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Abstract. In this paper, we discuss η-Ricci solitons on Kenmotsu manifolds. While investigating η-Ricci
solitons, we consider η-Ricci soliton in Kenmotsu manifold with respect to a general connection instead of
the Levi-Civita connection. We present the geometry of Kenmotsu manifolds admitting a general connection
under the conditions of Ricci pseudosymmetry and Ricci semisymmetry. Using the general connection, we
obtain the characterizations of Ricci pseudosymmetric and Ricci semisymmetric Kenmotsu manifolds with
respect to quarter-symmetric connection, Schouten-van Kampen connection, Tanaka-Webster connection,
and Zamkovoy connection.

1. Introduction

Kenmotsu manifolds are a class of Riemannian manifolds characterized by their unique geometric
properties. Kenmotsu manifolds have developed from a specific geometric study into a rich area of
research with connections to various mathematical disciplines and applications. Their unique properties
continue to inspire further exploration in both pure and applied mathematics.

A connection on a manifold provides a way to differentiate vector fields along curves. More formally, a
connection allows the definition of a derivative of a vector field along another vector field, facilitating the
study of how vectors change in a manifold’s curved geometry. Levi-Civita connection is the most common
type of connection, uniquely determined for a Riemannian manifold. It is compatible with the metric and
is torsion-free, meaning the connection does not introduce any twisting in the vectors.

General connection, often referred to as a connection on a differentiable manifold, is a fundamental
concept in differential geometry and plays a crucial role in the study of curved spaces. General connections
are a powerful tool in understanding the geometric structure of manifolds. They provide the framework
for defining differentiation in curved spaces and have significant implications in both mathematics and
physics. The study of connections continues to be an active area of research, leading to deeper insights into
the geometry and topology of manifolds.
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Recently, Biswas and Baishya introduced and studied a new connection, named general connection in
Sasakian geometry [1, 2]. The general connectionDG is defined as

D
G
XY = DY

X + κ1
[(

DXη
)

(Y) ξ − η (Y) DXξ
]
+ κ2η (X)ϕY, (1)

the pair (κ1, κ2) being real constants. The beauty of such connectionDG lies in the fact that it has the flavour
of

· quarter symmetric metric connection for (κ1, κ2) = (0,−1) in [3, 4],

· Schouten-van Kampen connection for (κ1, κ2) = (1, 0) in [5],

· Tanaka Webster connection for (κ1, κ2) = (1,−1) in [6],

· Zamkovoy connection for (κ1, κ2) = (1, 1) in [7].

The notion of Ricci flow was introduced by Hamilton in 1982.With the help of this concept, Hamilton
found the canonical metric on a smooth manifold. Then Ricci flow has become a powerful tool for the study
of Riemannian manifolds, especially for those manifolds with positive curvature. Perelman used Ricci flow
and it surgery to prove Poncare conjecture in [8, 9]. The Ricci flow is an flow is an evolution equation for
metrics on a Riemannian manifold defined as follows:

∂
∂t
1 (t) = −2S

(
1 (t)
)
.

A Ricci soliton emerges as the limit of the solitons of the Ricci flow. A solution to the Ricci flow is called
Ricci soliton if it moves only by a one parameter group of diffeomorphism and scaling.

During the last two decades, the geometry of Ricci solitons has been the focus of attention of many
mathematicians. In particular, it has become more important after Perelman applied Ricci solitons to solve
the long standing Poincare conjecture posed in 1904. In [10], Sharma studied the Ricci solitons in contact
geometry. Thereafter Ricci solitons in contact metric manifolds have been studied by various authors such
as Bagewadi et al. in [11–14], Bejan and Crasmareanu in [15], Blaga in [16], Chandra et al. in [17], Chen
and Deshmukh in [18], Deshmukh et al. in [19], He and Zhu in [20], Atçeken et al. in [21], Nagaraja and
Premalatta in [22], Tripathi in [23] and many others.

Motivated by all these studies, we discuss η-Ricci solitons on Kenmotsu manifolds. While investigating
η-Ricci solitons, we consider η-Ricci soliton in Kenmotsu manifold with respect to a general connection
instead of the Levi-Civita connection. We present the geometry of Kenmotsu manifolds admitting a
general connection under the conditions of Ricci pseudosymmetry and Ricci semisymmetry. Using the
general connection, we obtain the characterizations of Ricci pseudosymmetric and Ricci semisymmetric
Kenmotsu manifolds with respect to quarter-symmetric connection, Schouten-van Kampen connection,
Tanaka-Webster connection, and Zamkovoy connection.

2. Preliminary

Let M be an n = (2m + 1)-dimensional differentiable manifold, it said to be an almost contact Riemannian
manifold if either its structural group can be reduced to U (n)×{I}or there is an almost contact metric structure(
ϕ, ξ, η, 1

)
consisting of a vector field ξ, (1, 1) tensor field ϕ, 1-form η and Riemannian metric 1 satisfying

ϕ2X = −X + η (X) ξ, (2)

η (ξ) = 1, η
(
ϕX
)
= 0, ϕξ = 0. (3)

In contact manifolds
(
Mn, 1

)
the following relations hold:

1
(
X, ϕY

)
= −1

(
ϕX,Y

)
, 1 (X, ξ) = η (X) , (4)
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1
(
ϕX, ϕY

)
= 1 (X,Y) − η (X) η (Y) , 1 (QX,Y) = S (X,Y) , (5)

S
(
ϕX, ϕY

)
= S (X,Y) + (n − 1) η (X) η (Y) , (6)(

DXϕ
)

Y = −1
(
X, ϕY

)
ξ − η (Y)ϕ (X) , (7)

DXξ = X − η (X) ξ, (8)(
DXη
)

Y = 1 (X,Y) − η (X) η (Y) , (9)

for all X,Y ∈ TM, D is Levi-Civita connection ([24]-[27]).
Further, for Kenmotsu manifold with structure

(
ϕ, ξ, η, 1

)
following relations holds:

R (X,Y) ξ = η (X) Y − η (Y) X, (10)

S (X, ξ) = − (n − 1) η (X) , (11)

R (X, ξ) Y = 1 (X,Y) ξ − η (Y) X, (12)

R (ξ,X) Y = η (Y) X − 1 (X,Y) ξ, (13)

Qξ = − (n − 1) ξ, (14)

where S and Q are Ricci tensor and Ricci operator.
By the help of (2) , (8) , (9) the relation (1) reduces to

D
G
XY = DXY + κ1

[
1 (X,Y) ξ − η (Y) X

]
+ κ2η (X)ϕY. (15)

Substituting Y by ξ in (15) and using (2) , (8), we get

D
G
Xξ = (1 − κ1)

[
X − η (X) ξ

]
. (16)

In Kenmotsu manifolds
(
Mn, 1

)
admitting general connection DG the following relations hold:

D
G
Xη (Y) = η (DXY) + 1 (X,Y) − η (X) η (Y) , (17)

D
G
X

(
ϕY
)
= DX

(
ϕY
)
+ κ11

(
X, ϕY

)
ξ − κ2

[
η (X) Y − η (X) η (Y) ξ

]
, (18)

RG (X,Y) Z = R (X,Y) Z + (κ1κ2 − κ2)
[
1
(
X, ϕZ

)
η (Y) ξ − 1

(
Y, ϕZ

)
η (X) ξ

]
+ (κ1κ2 − κ2)

[
η (Y) η (Z)ϕX − η (X) η (Z)ϕY

]
+κ1 (1 − κ1)

[
1 (X,Z) η (Y) ξ − 1 (Y,Z) η (X) ξ

]
+κ1 (2 − κ1)

[
1 (Y,Z) X − 1 (X,Z) Y

]
,

(19)

QGY = QY − κ2 (1 − κ1)ϕY

+
[
2nκ1 − nκ2

1 − 3κ1 + 2κ2
1

]
Y

+κ1 (1 − κ1) η (Y) ξ,

(20)
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SG (Y,Z) = S (Y,Z) + κ2 (1 − κ1) 1
(
Y, ϕZ

)
+
[
2nκ1 − nκ2

1 − 3κ1 + 2κ2
1

]
1 (Y,Z)

+κ1 (1 − κ1) η (Y) η (Z) ,

(21)

rG = r + κ1 (1 − κ1) + n
(
2nκ1 − nκ2

1 − 3κ1 + 2κ2
1

)
, (22)

SG (Y, ξ) = (1 − n) (1 − κ1)2 η (Y) , (23)

RG (Y,Z) ξ = (1 − κ1)2 [η (Y) Z − η (Z) Y
]

+κ2 (κ1 − 1)
[
η (Z)ϕY − η (Y)ϕZ

]
,

(24)

η
(
RG (X,Y) Z

)
= (1 − κ1)2

1
(
U, η (Y) X − η (X) Y

)
+κ2 (κ1 − 1) 1

(
U, η (X)ϕY − η (Y)ϕX

)
,

(25)

A Ricci soliton emerges as the limit of the solutions of the Ricci flow. A solution to the Ricci flow is called
Ricci soliton if it moves only by a one parameter group of diffeomorphism and scaling. A Ricci soliton(
1,V, λ

)
on a Riemannian manifold

(
M, 1
)

is a generalization of an Einstein metric such that(
LV1
)

(X,Y) + 2S (X,Y) + 2λ1 (X,Y) = 0, (26)

where S is the Ricci tensor, LV is the Lie derivative operator along the vector field V on M and λ is a real
number. The Ricci soliton is said to be shrinking, steady or expanding according to λ being negative, zero
or positive, respectively.

As a generalization of Ricci soliton, the notion of η-Ricci soliton was introduced by Cho and Kimura.
They have studied Ricci soliton of real hypersurfaces in a non-flat complex space form and defined η-Ricci
soliton, which satisfies the equation(

LV1
)

(X,Y) + 2S (X,Y) + 2λ1 (X,Y) + 2µη (X) η (Y) = 0, (27)

where λ and µ are real numbers. In particular, if µ = 0, then the notion of η-Ricci soliton
(
1,V, λ, µ

)
reduces

to the notion of Ricci soliton
(
1,V, λ

)
.

3. Almost η-Ricci Solitons on Kenmotsu Manifolds Admitting General Connection

We consider a Kenmotsu manifold with respect to general connection admitting an η-Ricci soliton(
1, ξ, λ, µ

)
. Then from (27), it obvious that(

LG
ξ 1
)

(X,Y) + 2SG (X,Y) + 2λ1 (X,Y) + 2µη (X) η (Y) = 0, (28)

where Lξ is the Lie derivative operator along the vector field ξ on M. Now, we express the Lie derivative
along ξ on M with respect to general connection as follows:(

LG
ξ 1
)

(X,Y) = LG
ξ 1 (X,Y) − 1

(
LG
ξX,Y

)
− 1
(
X,LG

ξY
)

= LG
ξ 1 (X,Y) − 1 ([ξ,X] ,Y) − 1 (X, [ξ,Y]) .

(29)
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By the help of (1) and (29) and using (15) , (16) , the (29) reduces to(
LG
ξ 1
)

(X,Y) = 2 (1 − κ1)
[
1 (X,Y) − η (X) η (Y)

]
. (30)

By virtue of (30), the equation (28) takes the following form

SG (X,Y) = (κ1 − λ − 1) 1 (X,Y) −
(
κ1 + µ − 1

)
η (X) η (Y) . (31)

Thus, we can state the following theorem.

Theorem 3.1. If
(
1, ξ, λ, µ

)
is an η-Ricci soliton on Kenmotsu manifold with respect to general connection M, then

M is an η-Einstein manifold provided λ , κ1 − 1 and µ , 1 − κ1.

Specifically, if λ , κ1 − 1 and µ = 1 − κ1, Kenmotsu manifold with respect to general connection M
admitting η-Ricci soliton reduces to Einstein manifold.

If we choose Y = ξ in (31) ,we have

SG (X, ξ) = −
(
λ + µ

)
η (X) . (32)

Setting X = Y = ξ in (32) ,we have

λ + µ = (n − 1) (1 − κ1)2 . (33)

Then, we can give the following results by using the equation (33).

Corollary 3.2. If
(
1, ξ, λ, µ

)
is an η-Ricci soliton on Kenmotsu manifold admitting quarter symmetric metric con-

nection, then the following classfications are true:
i) If µ < n − 1, then M is expanding.
ii) If µ = n − 1, then M is steady.
iii) If µ > n − 1, then M is shrinking.

Corollary 3.3. If
(
1, ξ, λ, µ

)
is an η-Ricci soliton on Kenmotsu manifold with respect to Schouten-van Kampen,

Tanaka Webster or Zamkovoy connection M, respectively, then the following is provided:
i) If µ < 0, then M is expanding.
ii) If µ = 0, then M is steady.
iii) If µ > 0, then M is shrinking.

Definition 3.4. Let M be an n = (2m + 1)−dimensional Kenmotsu manifold with respect to general connection. If
RG
· SG and QG

(
1,SG

)
are linearly dependent, then the M is said to be Ricci pseudosymmetric.

In this case, there exists a function LR on M such that

RG
· SG = LRQG

(
1,SG

)
.

In particular, if LR = 0, the M is said to be Ricci semisymmetric.

Theorem 3.5. Let M be an n = (2m + 1)−dimensional Kenmotsu manifold with respect to general connection and(
1, ξ, λ, µ

)
be an η-Ricci soliton on M. If M is a Ricci pseudosymmetric, then at least one of the following is provided:

i) LR = − (1 − κ1)2 ,
ii) λ = (κ1 − 1) + (n − 1) (κ1 − 1)2 ,
iii) κ1 = 1,
iv) κ2 = 0.
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Proof. Let’s assume that n = (2m + 1)-dimensional Kenmotsu manifold with respect to general connection
M be a Ricci pseudosymmetric and

(
1, ξ, λ, µ

)
be almost η−Ricci soliton on M. That’s mean(

RG (X,Y) · SG
)

(U,V) = LRQG
(
1,SG

)
(U,V; X,Y) ,

for all X,Y,U,V ∈ Γ (TM) . From the last equation, we can easily write

SG
(
RG (X,Y) U,V

)
+ SG

(
U,RG (X,Y) V

)
= LR

{
SG
((

X ∧1 Y
)

U,V
)
+ SG

(
U,
(
X ∧1 Y

)
V
)}
.

(34)

If we choose V = ξ in (34) ,we get

SG
(
RG (X,Y) U, ξ

)
+ SG

(
U,RG (X,Y) ξ

)
= LR

{
SG
((

X ∧1 Y
)

U, ξ
)
+ SG

(
U,
(
X ∧1 Y

)
ξ
)}
.

If we make use of (2) , (23) , (24) in the last equality, we have

(1 − n) (1 − κ1)4
1
(
η (Y) X − η (X) Y,U

)
−κ2 (1 − κ1)3 (1 − n) 1

(
η (X)ϕY − η (Y)ϕX,U

)
+ (1 − κ1)2 SG (η (X) Y − η (Y) X,U

)
+κ2 (κ1 − 1) SG

(
η (Y)ϕX − η (X)ϕY,U

)
= LR

{
(1 − n) (1 − κ1)2

1
(
η (X) Y − η (Y) X,U

)
+ SG (η (Y) X − η (X) Y,U

)}
.

(35)

If we use (31) in (35) and make use of (4), we get[
(1 − κ1)2 +LR

] [
(n − 1) (1 − κ1)2 + (κ1 − λ − 1)

]
U

+κ2 (1 − κ1)
[
(n − 1) (κ1 − 1)2 + (κ1 − λ − 1)

]
ϕU = 0.

(36)

Since the vector fields U and ϕU are linearly independent, we can easily write (36) equation as[
(1 − κ1)2 +LR

] [
(n − 1) (1 − κ1)2 + (κ1 − λ − 1)

]
, (37)

and

κ2 (1 − κ1)
[
(n − 1) (κ1 − 1)2 + (κ1 − λ − 1)

]
. (38)

It is clear from (37) and (38) that

LR = − (1 − κ1)2 ,

or λ = (κ1 − 1) + (n − 1) (κ1 − 1)2 ,

or κ1 − 1 = 0,

or κ2 = 0.

This completes the proof.
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We can give some important consequences of this theorem as follows.

Corollary 3.6. Let M be an n = (2m + 1)−dimensional Kenmotsu manifold with respect to general connection and(
1, ξ, λ, µ

)
be an η-Ricci soliton on M. If M is a Ricci pseudosymmetric, then the following is provided:

i) If (n − 1) (κ1 − 1)2 > 1 − κ1, then M is expanding.
ii) If (n − 1) (κ1 − 1)2 = 1 − κ1, then M is steady.
ii) If (n − 1) (κ1 − 1)2 < 1 − κ1, then M is shrinking.

Corollary 3.7. Let M be an n = (2m + 1)−dimensional Kenmotsu manifold with respect to general connection and(
1, ξ, λ, µ

)
be an η-Ricci soliton on M. If M is a Ricci semisymmetric, then the following is provided:

i) κ1 = 1,
ii) µ = 1 − κ1,
iii) λ = (κ1 − 1) + (n − 1) (κ1 − 1)2 ,
iv) M is an η-Einstein manifold,
v) If (n − 1) (κ1 − 1)2 > 1 − κ1, then M is expanding,
vi) If (n − 1) (κ1 − 1)2 = 1 − κ1, then M is steady,
vii) If (n − 1) (κ1 − 1)2 < 1 − κ1, then M is shrinking.

Corollary 3.8. Let M be an n = (2m + 1)−dimensional Kenmotsu manifold with respect to quarter-symmetric metric
connection and

(
1, ξ, λ, µ

)
be an η-Ricci soliton on M. If M is a Ricci pseudosymmetric, then the following is provided:

i) LR = −1 or λ = n − 2.
ii) M is an η-Einstein manifold.
iii) M is always an expanding.

Corollary 3.9. Let M be an n = (2m + 1)−dimensional Kenmotsu manifold with respect to Schouten-van Kampen,
Tanaka Webster or Zamkovoy connection, respectively, and

(
1, ξ, λ, µ

)
be an η-Ricci soliton on M. If M is a Ricci

pseudosymmetric, then M is either Ricci semisymmetric or always a steady.

For an n = (2m + 1)-dimensional semi-Riemann manifold M, the projective curvature tensor is defined
as

P (X,Y) Z = R (X,Y) Z −
1

2m
[S (Y,Z) X − S (X,Z) Y] .

Then, for an n = (2m + 1)-dimensional Kenmotsu manifold with respect to general connection, the projective
curvature tensor is defined as

PG (X,Y) Z = RG (X,Y) Z −
1

2m

[
SG (Y,Z) X − SG (X,Z) Y

]
. (39)

If we choose Z = ξ in (39) ,we can write

PG (X,Y) ξ = κ2 (κ1 − 1)
[
η (Y)ϕX − η (X)ϕY

]
, (40)

and similarly if we take the inner product of both sides of (39) by ξ,we get

η
(
PG (X,Y) Z

)
= κ2 (κ1 − 1) 1

(
η (X)ϕY − η (Y)ϕX,Z

)
. (41)

Definition 3.10. Let M be an n = (2m + 1)-dimensional Kenmotsu manifold with respect to general connection. If
PG
· SG and QG

(
1,SG

)
are linearly dependent, then M is said to be projective Ricci pseudosymmetric.

In this case, there exists a function LP on M such that

PG
· SG = LPQG

(
1,SG

)
.

In particular, if LP = 0, the M is said to be projective Ricci semisymmetric.
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Theorem 3.11. Let M be an n = (2m + 1)−dimensional Kenmotsu manifold with respect to general connection and(
1, ξ, λ, µ

)
be an η-Ricci soliton on M. If M is a projectively Ricci pseudosymmetric, then at least one of the following

is provided:
i) M is a projectively Ricci semisymmetric manifold,
ii) M is an η-Einstein manifold,
iii) κ1 = 1,
iv) κ2 = 0,
v) λ = (1 − n) (1 − κ1)2

− (1 − κ1) .

Proof. Let’s assume that n = (2m + 1)-dimensional Kenmotsu manifold with respect to general connection
M be a projectively Ricci pseudosymmetric and

(
1, ξ, λ, µ

)
be almost η−Ricci soliton on M. That’s mean(

PG (X,Y) · SG
)

(U,V) = LPQG
(
1,SG

)
(U,V; X,Y) ,

for all X,Y,U,V ∈ Γ (TM) . From the last equation, we can easily write

SG
(
PG (X,Y) U,V

)
+ SG

(
U,PG (X,Y) V

)
= LP

{
SG
((

X ∧1 Y
)

U,V
)
+ SG

(
U,
(
X ∧1 Y

)
V
)}
.

(42)

If we choose V = ξ in (42) ,we get

SG
(
PG (X,Y) U, ξ

)
+ SG

(
U,PG (X,Y) ξ

)
= LP

{
SG
((

X ∧1 Y
)

U, ξ
)
+ SG

(
U,
(
X ∧1 Y

)
ξ
)}
.

If we make use of (23) and (40) in the last equality, we have

(1 − n) (1 − κ1)2 η
(
PG (X,Y) U

)
+κ2 (κ1 − 1) SG

(
η (Y)ϕX − η (X)ϕY,U

)
= LP

{
(1 − n) (1 − κ1)2

1
(
η (X) Y − η (Y) X,U

)
+ SG (η (Y) X − η (X) Y,U

)}
.

(43)

If we use (41) in (43), we get

κ2 (n − 1) (1 − κ1)3
1
(
η (X)ϕY − η (Y)ϕX,U

)
+κ2 (κ1 − 1) SG

(
η (Y)ϕX − η (X)ϕY,U

)
= LP

{
(1 − n) (1 − κ1)2

1
(
η (X) Y − η (Y) X,U

)
+ SG (η (Y) X − η (X) Y,U

)}
.

(44)

If we use (31) in (44), we have

κ2 (κ1 − 1)
[
(n − 1) (1 − κ1)2 + (κ1 − λ − 1)

]
1
(
η (X) Y − η (Y) X, ϕU

)
+LP

[
(n − 1) (1 − κ1)2 + (κ1 − λ − 1)

]
1
(
η (X) Y − η (Y) X,U

)
= 0,
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and so

κ2 (κ1 − 1)
[
(n − 1) (1 − κ1)2 + (κ1 − λ − 1)

]
ϕU

+LP

[
(n − 1) (1 − κ1)2 + (κ1 − λ − 1)

]
U = 0.

(45)

Since the vector fields U and ϕU are linearly independent, we can easily write (45) equation as

κ2 (κ1 − 1)
[
(n − 1) (1 − κ1)2 + (κ1 − λ − 1)

]
= 0, (46)

and

LP

[
(n − 1) (1 − κ1)2 + (κ1 − λ − 1)

]
= 0. (47)

It is clear from (46) and (47) that

LP = 0,
or κ1 = 1,
or κ2 = 0,
or λ = (n − 1) (1 − κ1)2 + (κ1 − 1) .

This completes the proof.

We can give some important results of this theorem as follows.

Corollary 3.12. Let M be an n = (2m + 1)−dimensional Kenmotsu manifold with respect to general connection and(
1, ξ, λ, µ

)
be an η-Ricci soliton on M. If M is a projectively Ricci pseudosymmetric, then the following is provided:

i) If (n − 1) (1 − κ1)2 > 1 − κ1, then M is expanding.
ii) If (n − 1) (1 − κ1)2 = 1 − κ1, then M is steady.
ii) If (n − 1) (1 − κ1)2 < 1 − κ1, then M is shrinking.

Corollary 3.13. Let M be an n = (2m + 1)−dimensional Kenmotsu manifold with respect to quarter-symmetric
metric connection and

(
1, ξ, λ, µ

)
be an η-Ricci soliton on M. If M is a projectively Ricci pseudosymmetric, then M is

either projectively Ricci semisymmetric or always an expanding or κ2 = 0.

Corollary 3.14. Let M be an n = (2m + 1)−dimensional Kenmotsu manifold with respect to Schouten-van Kampen,
Tanaka Webster or Zamkovoy connection, respectively, and

(
1, ξ, λ, µ

)
be an η-Ricci soliton on M. If M is a projectively

Ricci pseudosymmetric, then M is either projectively Ricci semisymmetric or always a shrinking.

For an n = (2m + 1)-dimensional semi-Riemann manifold M, the concircular curvature tensor is defined
as

C (X,Y) Z = R (X,Y) Z −
r

n (n − 1)
[
1 (Y,Z) X − 1 (X,Z) Y

]
.

For an n−dimensional Kenmotsu manifold with respect to general connection M, the concircular curvature
tensor is defined as

CG (X,Y) Z = RG (X,Y) Z −
r

n (n − 1)
[
1 (Y,Z) X − 1 (X,Z) Y

]
. (48)

If we choose Z = ξ in (48) ,we can write

CG (X,Y) ξ =
[
(1 − κ1)2

−
r

n(n−1)

] [
η (X) Y − η (Y) X

]
+κ2 (κ1 − 1)

[
η (Y)ϕX − η (X)ϕY

]
,

(49)
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and similarly if we take the inner product of both sides of (48) by ξ,we get

η
(
CG (X,Y) Z

)
=
[
(1 − κ1)2

−
r

n(n−1)

]
1
(
η (Y) X − η (X) Y,Z

)
+κ2 (κ1 − 1) 1

(
η (X)ϕY − η (Y)ϕX,Z

)
.

(50)

Definition 3.15. Let M be an n = (2m + 1)-dimensional Kenmotsu manifold with respect to general connection. If
CG
· SG and QG

(
1,SG

)
are linearly dependent, then M is said to be concircular Ricci pseudosymmetric.

In this case, there exists a function LC on M such that

CG
· SG = LCQG

(
1,SG

)
.

In particular, if LC = 0, the M is said to be concircular Ricci semisymmetric.

Theorem 3.16. Let M be an n = (2m + 1)−dimensional Kenmotsu manifold with respect to general connection and(
1, ξ, λ, µ

)
be an η-Ricci soliton on M. If M is a concircular Ricci pseudosymmetric, then the following is provided:

i) M is an η-Einstein manifold.
ii) LC =

r
n(n−1) − (1 − κ1)2 .

iii) λ = (κ1 − 1) − (1 − n) (1 − κ1)2 .
iv) κ1 = 1.
v) µ = 1 − κ1.

Proof. Let’s assume that n = (2m + 1)-dimensional Kenmotsu manifold with respect to general connection
M be a concircular Ricci pseudosymmetric and

(
1, ξ, λ, µ

)
be almost η−Ricci soliton on M. That’s mean(

CG (X,Y) · SG
)

(U,V) = LCQG
(
1,SG

)
(U,V; X,Y) ,

for all X,Y,U,V ∈ Γ (TM) . From the last equation, we can easily write

SG
(
CG (X,Y) U,V

)
+ SG

(
U,CG (X,Y) V

)
= LC

{
SG
((

X ∧1 Y
)

U,V
)
+ SG

(
U,
(
X ∧1 Y

)
V
)}
.

(51)

If we choose V = ξ in (51) ,we get

SG
(
CG (X,Y) U, ξ

)
+ SG

(
U,CG (X,Y) ξ

)
= LC

{
SG
((

X ∧1 Y
)

U, ξ
)
+ SG

(
U,
(
X ∧1 Y

)
ξ
)}
.

If we make use of (23) and (49) in the last equality, we have

(1 − n) (1 − κ1)2 η
(
CG (X,Y) U

)
+
[
(κ1 − 1)2

−
r

n(n−1)

]
SG (η (X) Y − η (Y) X,U

)
+κ2 (κ1 − 1) SG

(
η (Y)ϕX − η (X)ϕY,U

)
= LC

{
(1 − n) (1 − κ1)2

1
(
η (X) Y − η (Y) X,U

)
+ SG (η (Y) X − η (X) Y,U

)}
.

(52)
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If we use (50) in (52), we get

(1 − n) (1 − κ1)2
[
(1 − κ1)2

−
r

n(n−1)

]
1
(
η (Y) X − η (X) Y,U

)
− (1 − n) (1 − κ1)3 κ21

(
η (X)ϕY − η (Y)ϕX,U

)
+
[
(1 − κ1)2

−
r

n(n−1)

]
SG (η (X) Y − η (Y) X,U

)
+κ2 (κ1 − 1) SG

(
η (Y)ϕX − η (X)ϕY,U

)
= LC

{
(1 − n) (1 − κ1)2

1
(
η (X) Y − η (Y) X,U

)
+ SG (η (Y) X − η (X) Y,U

)}
.

(53)

If we use (31) in (53), we have{
LC +

[
(1 − κ1)2

−
r

n(n−1)

]} [
(1 − n) (1 − κ1)2

− (κ1 − λ − 1)
]

U

−κ2 (1 − κ1)
[
(1 − n) (1 − κ1)2

− (κ1 − λ − 1)
]
ϕU = 0.

(54)

Since the vector fields U and ϕU are linearly independent, we can easily write (54) equation as{
LC +

[
(1 − κ1)2

−
r

n (n − 1)

]} [
(1 − n) (1 − κ1)2

− (κ1 − λ − 1)
]
= 0, (55)

and

−κ2 (1 − κ1)
[
(1 − n) (1 − κ1)2

− (κ1 − λ − 1)
]
= 0. (56)

It is clear from (55) and (56) that

LC =
r

n(n−1) − (1 − κ1)2 ,

or λ = (1 − n) (1 − κ1)2
− (κ1 − 1) ,

or κ1 = 1,
or κ2 = 0.

This completes the proof.

We can give some important consequences of this theorem as follows.

Corollary 3.17. Let M be an n = (2m + 1)−dimensional Kenmotsu manifold with respect to general connection and(
1, ξ, λ, µ

)
be an η-Ricci soliton on M. If M is a concircular Ricci semisymmetric, then the following is provided:

i) κ1 = 1.
ii) λ = (κ1 − 1) − (1 − n) (1 − κ1)2

− 1.
iii) M is a scalar curvature manifold with r = n (n − 1) (1 − κ1)2.
iv) If (1 − n) (1 − κ1)2 > (κ1 − 1) , then M is expanding.
v) If (1 − n) (1 − κ1)2 = (κ1 − 1) , then M is steady.
vi) If (1 − n) (1 − κ1)2 < (κ1 − 1) , then M is shrinking.
vii) M is an η-Einstein manifold.

Corollary 3.18. Let M be an n = (2m + 1)−dimensional Kenmotsu manifold with respect to quarter-symmetric
metric connection and

(
1, ξ, λ, µ

)
be an η-Ricci soliton on M. If M is a concircular Ricci pseudosymmetric, then M is

either always an expanding or LC =
r − n (n − 1)

n (n − 1)
.
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Corollary 3.19. Let M be an n = (2m + 1)−dimensional Kenmotsu manifold with respect to quarter-symmetric
metric connection and

(
1, ξ, λ, µ

)
be an η-Ricci soliton on M. If M is a concircular Ricci semisymmetric, then M is

either always an expanding or a scalar curvature manifold with r = n (n − 1) .

Corollary 3.20. Let M be an n = (2m + 1)−dimensional Kenmotsu manifold with respect to Schouten-van Kampen,
Tanaka Webster or Zamkovoy connection, respectively, and

(
1, ξ, λ, µ

)
be an η-Ricci soliton on M. If M is a concircular

Ricci pseudosymmetric, then M is either always a steady or LC =
r

n(n−1) .

Corollary 3.21. Let M be an n = (2m + 1)−dimensional Kenmotsu manifold with respect to Schouten-van Kampen,
Tanaka Webster or Zamkovoy connection, respectively, and

(
1, ξ, λ, µ

)
be an η-Ricci soliton on M. If M is a concircular

Ricci semisymmetric, then M is either always a steady or a scalar curvature manifold with r = 0.

Now let’s give an important example given earlier by A. Biswas and K. K. Baishya which supports the
above theorems and corollaries [1].

Example 3.22. By the help of [1] we introduce an example of 3-dimensional Kenmotsu manifold with respect to
Generalised Tanaka-Webster connection. Choosing the linearly independent vector field as

e1 = e−z ∂
∂x
, e2 = e−z ∂

∂y
, e3 =

∂
∂z
,

at each point of 3-dimensional manifold M, where

M =
{ (

x, y, z
)
∈ R3

∣∣∣ x , 0
}
.

Let 1 be the Riemannian metric. The 1-form η is defined by

1 (Y, e3) = η (Y) ,

and the (1, 1)-type tensor field ϕ is defined by

ϕe1 = −e2, ϕ (e2) = e1 and ϕ (e3) = 0.

Let D be the Levi-Civita connection with respect to the Riemannian metric 1. Then we have

[e1, e2] = 0, [e1, e3] = e1, [e2, e3] = e2.

Considering e3 = ξ and Koszul’s formula we get

De1 e3 = e1, De1 e2 = 0, De1 e3 = −e3,

De2 e1 = 0, De2 e2 = −e3, De2 e3 = e2,

De3 e1 = 0, De3 e2 = 0, De3 e3 = 0.

By the help of the last two equations above, we obtain the following

R (e1, e2) e3 = 0, R (e1, e2) e2 = −e1,

R (e1, e3) e3 = −e1, R (e2, e2) e3 = 0,

R (e2, e3) e3 = −e2, R (e2, e1) e1 = −e2

R (e3, e2) e2 = −e3, R (e3, e1) e2 = 0,

R (e3, e1) e1 = −e3, R (e3, e2) e1 = 0,

R (e2, e1) e3 = 0, R (e1, e3) e2 = 0.
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Using (15) and (19) , we can easily calculate the following

DG
e1

e1 = (κ1 − 1) e3, DG
e1

e2 = 0, DG
e1

e3 = (1 − κ1) e1,

DG
e2

e1 = 0, DG
e2

e2 = (1 − κ1) e3, DG
e2

e3 = (1 − κ1) e2,

DG
e3

e1 = −κ2e2, DG
e3

e2 = κ2e1, DG
e3

e3 = 0,

RG (e1, e2) e2 =
(
κ2

1 + 2κ1 − 1
)

e1,

RG (e1, e2) e3 = 0,

RG (e2, e3) e3 = −κ2 (1 − κ1) e1 − (1 − κ1) e2,

RG (e3, e1) e1 = (κ1 − 1) e3,

RG (e3, e2) e2 = (κ1 − 1) e3,

RG (e2, e1) e1 = −
(
κ2

1 − 2κ1 + 1
)

e2,

RG (e1, e3) e3 = κ2 (1 − κ1) e2 − (1 − κ1) e1,

RG (e1, e3) e2 = κ2 (κ1 − 1) e3,

RG (e2, e1) e3 = 0,

RG (e1, e3) e3 = κ2 (1 − κ1) e2 − (1 − κ1) e1,

SG (e1, e1) = κ2
1 + 3κ1 − 2,

SG (e2, e2) = κ2
1 + 3κ1 − 2,

SG (e3, e3) = 2 (κ1 − 1) ,

and

rG = 2κ2
1 + 8κ1 − 6.

Thus it can be seen that equation (24) is satisfied. Now from 31, we get

λ + µ = 2 (1 − κ1) .

Hence the manifold under consideration satisfies above theorems and corollaries.
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