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On Euler-Genocchi numbers and polynomials

Pınar Aytaça
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Abstract. We study number theoretic and analytic properties of the recently defined Euler-Genocchi
polynomials and numbers. In particular, we give several divisibility properties of the Euler-Genocchi
numbers and integerness of the values of the Euler-Genocchi polynomials. We also consider zeta and
p-adic zeta function representations for these polynomials and numbers.

1. Introduction

An Appell sequence {Pn (x)} is defined formally by an exponential generating function of the form

G (x, t) = A (t) ext =

∞∑
n=0

Pn (x)
tn

n!
,

where x and t are indeterminates, and A (t) is a formal power series with A (0) , 0. Since any such generating
function has polynomial coefficient satisfying

P′n (x) = nPn−1 (x)

for n ≥ 1, the members of an Appell sequence are called the Appell polynomials. The Appell polynomials
have been well studied because of their remarkable applications in number theory and mathematical
analysis. They include many types, the most famous of which are Bn (x) Bernoulli, En (x) Euler, and Gn (x)
Genocchi polynomials defined by

text

et − 1
=

∞∑
n=0

Bn (x)
tn

n!
,

2ext

et + 1
=

∞∑
n=0

En (x)
tn

n!
,

2text

et + 1
=

∞∑
n=0

Gn (x)
tn

n!
,

respectively, where |t| < 2π for the Bernoulli polynomials and |t| < π for the Euler and Genocchi polynomials.
A new family of the Appell polynomials that generalizes both Euler and Genocchi polynomials were

introduced and studied in [3] and [4]. This family is called the Euler-Genocchi polynomials and defined as

2trext

et + 1
=

∞∑
n=0

A(r)
n (x)

tn

n!
, (1.1)
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where |t| < π and A(r)
n (x) = 0 for n < r. It then follows that En (x) = A(0)

n (x) and Gn (x) = A(1)
n (x). The

Euler-Genocchi numbers are defined to be A(r)
n = A(r)

n (0).
Combinatorial identities involving nested sums expression, a determinantial approach, a multiplication

formula, and recurrence and difference equations for the Euler-Genocchi polynomials, and alternating
sums of powers formula in terms of the Euler-Genocchi polynomials have been discussed in [3] and [4].
Moreover, these polynomials and numbers emerge from some general families. These families, called
unified generalizations of Bernoulli, Euler and Genocchi polynomials, are defined and studied in, for
example, [2, 14–16]. In particular, generating functions of these families are defined in [15], their extensions
and further generalizations are studied in [2] and [14], and p-adic distributions of them are presented in
[16].

In this paper, we consider fundamental arithmetical properties of the Euler-Genocchi polynomials and
numbers. We obtain numerous number theoretic results for the Euler-Genocchi numbers involving Staudt-
Clausen-like theorem and Kummer-like congruences. We also present Almkvist-Meurman-type result for
the Euler-Genocchi polynomials regarding integerness of them for special arguments as well. We study the
relationships between Euler-Genocchi numbers and zeta, and p-adic zeta functions.

The content of this study is organized as follows. Section 2 is a preliminary section where we summarize
the necessary contexts in the paper. In Section 3, we consider number theoretic properties of the Euler-
Genocchi numbers. In Section 4, we study the values of the Euler-Genocchi polynomials for which they are
integers. Section 5 is devoted to the investigation of the Euler-Genocchi numbers in the content of zeta and
p-adic zeta functions.

2. Preliminaries

For a nonnegative integer n, the Bernoulli numbers Bn can be defined by the generating function

t
et − 1

=

∞∑
n=0

Bn
tn

n!

have been extensively studied over the last two centuries. It is easy to find the values B0 = 1, B1 = −1/2,
B2 = 1/6, B4 = −1/30, and Bn = 0 for all odd n ≥ 3. The Bernoulli numbers also occur as Bn = Bn (0), where
Bn (x) denotes the nth Bernoulli polynomial defined by

tex

et − 1
=

∞∑
n=0

Bn (x)
tn

n!
.

One of the most important properties of Bernoulli numbers is the von Staudt-Clausen theorem, which
explicitly determines the denominators of even indexed Bernoulli numbers. There are several versions,
and we like to use the following one. If p is a prime number with p ≤ 2n + 1, then

pB2n ≡

{
0
(
mod p

)
, if

(
p − 1

)
∤ 2n,

−1
(
mod p

)
, if

(
p − 1

)
|2n.

Let k and n be nonnegative integers with n > 0, and consider the sums of powers of first n natural
numbers

Sk,n = 1k + 2k + · · · + nk.

Since

∞∑
k=0

Sk,n
tk

k!
=

e(n+1)t
− et

et − 1
,
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Sk,n are related to Bernoulli numbers in that

Sk,n =
1

k + 1

k∑
m=0

(
k + 1

m

)
Bmnk+1−m.

In [8], Howard studied the alternating sums of powers

Tk,n = 1k
− 2k + 3k

− · · · + (−1)n−1 nk.

Analyzing the identity

∞∑
k=0

Tk,n
tk

k!
=

et + (−1)n−1 e(n+1)t

et + 1
,

he deduced that these sums are related to Genocchi numbers Gn (0) = Gn in that

Tk,n =
(−1)n−1

2
nk +

(−1)n

2

k−1∑
m=0

(
k
m

)
Gk−m+1

k −m + 1
nm
−

Gk+1

2 (k + 1)
,

where the Genocchi polynomials Gn (x) are defined respectively by

2text

et + 1
=

∞∑
n=0

Gn (x)
tn

n!
.

Note that the Genocchi polynomials are closely related to the Euler polynomials En (x) defined by

2ext

et + 1
=

∞∑
n=0

En (x)
tn

n!
.

There are numerous number sequences related to the Bernoulli numbers. One of which is the sequence
known as the Stirling numbers of the second kind, denoted by S (n,m). They can be defined by means of
the generating function(

et
− 1

)m

m!
=

∞∑
n=m

S (n,m)
tn

n!
, (2.1)

and count the ways to divide a set of n elements into m nonempty sets. In particular, we have S (n, 0) = 0
for n , 0, S (n, 1) = S (n,n) = 1, and S

(
p,m

)
≡ 0

(
mod p

)
, where p is an odd prime and m = 2, 3, . . . , p − 1 (c.f.

[9])
The Stirling numbers of the second kind are particular examples of Hurwitz series. A Hurwitz series is

a power series

∞∑
n=0

an
tn

n!
,

for which each coefficient an is an integer. It has been defined by Hurwitz [10] in connection with the
coefficients of the lemniscate function (see also [5]). The set of all Hurwitz series is closed under coefficient-
wise addition and multiplication, and the reciprocal of a Hurwitz series with constant term 1 is also Hurwitz
series.
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3. Arithmetic properties of the Euler-Genocchi numbers

In this section, we present some congruences for the Euler-Genocchi numbers modulo a prime p extended
to the ring of rational numbers with denominators not divisible by p. For such fractions,

a
b
≡

c
d
(
mod p

)
⇔ ad ≡ bc

(
mod p

)
,

and the residue class of a/b is the residue class of ab′, where b′ is the inverse of b modulo p.
We start with a relationship between the Euler-Genocchi and Bernoulli numbers.

Lemma 3.1. We have

A(r)
n = 2(n)r−1(1 − 2n−r+1)Bn−r+1,

where Bn is the nth Bernoulli number and

(n)r =


n(n − 1) · · · (n − r + 1), if n ≥ r > 0,

1, if r = 0,
0, if r > n,

is the falling factorial.

Proof. By (1.1), we have
∞∑

n=0

A(r)
n

tn

n!
=

2tr

et + 1
=

2tr(et
− 1)

e2t − 1
=

2tr(et + 1 − 2)
e2t − 1

=
2tr

et − 1
−

4tr

e2t − 1
= 2tr−1

∞∑
n=0

Bn
tn

n!
− 2tr−1

∞∑
n=0

2nBn
tn

n!

=

∞∑
n=0

2(1 − 2n)Bn
tn+r−1

n!
=

∞∑
n=r−1

2(n)r−1(1 − 2n−r+1)Bn−r+1
tn

n!

=

∞∑
n=r

2(n)r−1(1 − 2n−r+1)Bn−r+1
tn

n!
.

Since A(r)
n = 0 for n < r , the result follows by equating the coefficients of tn on the both sides.

Lemma 3.1 particularly implies that if (n − r) is a non-zero even integer, then A(r)
n = 0. Lemma 3.1 also

provides a von Staudt-Clausen-type theorem for the Euler-Genocchi numbers.

Theorem 3.2. If p is an odd prime such that p ≤ n − r + 2, then pA(r)
n ≡ 0(mod p).

Proof. By Lemma 3.1, we write

pA(r)
n = 2(n)r−1(1 − 2n−r+1)pBn−r+1.

Since p is odd, 2n−r+1
≡ 1(mod p) by Fermat’s theorem when

(
p − 1

)
| (n − r + 1), so pA(r)

n ≡ 0(mod p). If
(p − 1) ∤ (n − r + 1), then by the von Staudt-Clausen theorem pBn−r+1 ≡ 0(mod p), which again implies that
pA(r)

n ≡ 0(mod p).

When p = 2, Lemma 3.1 and the von Staudt-Clausen theorem for the Bernoulli numbers yield to the
congruences

A(2)
2n+1 ≡ A(1)

2n ≡ −1(mod 2).

One of the versions for the von Staudt-Clausen theorem gives divisibility property for the sums of powers
of integers. A similar result for the alternating sums of powers of integers is related to the Euler-Genocchi
numbers.
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Lemma 3.3. Let p be an odd prime. For integers r and n with 0 ≤ r ≤ n, we have

A(r)
n ≡ (n)r

p−1∑
m=0

(−1)mmn−r(mod p).

Proof. It is not difficult to see that

A(r)
n (x + 1) + A(r)

n (x) = 2(n)rxn−r.

Since

A(r)
n (x) =

n∑
s=0

(
n
s

)
A(r)

s xn−s = A(r)
n +

n−1∑
s=0

(
n
s

)
A(r)

s xn−s,

we have

A(r)
n (k) ≡ A(r)

n (mod k), (3.1)

where k is a natural number. Now,

(−1)k+1A(r)
n (k) + A(r)

n =

k−1∑
m=0

(
(−1)mA(r)

n (m) − (−1)m+1A(r)
n (m + 1)

)
gives for an odd positive integer k that

A(r)
n (k) + A(r)

n =

k−1∑
m=0

(−1)m
(
A(r)

n (m + 1) + A(r)
n (m)

)
=

k−1∑
m=0

(−1)m2(n)rmn−r.

We then have

A(r)
n ≡ (n)r

k−1∑
m=0

(−1)mmn−r(mod k).

Choosing k = p results in the desired identity.

Corollary 3.4. Let p be an odd prime.
a) If n is a multiple of p, then A(r)

n ≡ 0(mod p).
b) If p > n − r, then A(r)

n ≡ 0(mod p).
c) If (p − 1)|(n − r), then A(r)

n ≡ (n)r(mod p). In particular, we have A(p−1)
p−1 ≡ −1(mod p).

Proof. Part (a) and part (b) immediately follow from Lemma 3.3 because of the presence of the factor (n)r
on the right. For part (c), we note that

p−1∑
m=0

(−1)mmn−r
≡

p−1∑
m=0

(−1)m = 1(mod p)

by Fermat’s theorem and since p is odd.

Next result is an analogue of Kummer’s congruences for the Bernoulli numbers.

Theorem 3.5. Let p be an odd prime. For nonnegative integers n and r with p ≤ n − r and gcd(p,n) = 1, we have

A(r)
n+p−1

n − r
≡

A(r)
n

n
(mod p).
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Proof. In Lemma 3.3, we write n + p − 1 instead of n to obtain

A(r)
n+p−1 ≡ (n + p − 1)r

p−1∑
m=0

(−1)mmn+p−1−r(mod p).

Since (n + p − 1)r ≡ (n − 1)r(mod p), we have by Fermat’s theorem that

A(r)
n+p−1 ≡

p−1∑
m=0

(−1)mmn−r(mod p).

Since n(n − r)r = (n − r)(n)r and gcd(n, p) = 1, the results is obtained.

A prime shift in the index yields to the following congruence.

Theorem 3.6. For an odd prime p and integer r with 0 ≤ r < p, we have

A(r)
p+r ≡ −

r!
2

(mod p).

Proof. By (1.1) and (2.1), we deduce for |t| < π that

∞∑
n=0

A(r)
n

tn

n!
=

2tr

et + 1
=

tr

et+1
2

=
tr

1 − 1−et

2

= tr
∞∑

m=0

(
1 − et

2

)m

= tr
∞∑

m=0

(−1)m

2m

(
et
− 1

)m
= tr

∞∑
m=0

(−1)m

2m m!
∞∑

n=m

S(n,m)
tn

n!

=

∞∑
n=0

 n∑
m=0

(−1)m

2m m!S(n,m)

 tn+r

n!
=

∞∑
n=0

 n−r∑
m=0

(−1)m

2m m!S(n − r,m)

 (n)r
tn

n!
.

Comparing the coefficients of tn gives

A(r)
n = (n)r

n−r∑
m=0

(−1)m

2m m!S(n − r,m). (3.2)

Let n − r = p be an odd prime in (3.2). Then, by the properties of the Stirling numbers of the second kind,
we find that

A(r)
p+r = (p + r)r

p∑
m=0

(−1)m

2m m!S(p,m) = (p + r)r

−1
2
−

p!
2p +

p−1∑
m=2

(−1)m

2m m!S(p,m)

 ≡ − r!
2

(mod p)

which is the desired result.

As a final result in this section, we consider the value of the Euler-Genocchi polynomial at 1/2.

Theorem 3.7. Let p be an odd prime and n and r be integers with 0 ≤ r ≤ n. If (p − 1)|(n − r), then

A(r)
n

(1
2

)
≡

(
−4|p

)
(n)r(mod p),

where
(
·|p

)
is the Legendre symbol.
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Proof. The exponential generating function of the alternating sum

k−1∑
m=0

(−1)m(2m + 1)n

is

(−1)k−1e(2k+1)t + et

e2t + 1
.

Since

(−1)k−1e(2k+1)t + et

e2t + 1
=

(−1)k−1

2(2t)r
2(2t)re(k+ 1

2 )2t

e2t + 1
+

1
2(2t)r

2(2t)re( 1
2 )2t

e2t + 1

=
(−1)k−1

2r+1tr

∞∑
n=0

A(r)
n

(
k +

1
2

)
2n tn

n!
+

1
2r+1tr

∞∑
n=0

A(r)
n

(1
2

)
2n tn

n!

=
(−1)k−1

2r+1

∞∑
n=0

2n+r

(n + r)r
A(r)

n+r

(
k +

1
2

) tn

n!
+

1
2r+1

2r

(n + r)r

∞∑
n=0

2nA(r)
n+r

(1
2

) tn

n!
,

we have

2n−1

(n + r)r

(
(−1)k−1 A(r)

n+r

(
k +

1
2

)
+ A(r)

n+r

(1
2

))
=

k−1∑
m=0

(−1)m(2m + 1)n

or equivalently

2n−r
(
(−1)k−1 A(r)

n

(
k +

1
2

)
+ A(r)

n

(1
2

))
= 2 (n)r

k−1∑
m=0

(−1)m (2m + 1)n−r .

Let k = p be an odd prime. Then, by (3.1), we obtain that

2n−rA(r)
n

(1
2

)
≡ (n)r

p−1∑
m=0

(−1)m (2m + 1)n−r (mod p
)
. (3.3)

Now, suppose that (p − 1)|(n − r). Since

p−1∑
m=0

(−1)m (2m + 1)n−r
≡

{
0
(
mod p

)
, if p ≡ 1 (mod 4) ,

2
(
mod p

)
if p ≡ 3 (mod 4) ,

or equivalently

p−1∑
m=0

(−1)m (2m + 1)n−r
≡

(
−4|p

) (
mod p

)
,

we reach at the desired result by Fermat’s theorem.

4. The Almkvist-Meurman theorem for the Euler-Genocchi polynomials

In 1991, Almkvist and Meurman [1] showed that if h and k are integers with k , 0

kn
(
Bn

(
h
k

)
− Bn

)



P. Aytaç / Filomat 39:35 (2025), 12647–12660 12654

is also integer. In 1999 Fox [7] showed that

kn
(
En

(
h
k

)
− (−1)hk En (0)

)
is an integer whenever h, k ∈ Z, k , 0, and in 2001 Sury [19] showed that for an arbitrary integer h, knEn

(
h
k

)
is an integer if k is even, and

kn
(
En

(
h
k

)
+ (−1)h−1 En (0)

)
is an integer if k is odd. In this section we obtain similar results for the Euler-Genocchi polynomials.

Theorem 4.1. If k , 0 is an even integer, then kn−rA(r)
n

(
h
k

)
is an integer for all integers h and natural numbers r.

Proof. By (1.1), we have

∞∑
n=0

kn−rA(r)
n

(
h
k

)
tn

n!
=

2tr

ekt + 1
eht.

Since k is even,

1
2

(
ekt + 1

)
= 1 +

∞∑
n=1

1
2

kn tn

n!

has integer coefficients and constant term 1. Thus, its reciprocal 2
ekt+1 is a Hurwitz series. On the other hand,

we have

treht =

∞∑
n=0

(n)r hn−r tn

n!
.

So, treht is a Hurwitz series as well, and the result follows.

Theorem 4.2. If k is odd, then

1
2

kn−r
(
A(r)

n

(
h
k

)
− (−1)h A(r)

n

)
is an integer for any integers h and r with n ≥ r ≥ 0.

Proof. Letting

a(r)
n =

1
2

kn−r
(
A(r)

n

(
h
k

)
− (−1)h A(r)

n

)
,

we may write

∞∑
n=0

a(r)
n

tn

n!
=

tr

ekt + 1

(
eht
− (−1)h

)
,

from which we have

ekt + 1
et + 1

∞∑
n=0

a(r)
n

tn

n!
= tr

(
eht
− (−1)h

)
et + 1

,
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or equivalently have

k−1∑
m=0

(−1)m emt
∞∑

n=0

a(r)
n

tn

n!
= tr (−1)h−1

h−1∑
m=0

(−1)m emt.

Now, the left hand side can be written as

k−1∑
m=0

(−1)m

 ∞∑
n=0

mn tn

n!


 ∞∑

n=0

a(r)
n

tn

n!

 = k−1∑
m=0

(−1)m
∞∑

n=0

 n∑
s=0

(
n
s

)
mn−sa(r)

s

 tn

n!

=

∞∑
n=0

 n∑
s=0

(
n
s

)
a(r)

s

k−1∑
m=0

(−1)m mn−s

 tn

n!

= −

∞∑
n=0

 n∑
s=0

(
n
s

)
a(r)

s Tn−s,k−1

 tn

n!
,

while we have

tr (−1)h−1
h−1∑
m=0

(−1)m emt = tr (−1)h−1
h−1∑
m=0

(−1)m
∞∑

n=0

mn tn

n!

= (−1)h−1
∞∑

n=0

 h−1∑
m=0

(−1)m mn−r

 (n)r
tn

n!

= − (−1)h−1
∞∑

n=0

(n)r Tn−r,h−1
tn

n!
.

Thus, we find that

n∑
s=0

(
n
s

)
a(r)

s Tn−s,k−1 = (−1)h−1(n)rTn−r,h−1.

Since k is odd, we have T0,k−1 = 1, so

a(r)
n = (−1)h−1(n)rTn−r,h−1 −

n−1∑
s=0

(
n
s

)
a(r)

s Tn−s,k−1.

a(r)
r = 0 or r! according as h is even or odd, so by induction a(r)

r ∈ Z for all n > r. This completes the proof.

5. Zeta functions and Euler-Genocchi numbers and polynomials

In 2017, Young [22] defined the general zeta function

Zm,k(s, a) =
1
Γ(s)

∞∫
0

ts−1Lik

(
1 − e−t

m

)
me−at

1 − e−t dt,

for Re (s) > 0, Re (a) > 0, and |r| ≥ 1, where Γ (s) is the gamma function and

Lik(z) =
∞∑

r=1

zr

rk
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is the polylogarithm function of order k. Important special cases of Zm,k (s, a) include

Z1,1 (s, a) = sζ (s + 1, a) ,

where

ζ (s, a) =
∞∑

k=0

1
(k + a)s

is the Hurwitz zeta function,

Z2,0

(
s,

1
2

)
= 2s+1β (s) ,

where

β (s) =
∞∑

k=0

(−1)k

(2k + 1)s

is the Dirichlet beta function,

Z2,0 (s, 1) = 2η (s) ,

where

η (s) =
∞∑

k=1

(−1)k−1

ks

is the alternating zeta function, and

Z1,1

(
s,

1
2

)
= s

(
2s+1
− 1

)
ζ (s + 1) ,

where

ζ (s) =
∞∑

k=1

1
ks

is the Riemann zeta function.
The Riemann zeta function and Bernoulli numbers share a particular relationship in that

ζ (1 − n) = −
Bn

n
+ δn,1,

where n is a positive integer and δn,1 is the Kronecker symbol defined as

δn,1 =

{
1, if n = 1,
0, if n > 1.

Moreover, we have

ζ (1 − n, a) = −
Bn (a)

n
,

and

ζE (−n, a) = En (a) ,
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where

ζE (s, a) = 2
∞∑

n=0

(−1)n

(n + a)s

is the Hurwitz-type Euler zeta function defined in [11].
These relationships motivate a possible expression of the Euler-Genocchi numbers in terms of zeta

functions. For such a relation we note that

Li0

(
1 − e−t

2

)
2e−at

1 − e−t =
2e−at

1 + e−t =
2e(1−a)t

1 + et .

So

Z2,0(s, a) =
1
Γ(s)

∞∫
0

ts−1 2e(1−a)t

1 + et dt,

and hence we find that

Z2,0(s + r, 1) =
1

Γ(s + r)

∞∫
0

ts−1 2tr

1 + et dt =
1

Γ(s + r)

∞∫
0

ts−1
∞∑

k=0

A(r)
k

tk

k!
dt.

Since Z2,0(s, 1) = 2η(s), we conclude that

2η(s + r) =
1

Γ(s + r)

∞∫
0

ts−1
∞∑

k=0

A(r)
k

tk

k!
dt.

By the residue theorem, we find that

2η(s + r) =
1

Γ(s + r)

∞∫
0

t−n−1
∞∑

k=0

A(r)
k

tk

k!
dt =

(n − r)!
(−1)n−r

A(r)
n

n!
,

or equivalently,

η(−n + r) =
(−1)n−r

2
A(r)

n

(n)r
.

Let p be an odd prime andZp,Qp, and Cp denote the ring of p-adic integers, the field of p-adic numbers,
and the completion of an algebraic closure of Qp, respectively. We say that f : Zp → Cp is uniformly
differentiable function at a point a ∈ Zp if f (x)− f (y)

x−y have limit as (x, y) → (a, a), provided that x , y. The
p-adic functions with nice properties are powerful tools for studying many results of classical number
theory in a straightforward manner. They strength almost all the arithmetic results on the Bernoulli and
Euler numbers (see, for example, [6, Chapter 11], [17]). In particular, we have

Bn =

∫
Zp

anda,

where∫
Zp

f (x) dx = lim
N→∞

1
pN

pN
−1∑

x=0

f (x)
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is the Volkenborn integral ([17, p.264]).
There are different ways to describe Euler numbers in the p-adic context (e.g. [11], [12], [13], [18], and

[22], and references therein). In particular, Osipov [13] modified the Volkenborn integral as∫
Zp

f (a)dµε (a) = lim
N→∞

pmN
−1∑

a=0

f (a)εa,

where f : Zp → Cp is uniformly differentiable function, εk = 1, ε , 1, gcd(k, p) = 1 and k|(pm
− 1). If k = 2

and m = 1, we have∫
Zp

f (a)dµ
−1 (a) = lim

N→∞

pN
−1∑

a=0

(−1)a f (a). (5.1)

We note that equation (5.1) is defined and studied in detail by Kim [12] within the concept of symmetric
p-adic invariant integrals on Zp. Since these integrals are related to the Euler polynomials, we prefer them
here to investigate the Euler-Genocchi polynomials over the set of p-adic numbers.

Let X be an arbitrary subset of Cp closed under the shift x → x + a for a ∈ Zp and x ∈ X. Suppose
f : X → Cp is uniformly differentiable on X, so that for fixed x ∈ X, the function a → f (x + a) is uniformly
differentiable on Zp. Using (5.1), we obtain that∫

Zp

eatdµ
−1 (a) +

∫
Zp

e(a−1)tdµ
−1 (a) = (1 + e−t) lim

N→∞

pN
−1∑

a=0

(−1)a eat

= (1 + e−t) lim
N→∞

1 + (−1)pN
−1epNt

1 + et = e−t lim
N→∞

(1 + epNt) = 2e−t.

Thus,

(1 + e−t)
∫
Zp

eatdµ
−1 (a) = 2e−t

yields to∫
Zp

eatdµ
−1 (a) =

2
et + 1

.

By (1.1), we immediately deduce that

trext
∫
Zp

eatdµ
−1 (a) =

∞∑
n=0

A(r)
n

tn

n!
, (5.2)

where t ∈ Cp with |t|p < p−
1

p−1 . Therefore, by (5.2), we have∫
Zp

(a + x)n−r dµ
−1 (a) =

A(r)
n (x)
(n)r

,

and particularly∫
Zp

an−rdµ
−1 (a) =

A(r)
n

(n)r
.



P. Aytaç / Filomat 39:35 (2025), 12647–12660 12659

Given a ∈ Zp, p ∤ a and p > 2, there is a (p − 1)th root of unity ω(a) ∈ Zp such that

a ≡ ω(a)(modZp).

Let ⟨a⟩ = ω−1(a)a, so ⟨a⟩ ≡ 1(mod p). The projection ⟨a⟩ can be extended to a ∈ C×p ([20]), where C×p is the
group of units in Cp, so that for a ∈ C×p and s ∈ Cp, we have

⟨a⟩s =
∞∑

n=0

(
s
n

)
(⟨a⟩ − 1)n,

provided that the series converges.
For x ∈ Cp −Zp, we define the p-adic Hurwitz type zeta function ηp (s, x) by

ηp (s, x) =
∫
Zp

⟨a + x⟩1−s dµ
−1 (a) .

Since |x|p > 1 and |a|p ≤ 1, we have ω(a + x) = ω(x), and hence for s = 1 − n + r, we obtain that

ηp (1 − n + r, x) =
∫
Zp

⟨a + x⟩n−r dµ
−1 (a) = ω−n+r(x)

A(r)
n (x)
(n)r

.

Therefore, the function ηp (s, x) can be regarded as the p-adic interpolating function for the Euler-Genocchi

polynomial A(r)
n (x).

6. Conclusion

In this study, some properties provided by the Eulerâe“Genocchi numbers and polynomials have been
addressed. Specifically, the arithmetic properties of Eulerâe“Genocchi numbers (divisibility properties and
analogues of the von Staudtâe“Clausen theorem provided by Bernoulli numbers, as well as Kummer’s
congruences) have been obtained. Integer values assumed by the Euler-Genocchi polynomials by means of
the classical Almkvist-Meurman theorem are examined as well. The relationships between zeta functions
and p-adic integral representations of these polynomials and numbers have also been studied.

Altogether, these results not only extend known properties of the classical Euler and Genocchi polyno-
mials and numbers but also pave the way for further exploration in combinatorics, special functions, and
arithmetic analysis within the framework of the Appell polynomials.

Future research may focus on the unified extensions of these numbers and polynomials [2, 14–16].
In particular, it would be interesting to examine the analogues of the von Staudt-Clausen theorem and
Kummer-type congruences for the unified extensions.
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