z

akeikt
∈P(X),

and

si1n(k) =


1, if k > 0,
0, if k = 0,
−1, if k < 0.

We also consider the subspace L0
p(I0; X) of Lp(I0; X) defined by

L0
p(I0; X) = { f ∈ Lp(I0; X) :

∫
I0

f (t)dt = 0}.

Let H be the X-valued Hilbert transform on R :

(H f )(x) =
1
π

∫
R

f (y)
x − y

dy, x ∈ R,

defined in a singular sense. The following H-characterization of UMD property is known.

Theorem 2.6. [Burkholder-Bourgain] Let X be a B-space & p ∈ (1,∞). The following assertions are equivalent:

(1) X ∈ UMD;

(2) H ∈ [Lp(R; X)].

In future, we strongly will use the following proposition.

Proposition 2.7. Let X be a B-space & p ∈ (1,∞). If H ∈ [Lp(R; X)], then m ∈ [L0
p(I0; X)] & m ∈ [Lp(I0; X)].

Further details regarding these and related results can be found, for example, in the monograph [18].
In what follows, for function f ∈ L1(I0; X), we denote by { f̂k}k∈Z (also written as {Tk( f )}k∈Z) the sequence

of its X-valued Fourier coefficients, given by

f̂k := Tk( f ) :=
1

2π

∫
I0

f (t)e−iktdt, k ∈ Z.

In work [13], the following theorem is proved.
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Theorem 2.8. ([13]) Let X ∈ UMD & p ∈ (1,∞). Then the exponential system E forms t-basis for Lp(I0; X), i.e.
∀ f ∈ Lp(I0; X) has a unique expansion in the form

f (t) =
∑
n∈Z

f̂neint, (2.1)

in Lp(I0; X). Moreover, for ∀m ∈ Z, the following series

(R+m f )(t) = f+(t) =
∞∑

n=m

f̂neint,

(R−m f )(t) = f−(t) =
m−1∑

n=−∞

f̂neint,

also converges in Lp(I0; X) (so-called t-Riesz property) and R±m ∈ [Lp(I0; X)].

3. Main results

3.1. H(X) andA(X) classes
We firstly define X-valued harmonic function in ω. Let X be B-space. For z ∈ ω define the following

limits

∂x f (z) := lim
R∋h→0

f (z + h) − f (z)
h

,

∂y f (z) := lim
R∋h→0

f (z + ih) − f (z)
h

.

Assume

C1(ω; X) = { f : ω→ X : ∂x f ; ∂y f ∈ C(ω; X)},

where C(ω; X) is the set of all continuous X-valued functions, defined on ω. Analogously, define

C2(ω; X) = { f : ω→ X : ∂xx f ; ∂xy f ; ∂yy f ∈ C(ω; X)}.

Let

∆ f (z) = ∂xx f (z) + ∂yy f (z),

where z = x + iy, and accept

H(X) = H(ω; X) = { f ∈ C2(ω; X) : ∆ f (z) = 0,∀z ∈ ω}.

Further, we will consider the case, when X endowed with involution, i.e. ∃ ∗ : X∗ → X, with the
following properties:

(i) ∗ : X↔ X is bijective and ∥w∗∥X= ∥w∥X,∀w ∈ X;

(ii) w∗∗ = (w∗)∗ = w,∀w ∈ X;

(iii) (λw)∗ = λw∗,∀λ ∈ C,∀w ∈ X.
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We refer to the elements of

XR = {w ∈ X : w∗ = w},

as ∗-real, and the elements of

XiR = iXR = {w ∈ X : w = iv, v ∈ XR},

as purely ∗-imaginary.
Thus, it is evident that for ∀w ∈ X : u = w+w∗

2 ∈ XR and v = w−w∗
2i ∈ XR, and in result w has a

representation w = u + iv with u; v ∈ XR . Moreover, such representation is unique.
In reality, let u1+ iv1 = u2+ iv2,where uk; vk ∈ XR, k = 1, 2.Consequently, we have u = u1−u2 = i(v2−v1) =

iv,where u; v ∈ XR. Thus

u∗ = u = (iv)∗ = −iv∗ = −iv = iv =⇒ v = 0 =⇒ u = 0 =⇒ u1 = u2 & v1 = v2.

Therefore we obtain that the following direct sum is true.

X = XR+̇iXR. (3.1)

It is evident that XR is the closure under the norm ∥ · ∥X. Moreover, it is a real linear space and consequently,
XR is a B-space with the norm ∥ · ∥X over the field R. We define the norm in X

∥w∥(1)
X =

√
∥u∥2X + ∥v∥

2
X, w = u + iv,

with u; v ∈ XR. It is not hard to see that X with the norm ∥ · ∥(1)
X is also B-space. Moreover, the following

inequality holds

∥w∥X ≤ ∥u∥X + ∥v∥X ≤
√

2
√
∥u∥2X + ∥v∥

2
X =
√

2∥w∥(1)
X , ∀w ∈ X.

Then, from Banach’s Theorem it follows that the norms ∥.∥X and ∥.∥(1)
X are equivalent in X, i.e.

∃δ > 0 : δ∥w∥(1)
X ≤ ∥w∥X ≤ δ

−1
∥w∥(1)

X , ∀w ∈ X.

According to the classical case accept notations u = Re∗w and v = Im∗w. So, it’s evident that w =
Re∗w + iIm∗w and w = 0 ⇐⇒ Re∗w; Im∗w = 0.w∗ = u − iv holds.

Now, let w ∈ H(ω; X) be X-valued harmonic function. Then it is not hard to see that Re∗w and Im∗w
are X-valued harmonic functions and the class of all such functions is denoted by HR(ω; X). Thus, the
following direct sum holds.

H(ω; X) = HR(ω; X) ∔ iHR(ω; X).

For future presentation, we also need the classA(ω; X) of all X-valued analytic functions on ω. In other
words, if f ∈ A(ω; X) then there exists continuous limit

f ′(z) = lim
∆z→0

f (z + ∆z) − f (z)
∆z

,

at every point z ∈ ω.
As usual, we define weak cases of these concepts. Namely, the function w : ω→ X is said to be weakly

harmonic if x∗(w) is a harmonic function (in general, a complex-valued harmonic function) on ω for every
x∗ ∈ X∗. Analogously, weak analyticity is defined. The corresponding classes are denoted byHw(ω; X) and
A

w(ω; X). It is well known thatA(ω; X) = Aw(ω; X).Moreover, the equalityH(ω; X) = Hw(ω; X) also holds
(see, e.g., [2]). Let the real part (induced by the involution ∗) of the classA(ω; X) be denoted byAR(ω; X).
The following relations hold: HR(ω; X) ⊂ H(ω; X) andAR(ω; X) ⊂ A(ω; X).
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Let f = u+ iv, with u; v ∈ AR(ω; X). For z = x+ iy ∈ ω and ∆z = ∆x+ i∆y, completely analogously to the
scalar case, we have

f ′(z) = ∂xu + i∂xv =
1
i

(∂yu + i∂yv)⇒

∂xu = ∂yv,
∂xv = −∂yu.

}
(3.2)

We will call the function v as the ∗-conjugation to the function u. The conditions (3.2) are the X-valued
analogues of the Cauchy-Riemann conditions regarding B-space X with the involution operation (∗). From
(3.1), it directly follows that u; v ∈ H(ω; X), and as a result, f ∈ H(ω; X). Conversely, let w = u + iv and
u; v ∈ HR(ω; X). Then, from the results of the work [2], it follows that u and v are real analytic functions on
ω, i.e., they have power series expansions at every point z ∈ ωwith coefficients from XR. Thus, if X-valued
Cauchy-Riemann conditions (3.2) hold, then completely analogously to the classical case, it is proved that
the function w(z) is differentiable at ∀z ∈ ω, i.e. there exists

lim
∆z→0

w(z + ∆z) −w(z)
∆z

= w′(z) =⇒ w ∈ A(ω; X).

It is evident that A(ω; X) ⊂ H(ω; X) and AR(ω; X) ⊂ HR(ω; X). If the function w = u + iv ∈ H(ω; X)
does not satisfy the conditions (3.2), then w < A(ω; X) and as a result, it is obvious that

H(ω; X) \ A(ω; X) , ∅.

Let u ∈ HR(ω; X). According to the scalar case, consider the following X-valued integral

v(x; y) =
∫ (x;y)

(x0;y0)
−
∂u
∂y

dx +
∂u
∂x

dy + v0, (3.3)

where (x0; y0) ∈ ω be a fixed point, v0 ∈ XR arbitrary constant and the integral is taken over any smooth
curve connecting in ω the points (x0; y0) and (x; y) ∈ ω. Since u ∈ C∞(ω) (see e.g., [2]), then it follows
immediately from (3.3) that v ∈ C∞(ω). Moreover the following relations hold

∂v
∂x = −

∂u
∂y ,

∂v
∂y =

∂u
∂x .

 (3.4)

As a result, ∆v = 0. It is evident that v ∈ HR(ω; X). Set f (z) = u(z) + iv(z), f or z ∈ ω. From (3.4), it follows
that f ∈ A(ω; X) and consequently, u; v ∈ AR(ω; X). Therefore, we obtain the identityAR(ω; X) ≡ HR(ω; X).

Set

H
R
0 (ω; X) = {v ∈ HR(ω; X) : v(0) = 0},

and consider the operator J : HR(ω; X)→HR0 (ω; X), defined by expression

(Ju)(x; y) =
∫ (x;y)

0
−
∂u
∂y

dx +
∂u
∂x

dy, ∀(x; y) ∈ ω,

where the integral is taken over a smooth curve in ω. Thus, it is obvious that for ∀u ∈ HR(ω; X) the function
w = u + iJu is analytic in ω, that is, w ∈ A(ω; X). Assume

A0(ω; X) = {w ∈ A(ω; X) : (Im∗w)(0) = 0}. (3.5)

It is not hard to see that the operator T = I + iJ implements a bijective mappingHR(ω; X) onA0(ω; X).
Summarizing the above consideration, we arrive at the following main lemma.
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Lemma 3.1. Let X be a B-space over a field C with involution operation (∗), and let H(ω; X) & A(ω; X) be the
class of X-valued harmonic and analytic functions on ω, correspondingly. Then:

(i)H(ω; X) = HR(ω; X)+̇iHR(ω; X) andA(ω; X) ⊂ AR(ω; X)+̇iAR(ω; X), whereHR(ω; X) (AR(ω; X)) is
a ∗-real part ofH(ω; X) (ofA(ω; X));

(ii)A(ω; X) ⊂ H(ω; X) &H(ω; X) \ A(ω; X) , ∅;

(iii) Let w ∈ H(ω; X). Then w ∈ A(ω; X) if and only if u = Re∗w & v = Im∗w satisfies the X-valued
Cauchy-Riemann conditions (3.2);

(iv)AR(ω; X) ≡ HR(ω; X);

(v) The spaces HR(ω; X) and A0(ω; X) are linearly isomorphic and the operator T = I + iJ implements the
corresponding isomorphism.

For simplicity, in what follows, we accept the notations H(X) =: H(ω; X), A(X) := A(ω; X), and so on.
Also, for function f : ω→ X, we denote fτ(t) = f (τeit),∀τeit

∈ ω. .

3.2. mH±p (X) & mh±p (X) classes

Accept mL±p (X) := R±m(Lp(X)), where R±m are t-Riesz projectors defined above. According to the work [13],
introduce

mH±p (X) = {F ∈ A(X) : ∃ f ∈ mL±p (X)⇒ F = K f },

whereK is a X-valued Cauchy-type integral

F(z) = (K f )(z) =
1

2πi

∫
γ

f (ξ)
ξ − z

dξ, z ∈ ω.

Take attention to the following simple relation. Let f = u + iv & z = x + iy : u; v ∈ XR, x; y ∈ R⇒ z f =
ũ + iṽ,with ũ; ṽ ∈ XR : ũ = xu − yv, ṽ = yu + xv.

Let F ∈ mH±p (X). So, F = u + iv, where u; v ∈ HR(X). Based on this relation, assume

mh±;R
p (X) = Re∗(mH±p (X)),

and set

mh±p (X) = mh±;R
p (X)+̇i mh±;R

p (X).

According to the results of [13], F possesses non-tangential limit values F±(·) a.e. on γ, where the sign ”+”
means the limit taken from inside ofω, and the sign ”−” means the limit taken from outside ofω. Moreover,
it holds that F±(ξ) = ±(R±0 f )(ξ), for a.e. ξ ∈ γ, where R±0 are the t-Riesz operators. This result follows from
Statement 3.1 of the work [13]. As proved in [13], for the function F ∈ 0H+p (X), the following X-valued
Poisson integral representation holds

F(ρeit) =
1

2π

∫ π

−π
Pρ(t − s)F+(s)ds, ∀ρeit

∈ ω,

where

Pρ(s) =
1 − ρ2

1 + ρ2 − 2ρ cos s
, ρeis

∈ ω,

is a Poisson Kernel for the unit disk. It immediately follows that

u(ρeit) = Re∗F(ρeit) = (Pu+)(ρeit) =:
1

2π

∫ π

−π
Pρ(t − s)u+(s)ds, ∀ρeit

∈ ω, (3.6)
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where u+(s) = Re∗F+(s). Assume

L+;R
p (X) = Re∗(L+p (X)),

where L+p (X) = R+(Lp(X)), R+ = R+0 is a t-Riesz operator, defined by the Theorem 2.8. Consequently, from
results of the work [13], we obtain that every function from the class h±;R

p (X) has X-valued Poisson integral
representation (3.6) with density u+ ∈ L+;R

p (X), where h+;R
p (X) = 0h+;R

p (X). Also set

H+p (X) = 0H+p (X); H−p (X) = −1H−p (X).

Denote by P±
m(X) the set of all polynomials of order ≤ m ∈ Z+, with X-valued coefficients of the form

P±

m(z) =
m∑

k=0

a±k z±k, a−0 = 0, z ∈ C\{0}, {a±k } ⊂ X.

As established in the work [13], the following direct sums hold

−mH+p (X) = H+p (X)+̇P−

m(X),

mH+p (X) = H−p (X)+̇P+
m(X).

It follows from here that

−mh+;R
p (X) = h+;R

p (X)+̇Re∗(P−
m(X)),

mh+;R
p (X) = h−;R

p (X)+̇Re∗(P+
m(X)),


where h−p (X) =−1 h−p (X).

3.3. X-valued Fatou’s & Zygmund theorems
Let f ∈ L1(I0; X) and consider the following X-valued Poisson integral. For simplicity, without loss of

generality, we will consider the segment [0, 2π) instead of the segment [−π, π) in this section.

u(ρ;φ) =
1

2π

∫ 2π

0
Pρ(s − φ) f (s)ds, ρeiφ

∈ ω. (3.7)

The following X-valued analogue of Fatou’s theorem is valid.

Theorem 3.2. Let f ∈ L1(I0; X). Then for a.e. φ0 ∈ [0, 2π] the X-valued harmonic in ω function u(ρ;φ), defined by
Poisson formula (3.7), has a non-tangential limit

lim
ω∋ρeiφ0

⊁
→eiφ0

u(ρ;φ) = f (φ0).

Indeed, based on Lemma 2.4, u(ρ;φ) can be represented by the following X-valued Poisson-Stieltjes
integral.

u(ρ;φ) =
1

2π

∫ 2π

0
Pρ(s − φ)dµ(s),

where

µ(s) =
∫ s

0
f (t)dt.
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By this lemma, we have µ′(s) = f (s), a.e. s ∈ (0, 2π). The further proof is carried out in a completely
analogous way to the proof of the classical Fatou’s theorem (see, f.e. [24]).

The fact that the point z ∈ ω tends non-tangential to the point τ ∈ γ is denoted as z ⊁
→ τ. The operator

corresponding to a harmonic function u(·) in ω and its non-tangential limit values u+(·) a.e. on ω (if they
exist) is denoted by θ: θu = u+.

We now introduce the following subspaces of Lp(I0; X).

LRp (I0; X) = { f ∈ Lp(I0; X) : f (t) ∈ XR, ∀t ∈ I0},

and

LI
p(I0; X) = { f ∈ Lp(I0; X) : f (t) ∈ XiR, ∀t ∈ I0}.

So, LI
p(I0; X) = i LRp (I0; X), and it is evident that

Lp(I0; X) = LRp (I0; X)+̇i LRp (I0; X).

Let f ∈ LRp (I0; X) and consider the following X-valued Poisson integral

u(ρ;φ) =
1

2π

∫ 2π

0
Pr(s − φ) f (s) ds, reiφ

∈ ω. (3.8)

Let x ∈ XR. Then it is evident that

Re∗
[
(a + ib)x

]
= a x, ∀a, b ∈ R.

Taking into account the fact that

Pρ(s − φ) = Re
(

eis + ρeiφ

eis − ρeiφ

)
= Re

(
K(s;ρeiφ)

)
,

where

K(s; z) =
eis + z
eis − z

,

is a Schwartz kernel, the integral (3.8) we can represent in the form

u(z) = Re∗
[

1
2π

∫ 2π

0
K(s; z) f (s) ds

]
.

From the Cauchy-Riemann conditions (3.2) it follows that the ∗-conjugation to u function v is defined up to
a ∗-real constant a ∈ XR.

Since, the function

w(z) =
1

2π

∫ 2π

0
K(s; z) f (s) ds, (3.9)

is analytic in ω, then it is evident that

v(z) =
1

2π

∫ 2π

0
Im

(
K(s; z)

)
f (s) ds + i v0,

where v0 ∈ XR is an arbitrary constant. The integral (3.9) we will call a ∗-Schwartz integral. We have

ct1
s − s0

2
= −Im

eis + eis0

eis − eis0
= lim
ρ→1

Q(ρ; s − s0),
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where

Q(ρ; s − s0) = −Im
(

eis + ρeis0

eis − ρeis0

)
=

2ρ sin(s − s0)
1 + ρ2 − 2ρ cos(s − s0)

.

Consequently

P(ρ; σ − s) + iQ(ρ; σ − s) =
eis + ρeis0

eis − ρeis0
.

The kernel Q(ρ; σ) is a conjugate Poisson’s kernel. Consider the following X-valued singular integral with
kernel ct1 s

2 :

(H f )(σ) =
∫ 2π

0

1
2

ct1
s − σ

2
f (s) ds =

=

∫ π

0

1
2

ct1
s
2

[
f (σ + s) − f (σ − s)

]
ds =

= lim
ε→0

∫ π

ε

1
2

ct1
s
2

[
f (σ + s) − f (σ − s)

]
ds.

H is called the X-valued periodic Hilbert transformation or conjugate function operator. The following
X-valued analogue of Zygmund’s theorem is proved.

Theorem 3.3. Let X ∈ B and f ∈ Lp(I0; X). Then for a.a. σ ∈ (0, 2π) it holds

lim
ρ→1

[
v(ρ; σ) +

1
2π

∫ π

1−ρ
ctg

s
2

[
f (σ + s) − f (σ − s)

]
ds

]
= 0,

where

v(ρ; σ) =
1

2π

∫ 2π

0
Q(ρ; σ − s) f (s) ds. (3.10)

Proof. For completeness of presentation, let us give a short outline of the proof. Taking attention to the
Lemma 2.4, set

µ(s) =
∫ s

0
f (σ) dσ,

and therefore µ′(s) = f (s), a.e. s ∈ (0, 2π). Let σ ∈ [0, 2π] such that at this point µ′(σ) exists. Denote

E(s) =
µ(σ + s) − µ(σ)

s
−
µ(σ − s) − µ(σ)

−s
, ∀s , 0.

Assume that the functions f and µ periodically continued to R with period 2π. It is obvious that E(s)→ 0,
s→ 0. Also, set

ν(s) = µ(σ + s) + µ(σ − s) − 2µ(σ), ∀s , 0.

Thus, it holds

ν(s) = o(s), s→ 0, i.e. lim
s→0

ν(s)
s
= 0.
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We have

1
2π

∫ π

δ
ds

[(
µ(σ + s) + µ(σ − s)

)
ct1

s
2

]
= −

1
2π
ν(δ)ct1

δ
2
+

1
4π

∫ π

δ

ν(s)
sin2 s

2

ds, δ = 1 − ρ.

It is evident that lim
δ→0
ν(δ)ct1

δ
2
= 0. Thus, it is sufficient to prove

lim
ρ→1

v(ρ; σ) +
1

4π

∫ π

1−ρ

ν(s)
sin2 s

2

ds

 = 0.

We have

Q′s(ρ; s) =
2ρ

[
(1 + ρ2) cos s − 2ρ

]
(
1 + ρ2 − 2ρ cos s

)2 ,

Q′s(1; s) =
−1

1 − cos s
=

−1
2 sin2 s

2

,

|Q′s(ρ; s)| ≤
2ρ(

1 − ρ
)2 =

2ρ
δ2 .


(3.11)

Integration by parts gives

v(ρ; σ) =
1

2π

∫ π

0
ν(s)Q′s(ρ; s) ds,

and we can split this integral into two parts

J1 =
1

2π

∫ δ

0
ν(s)Q′s(ρ; s) ds; J2 =

1
2π

∫ π

δ
ν(s)Q′s(ρ; s) ds.

Due to the relations (3.11), we have

2πJ1 ≤
2ρ
δ2

∫ δ

0
s∥E(s)∥X ds ≤ ρ sup

0≤s≤δ
∥E(s)∥X → 0, δ→ 0.

Represent the integral J2 in the form

J2 =
1

2π

∫ π

δ
ν(s)Q′s(1; s) ds +

1
2π

∫ π

δ
ν(s)

[
Q′s(ρ; s) −Q′s(1; s)

]
ds.

Due to the second relation in (3.11), we have

lim
ρ→1

v(ρ; σ) +
1

4π

∫ π

1−ρ

ν(s)
sin2 s

2

ds

 = lim
ρ→1

1
2π

∫ π

δ
ν(s)

[
Q′s(ρ; s) −Q′s(1; s)

]
ds.

It holds

Q′s(ρ; s) −Q′s(1; s) =
δ2

[
(1 + ρ2

− 2ρ cos s) + 2ρ sin2 s
]

(1 − cos s)
[
(1 + ρ2 − 2ρ cos s)

]2 .
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Moreover

1 + ρ2
≥ 2ρ⇒ 1 + ρ2

− 2ρ cos s ≥ 2ρ(1 − cos s) = 4ρ sin2 s
2
.

Consequently, it follows that∥∥∥∥∥ 1
2π

∫ π

δ
ν(s)

[
Q′s(ρ; s) −Q′s(1; s)

]
ds

∥∥∥∥∥
X
≤

C
2π
δ2

∫ π

δ
∥E(s)∥X

ds
s3 .

Let η > 0 be an arbitrary number. It is obvious that ∃ δ0 > 0: ∥E(s)∥X ≤ η, ∀s. Assume δ2 = ηδ2
0 & δ < δ0.

Then we have

δ2
∫ π

δ

∥E(s)∥X
s3 ds = δ2

∫ δ0

δ

∥E(s)∥X
s3 ds + δ2

∫ π

δ

∥E(s)∥X
s3 ds ≤

≤
δ2η

2

 1
δ2 −

1
δ2

0

 + δ2

δ3
0

∫ π

0

∥E(s)∥X
s3 ds ≤

≤
η

2
+ η

∫ π

0
∥E(s)∥X ds. (3.12)

Since ∥E(s)∥X is a bounded function, then it follows from (3.12) that∥∥∥∥∥ 1
2π

∫ π

δ
ν(s)

[
Q′s(ρ; s) −Q′s(1; s)

]
ds

∥∥∥∥∥
X
≤ Cη,

where C > 0 is independent of δ constant.
The theorem is proved.

In particular, the following result follows from this theorem.

Corollary 3.4. Let X ∈ B and f ∈ L1(I0; X). Then for σ ∈ I0 the X-valued Hilbert transform (H f )(σ) exists if and
only if the limit lim

ρ→1
v(ρ; σ) exists, where v(ρ; σ) is defined by the integral (3.10).

Now, consider the case when X ∈ UMD and 1 < p < +∞. Let u ∈ h+;R
p (X)⇒ ∃ f ∈ H+p (X) : u = Re∗ f . Let

v : v(0) = 0, is a ∗-conjugate to u function. Consequently, f = u+iv. It is evident that f ∈ H+p (X)⇔ i f ∈ H+p (X).
Since v = −Re∗(i f ), then v ∈ h+;R

p (X).
Conversely, let u; v ∈ h+;R

p (X) and v : v(0) = 0, ∗-conjugate to u function. Let f̂ ∈ H+p (X) such that u = Re∗ f̂ .
Set f = u + iv. It is evident that f̂ = f + iv0, where v0 ∈ XR is a constant. From here follows that f ∈ H+p (X).
Thus, the following relation is true

f ∈ H+p (X)⇔ Re∗ f , Im∗ f ∈ h+;R
p (X).

From this, it follows that v(·) has non-tangential values a.e. on γ, denoted by v+(ξ), ξ ∈ γ. Represent f (·)
via the X-valued Poisson integral

f (reit) =
1

2π

∫ 2π

0
Pr(s − t) f+(s) ds, reit

∈ ω,

where f+(·) is the non-tangential values of f (·) on γ. From this formula direct follows that

u(reit) =
1

2π

∫ 2π

0
Pr(s − t)u+(s) ds,

v(reit) =
1

2π

∫ 2π

0
Pr(s − t)v+(s) ds,

where u+(·) = Re∗ f+(·) and v+(·) = Im∗ f+(·). From the above consideration, we arrive at the following
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Statement 3.5. Let X ∈ UMD and f ∈ Lp(I0; X), 1 < p < +∞. Then for a.e. σ ∈ (0, 2π), it holds

lim
ρeit ⊁→eiσ

v(ρ; t) =
1

2π

∫ 2π

0
f (s) ctg

σ − s
2

ds, (3.13)

where

v(ρ; t) =
1

2π

∫ 2π

0
Q(ρ; t − s) f (s) ds,

that is, the function v(·) has non-tangential values (3.13) a.e. on γ.

3.4. Sokhotski-Plemelj’s formula

Let X ∈ UMD and f ∈ Lp(I0; X), 1 < p < +∞. Consider the following Schwartz–Bochner integral.

F(z) =
1

2π

∫ 2π

0
K(s; z) f (s) ds, z ∈ ω. (3.14)

Represent this integral in the following form

F(z) =
1

2π

∫ 2π

0
P(r; σ − s) f (s) ds +

i
2π

∫ 2π

0
Q(r; σ − s) f (s) ds,

where z = reiσ. Taking attention to the Theorem 3.2 and Statement 3.5, from here we obtain

F+(eiσ) = lim
z ⊁→eiσ

F(z) = f (σ) + i(H f )(σ), a.e. σ ∈ (0, 2π). (3.15)

Now, consider the integral (3.14) in the case when |z| > 1. Introduce a new function for consideration,
Φ(z1) = F∗

(
1
z1

)
, |z1| < 1. Where z = 1

z1
. We have

Φ(z1) = −
1

2π

( ∫ 2π

0

e−is + z1

e−is − z1
f (s) ds

)
= −

1
2π

∫ 2π

0

eis + z1

eis − z1
f+(s) ds, |z1| < 1.

It is evident that ω ∋ z1
⊁
→ eiσ

⇐⇒ ωc
∋ z ⊁
→ eiσ. Then according to the formula (3.15) for Φ(·) we obtain

Φ+(eiσ) = − f ∗(σ) − i
(
H f ∗)(σ)⇒ F−(eiσ) =

(
Φ+(eiσ)

)∗
= − f (σ) + i

(
H f

)
(σ),

a.e. σ ∈ (0, 2π), where

F−(eiσ) = lim
ωc∋z ⊁→eiσ

F(z).

Thus, the following theorem is valid.

Theorem 3.6. Let X ∈ UMD and f ∈ Lp(I0; X), 1 < p < +∞. Then, for the Schwartz–Bochner integral (3.14), the
following X-valued Sokhotsky–Plemelj’s formulas are valid.

F±(eiσ) = ± f (σ) + i(H f )(σ), a.e. σ ∈ (0, 2π).

Note that this formula is established in the work [13] by a different approach, under stronger conditions.
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3.5. t-nasis for h+p (X) and Dirichlet problem for Laplace equation

Let X ∈ UMD and u ∈ h+;R
p (X), 1 < p < +∞. Firstly, define the norm in h+;R

p (X) by the following
expression

∥u∥h+;R
p (X) = ∥u

+
∥Lp(γ;X), (3.16)

where u+ = θu is the non-tangential values function of u on γ. From the Poisson-Bochner formula for u(·),
it directly follows that the expression (3.16) defines the norm in h+;R

p (X).
Let w ∈ H+p (X) such that u = Re∗w. Via the results of the work [13], the system {zn

}n∈Z+ forms a t-basis
for H+p (X). Let

w(z) =
∞∑

n=0

wnzn, z ∈ ω,

{wn} ⊂ X. From here it immediately follows

u(z) =
∞∑

n=0

Re∗
(
wnzn

)
, z ∈ ω.

Let wn = un + ivn, with un; vn ∈ XR, ∀ n ∈ Z+. Consequently

u(z) = u0 +

∞∑
n=1

(
un cos nφ − vn sin nφ

)
rn, z = reiφ

∈ ω.

By results of the work [13], we have

w+(eiφ) =
∞∑

n=0

wneinφ,

and in result

u+(eiφ) = u0 +

∞∑
n=1

(
un cos nφ − vn sin nφ

)
.

Therefore (see, [13])∥∥∥∥∥∥∥w(z) −
m∑

n=0

wnzn

∥∥∥∥∥∥∥
H+p (X)

=

∥∥∥∥∥∥∥w+(ξ) −
m∑

n=0

wnzn

∥∥∥∥∥∥∥
Lp(γ;X)

→ 0, m→∞.

It follows from here that∥∥∥∥∥∥∥u(reiφ) − u0 −

m∑
n=1

(un cos nφ − vn sin nφ)zn

∥∥∥∥∥∥∥
h+p (X)

=

=

∥∥∥∥∥∥∥u+(eiφ) − u0 −

m∑
n=1

(un cos nφ − vn sin nφ)

∥∥∥∥∥∥∥
Lp(γ;X)

→ 0, m→∞.

It is not hard to see that the operators {τ±n } ⊂
[
h+;R

p (X); X
]
, defined by the expressions

τ+0 (u) =
1

2π

∫ 2π

0
u+(eit) dt;
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τ+n (u) =
1
π

∫ 2π

0
u+(eit) cos nt dt;

τ−n (u) =
1
π

∫ 2π

0
u−(eit) sin nt dt,

are t-biorthogonal to the system {1; rn cos nt; rn sin nt}n∈N. Summarizing the previous results, we obtain the
validity of the following statement.

Statement 3.7. Let X ∈ UMD. Then the system

{1; rn cos nt; rn sin nt}n∈N,

forms a t-basis for h+;R
p (X), 1 < p < +∞.

Let X ∈ UMD and u ∈ h+;R
p (X), 1 < p < +∞. Then, by Statement 3.7 the function u(·) has the following

expansion

u(reit) = u+0 +
∞∑

n=1

(
u+n cos nt + u−n sin nt

)
rn.

Since θ ∈
[
h+;R

p (X); Lp(γ; X)
]
, we have

θu(reit) = u+(eit) = u+0 +
∞∑

n=1

[
θ(u+n cos ntrn) + θ(u−n sin ntrn)

]
=

= u+0 +
∞∑

n=1

(
u+n cos nt + u−n sin nt

)
.

From these considerations, we obtain the correct solvability of the following X-valued Dirichlet problem
for the Laplace equation in the class h+;R

p (X).
Consider the problem

∆u = 0, in ω,
θu = f , on γ,

}
(3.17)

where f ∈ LRp (γ; X) is a given function. By the solution of the problem (3.17), we mean the function
u ∈ h+;R

p (X) for which θu = f , where θ is the corresponding trace operator.
The following statement holds.

Statement 3.8. Let X ∈ UMD. Then for ∀ f ∈ LRp (γ; X), 1 < p < +∞, the problem (3.17) is uniquely solvable in
the class h+;R

p (X) and for the solution u ∈ h+;R
p (X), it holds

∥u∥h+;R
p (X) = ∥ f ∥Lp(γ;X).

The last relation directly follows from (3.16).
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