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Existence of solutions for ¢-Caputo fractional hybrid boundary value
problem on time scales
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Abstract. This study explores the existence of solutions for a class of fractional hybrid differential equations
incorporating maxima and ¢-Caputo derivatives on time scales. The analysis employs Dhage’s fixed point
theorem alongside key methods from ¢-fractional calculus on time scales. To highlight the practical
relevance and effectiveness of the findings, an illustrative example is provided. The proofs are derived
using Dhage’s fixed point theorem and essential techniques from ¢-fractional calculus on time scales. To
demonstrate the applicability and effectiveness of the results, an illustrative example is presented.

1. Introduction

In recent years, the theory of time-scale differential problems has undergone intense development, as
can be seen from references [4, 11]. At the same time, recent years have seen a growing interest in fractional-
order differential equations, due to the variety of their applications. These equations play a significant
role in fields such as physiology, rtheology, control, viscoelasticity, electrochemistry, electromagnetism, and
many others. Further details are available in references [6-8, 10, 12-14]. A number of researchers have
studied fractional differential equations including maxima, as can be seen in[1, 5, 17].

In [16], Otrocol particularly explored the following problem:

v(A)=F A, o) +G (/\, max v(f)) ,
0(0) = ¢,
where A € [0,d],d e R, p e RP,and F,G € [0,d] x R" — R".

In [15], the authors investigated the existence and uniqueness of solutions to initial value problems for
Caputo A-fractional differential equations with maxima on the time scales Tg of the form:

{CAva = £\, 0(A), V()), Aex=[edlr, =[cdNTs,

0<y<l,
v(e) =@,
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where v : [c,d]r, — R, V(1) = ;r}a?] v(€),d > ¢, °Al is the Caputo A-fractional derivative operator of order
€[c,

y, &:[c,dlte X R*> — R is a function, and ¢ represents a real number.
In this article, we investigate the existence of a solution for ¢-Caputo’s A-fractional nonlinear hybrid
differential equations with maxima on the time scales:

v(c) (1)

{CA?V (7o) = € (L,0), V(A), AeL=[cdl, =Tsncd, 0<y<l,
T — P

where CA?’V is ¢-Caputo A-fractional derivative operator of order y, c < d, ¢ € R, v : [c,d]lr, — R,

V(A) = max v(f), & : [c,d]tg X R> — Riis a function.
€lc,

The structure of this paper unfolds as: in the section 2, we present some preliminary concepts related to
fractional calculus. In section 3, we establish criteria on the existence of solutions to the problem above. In
section 4, provides an example to illustrate the practical applications of of these results.

2. Preliminaries
In this section, we present definitions, notations and results that will be used consistently throughout

this paper.

Definition 2.1. ( ¢-Caputo A-fractional integral operator on the time scales) Given that Tg denotes a time
scale such that [c,d] is an interval of Ts and v is an integrable function on the interval [c,d]. Let ¢ € C"([c,d], R)
with ¢'(t) > 0 for each t in [c,d]. Consider y > 0. The A-fractional integral at order y in the sense of ¢-Caputo for
the function v is given by the following expression

TR = —— f ' O (ODA) = d(O) ()AL
¢ T TO) Je '

where I'(y) is the gamma function, defined as

I'(y) = f 0 te7tde  pour Re(y) > 0.
0

Theorem 2.2. (semigroup property) Suppose that the function & is integrable on the interval [c,d], and that B and o
are two positive real constants. Then,

B = I EW),

Definition 2.3. (¢p-Caputo A-fractional derivative operator on the time scales) Given that Ts denotes a time
scale such that [c,d] is an interval of Tg and v : Ts — R is a continuous function. Let ¢ € C"([c,d], R) with
@’ (t) > O for every t in [c,d]. The A-fractional derivative of order y in the sens of ¢-Caputo for the function v is
defined by de following expression

A
Ao) = r(nl_ - f &' (OPA) — () 70" (DAL, @)
where
1 d\"
zﬁ[nl(t)) = (W ﬁ) v(f) and n=[y]+1

The symbol [-] denotes the integer part.
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A time scale, represented by Ts, is a nonempty and closed subset of R (see[2, 3]).

Example 2.4. Let

1. T52={\/;: VGNO}/
2. Ts; = {2 reZ)uio),

Tsq and Ts, are both time scales.

Definition 2.5. Let Tg be a time scale. For each ¢ € Tg, we define two operators ¢ : Ts — Tg and 0 : Tg — Ts,
by the following formulas:

O(A) =supf{c e Ts: ¢ <A},
and
a(Ad) =inffc e Tg: ¢ > AL

The operators 6 and «a, are called backward jump and forward jump, respectively.

In the previous definition, we specify that

1. sup 0 = inf Tg (which means 6(1) = A if the set Tg contains a minimum element A7),
2. inf@ = sup Tg (which means a(A) = A if the set Tg contains a maximum element A),

where () represents the empty set.

Example 2.6. Let’s briefly examine some examples: Ts = R, and Tg = Z.

(1) If Ts = Z, for any number ¢ in the set Z, we have

aA)=inflceZ: c> Ay =infiA+1L,A+2,A+3,A+4,A1+5,---} = A +1,
O(A) = A —1.

(2) IfTs =R, then for any number ¢ in the set R, we have

a(A) =inffc e R: ¢ > A} =inf(A,00) = A,
O(A) = A.

Definition 2.7. Here are some other definitions that we need in this paper

1. Left-Scattered: A point ¢ is said to be left-scattered if O(c) < c.

Right-Scattered: A point ¢ is said to be right-scattered if a(c) > c.

Isolated: A point ¢ is called isolated if it is both left-scattered and right-scattered simultaneously.
Left-Dense: A point ¢ is said to be left-dense if 0(c) = ¢ and ¢ > inf T.

Right-Dense: A point ¢ is said to be right-dense if a(c) = ¢ and ¢ < sup Ts.

Dense: A point ¢ is called dense if it is both left-dense and right-dense simultaneously.

AL

Definition 2.8. Let g : Ts — R be a function. The function g is termed rd-continuous if it satisfies two conditions:

1. It is continuous at all dense points in Tg when approaching from the right.
2. It has finite left-side limits at all left-dense points in Ts.

Let C,4 denote the set of all functions g : Ts — R that are rd-continuous.
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Definition 2.9. [5](Delta Derivative) Let \V : Ts — R be a function and A be an element of Ts. The A-derivative
of the function \V at the point A, denoted W2 (A) (if it exists), is given such that for all x > 0, there exists a neighborhood
Y of A € Tg satisfying:

|\I’(17(/\)) —W(6) - WA ) [n(A) — 5]( <«ln(A) = €|, foreach €Y.

Definition 2.10. [5] Given a function \V defined from I to R, where I is a bounded closed interval of Ts. We say
that ¥ is a A-antiderivative of the function ¢ : [d,r) — R if the following conditions are satisfied:

1. W is continuous on [d, 1],
2. WAA) = g(A) forall A € [d, 1),
3. W is delta differentiable on [d, r).

The A-integral of 1 from d to r is defined as follows

fd r YA = W(r) — W(d).

Lemma 2.11. [5] Given that Ts denotes a time scale and 1) is an increasing and continuous function on [d, r] within
this time scale. Define @ as the extension of the function  to the real interval [d, ] using the following expression

_JY) if AeTs,
@A) = {lp(g) if Ae(tn(t)) ¢ Ts.

Then,

j; r YA < fd r @(A)dA.

Theorem 2.12. (Dhage theorem)[9] we consider S as a bounded, closed, convex and non-empty subset of Z, the
Banach algebra. Let G : E — Eand G, : S — E be two operators which satisfy the following properties:

(a) Gy is completely continuous,

(b) G is Lipschitzian with a Lipschitz constant x,

(c) u = G1(u)G2(v) implies that u in S for every vin S, and

(d) nx <1, where n = ||G2(S)|| = sup{l|G2(u)l| : u € S}.
Then, the operator Wu = G1(u)G(u) has a fixed point.

3. Results

In this section, in order to demonstrate the existence of solutions for the A-fractional hybrid problem
(1), the following assumptions are required:

(H1) The function ¥ € C(Z X R, R\{0}) where it satisfies the conditions that:
G) FA,0)—-FAuw| <Llv—u|, L>0forallu, veCyuXxR).

(ii) The mapping v — 7; is increasing in R a.e., for A € L.

(H2) & € C(Z x R?,R) is a function such that |£(A, v(A), u(A)| < h(A) a.e.,, A € L, h € C(Z, RY).

Definition 3.1. A function v € C!,(Z, R) is a solution to the A-fractional hybrid problem (1), if it fulfills the initial
condition v(c) = @ and satisfies the fractional equations CA?’yv(/\) =&(A,v(A), V(A)) on Z.
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Lemma 3.2. Let & : X X R?2 — R be a rd-continuous and 0 < y < 1. Then, the function v € C} d(Z, R) serves as a
solution to the A-fractional hybrid problem (1) if and only if it verifies the following integral equation:

v(A) =F (4,0 (1)) (§0+ T )f O’ (O)(P(A) = PO T E (€, v(E), V() M) (©)
where V(€) = max v(ﬁ)

Proof. From (2), we have

carp(_ oA) o(M)

AL (7_'(/\lv(A))) F(l ) f ' (O)(P(A) = p(6))” (—T(A (A))) (O)AL
1 v(A) )A
ST AF (A u(A) e

Since y € (0, 1). Then, the proof can be concluded from the relations

Ts Iwb CAPy

G0 I T A A Y A ) I
; (T(A,vm»)‘ I )

© O \F X o@)e

_ o) o)
“F(Av(d)  F ()
v(A)

“Faomy) P
it follows that
v(A) =F (A, v(A)) ((p + — o) f O (O)(P(A) — ()~ Le(e,v(e), V(O) AL,

where V({) = ma2>l< o(€). O

Theorem 3.3. Assuming that the conditions (H1) and (H2) are met. Then, under the following condition

il ,
(M + s 0 - 00y) <1, @

the A-fractional hybrid problem (1) has a solution.

Proof. Let M, = |p|and E = (C(Z, R), ||.|[), where [[v|]| = sup|v(A)|. It is evident that Z forms a Banach algebra,
where multiplication is defined as follows '
(uo)(A) =u(A)v(d), AeX, uvel.
we define a subset S of Z as
S={wel:oll<ri
where
My (M + 5 () - $(0))”)
1L (M, + s (o) - p(0))

1. S is Bounded
By definition, S consists of all functions v € E such that |[v]| < r. This means that for every v € S, the
supremum of [v(A)| over A € L is bounded by r. Thus, S is contained in the closed ball of radius r centered

Y=
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at the zero function in E. This directly implies that S is bounded.

2. S is Closed

To show that S is closed, we need to prove that the limit of any convergent sequence in S also lies in S.
Let {v,} be a sequence in S such that v, — v in &. This means |[v, — v|]| = 0 as n — oo.

Since v, € S, we have ||v,|| < r for all n.

By the continuity of the norm, we know that |[v|| < [[v, — || + [[v,]|-

Taking the limit as n — oo, we get:

|7l] < lim |jv, —o|| + im ||v,]| <0+ r=7.
n—o0 n—00

Thus, ||[v]| < r, which means v € S. Since the limit of any convergent sequence in S also lies in S, S is closed.
3. S is Convex

To show that S is convex, we need to prove that for any v, v, € Sand any ¢ € [0, 1], the function tv; + (1 —f)v,
also liesin S.

Letvy,v; €S, 50 |[v1]| £ rand ||vs]| < 7.

For any ¢ € [0, 1], consider the function tv; + (1 — t)vs.

Using the triangle inequality and the fact that the norm is homogeneous, we have:

[to1 + A = o]l < t|lo1ll + A =D ool < tr + (1 = B)r = 7.

Thus, ||tv; + (1 — H)v|| < r, which means tv; + (1 — t)v, € S.
Since S is closed under convex combinations, it is convex.
Thus, S is a bounded, closed, and convex subset of the Banach algebra E.
Let’s consider the operators G : E — E and G, : S — E, which are defined as follows

Giv(A\) =F (4,0 (1)), (5)
1 A
Grv(A) = ¢ + o) f O"(O(P(A) = PO T E (L, (L), V(L) AL (6)

The operator equation form representing the equivalent integral equation Eq. (3) corresponding to the
fractional hybrid problem (1) is expressed as

v=G1vGv, UvEE.

We establish that the operators G1 and G2 verify the conditions stated in Theorem 2.12.The demonstration
for this has been provided in the subsequent steps.

Step 1: We prove that Gy is Lipschitz.
Applying the Lipschitz condition to ¥, with v,u € E and A € X, we obtain

IG10(A) = Gru(A)|

[F (A, 0(A) = F (A, u(L))l
Lio(A) = u(M)!.

IN

This gives,

IG10 = Grull < Lljv —ull, w,veE.
Step 2: In this step, we will show the complete continuity of the operator G,. We demonstrate that
G> : S — E is a continuous and compact operator on S into E.

To begin, we establish the continuity of G> on S. Let v, € S converging to v € S. For each A € Z, we
have

1G20(A) — G20(A)
1 A
ST f ¢ (O)(DA) = PO) T E (€, 0a(0), Vi(£)) — £ (€, 0(E), V(D) AL,
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using Lemma 2.11, we get
1G20a(A) — G20 (D)
< %y) f OG0 — SOV 1E (€ 00, VD) — & (6, 0(0), VIENIde.
On the other hand, from (H2), we deduce that
' (O)(PA) = PO M E (€, 0a(€), Viu(€)) = E (€, 0(6), V(D)] < 24" (E)(P(A) — p(£)) [lleo,
and

lim & (¢, 0(0), Vu(0)) = £ (&, 0(0), V(D)) .

Applying the Lebesgue’s dominated convergence theorem leads us to following limit

A
lim f & (OGN — POV IE (6, 0a(0), ValD) — £ (€, 0(6), V() AL =0, forall Ae L.

This prove that G, is a continuous on S.
Based on assumption (H2), for every v € S and A € L, we obtain

A
IG2v(A)] < I<PI+% f &' (O(DA) = DO TE (L, v(0), V(E)IAL

Mo+ 1 [ 6000 - o0y i

Wl L
< s B 0000 - oty ac
From Lemma 2.11, we derive that
Gl < M, +% f & (OG0 — By de
||h||o<,
o T ) - 9O
This gives,
h )
G20 = My + FERS ) =000,

This demonstrates that the operator G, is uniformly bounded on X.

12631

Furthermore, we establish that the operator G»(S) is an equicontinuous set in E. Let v € S and Ay,

A» € X such that A; < A,. Then, we have
|G2v(A2) — Gav(Ah))

1 () . -
< T)/)f ¢'(¢) (qb()\z)—qb(f))} L —(Pp(A1) = p(O)) 1)Icf (€, 0(0), V(O)IAL

1

T ¢> (O)(D(A2) = POY THE (€, v(6), V(D)IAL.
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According to Lemma 2.11, we can obtain the following
1G20(A2) = Goo(Ah))]
< %}/) fkl ¢'(0) (CP()\z) =) = (@A) — qb(f))}/_l) [n(0)lde

+§ 7 (06 - (O IOl
s , ,
< T+ T (@) = 0 = @) - ().

This demonstrates that G,(S) is equicontinious set in E. Since G»(S) is equicontinious and uniformly
bounded set in E. Then, by apply Ascoli-Arzela theorem, we get G is completely continuous.

Step 3: Letv € E and u € S such that v = G1v Gou. Our objective is to demonstrate that v € S. Utilizing
hypothesis (H1) and condition (7), we obtain

Pl = GGV
[12] oo
< {70,000 - 70,01+ 170,00 (M, + 6 - 6
< (o)1 + M7 (M + P 0 - 900 ).
This gives,
My (M, + 5 (6(d) - 6(0)"
o< 2 i i
1= L (M, + 15 (6(d) - 6())
=r, forallAeX.
Therefore,

]| < 7.

This establishes that v € S.

Step 4: Now, we show that k1 < 1.
We have
[1rlleo

I'(y+1)

k=L and n=M,+ (p(d) — ().
By condition (4), we can get the following

17l
I'y+1)

nk =L|M, + () —P(0)) | < 1.

By proceeding through steps 1 through 4, we can conclude that all the conditions outlined in Theorem
2.12 are met. Thus, the following equation

v = G19Gy0

possesses a solution in S, which is a solution to the A-fractional hybrid problem (1). This concludes
the proof of the theorem.
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4. Example

let us consider the following hybrid problem

- Ol
CADY (2e20P ) expi{— maxcepolo( tex =101
() o) +1+22 10T,

8)
2(0) =0

where Tg represent any time scale that includes bothOand 1. Herec=0,d =1, ¢ =t¢,y = %, M, =0and

F (to) = 2(1+v) ,

é(t’v’u):h)ﬁ%’
Lett €[0,1] and u,v in IR, we have
|ul — [o]
|7 (t,v) = F (t,u) <
A es i
< 1Iv—ul
< 5 .

Hence, the condition (H1) holds, with L = 1. We also have the following inequality

where h(t) =

£t 0, W)l < h(t),

and thus

ﬂ+1

1 1 1

3

Then, condition (H2) holds.
Now, we can show that

L(M(,; 'h”"" (cp(d) o c))?') = 0.4431134627 < 1.
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