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On Euler-Genocchi numbers and polynomials

Pinar Aytac®

?Department of Mathematics, Akdeniz University, Antalya, 07058, Tiirkiye

Abstract. We study number theoretic and analytic properties of the recently defined Euler-Genocchi
polynomials and numbers. In particular, we give several divisibility properties of the Euler-Genocchi
numbers and integerness of the values of the Euler-Genocchi polynomials. We also consider zeta and
p-adic zeta function representations for these polynomials and numbers.

1. Introduction

An Appell sequence (P, (x)} is defined formally by an exponential generating function of the form
[oe] tn
Glo =AM =) P —,
n=0

where x and f are indeterminates, and A (t) is a formal power series with A (0) # 0. Since any such generating
function has polynomial coefficient satisfying

Py (x) = nPy_1 (x)

for n > 1, the members of an Appell sequence are called the Appell polynomials. The Appell polynomials
have been well studied because of their remarkable applications in number theory and mathematical
analysis. They include many types, the most famous of which are B, (x) Bernoulli, E, (x) Euler, and G, (x)
Genocchi polynomials defined by

0o

tet 20 o o2t o t”
= B — = E Y = G Y
et —1 nZ:; n () n” et+1 ; "(x)n! et +1 HZ:(; "(x)n!

respectively, where |t| < 27 for the Bernoulli polynomials and |f| < 7 for the Euler and Genocchi polynomials.
A new family of the Appell polynomials that generalizes both Euler and Genocchi polynomials were
introduced and studied in [3] and [4]. This family is called the Euler-Genocchi polynomials and defined as

2t ext ke " "
LAY (L.1)
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where [t| < 7T and Aﬁf) (x) = 0 for n < r. It then follows that E, (x) = Aﬁ,o) (x) and G, (x) = A,(}) (x). The
Euler-Genocchi numbers are defined to be A” = A" (0).

Combinatorial identities involving nested sums expression, a determinantial approach, a multiplication
formula, and recurrence and difference equations for the Euler-Genocchi polynomials, and alternating
sums of powers formula in terms of the Euler-Genocchi polynomials have been discussed in [3] and [4].
Moreover, these polynomials and numbers emerge from some general families. These families, called
unified generalizations of Bernoulli, Euler and Genocchi polynomials, are defined and studied in, for
example, [2, 14-16]. In particular, generating functions of these families are defined in [15], their extensions
and further generalizations are studied in [2] and [14], and p-adic distributions of them are presented in
[16].

In this paper, we consider fundamental arithmetical properties of the Euler-Genocchi polynomials and
numbers. We obtain numerous number theoretic results for the Euler-Genocchi numbers involving Staudt-
Clausen-like theorem and Kummer-like congruences. We also present Almkvist-Meurman-type result for
the Euler-Genocchi polynomials regarding integerness of them for special arguments as well. We study the
relationships between Euler-Genocchi numbers and zeta, and p-adic zeta functions.

The content of this study is organized as follows. Section 2 is a preliminary section where we summarize
the necessary contexts in the paper. In Section 3, we consider number theoretic properties of the Euler-
Genocchi numbers. In Section 4, we study the values of the Euler-Genocchi polynomials for which they are
integers. Section 5 is devoted to the investigation of the Euler-Genocchi numbers in the content of zeta and
p-adic zeta functions.

2. Preliminaries

For a nonnegative integer 1, the Bernoulli numbers B, can be defined by the generating function

t "
et —1 :ZB”H

n=0

have been extensively studied over the last two centuries. It is easy to find the values By = 1, By = -1/2,
B, =1/6, B4 = —1/30, and B,, = 0 for all odd n > 3. The Bernoulli numbers also occur as B,, = B,, (0), where
B, (x) denotes the nth Bernoulli polynomial defined by

te - #n
d—1 znzzan(x)a'

One of the most important properties of Bernoulli numbers is the von Staudt-Clausen theorem, which
explicitly determines the denominators of even indexed Bernoulli numbers. There are several versions,
and we like to use the following one. If p is a prime number with p < 21 + 1, then

PBy, = { O(modp), if (p—1)12n,

-1(modp), if (p—-1)2n.

Let k and n be nonnegative integers with n > 0, and consider the sums of powers of first n natural
numbers

Sin =15+ 25+ 4 nh,

ko gt _
Z Skntm = ———,
k! et—1
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Sk are related to Bernoulli numbers in that

k+1 k+1—m
Sk = k+12( ) '

m=0

In [8], Howard studied the alternating sums of powers
Tk,n = 1k _ Zk + 3k — et (_1)71—1 1’lk.

Analyzing the identity

°° £k el + (_1)"—1 e+t
Z Tk’”ﬁ - et +1 !

he deduced that these sums are related to Genocchi numbers G, (0) = G, in that

T (1)n1 nﬁ Gk m+1 n"— Gk+1
k=" k—m+1'  2k+1)

m=0

where the Genocchi polynomials G, (x) are defined respectively by
2t "
a1~ LG
Note that the Genocchi polynomials are closely related to the Euler polynomials E,, (x) defined by
2t s n
et +1 _;OE”(X)W

There are numerous number sequences related to the Bernoulli numbers. One of which is the sequence
known as the Stirling numbers of the second kind, denoted by S (1, m). They can be defined by means of
the generating function

(-1 —1) Z S, m) 1)

and count the ways to divide a set of 1 elements into m nonempty sets. In particular, we have S (1,0) =
forn#0,5(n,1)=S(n,n) =1,and S (p, m) = 0(mod p), where p is an odd prime and m =2,3,...,p— 1 (c.f.
9D

The Stirling numbers of the second kind are particular examples of Hurwitz series. A Hurwitz series is
a power series

0
2 a}’l '/

n=0

for which each coefficient a, is an integer. It has been defined by Hurwitz [10] in connection with the
coefficients of the lemniscate function (see also [5]). The set of all Hurwitz series is closed under coefficient-
wise addition and multiplication, and the reciprocal of a Hurwitz series with constant term 1 is also Hurwitz
series.
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3. Arithmetic properties of the Euler-Genocchi numbers

In this section, we present some congruences for the Euler-Genocchi numbers modulo a prime p extended
to the ring of rational numbers with denominators not divisible by p. For such fractions,

g = g(modp) & ad = be(modp),

and the residue class of a/b is the residue class of ab’, where b’ is the inverse of b modulo p.
We start with a relationship between the Euler-Genocchi and Bernoulli numbers.

Lemma 3.1. We have
AD = 2(1),-1(1 = 2" )B,y_y11,
where B,, is the nth Bernoulli number and

nn-1---m-r+1), ifnzr>0,
(n), = 1, ifr=0,
0, ifr>n,

is the falling factorial.
Proof. By (1.1), we have

= ot 2t 267" = 1)  2t"(et+1-2)
Z AN = - _
n=0

nl e+l -1 -1
oo A4 N o P N gy P
= s mg =AY B 2T Y 2B
n=0 n=0
ks =1 k) . .
=) 20 -29B,—— = ) 2(n)a(1=2"" By —
n=0 n=r—1

[ B t”
=Y 2(m), (1 - 2" "By
n=r :

Since A = 0 for n < r , the result follows by equating the coefficients of " on the both sides. [

Lemma 3.1 particularly implies that if (n — ) is a non-zero even integer, then Af? = (0. Lemma 3.1 also
provides a von Staudt-Clausen-type theorem for the Euler-Genocchi numbers.

Theorem 3.2. If p is an odd prime such that p < n —r + 2, then pA(r) = O(mod p).

Proof. By Lemma 3.1, we write
pAY = 2(n),_1(1 = 2" VYpB, 1.

Since p is odd, 2" = 1(mod p) by Fermat’s theorem when (p —1)|(n —r + 1), so pAff) = O(modp). If
(p—1) t (n—r+1), then by the von Staudt-Clausen theorem pB,,_,.1 = 0(mod p), which again implies that
pAY = 0(modp). O

When p = 2, Lemma 3.1 and the von Staudt-Clausen theorem for the Bernoulli numbers yield to the
congruences

AL = AD) = ~1(mod 2).

One of the versions for the von Staudt-Clausen theorem gives divisibility property for the sums of powers
of integers. A similar result for the alternating sums of powers of integers is related to the Euler-Genocchi
numbers.



P. Aytag / Filomat 39:35 (2025), 12647-12660 12651

Lemma 3.3. Let p be an odd prime. For integers r and n with 0 < r < n, we have

-
A = (), ) (=1)"m" (mod p).
m=0

Proof. It is not difficult to see that
AP+ 1) + AV () = 2(n), "

Since

,_.

n—

n
A (x) = Z (:)Agr)x” s=AD 4

(n)Ag")xn—sl

s=0 5=0
we have
A"k = AV (mod k), (3.1)

where k is a natural number. Now,

k-1
DAV R + AP = Y ()AL m) = (1) A (m + 1)

m=0

gives for an odd positive integer k that
k=1 k=1
AD () + AD = Z “1)" (AP n + 1) + AD () = Y (=1)"2(m),m"
We then have
= ( Z( 1)"m" " (mod k).

Choosing k = p results in the desired identity. O

Corollary 3.4. Let p be an odd prime.
a) If n is a multiple of p, then AY = 0(mod p).
b) Ifp > n—r, then A? = 0(mod p).
T . -1
o If(p —Dl(n—r), then qu) = (n),(mod p). In particular, we have A;’g_l ) = —1(modp).

Proof. Part (a) and part (b) immediately follow from Lemma 3.3 because of the presence of the factor (n),
on the right. For part (c), we note that

p-1 p-1
Z(—l)mmn-r = Z(—1)m = 1(mod p)
m=0 m=0

by Fermat’s theorem and since p is odd. [
Next result is an analogue of Kummer’s congruences for the Bernoulli numbers.

Theorem 3.5. Let p be an odd prime. For nonnegative integers n and v with p < n — v and ged(p, n) = 1, we have

A” AD
M (modp).

n—r
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Proof. In Lemma 3.3, we write nn + p — 1 instead of n to obtain

p-1
Afﬁp [ Em+p-1), Z(—l)’”m”’rp_l_r(mod p).
m=0

Since (n + p — 1), = (n — 1),(mod p), we have by Fermat’s theorem that

A= Z( 1)"m"" (mod p).

Since n(n — r), = (n — r)(n), and gecd(n, p) = 1, the results is obtained. [J
A prime shift in the index yields to the following congruence.

Theorem 3.6. For an odd prime p and integer r with 0 < r < p, we have

" _ r!
Apir = —E(modp).

Proof. By (1.1) and (2.1), we deduce for [t| < 7t that

n=0 2 2 m=0
_ g (-1 ¢ mo_ oy - (-1) t
=t Z ( 1) =t Z o m'ZS(n,m)
m=0 m=0 n=m
( 1)111 n+r X (i (_ )m
( o ——m!S(n, m) ' —Z Z o m!S(n — r,m) | (n), '
m=0 n=0 \m=0
Comparing the coefficients of t" gives
0 _ v D" _
AD = (n)rZ S miS(n —r,m). (3.2)

m=0

Let n —r = p be an odd prime in (3.2). Then, by the properties of the Stirling numbers of the second kind,
we find that

p-1
AD —(+r)r ( my=(p+1) _1 p'

p+r

m)| = ~Z(modp)

which is the desired result. [
As a final result in this section, we consider the value of the Euler-Genocchi polynomial at 1/2.

Theorem 3.7. Let p be an odd prime and n and r be integers with 0 <r < n. If (p — 1)|(n — 1), then

AD (5) = 4 )tmod ),

where (-|p) is the Legendre symbol.
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Proof. The exponential generating function of the alternating sum

k-1
Z(—l)m(Zm +1)"
m=0

is
(_1)k—1e(2k+1)t + et
et +1
Since
(D et (D2t 1 2(2ay e
e +1 S22t e+l 202ty e +1
I CRR SUT TN WIS SR SO AW
= prayn ZAn (k+ 5)2 E-l‘ 27’+1[—VZA" (5)2 E
n=0 n=0
DN 2 g ( 1) AN S Y, (
= AL lk+=])]—+— 2MmA
21+l p (m+r),” ™" 2)n!l 241 (n + 1), nZ:O ntr
we have
2n—1 1 0 1 i 1 ~ k-1 . )
(n+r), ((_1) Apsr (k * 5) +A”+’(§)) B n;)(_l) (@m+1)

or equivalently

k-1

ot ((-1)’“*1 AD (k + %) +AD (%)) =2(n), Y (-1)" @m+ 1)

m=0

Let k = p be an odd prime. Then, by (3.1), we obtain that

p-1
217 A0 (%) = (n), Z -D"@2m+1)"" (modp).
m=0

Now, suppose that (p — 1)|(n — r). Since

=

-1 (—1)" @m +1)"" = { O0(modp), ifp=1(mod4),

4 ~ | 2(modp) ifp=3(mod4),

3
I

or equivalently

-1
(-1)"2m+1)"" = (-4lp) (mod p),
0

=

3
I

we reach at the desired result by Fermat’s theorem. [

4. The Almkvist-Meurman theorem for the Euler-Genocchi polynomials

In 1991, Almkvist and Meurman [1] showed that if # and k are integers with k # 0

)

1

2

)

tn

K4

12653

(3.3)
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is also integer. In 1999 Fox [7] showed that

K (En (%) (C1*E, <0))

is an integer whenever I,k € Z, k # 0, and in 2001 Sury [19] showed that for an arbitrary integer 1, k"E,, (%)
is an integer if k is even, and

K" (En (Z) +(-1)"1E, (0))

is an integer if k is odd. In this section we obtain similar results for the Euler-Genocchi polynomials.
Theorem 4.1. If k # 0 is an even integer, then kA (%) is an integer for all integers h and natural numbers .

Proof. By (1.1), we have

n—r A(r) _ 2 it
Zk A, ()n'_—ekt+1e'

Since k is even,

=1
Zzi‘

has integer coefficients and constant term 1. Thus, its reciprocal 2
we have

5 -
et = E (n), h" ra.
n=0

So, t"e" is a Hurwitz series as well, and the result follows. [

I\)I'—‘

=7 18 a Hurwitz series. On the other hand,

Theorem 4.2. Ifkis odd, then

kn r(A(V ( ) ( 1)11A("))

is an integer for any integers h and r withn > r > 0.

Proof. Letting

kn r(A(T’ (h) ( 1) A(r))

we may write

o)

Z nv - ekt+1 ( ht_(_l)h)’

=0

from which we have

Ekt+1Z (.,)t _ r(ht ( 1))

et +1 et+1

7
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or equivalently have
k-1

(=1)" th nt" _t’( 1y~ 12( 17 e,

m=0 n=0 m=0

Now, the left hand side can be written as

v SN ot N 8 (3 (1) e 0| £
| L] L |- o Y| X (2| &

m=0 n=0 m=0 n=0 \ s=0
) n -1
t"
SR
S n!
n=0 \ s=0 m=0
oo n
n "
=_Z[ (S)ag)Tﬂ_Sk_lJ 1
n=0 \ s=0
while we have
h-1 o t
# (_1)h—1 ( 1)m mt tr( 1)h 12( 1 Z _'
m=0 m=0 n=
-1\ = ¢
— (=1 _1\" ,n—r o
= (DY D e ),
n=0 \m=0
(o) tn
— (1)1 v
=~ (1) ;)m)r Toopot o
Thus, we find that
- n
Z (S)agr)Tn—s,k—l = (_1);171 () T 1.

5=0

Since k is odd, we have Tgx_1 =1, so

n—-1
_ n
ﬂ;(:) = (‘Dh 1(”)rTnfr,h71 - Z (S)agr)Tns,kl'

5=0

(f) —

5. Zeta functions and Euler-Genocchi numbers and polynomials

In 2017, Young [22] defined the general zeta function

1 ~ —t me—at
kaSEI I,—f51L1( )mdt,
0

for Re(s) > 0, Re (a) > 0, and || > 1, where I (s) is the gamma function and

NS

le i

r=1

12655

= 0 or r! according as & is even or odd, so by induction a) € Zforalln > r. This completes the proof. [
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is the polylogarithm function of order k. Important special cases of Z,,x (s, 4) include
Zl,l (S/ ll) = SC (S + 1/ ﬂ) ’

where

=1
C(s,a) =)y —
;;(kﬂz)

is the Hurwitz zeta function,

Zaa(s ) =276,

where
v D
ple) = kzé 2k + 1y

is the Dirichlet beta function,

Z2,O (S/ 1) = 277 (S) s

where

k-1
)
s

ICEDY (_}c
k=1

is the alternating zeta function, and

Zia (s, %) —s(21 1)+ ),

where
=1
C(s) = Z c
k=1

is the Riemann zeta function.
The Riemann zeta function and Bernoulli numbers share a particular relationship in that

Ca-n)=-21 45,
n

where 7 is a positive integer and 9,1 is the Kronecker symbol defined as

s {1 ifn=1,
1710, ifn>1.

Moreover, we have

ca-na=-222,

and

Ce (—1’1, a) =E, (tl) ’
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where

("
i (5,0) = 2):'6 o

is the Hurwitz-type Euler zeta function defined in [11].
These relationships motivate a possible expression of the Euler-Genocchi numbers in terms of zeta
functions. For such a relation we note that

1- e—t ze—ut Ze—at Ze(l—a)t
Lig > = =

T—et 14+et 1+et’

So

— 1 s—1 Ze(l_u)t
Zz/o(S,ﬂ) = m ft 11 e dt,

0

and hence we find that

1 2 1 = t
Zoo(s+7,1) = 1 dt = £y A0 g
2008 +7,1) F(s+r)f T+e F(s+r)f kz(; K Rl
0 0 -

Since Z; (s, 1) = 2n(s), we conclude that

2n(s + abve +r)fs 12A§Z>k'

By the residue theorem, we find that

00

(r
(r)t ( _r)!An
20641 = 7o f A w = Sy
0

or equivalently,

(=" A
2 ()

n(-n+r)=

Let p be an odd prime and Z,,, Q,, and C, denote the ring of p-adic integers, the field of p-adic numbers,
and the completion of an algebraic closure of Q,, respectively. We say that f : Z, — C, is uniformly

fO-fW) (X) v

differentiable function at a point a € Z, if have limit as (x,y) — (a,4), provided that x # y. The

p-adic functions with nice properties are powerful tools for studying many results of classical number
theory in a straightforward manner. They strength almost all the arithmetic results on the Bernoulli and
Euler numbers (see, for example, [6, Chapter 11], [17]). In particular, we have

B, = fa"da,

z,

where

ff(x)dx— lim Zf(x)
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is the Volkenborn integral ([17, p.264]).
There are different ways to describe Euler numbers in the p-adic context (e.g. [11], [12], [13], [18], and
[22], and references therein). In particular, Osipov [13] modified the Volkenborn integral as

pmN -1

J s @=pm 3 s
z, =

where f : Z, — C, is uniformly differentiable function, =1,e#1,gcd(k,p) =1and kl(p" —1). If k=2
and m = 1, we have

pN-1
f f@yu; @ = lim 3" (1" f(@). (5.1)
Zp a=0

We note that equation (5.1) is defined and studied in detail by Kim [12] within the concept of symmetric
p-adic invariant integrals on Z,. Since these integrals are related to the Euler polynomials, we prefer them
here to investigate the Euler-Genocchi polynomials over the set of p-adic numbers.

Let X be an arbitrary subset of C, closed under the shift x — x +a for a € Z, and x € X. Suppose
f : X = €, is uniformly differentiable on X, so that for fixed x € X, the function a — f(x + a) is uniformly
differentiable on Z,. Using (5.1), we obtain that

pi-1
at (a—1)t _ —ty 1: _1\4 Hat
fe dy_l(a)+fe du_y(@)=1+e )I\ljlirc}OZ(l)e
Z, Z, a=0
PRI S Y A N _
= t —_— = t Pt = t
1+e )Al]1_r>1f(}o Tod e I\lll_r)r:o(1+e ) =2e"".
Thus,
(1+e™ fe“tdyl (@) =2¢7"
ZF’
yields to
2
fe”tdyl (ﬂ) = m
ZP
By (1.1), we immediately deduce that
(o] . tn
trext featd#_l (Ll) — ZAIS)E’ (52)

n=0
Z,

where t € C, with [f], < p_%’lj. Therefore, by (5.2), we have

. AY
[, =222,

z,

and particularly

A(”)

z,
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Givena € Zy,p faand p > 2, there is a (p — 1)th root of unity w(a) € Z,, such that
a = w(a)(mod Z,).

Let () = w !(a)a, so (a) = 1(mod p). The projection (1) can be extended to a € C;j ([20]), where C; is the
group of units in Cp, so that fora € C; and s € C,, we have

[e]

@ =y (;)«m -1y,

n=0

provided that the series converges.
For x € C, — Z,, we define the p-adic Hurwitz type zeta function 7, (s, x) by

n, (s,x) = f(a + ) du_ (a).
ZV

Since |x|, > 1 and |a|, < 1, we have w(a + x) = w(x), and hence for s = 1 — 1 + r, we obtain that

n-r —n+r qur)(x)
np(l—n+r,x)=J(a+x> du_; (@) =w (x)(n—)r'

Therefore, the function 7, (s, x) can be regarded as the p-adic interpolating function for the Euler-Genocchi

polynomial A (x).

6. Conclusion

In this study, some properties provided by the Eulera€“Genocchi numbers and polynomials have been
addressed. Specifically, the arithmetic properties of Eulera€“Genocchi numbers (divisibility properties and
analogues of the von Staudta€”Clausen theorem provided by Bernoulli numbers, as well as Kummer’s
congruences) have been obtained. Integer values assumed by the Euler-Genocchi polynomials by means of
the classical Almkvist-Meurman theorem are examined as well. The relationships between zeta functions
and p-adic integral representations of these polynomials and numbers have also been studied.

Altogether, these results not only extend known properties of the classical Euler and Genocchi polyno-
mials and numbers but also pave the way for further exploration in combinatorics, special functions, and
arithmetic analysis within the framework of the Appell polynomials.

Future research may focus on the unified extensions of these numbers and polynomials [2, 14-16].
In particular, it would be interesting to examine the analogues of the von Staudt-Clausen theorem and
Kummer-type congruences for the unified extensions.
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