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Abstract. Functional equations are widely used in various fields for solving practical examples, exploring
theoretical ideas, and modeling complex relationships and the study of their stability is essential for
understanding how small changes in the inputs or functional form affect the solutions. This has both
theoretical significances and practical applications across mathematics, science, and engineering. For this
purpose, in this paper, we explore the Ulam-Hyers stability of
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a generalized 4-dimensional AQCQ functional equation in fuzzy normed spaces using two different meth-
ods.

1. Introduction

During the past eight decades, many researchers have extensively studied the solutions of functional
equations and their stability results using several techniques, one can refer to [2, 19, 20, 46, 49, 50, 53]. The
generalized terminology Ulam-Hyers stability comes from these backgrounds. These terminologies are
also applied to the case of other functional equations.

C. Park et al. [36] proved the generalized Hyers-Ulam stability of the following additive-quadratic-
cubic-quartic functional equation briefly, AQCQ-functional equation
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in Banach Spaces. Later, Hyers-Ulam stability results have been established of (1) in various normed spaces
[17, 37–41].

In [51], Ravi et al. introduced a general mixed-type AQCQ- functional equation
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which is a generalized form of the AQCQ-functional equation (1) and obtained its general solution and
generalized Hyers-Ulam stability for a fixed integer a with a , 0,±1 in Banach spaces.

Various other types of functional equations including AQCQ functional equations were introduced and
investigated the stability problems in several spaces including fuzzy normed spaces have been investigated
in [1, 3–9, 12–14, 16, 21, 23, 33, 34, 42–45, 47, 48, 52] and references mentioned there in.

1.1. Basics of Fuzzy Banach Space
A.K. Katsaras [24] defined a fuzzy norm on a vector space to construct a fuzzy vector topological

structure on the space. Some mathematicians have defined fuzzy norms on a vector space from various
points of view [18, 26, 54]. In particular, T. Bag and S.K. Samanta [10], following S.C. Cheng and J.N.
Mordeson [15], gave an idea of the fuzzy norm in such a manner that the corresponding fuzzy metric is of
Kramosil and Michalek type [25]. They established a decomposition theorem of a fuzzy norm into a family
of crisp norms and investigated some properties of fuzzy normed spaces [11]. We use the definition of
fuzzy normed spaces given in [29–32].

Definition 1.1. Let X be a real linear space. A function E : X ×R→ [0, 1] is said to be a fuzzy norm on X if for all
x, y ∈ X and all s, t ∈ R,
(FBS1) E(x, c) = 0 for c ≤ 0;
(FBS2) x = 0 if and only if E(x, c) = 1 for all c > 0;
(FBS3) E(cx, t) = E

(
x, t
|c|

)
if c , 0;

(FBS4) E(x + y, s + t) ≥ min{E(x, s),E(y, t)};
(FBS5) E(x, ·) is a non-decreasing function on R and lim

t→∞
E(x, t) = 1;

(FBS6) for x , 0,E(x, ·) is (upper semi) continuous on R.
The pair (X,E) is called a fuzzy normed linear space.

Example 1.2. Let (X, || · ||) be a normed linear space. Then

E (x, t) =


t

t + ∥x∥
, t > 0, x ∈ X,

0, t ≤ 0, x ∈ X

is a fuzzy norm on X.

Definition 1.3. Let (X,E) be a fuzzy normed linear space. Let xn be a sequence in X. Then xn is said to be convergent
if there exists x ∈ X such that lim

n→∞
E(xn − x, t) = 1 for all t > 0. In that case, x is called the limit of the sequence xn

and we denote it by E
(

lim
n→∞

xn − x, t
)
= 1.

Definition 1.4. A sequence xn in X is called Cauchy if for each ϵ > 0 and each t > 0 there exists n0 such that for all
n ≥ n0 and all p > 0, we have E(xn+p − xn, t) > 1 − ϵ.

Definition 1.5. Every convergent sequence in a fuzzy normed space is Cauchy. If each Cauchy sequence is convergent,
then the fuzzy norm is said to be complete and the fuzzy normed space is called a fuzzy Banach space.

Now, we will recall the fundamental results in fixed point theory.
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Theorem 1.6. [27](The alternative of fixed point) Suppose that for a complete generalized metric space (X, d) and a
strictly contractive mapping T : X→ X with Lipschitz constant L. Then, for each given element x ∈ X, either
(F1) d(Tnx,Tn+1x) = ∞, ∀ n ≥ 0,
or
(F2) there exists a natural number n0 such that:
(FP1) d(Tnx,Tn+1x) < ∞ for all n ≥ n0 ;
(FP2)The sequence (Tnx) is convergent to a fixed point y∗ of T;
(FP3) y∗ is the unique fixed point of T in the set Y = {y ∈ X : d(Tn0 x, y) < ∞};

(FP4) d(y∗, y) ≤
1

1 − L
d(y,Ty) for all y ∈ Y.

In this paper, we explore the Ulam-Hyers stability of a generalized 4-dimensional AQCQ functional
equation

Λ (z1 + z2 + λ (z3 + z4)) + Λ (z1 + z2 − λ (z3 + z4))

= λ2
{
Λ (z1 + z2 + z3 + z4) + Λ (z1 + z2 − z3 − z4)

}
+ 2

(
1 − λ2

)
Λ (z1 + z2)

+

(
λ4
− λ2

)
12

{
Λ (2 (z3 + z4)) + Λ (−2 (z3 + z4)) − 4 (Λ (z3 + z4) + Λ (−z3 − z4))

}
, (3)

for all positive integers λwith λ ≥ 2 in fuzzy Banach Space using two different methods. It is easy to verify
that (2) and (3) are equivalent to each other.

To provide stability analysis, assume that (S1,E), (S2,E′) and (S3,E′) are linear space, fuzzy Banach
space and fuzzy normed space, respectively. For, notation we may assume a mapping Λaqcq : S1 → S2 by

Λaqcq (z1, z2, z3, z4)
= Λ (z1 + z2 + λ (z3 + z4)) + Λ (z1 + z2 − λ (z3 + z4))

− λ2
{
Λ (z1 + z2 + z3 + z4) + Λ (z1 + z2 − z3 − z4)

}
− 2

(
1 − λ2

)
Λ (z1)

−

(
λ4
− λ2

)
12

{
Λ (2 (z3 + z4)) + Λ (−2 (z3 + z4)) − 4 (Λ (z3 + z4) + Λ (−z3 − z4))

}
.

Also, we take non zero substitutions for proving the results.

2. Fuzzy Stability Results: Λ is Even

The generalized Ulam-Hyers stability of 4-dimensional AQCQ functional equation (3) when Λ is even
is analyzed in this section.

2.1. Quadratic Case Fuzzy Stability Result
Theorem 2.1. An even function Λaqcq : S1 → S2 satisfies the functional inequality

E
(
Λaqcq (z1, z2, z3, z4) ,Θ

)
≥ E′ (Φ (z1, z2, z3, z4) ,Θ) , (4)

where Φ : S4
1 → S3 be a mapping satisfying

E′ (Λ (2πϖz1, 2πϖz2, 2πϖz3, 2πϖz4) ,Θ)
≥ E′ (θπϖΦ (z1, z2, z3, z4) ,Θ) ; π ∈ {−1, 1} (5)

where θ > 0 with 0 <
(
θ
4

)π
< 1 and the condition

lim
ϖ→∞

E′ (Φ (2πϖz1, 2πϖz2, 2πϖz3, 2πϖz4) , 4πϖΘ) = 1, (6)
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for all z1, z2, z3, z4 ∈ S1 and all Θ > 0 . Then there exists a unique quadratic mapping ΩQ2 (z) : S1 → S2 such that

E
(
Λ (2z) − 16Λ (z) −ΩQ2 (z) ,Θ

)
≥ E′

(
ΦEVEN(z, z, z, z),

(
λ4
− λ2

19 + 12λ2

)
|4 − θ|Θ

)
, (7)

where
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{
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, (8)

and the mapping

E
(

lim
ϖ→∞

1
4πϖ

{
Λ

(
2(ϖ+1)πz

)
− 16Λ (2πϖz)

}
−ΩQ2 (z) ,Θ

)
= 1, (9)

for all z ∈ S1 and all Θ > 0.

Proof. Setting (z1, z2, z3, z4) by
( z

2
,
−z
2
,

z
2
,

z
2

)
in (4) and using evenness of Λ, one can have

E

2Λ (λz) − 2λ2Λ(z) −

(
λ4
− λ2

)
12

(2Λ (2z) − 8Λ(z)) ,Θ
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(
Φ
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2
,
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2
,

z
2
,

z
2

)
,Θ

)
, (10)

and with the help of (FBS3), we have

E
(
24(1 − λ2)Λ (λz) − 24(1 − λ2)λ2Λ(z) − (1 − λ2)

(
λ4
− λ2

)
(2Λ(2z) − 8Λ(z)) ,

12(1 − λ2)Θ
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(
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,
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,
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,Θ
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, (11)

for all z ∈ S1 and all Θ > 0. Replacing z by 2z in (10), one can arrive

E

2Λ (2λz) − 2λ2Λ(2z) −

(
λ4
− λ2

)
12

(2Λ(4z) − 8Λ(2z)) ,Θ

 ≥ E′ (Φ (z,−z, z, z) ,Θ) , (12)

and with the help of (FBS3), we arrive

E

12Λ (2λz) − 12λ2Λ(2z) −

(
λ4
− λ2

)
2

(2Λ(4z) − 8Λ(2z)) , 6Θ

 ≥ E′ (Φ (z,−z, z, z) ,Θ) , (13)

for all z ∈ S1 and all Θ > 0.

Again setting (z1, z2, z3, z4) by
( z

2
,

z
2
,

z
2
,

z
2

)
in (4) and using evenness of Λ, one can obtain

E
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)
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−

(
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(2Λ (2z) − 8Λ (z)) ,Θ
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Φ
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2
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z
2
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z
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z
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)
,Θ

)
, (14)
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and with the help of (FBS3), we obtain

E
(
12λ2Λ ((λ + 1) z) + 12λ2Λ ((λ − 1) z) − 12λ4Λ (2z) − 24λ2

(
1 − λ2

)
Λ(z)

− λ2
(
λ4
− λ2

)
(2Λ (2z) − 8Λ (z)) , 12λ2Θ

)
≥ E′

(
Φ

( z
2
,

z
2
,

z
2
,

z
2

)
,Θ

)
, (15)

for all z ∈ S1 and all Θ > 0.

Further setting (z1, z2, z3, z4) by
(
λz
2
,
λz
2
,

z
2
,

z
2

)
in (4) and using evenness of Λ, one can get

E
(
Λ (2λz) − λ2 (Λ ((λ + 1) z) + Λ ((λ − 1) z)) − 2

(
1 − λ2

)
Λ (λz)

−

(
λ4
− λ2

)
12

(2Λ (2z) − 8(Λz)) ,Θ
)
≥ E′

(
Φ

(
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2
,
λz
2
,

z
2
,

z
2

)
,Θ

)
, (16)

and with the help of (FBS3), we get

E
(
12Λ (2λz) − 12λ2 (Λ ((λ + 1) z) + Λ ((λ − 1) z)) − 24

(
1 − λ2

)
Λ (λz)

−

(
λ4
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)
(2Λ (2z) − 8(Λz)) , 12Θ
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≥ E′

(
Φ

(
λz
2
,
λz
2
,

z
2
,

z
2

)
,Θ

)
, (17)

for all z ∈ S1 and all Θ > 0. With the help of (FBS4) and it follows from (11), (13), (15), (17), we achieve

E
({
Λ(4z) − 20Λ(2z) + 64Λ(z)

}
,

(
19 + 12λ2

λ4 − λ2

)
Θ

)
≥ min

{
E
(
24(1 − λ2) Λ(λz) − 24(1 − λ2)λ2Λ(z)

−

(
1 − λ2

) (
λ4
− λ2

) {
2Λ(2z) − 8Λ(z)

}
, 12(1 − λ2) Θ

)
,

E
(
12Λ(2λz) − 12λ2Λ (2z) −

(
λ4
− λ2

) {
Λ(4z) − 4Λ(2z)

}
, 6 Θ

)
,

E
(
12λ2Λ ((λ + 1) z) + 12λ2Λ ((λ − 1) z) − 12λ4Λ (2z) − 24λ2

(
1 − λ2

)
Λ(z)

− λ2
(
λ4
− λ2

)
{2Λ (2z) − 8Λ (z)} , 12λ2 Θ

)
,

E
(
12Λ(2λz) − 12λ2

{
Λ ((λ + 1) z) + Λ ((λ − 1) z)

}
− 24

(
1 − λ2

)
Λ(λz)

−

(
λ4
− λ2

) {
2Λ(2z) − 8(Λz)

}
, 12 Θ

)}
≥ min

{
E′

(
Φ

( z
2
,−

z
2
,

z
2
,

z
2

)
,Θ

)
,E′ (Φ (z,−z, z, z) ,Θ ) ,E′

(
Φ

( z
2
,

z
2
,

z
2
,

z
2

)
,Θ

)
,

E′
(
Φ

(
λz
2
,
λz
2
,

z
2
,

z
2

)
,Θ

)}
= E′ (ΦEVEN (z, z, z, z) ,Θ ) , (18)

for all z ∈ S1 and all Θ > 0. Define a function ΛQ2 : S1 → S2 by

ΛQ2 (z) = Λ(2z) − 16Λ(z), (19)

for all z ∈ S1. It follows from (18) and (19), we reach

E
(
ΛQ2(2z) − 4ΛQ2(z),

(
19 + 12λ2

λ4 − λ2

)
Θ

)
= E

({
Λ(4z) − 16Λ(2z)

}
− 4

{
Λ(2z) − 16Λ(z)

}
,

(
19 + 12λ2

λ4 − λ2

)
Θ

)
≥ E′ (ΦEVEN(z, z, z, z),Θ ) , (20)
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for all z ∈ S1 and all Θ > 0. With the help of (FBS3) and it follows from (20) that

E
(

1
4
ΛQ2(2z) −ΛQ2(z),

(
19 + 12λ2

λ4 − λ2

)
·

1
4
Θ

)
≥ E′ (ΦEVEN (z, z, z, z) ,Θ ) , (21)

for all z ∈ S1 and all Θ > 0. With the help of (FBS3) and (FBS4), changing z by 2ϖ z in (21) and again
changing Θ by θϖ Θ in the resulting inequality, we land

E
(

1
4ϖ+1ΛQ2

(
2ϖ+1z

)
−

1
4ϖ
ΛQ2 (2ϖz) ,

1
4
·

(
19 + 12λ2

λ4 − λ2

)
·

[
θ
4

]ϖ
Θ

)
≥ E′ (ΦEVEN (z, z, z, z) ,Θ) , (22)

for all z ∈ S1 and all Θ > 0. One can easy to verify from (22) that

E

ΛQ2(z) −
1

4ϖ
ΛQ2 (2ϖz) ,

1
4
·

(
19 + 12λ2

λ4 − λ2

)
·

ϖ∑
ρ=0

[
θ
4

]ρ
Θ


= E

 ϖ∑
ρ=0

{ 1
4ρ+1 ΛQ2

(
2ρ+1z

)
−

1
4ρ
ΛQ2 (2ρz)

}
,

1
4
·

(
19 + 12λ2

λ4 − λ2

)
·

ϖ∑
ρ=0

[
θ
4

]ρ
Θ


≥

ϖ⋃
ρ=0

min
{

E
({ 1

4ρ+1 ΛQ2

(
2ρ+1z

)
−

1
4ρ
ΛQ2 (2ρz)

}
,

1
4
·

(
19 + 12λ2

λ4 − λ2

)
·

[
θ
4

]ρ
Θ

)}

≥

ϖ⋃
ρ=0

min {E′ (ΦEVEN (z, z, z, z) ,Θ)} = E′ (ΦEVEN (z, z, z, z) ,Θ) , (23)

for all z ∈ S1 and all Θ > 0. With the help of (FBS3), changing z by 2w z in (23) and again changing Θ by
θw Θ in the resulting inequality, we obtain

E

 1
4wΛQ2 (2w z) −

1
4ϖ+w ΛQ2 (2ϖ 2wz) ,

1
4
·

(
19 + 12λ2

λ4 − λ2

)
·

ϖ∑
ρ=0

[
θ
4

]ρ+w

Θ


≥ E′ (ΦEVEN(z, z, z, z),Θ) , (24)

for all z ∈ S1 and all Θ > 0. With the help of (FBS3), it follows from (24) that

E
( 1

4wΛQ2 (2w z) −
1

4ϖ+w ΛQ2 (2ϖ 2wz) , Θ
)

≥ E′

ΦEVEN (z, z, z, z) ,
Θ

1
4 ·

(
19+12λ2

λ4−λ2

)
·

ϖ∑
ρ=0

[
θ
4

]ρ+w

 , (25)

for all z ∈ S1 and all Θ > 0. By data and the Cauchy criterion for convergence, (FBS5), implies that the
sequence

{
1

4ϖ ΛQ2 (2ϖz)
}

is a Cauchy sequence in fuzzy Banach space (S2,E′) and this sequence converges
to ΩQ2(z) . So, by notation, we write

E
(
ΩQ2 (z) − lim

ϖ→∞

1
4ϖ
ΛQ2 (2ϖz) ,Θ

)
= E

(
lim
ϖ→∞

ΩQ2 (z) −
1

4ϖ
{
Λ

(
2ϖ+1z

)
(2z) − 16Λ (2ϖz)

}
,Θ

)
= 1, (26)
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for all z ∈ S1 and all Θ > 0. Taking w = 0 and ϖ tends to infinity in (25), we arrive

E
(
ΛQ2(z) −ΩQ2(z), Θ

)
≥ E′

ΦEVEN (z, z, z, z) ,

(
λ4
− λ2

)
(4 − θ) Θ

(19 + 12λ2)

 , (27)

for all z ∈ S1 and all Θ > 0. Now, we have to prove the existence of ΩQ2(z) satisfies (3), substituting
(z1, z2, z3, z4) by (2ϖz1, 2ϖz2, 2ϖz3, 2ϖz4) in (4) and using (FBS3) , we get

E
( 1

4ϖ
Λaqcq (2ϖz1, 2ϖz2, 2ϖz3, 2ϖz4) ,Θ

)
≥ E′ (Φ (2ϖz1, 2ϖz2, 2ϖz3, 2ϖz4) , 4ϖ Θ) , (28)

for all z ∈ S1 and all Θ > 0. Now, from (6), (26), (27), (28) and taking ϖ tends to infinity, we arrive

E
(
ΩQ2 (z1 + z2 + λ (z3 + z4)) +ΩQ2 (z1 + z2 − λ (z3 + z4))

− λ2
{
ΩQ2 (z1 + z2 + z3 + z4) +ΩQ2 (z1 + z2 − z3 − z4)

}
− 2

(
1 − λ2

)
ΩQ2 (z1)

−

(
λ4
− λ2

)
12

{
ΩQ2 (2 (z3 + z4)) +ΩQ2 (−2 (z3 + z4))

− 4
{
ΩQ2 (z3 + z4) +ΩQ2 (−z3 − z4)

}})
≥ min

{
E
(
ΩQ2 (z1 + z2 + λ(z3 + z4)) −

1
4ϖ
Λ (2ϖ (z1 + z2 + λ(z3 + z4)))

)
,

E
(
ΩQ2 (z1 + z2 − λ(z3 + z4)) −

1
4ϖ
Λ (2ϖ (z1 + z2 − λ(z3 + z4)))

)
,

E
(
− λ2

{
ΩQ2 (z1 + z2 + z3 + z4) +ΩQ2 (z1 + z2 − z3 − z4)

}
+
λ2

4ϖ
{
Λ (2ϖ (z1 + z2 + z3 + z4)) + Λ (2ϖ (z1 + z2 − z3 − z4))

} )
,

E

−2
(
1 − λ2

)
ΩQ2 (z1) +

2
(
1 − λ2

)
4ϖ

Λ (2ϖ z1)

 ,
E
(
−

(
λ4
− λ2

)
12

{
ΩQ2 (2 (z3 + z4)) +ΩQ2 (−2 (z3 + z4))

− 4
{
ΩQ2 (z3 + z4) +ΩQ2 (−z3 − z4)

} }
+

(
λ4
− λ2

)
12 4ϖ

{
Λ (2 2ϖ (z3 + z4)) + Λ (−2 2ϖ (z3 + z4))

− 4
{
Λ (2ϖ (z3 + z4)) + Λ (2ϖ (−z3 − z4))

}})
,

E
( 1

4ϖ
Λ (2ϖ (z1 + z2 + λ(z3 + z4))) +

1
4ϖ
Λ (2ϖ (z1 + z2 − λ(z3 + z4)))

+
λ2

4ϖ
{
Λ (2ϖ (z1 + z2 + z3 + z4)) + Λ (2ϖ (z1 + z2 − z3 − z4))

}
+

2
(
1 − λ2

)
4ϖ

Λ (2ϖ z1)
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+

(
λ4
− λ2

)
12 4ϖ

{
Λ (2 2ϖ (z3 + z4)) + Λ (−2 2ϖ (z3 + z4))

− 4
{
Λ (2ϖ (z3 + z4)) + Λ (2ϖ (−z3 − z4))

}})}
≥ min

{
1, 1, 1, 1, 1,E′

(
Φ
(
2ϖz1, 2ϖz2, 2ϖz3, 2ϖz4

)
, 4ϖ Θ

)}
= min {1, 1, 1, 1, 1, 1}
= 1, (29)

for all z1, z2, z3, z4 ∈ S1 and all Θ > 0 . Using (FBS2) in the above inequality, which gives the existence of
ΩQ2 (z) satisfies (3). It is easy to see that the existence of ΩQ2 (z) is unique. Indeed, from (FBS3) and taking
ϖ tends to infinity and using (FBS5), we obtain

E
(
ΩQ2 (z) −ΩQ

Q2 (z) , 2 Θ
)

= E
( 1

4ϖ
{
ΩQ2 (2ϖz) −Λ (2ϖz) + Λ (2ϖz) −ΩQ

Q2 (2ϖz)
}
, 2 Θ

)
≥ min

{
E
(
ΩQ2 (2ϖz) −Λ (2ϖz) , 4ϖ Θ

)
,E

(
Λ (2ϖz) −ΩQ

Q2 (2ϖz) , 4ϖ Θ
)}

≥ min

E′
ΦEVEN (2ϖz, 2ϖz, 2ϖz, 2ϖz) ,

(
λ4
− λ2

)
(4 − θ) 4ϖ Θ

(19 + 12λ2)

 ,
E′

ΦEVEN (2ϖz, 2ϖz, 2ϖz, 2ϖz) ,

(
λ4
− λ2

)
(4 − θ) 4ϖ Θ

(19 + 12λ2)




= E′
ΦEVEN (2ϖz, 2ϖz, 2ϖz, 2ϖz) ,

(
λ4
− λ2

)
(4 − θ) 4ϖ Θ

(19 + 12λ2)


= E′

ΦEVEN (z, z, z, z) ,

(
λ4
− λ2

)
(4 − θ) 4ϖ Θ

θϖ (19 + 12λ2)


= 1, (30)

for all z ∈ S1 and all Θ > 0. By (FBS2) and (30), we see ΩQ2(z) is unique for all z ∈ S1 and all Θ > 0 . Thus
the theorem holds for π = 1.

On the other hand, changing z by
z
2

in (20) and using (5), (FBS3), we achieve

E
(
ΛQ2 (z) − 4ΛQ2

( z
2

)
,

(
19 + 12λ2

λ4 − λ2

)
Θ

)
≥ E′

(
ΦEVEN

( z
2
,

z
2
,

z
2
,

z
2

)
,Θ

)
= E′ (ΦEVEN(z, z, z, z), θ Θ ) , (31)

for all z ∈ S1 and allΘ > 0. With the help of (FBS3) and (FBS4), changing z by
z

2ϖ
in (31) and again changing

Θ by
Θ

θϖ
in the resulting inequality, we land

E
(
4ϖΛQ2

( z
2ϖ

)
− 4ϖ+1ΛQ2

( z
2ϖ+1

)
,

(
19 + 12λ2

λ4 − λ2

) [ 4
θ

]ϖ
Θ

)
≥ E′ (ΦEVEN (z, z, z, z) ,Θ) , (32)

for all z ∈ S1 and all Θ > 0. It follows from the above inequality that

E
(
4ϖΛQ2

( z
2ϖ

)
− 4ϖ+1ΛQ2

( z
2ϖ+1

)
,Θ

)
≥ E′

ΦEVEN (z, z, z, z) ,
Θ(

19+12λ2

λ4−λ2

) [
4
θ

]ϖ
 , (33)
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for all z ∈ S1 and all Θ > 0. The rest of the proof is similar to that of the previous case. Hence the proof is
complete.

Corollary 2.2. An even function Λaqcq : S1 → S2 satisfies the functional inequality

E
(
Λaqcq (z1, z2, z3, z4) ,Θ

)
≥



E′ (∆,Θ) ,

E′
(
∆

4∑
τ=1
|zτ|Ψ ,Θ

)
,

E′
(
∆

4∏
τ=1
|zτ|Ψ ,Θ

)
,

E′
(
∆

{
4∑
τ=1
|zτ|4Ψ +

4∏
τ=1
|zτ|Ψ

}
,Θ

)
,

(34)

for all z1, z2, z3, z4 ∈ S1 and all Θ > 0 with ∆ a positive constant. Then there exists a unique quadratic mapping
ΩQ2 (z) : S1 → S2 such that

E
(
Λ (2z) − 16Λ (z) −ΩQ2 (z) ,Θ

)

≥



E′
(
∆,

(
λ4
− λ2

19 + 12λ2

)
|3|Θ

)
;

E′
({

6∆ + 8 ∆ 2Ψ + 2 ∆ λΨ
} ∣∣∣∣ z2 ∣∣∣∣Ψ , 4 (

λ4
− λ2

19 + 12λ2

) ∣∣∣4 − 2Ψ
∣∣∣Θ)

;Ψ , 2

E′
({
∆ + 2 ∆ 24 Ψ + ∆ λ4 Ψ

} ∣∣∣∣ z2 ∣∣∣∣4 Ψ , 4 (
λ4
− λ2

19 + 12λ2

) ∣∣∣4 − 24Ψ
∣∣∣ Θ)

;Ψ , 1
2

E′
({

7∆ + 10 ∆ 24 Ψ + 3 ∆ λ4 Ψ
} ∣∣∣∣ z2 ∣∣∣∣4 Ψ , 4 (

λ4
− λ2

19 + 12λ2

) ∣∣∣4 − 24Ψ
∣∣∣ Θ)

;Ψ , 1
2

(35)

for all z ∈ S1 and all Θ > 0.

2.2. Quartic Case Fuzzy Stability Result

Theorem 2.3. An even function Λaqcq : S1 → S2 satisfies the functional inequality (4) where Φ : S4
1 → S3 be a

mapping satisfying (5) where θ > 0 with 0 <
(
θ
16

)π
< 1 and the condition

lim
ϖ→∞

E′ (Φ (2πϖ z1, 2πϖ z2, 2πϖ z3, 2πϖ z4) , 16πϖ Θ ) = 1, (36)

for all z1, z2, z3, z4 ∈ S1 and all Θ > 0 . Then there exists a unique quartic mapping ΩQ4 (z) : S1 → S2 such that

E
(
Λ (2z) − 4Λ (z) −ΩQ4 (z) ,Θ

)
≥ E′

(
ΦEVEN(z, z, z, z),

(
λ4
− λ2

19 + 12λ2

)
|16 − θ| Θ

)
, (37)

where E′ (ΦEVEN(z, z, z, z),Θ ) is given in (8) and the mapping

E
(

lim
ϖ→∞

1
16π ϖ

{
Λ

(
2(ϖ+1) πz

)
− 4Λ (2π ϖz)

}
−ΩQ4 (z) ,Θ

)
= 1, (38)

for all z ∈ S1 and all Θ > 0.

Proof. Now, Define a function ΛQ4 : S1 → S2 by

ΛQ4(z) = Λ(2z) − 4Λ(z), (39)
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for all z ∈ S1. It follows from (18) and (39), we reach

E
(
ΛQ4(2z) − 16ΛQ4(z),

(
19 + 12λ2

λ4 − λ2

)
Θ

)
= E

({
Λ(4z) − 4Λ(2z)

}
− 16

{
Λ(2z) − 4Λ(z)

}
,

(
19 + 12λ2

λ4 − λ2

)
Θ

)
≥ E′ (ΦEVEN(z, z, z, z),Θ ) , (40)

for all z ∈ S1 and all Θ > 0. With the help of (FBS3) and it follows from (40) that

E
(

1
16
ΛQ4

(
2z

)
−ΛQ4

(
z
)
,

(
19 + 12λ2

λ4 − λ2

)
·

1
16
Θ

)
≥ E′

(
ΦEVEN

(
z, z, z, z

)
,Θ

)
, (41)

for all z ∈ S1 and all Θ > 0. The rest of the proof is similar to that of Theorem 2.1. Hence the proof is
complete.

Corollary 2.4. An even function Λaqcq : S1 → S2 satisfies the functional inequality (34) for all z1, z2, z3, z4 ∈ S1
and all Θ > 0 with ∆ a positive constant. Then there exists a unique quartic mapping ΩQ4 (z) : S1 → S2 such that

E
(
Λ (2z) − 4Λ (z) −ΩQ4 (z) ,Θ

)

≥



E′
(
∆,

(
λ4
− λ2

19 + 12λ2

)
|15| Θ

)
;

E′
({

6∆ + 8 ∆ 2Ψ + 2 ∆ λΨ
} ∣∣∣∣ z2 ∣∣∣∣Ψ , 4 (

λ4
− λ2

19 + 12λ2

) ∣∣∣16 − 2Ψ
∣∣∣ Θ)

;Ψ , 4

E′
({
∆ + 2 ∆ 24Ψ + ∆ λ4 Ψ

} ∣∣∣∣ z2 ∣∣∣∣4Ψ , 4 (
λ4
− λ2

19 + 12λ2

) ∣∣∣16 − 24Ψ
∣∣∣ Θ)

;Ψ , 1

E′
({

7∆ + 10 ∆ 24Ψ + 3 ∆ λ4 Ψ
} ∣∣∣∣ z2 ∣∣∣∣4Ψ , 4 (

λ4
− λ2

19 + 12λ2

) ∣∣∣16 − 24Ψ
∣∣∣ Θ)

;Ψ , 1

(42)

for all z ∈ S1 and all Θ > 0.

2.3. Quadratic-Quartic Case Fuzzy Stability Result
Theorem 2.5. An even function Λaqcq : S1 → S2 satisfies the functional inequality (4) where Φ : S4

1 → S3 be

a mapping satisfying (5) where θ > 0 with 0 <
(
θ
4

)π
< 1, 0 <

(
θ
16

)π
< 1 and the conditions (6), (36) for all

z1, z2, z3, z4 ∈ S1 and all Θ > 0. Then there exists a unique quadratic mapping ΩQ2 (z) : S1 → S2 and a unique
quartic mapping ΩQ4 (z) : S1 → S2 such that

E
(
Λ (z) −ΩQ2 (z) −ΩQ4 (z) ,Θ

)
≥ E′

(
ΦEVEN(z, z, z, z), 3

(
λ4
− λ2

19 + 12λ2

) {
|4 − θ| + |16 − θ|

}
Θ

)
, (43)

where E′ (ΦEVEN(z, z, z, z),Θ ), ΩQ2 (z) and ΩQ4 (z) are given in (8), (9) and (38), respectively for all z ∈ S1 and all
Θ > 0.

Proof. By Theorem 2.1, there exists a unique quadratic mapping Ω2
Q2 (z) . : S1 → S2 such that

E
(
Λ (2z) − 16Λ (z) −Ω2

Q2 (z) ,Θ
)
≥ E′

(
ΦEVEN(z, z, z, z),

(
λ4
− λ2

19 + 12λ2

)
|4 − θ|Θ

)
, (44)

for all z ∈ S1 and all Θ > 0.
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Also, by Theorem 2.3, there exists a unique quartic mapping Ω4
Q4 (z) : S1 → S2 such that

E
(
Λ (2z) − 4Λ (z) −Ω4

Q4 (z) ,Θ
)
≥ E′

(
ΦEVEN(z, z, z, z),

(
λ4
− λ2

19 + 12λ2

)
|16 − θ|Θ

)
, (45)

for all z ∈ S1 and all Θ > 0. Now,

E
(
12Λ (z) +Ω2

Q2 (z) −Ω4
Q4 (z) , 2Θ

)
= E

(
Λ (2z) − 4Λ (z) −Ω4

Q4 (z) −Λ (2z) + 16Λ (z) +Ω2
Q2 (z) , 2Θ

)
≥ min

{
E
(
Λ (2z) − 4Λ (z) −Ω4

Q4 (z) ,Θ
)
,E

(
Λ (2z) − 16Λ (z) −Ω2

Q2 (z) ,Θ
) }

= E′
(
2 ΦEVEN(z, z, z, z),

(
λ4
− λ2

19 + 12λ2

) {
|4 − θ| + |16 − θ|

}
Θ

)
, (46)

for all z ∈ S1 and all Θ > 0. It follows from (46) that

E
(
Λ (z) +

1
12
Ω2

Q2 (z) −
1
12
Ω4

Q4 (z) ,Θ
)

≥ E′
(
2ΦEVEN(z, z, z, z), 6

(
λ4
− λ2

19 + 12λ2

) {
|4 − θ| + |16 − θ|

}
Θ

)
, (47)

for all z ∈ S1 and all Θ > 0. So, if we take

ΩQ2 (z) = −
1
12
Ω2

Q2 (z) , and ΩQ4 (z) =
1

12
Ω4

Q4 (z) ,

we arrived at our desired result. Hence the proof is complete.

Corollary 2.6. An even function Λaqcq : S1 → S2 satisfies the functional inequality (34) for all z1, z2, z3, z4 ∈ S1
and all Θ > 0 with ∆ a positive constant. Then there exists a unique quadratic mapping ΩQ2 (z) : S1 → S2 and a
unique quartic mapping ΩQ4 (z) : S1 → S2 such that

E
(
Λ (z) −ΩQ2 (z) −ΩQ4 (z) ,Θ

)

≥



E′
(
∆, 3

(
λ4
− λ2

19 + 12λ2

)
{|3| + |15|}Θ

)
;

E′
({

6∆ + 8 ∆ 2Ψ + 2 ∆ λΨ
} ∣∣∣∣ z2 ∣∣∣∣Ψ ,

3
(
λ4
− λ2

19 + 12λ2

) {∣∣∣4 − 2Ψ
∣∣∣ + ∣∣∣16 − 2Ψ

∣∣∣} Θ)
;Ψ , 2, 4

E′
({
∆ + 2 ∆ 24 Ψ + ∆ λ4 Ψ

} ∣∣∣∣ z2 ∣∣∣∣4 Ψ ,
3

(
λ4
− λ2

19 + 12λ2

) {∣∣∣4 − 24Ψ
∣∣∣ + ∣∣∣16 − 24Ψ

∣∣∣} Θ)
;Ψ , 1

2 , 1

E′
({

7∆ + 10 ∆ 24 Ψ + 3 ∆ λ4 Ψ
} ∣∣∣∣ z2 ∣∣∣∣4 Ψ ,

3
(
λ4
− λ2

19 + 12λ2

) {∣∣∣4 − 24Ψ
∣∣∣ + ∣∣∣16 − 24Ψ

∣∣∣} Θ)
;Ψ , 1

2 , 1

(48)

for all z ∈ S1 and all Θ > 0.

3. Fuzzy Stability Results: Λ is Odd

The generalized Ulam-Hyers stability of 4 D AQCQ functional equation (3) when Λ is odd is analyzed
in this section.
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3.1. Additive Case Fuzzy Stability Result
Theorem 3.1. An odd function Λaqcq : S1 → S2 satisfies the functional inequality

E
(
Λaqcq (z1, z2, z3, z4) ,Θ

)
≥ E′ (Φ (z1, z2, z3, z4) ,Θ) (49)

where Φ : S4
1 → S3 be a mapping satisfying

E′ (Λ (2π ϖ z1, 2π ϖ z2, 2π ϖ z3, 2π ϖ z4) ,Θ ) ≥ E′ (θπ ϖ Φ (z1, z2, z3, z4) ,Θ ) ;π ∈ {−1, 1} (50)

where θ > 0 with 0 <
(
θ
2

)π
< 1 and the condition

lim
ϖ→∞

E′ (Φ (2πϖ z1, 2πϖ z2, 2πϖ z3, 2πϖz4) , 2πϖ Θ ) = 1, (51)

for all z1, z2, z3, z4 ∈ S1 and all Θ > 0 . Then there exists a unique additive mapping ΩA1 (z) : S1 → S2 such that

E (Λ (2z) − 8Λ (z) −ΩA1 (z) ,Θ) ≥ E′
(
ΦODD

(
z, z, z, z

)
,

(
λ4
− λ2

16 − 3λ2

)
|2 − θ| Θ

)
, (52)

where

E′ (ΦODD(z, z, z, z),Θ)

≥ min
{
E′

(
Φ

( z
2
,

z
2
,

z
2
,

z
2

)
,Θ

)
,E′

(
Φ

( z
2
,

z
2
, z, z

)
,Θ

)
,E′

(
Φ

(
z, z,

z
2
,

z
2

)
,Θ

)
,

E′
(
Φ

(
(1 + λ)z

2
,

(1 + λ)z
2

,
z
2
,

z
2

)
,Θ

)
,E′

(
Φ

(
(1 − λ)z

2
,

(1 − λ)z
2

,
z
2
,

z
2

)
,Θ

)
E′

(
Φ

( z
2
,

z
2
,

z
2
,

z
2

)
,Θ

)
,E′ (Φ(z, z, z, z),Θ) ,

E′
(
Φ

( z
2
,

z
2
, z, z

)
,Θ

)
,E′

(
Φ

( z
2
,

z
2
,

3z
2
,

3z
2

)
,Θ

)
,

E′
(
Φ

(
(1 + 2λ)z

2
,

(1 + 2λ)z
2

,
z
2
,

z
2

)
,Θ

)
,E′

(
Φ

(
(1 − 2λ)z

2
,

(1 − 2λ)z
2

,
z
2
,

z
2

)
,Θ

)}
, (53)

and the mapping

E
(

lim
ϖ→∞

1
2π ϖ

{
Λ

(
2(ϖ+1) πz

)
− 8Λ (2π ϖz)

}
−ΩA1 (z) ,Θ

)
= 1, (54)

for all z ∈ S1 and all Θ > 0.

Proof. Setting (z1, z2, z3, z4) by
( z

2
,

z
2
,

z
2
,

z
2

)
in (49) and using oddness of Λ, one can have

E
(
Λ ((1 + λ) z) + Λ ((1 − λ) z) − λ2Λ(2z) − 2

(
1 − λ2

)
Λ(z),Θ

)
≥ E′

(
Φ

( z
2
,

z
2
,

z
2
,

z
2

)
,Θ

)
, (55)

and with the help of (FBS3), we have

E
(
2(1 − λ2)Λ ((1 + λ) z) + 2(1 − λ2)Λ ((1 − λ) z) − 2 λ2(1 − λ2) Λ (2z)

− 4
(
1 − λ2

)2
Λ (z) , 2(1 − λ2) Θ

)
≥ E′

(
Φ

( z
2
,

z
2
,

z
2
,

z
2

)
,Θ

)
, (56)
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for all z ∈ S1 and all Θ > 0.

Again setting (z1, z2, z3, z4) by
(
z, z,

z
2
,

z
2

)
in (49) and using oddness of Λ, one can obtain

E
(
Λ ((2 + λ) z) + Λ ((2 − λ) z) − λ2Λ (3z) − λ2Λ (z) − 2

(
1 − λ2

)
Λ (2z) ,Θ

)
≥ E′

(
Φ

(
z, z,

z
2
,

z
2

)
,Θ

)
, (57)

and with the help of (FBS3), we obtain

E
(
λ2Λ ((2 + λ) z) + λ2Λ ((2 − λ) z) − λ4Λ (3z) − λ4Λ (z) − 2λ2

(
1 − λ2

)
Λ (2z) , λ2 Θ

)
≥ E′

(
Φ

(
z, z,

z
2
,

z
2

)
,Θ

)
, (58)

for all z ∈ S1 and all Θ > 0.

Further setting (z1, z2, z3, z4) by
( z

2
,

z
2
, z, z

)
in (49) and using oddness of Λ, one can get

E
(
Λ ((1 + 2λ) z) + Λ ((1 − 2λ)) − λ2Λ (3z) + λ2Λ (z) − 2

(
1 − λ2

)
Λ (z) ,Θ

)
≥ E′

(
Φ

( z
2
,

z
2
, z, z

)
,Θ

)
, (59)

for all z ∈ S1 and all Θ > 0.

Once again setting (z1, z2, z3, z4) by
(

(1 + λ)z
2

,
(1 + λ)z

2
,

z
2
,

z
2

)
in (49) and using oddness of Λ, one can

arrive

E
(
Λ ((1 + 2λ)z) + Λ (z) − λ2Λ ((2 + λ)z) − λ2Λ (λz)

− 2
(
1 − λ2

)
Λ ((1 + λ)z) ,Θ

)
≥ E′

(
Φ

(
(1 + λ)z

2
,

(1 + λ)z
2

,
z
2
,

z
2

)
,Θ

)
, (60)

for all z ∈ S1 and all Θ > 0.

Finally setting (z1, z2, z3, z4) by
(

(1 − λ)z
2

,
(1 − λ)z

2
,

z
2
,

z
2

)
in (49) and using oddness of Λ, one can reach

E
(
Λ ((1 − 2λ)z) + Λ (z) − λ2Λ ((2 − λ)z) + λ2Λ (λz)

− 2
(
1 − λ2

)
Λ ((1 − λ)z) ,Θ

)
≥ E′

(
Φ

(
(1 − λ)z

2
,

(1 − λ)z
2

,
z
2
,

z
2

)
,Θ

)
, (61)

for all z ∈ S1 and all Θ > 0.
With the help of (FBS4) and it follows from (56), (58), (59), (60), (61), we achieve

E
((
λ4
− λ2

) {
Λ (3z) − 4 Λ (2z) + 5Λ (z)

}
,
(
5 − λ2

)
Θ
)

≥ min
{
E′

(
Φ

( z
2
,

z
2
,

z
2
,

z
2

)
,Θ

)
,E′

(
Φ

( z
2
,

z
2
, z, z

)
,Θ

)
,E′

(
Φ

(
z, z,

z
2
,

z
2

)
,Θ

)
,

E′
(
Φ

(
(1 + λ)z

2
,

(1 + λ)z
2

,
z
2
,

z
2

)
,Θ

)
,E′

(
Φ

(
(1 − λ)z

2
,

(1 − λ)z
2

,
z
2
,

z
2

)
,Θ

) }
, (62)

for all z ∈ S1 and all Θ > 0. Put z by 2z in (55) , we have

E
(
Λ (2 (1 + λ) z) + Λ (2 (1 − λ) z) − λ2 Λ (4z) − 2

(
1 − λ2

)
Λ (2z) ,Θ

)
≥ E′ (Φ(z, z, z, z),Θ) (63)
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and with the help of (FBS3), we have

E
(
λ2Λ (2 (1 + λ) z) + λ2 Λ (2 (1 − λ) z) − λ4 Λ (4z) − 2λ2

(
1 − λ2

)
Λ (2z) , λ2 Θ

)
≥ E′ (Φ(z, z, z, z),Θ) , (64)

for all z ∈ S1 and all Θ > 0. From (59) with the help of (FBS3), we obtain

E
(
2
(
1 − λ2

)
Λ ((1 + 2λ) z) + 2

(
1 − λ2

)
+ Λ ((1 − 2λ)) − 2λ2

(
1 − λ2

)
Λ (3z)

+ 2λ2
(
1 − λ2

)
Λ (z) − 4

(
1 − λ2

)2
Λ (z) , 2

(
1 − λ2

)
Θ

)
≥ E′

(
Φ

( z
2
,

z
2
, z, z

)
,Θ

)
, (65)

for all z ∈ S1 and all Θ > 0.

Again putting (z1, z2, z3, z4) by
( z

2
,

z
2
,

3z
2
,

3z
2

)
in (49) and using oddness of Λ, one can arrive

E
(
Λ ((1 + 3λ) z) + Λ ((1 − 3λ) z) − λ2Λ (4z) + λ2Λ (2z) − 2

(
1 − λ2

)
Λ (z) , Θ

)
≥ E′

(
Φ

( z
2
,

z
2
,

3z
2
,

3z
2

)
,Θ

)
, (66)

for all z ∈ S1 and all Θ > 0.

Once again putting (z1, z2, z3, z4) by
(

(1 + 2λ)z
2

,
(1 + 2λ)z

2
,

z
2
,

z
2

)
in (49) and using oddness of Λ, one can

arrive

E
(
Λ ((1 + 3λ)z) + Λ ((1 + λ)z) − λ2Λ (2(1 + λ)z) − λ2Λ (2λz) − 2

(
1 − λ2

)
Λ ((1 + 2λ)z) , Θ

)
≥ E′

(
Φ

(
(1 + 2λ)z

2
,

(1 + 2λ)z
2

,
z
2
,

z
2

)
,Θ

)
, (67)

for all z ∈ S1 and all Θ > 0.

Finally putting (z1, z2, z3, z4) by
(

(1 − 2λ)z
2

,
(1 − 2λ)z

2
,

z
2
,

z
2

)
in (49) and using oddness ofΛ, one can arrive

E
(
Λ ((1 − 3λ)z) + Λ ((1 − λ)z) − λ2Λ (2(1 − λ)z) + λ2Λ (2λz) − 2

(
1 − λ2

)
Λ ((1 − 2λ)z) , Θ

)
≥ E′

(
Φ

(
(1 − 2λ)z

2
,

(1 − 2λ)z
2

,
z
2
,

z
2

)
,Θ

)
, (68)

for all z ∈ S1 and all Θ > 0.
With the help of (FBS4) and it follows from (55), (63), (65), (66), (67), (68), we achieve

E
((
λ4
− λ2

)
{Λ (4z) − 2Λ (3z) − 2Λ (2z) + 6Λ (z)} ,

(
6 − λ2

)
Θ
)

≥ min
{

E′
(
Φ

( z
2
,

z
2
,

z
2
,

z
2

)
,Θ

)
,E′ (Φ (z, z, z, z) ,Θ) ,E′

(
Φ

( z
2
,

z
2
, z, z

)
,Θ

)
,

E′
(
Φ

( z
2
,

z
2
,

3z
2
,

3z
2

)
,Θ

)
,E′

(
Φ

(
(1 + 2λ)z

2
,

(1 + 2λ)z
2

,
z
2
,

z
2

)
,Θ

)
,

E′
(
Φ

(
(1 − 2λ)z

2
,

(1 − 2λ)z
2

,
z
2
,

z
2

)
,Θ

) }
, (69)
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for all z ∈ S1 and all Θ > 0. With the help of (FBS3) (FBS4) and it follows from (62), (69) , we reach

E
((
λ4
− λ2

)
{Λ (4z) − 10Λ (2z) + 16Λ (z)} ,

(
16 − 3λ2

)
Θ
)

≥ min
{

E′
(
Φ

( z
2
,

z
2
,

z
2
,

z
2

)
,Θ

)
,E′

(
Φ

( z
2
,

z
2
, z, z

)
,Θ

)
,E′

(
Φ

(
z, z,

z
2
,

z
2

)
,Θ

)
,

E′
(
Φ

(
(1 + λ)z

2
,

(1 + λ)z
2

,
z
2
,

z
2

)
,Θ

)
,E′

(
Φ

(
(1 − λ)z

2
,

(1 − λ)z
2

,
z
2
,

z
2

)
,Θ

)
E′

(
Φ

( z
2
,

z
2
,

z
2
,

z
2

)
,Θ

)
,E′ (Φ (z, z, z, z) ,Θ ) ,

E′
(
Φ

( z
2
,

z
2
, z, z

)
,Θ

)
,E′

(
Φ

( z
2
,

z
2
,

3z
2
,

3z
2

)
,Θ

)
,

E′
(
Φ

(
(1 + 2λ)z

2
,

(1 + 2λ)z
2

,
z
2
,

z
2

)
,Θ

)
,E′

(
Φ

(
(1 − 2λ)z

2
,

(1 − 2λ)z
2

,
z
2
,

z
2

)
,Θ

) }
= E′ (ΦODD(z, z, z, z),Θ ) , (70)

for all z ∈ S1 and all Θ > 0. With the help of (FBS3) it follows from (70), that

E
(
Λ (4z) − 10Λ (2z) + 16Λ (z) ,

(
16 − 3λ2

λ4 − λ2

)
Θ

)
≥ E′ (ΦODD(z, z, z, z),Θ) , (71)

for all z ∈ S1 and all Θ > 0. Define a function ΛA1 : S1 → S2 by

ΛA1(z) = Λ(2z) − 8Λ(z), (72)

for all z ∈ S1. It follows from (71) and (72), we reach

E
(
ΛA1 (2z) − 2ΛA1(z),

(
16 − 3λ2

λ4 − λ2

)
Θ

)
= E

({
Λ (4z) − 8Λ (2z)

}
− 2

{
Λ (2z) − 8Λ (z)

}
,

(
16 − 3λ2

λ4 − λ2

)
Θ

)
≥ E′ (ΦODD(z, z, z, z),Θ) , (73)

for all z ∈ S1 and all Θ > 0. With the help of (FBS3) and it follows from (63) that

E
(

1
2
ΛA1(2z) − 2ΛA1(z),

(
16 − 3λ2

λ4 − λ2

)
·

1
2
Θ

)
≥ E′ (ΦODD(z, z, z, z),Θ ) (74)

for all z ∈ S1 and all Θ > 0. The rest of the proof is similar to that of Theorem 2.1. Hence the proof is
complete.

Corollary 3.2. An odd function Λaqcq : S1 → S2 satisfies the functional inequality

E
(
Λaqcq (z1, z2, z3, z4) ,Θ

)
≥



E′ (∆,Θ) ,

E′
(
∆

4∑
τ=1
|zτ|Ψ ,Θ

)
,

E′
(
∆

4∏
τ=1
|zτ|Ψ ,Θ

)
,

E′
(
∆

{
4∑
τ=1
|zτ|4Ψ +

4∏
τ=1
|zτ|Ψ

}
,Θ

)
,

(75)
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for all z1, z2, z3, z4 ∈ S1 and all Θ > 0 with ∆ a positive constant. Then there exists a unique additive mapping
ΩA1 (z) : S1 → S2 such that

E (Λ (2z) − 8Λ (z) −ΩA1 (z) ,Θ)

≥



E′
(
∆,

(
λ4
− λ2

16 − 3λ2

)
|1|Θ

)
;

E′
(
∆
{
24 + 10 · 2Ψ + 2 · 3Ψ + 2 · (1 + λ)Ψ + 2 · (1 − λ)Ψ

+2 · (1 + 2λ)Ψ + 2 · (1 − 2λ)Ψ
} ∣∣∣ z

2

∣∣∣Ψ , 11
(
λ4
− λ2

16 − 3λ2

) ∣∣∣2 − 2Ψ
∣∣∣Θ)

;Ψ , 1

E′
(
∆
{
2 + 3 · 22Ψ + 24Ψ + 32Ψ + (1 + λ)2Ψ + (1 − λ)2Ψ

+(1 + 2λ)2Ψ + (1 − 2λ)2Ψ
} ∣∣∣ z

2

∣∣∣4Ψ , 11
(
λ4
− λ2

16 − 3λ2

) ∣∣∣2 − 24Ψ
∣∣∣Θ)

;Ψ ,
1
4

E′
(
∆
{
26 + 11 · 24Ψ + 2 · 34Ψ + 2 · (1 + λ)4Ψ + 2 · (1 − λ)4Ψ

+2 · (1 + 2λ)4Ψ + 2 · (1 − 2λ)4Ψ + 3 · 22Ψ + 32Ψ + (1 + λ)2Ψ + (1 − λ)2Ψ

+(1 + 2λ)2Ψ + (1 − 2λ)2Ψ
}
, 11

(
λ4
− λ2

16 − 3λ2

) ∣∣∣2 − 24Ψ
∣∣∣Θ)

;Ψ , 1
4

(76)

for all z ∈ S1 and all Θ > 0.

3.2. Cubic Case Fuzzy Stability Result
Theorem 3.3. An odd function Λaqcq : S1 → S2 satisfies the functional inequality (49) where Φ : S4

1 → S3 be a

mapping satisfying (50) where θ > 0 with 0 <
(
θ
8

)π
< 1 and the condition

lim
ϖ→∞

E′ (Φ (2πϖz1, 2πϖz2, 2πϖz3, 2πϖz4) , 8πϖΘ) = 1, (77)

for all z1, z2, z3, z4 ∈ S1 and all Θ > 0 . Then there exists a unique cubic mapping ΩC3 (z) : S1 → S2 such that

E (Λ (2z) − 2Λ (z) −ΩC3 (z) ,Θ) ≥ E′
(
ΦODD(z, z, z, z),

(
λ4
− λ2

16 − 3λ2

)
|8 − θ|Θ

)
, (78)

where E′ (ΦODD(z, z, z, z),Θ) is given in (53) and the mapping

E
(

lim
ϖ→∞

1
8πϖ

{
Λ

(
2(ϖ+1)πz

)
− 2Λ (2πϖz)

}
−ΩC3 (z) ,Θ

)
= 1, (79)

for all z ∈ S1 and all Θ > 0.

Proof. Define a function ΛC3 : S1 → S2 by

ΛC3(z) = Λ(2z) − 2Λ(z), (80)

for all z ∈ S1. It follows from (71) and (80), we reach

E
(
ΛC3(2z) − 8ΛC3(z),

(
16 − 3λ2

λ4 − λ2

)
Θ

)
= E

({
Λ(4z) − 2Λ(2z)

}
− 8

{
Λ(2z) − 8Λ(z)

}
,

(
16 − 3λ2

λ4 − λ2

)
Θ

)
≥ E′ (ΦODD(z, z, z, z),Θ) , (81)
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for all z ∈ S1 and all Θ > 0. With the help of (FBS3) and it follows from (81) that

E
(

1
8
ΛC3(2z) −ΛC3(z),

(
16 − 3λ2

λ4 − λ2

)
·

1
8
Θ

)
≥ E′ (ΦODD(z, z, z, z),Θ) , (82)

for all z ∈ S1 and all Θ > 0. The rest of the proof is similar to that of Theorem 2.1. Hence the proof is
complete.

Corollary 3.4. An odd function Λaqcq : S1 → S2 satisfies the functional inequality (75) for all z1, z2, z3, z4 ∈ S1 and
all Θ > 0 with ∆ a positive constant. Then there exists a unique cubic mapping ΩC3 (z) : S1 → S2 such that

E (Λ (2z) − 2Λ (z) −ΩC3 (z) ,Θ)

≥



E′
(
∆,

(
λ4
− λ2

16 − 3λ2

)
|7|Θ

)
;

E′
(
∆
{
24 + 10 · 2Ψ + 2 · 3Ψ + 2 · (1 + λ)Ψ + 2 · (1 − λ)Ψ

+2 · (1 + 2λ)Ψ + 2 · (1 − 2λ)Ψ
} ∣∣∣ z

2

∣∣∣Ψ , 11
(
λ4
− λ2

16 − 3λ2

) ∣∣∣8 − 2Ψ
∣∣∣Θ)

;Ψ , 3

E′
(
∆
{
2 + 3 · 22Ψ + 24Ψ + 32Ψ + (1 + λ)2Ψ + (1 − λ)2Ψ

+(1 + 2λ)2Ψ + (1 − 2λ)2Ψ
} ∣∣∣ z

2

∣∣∣4Ψ , 11
(
λ4
− λ2

16 − 3λ2

) ∣∣∣8 − 24Ψ
∣∣∣Θ)

;Ψ ,
3
4

E′
(
∆
{
26 + 11 · 24Ψ + 2 · 34Ψ + 2 · (1 + λ)4Ψ + 2 · (1 − λ)4Ψ

+2 · (1 + 2λ)4Ψ + 2 · (1 − 2λ)4Ψ + 3 · 22Ψ + 32Ψ + (1 + λ)2Ψ + (1 − λ)2Ψ

+(1 + 2λ)2Ψ + (1 − 2λ)2Ψ
}
, 11

(
λ4
− λ2

16 − 3λ2

) ∣∣∣8 − 24Ψ
∣∣∣ Θ)

;Ψ , 3
4

(83)

for all z ∈ S1 and all Θ > 0.

3.3. Additive - Cubic Case Fuzzy Stability Result
Theorem 3.5. An odd function Λaqcq : S1 → S2 satisfies the functional inequality (49) where Φ : S4

1 → S3 be

a mapping satisfying (50) where θ > 0 with 0 <
(
θ
2

)π
< 1, 0 <

(
θ
8

)π
< 1 and the conditions (51), (77) for all

z1, z2, z3, z4 ∈ S1 and allΘ > 0 . Then there exists a unique additive mappingΩA1 (z) : S1 → S2 and a unique cubic
mapping ΩC3 (z) : S1 → S2 such that

E (Λ (z) −ΩA1 (z) −ΩC3 (z) ,Θ)

≥ E′
(
ΦODD(z, z, z, z), 3

(
λ4
− λ2

16 − 3λ2

) (
|2 − θ| + |8 − θ|

)
Θ

)
(84)

where E′ (ΦODD(z, z, z, z),Θ), ΩA1 (z) and ΩC3 (z) are given in (53), (54) and (79), respectively for all z ∈ S1 and all
Θ > 0.

Proof. By Theorem 3.1, there exists a unique additive mapping Ω1
A1 (z) . : S1 → S2 such that

E
(
Λ (2z) − 8Λ (z) −Ω1

A1 (z) ,Θ
)
≥ E′

(
ΦODD(z, z, z, z),

(
λ4
− λ2

16 − 3λ2

)
|2 − θ|Θ

)
(85)

for all z ∈ S1 and all Θ > 0.
Also, by Theorem 3.3, there exists a unique cubic mapping Ω3

C3 (z) : S1 → S2 such that

E
(
Λ (2z) − 2Λ (z) −Ω3

C3 (z) ,Θ
)
≥ E′

(
ΦODD(z, z, z, z),

(
λ4
− λ2

16 − 3λ2

)
|8 − θ|Θ

)
, (86)
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for all z ∈ S1 and all Θ > 0. Now,

E
(
6Λ (z) +Ω1

A1 (z) −Ω3
C3 (z) , 2Θ

)
= E

(
Λ (2z) − 2Λ (z) −Ω3

C3 (z) −Λ (2z) + 8Λ (z) +Ω1
A1 (z) , 2Θ

)
≥ min

{
E
(
Λ (2z) − 2Λ (z) −Ω3

C3 (z) ,Θ
)
,E

(
Λ (2z) − 8Λ (z) −Ω1

A1 (z) ,Θ
)}

≥ min
{

E′
(
ΦODD(z, z, z, z),

(
λ4
− λ2

16 − 3λ2

)
|2 − θ|Θ

)
,

E′
(
ΦODD(z, z, z, z),

(
λ4
− λ2

16 − 3λ2

)
|8 − θ|Θ

) }
= E′

(
2ΦODD(z, z, z, z),

(
λ4
− λ2

16 − 3λ2

)
(|2 − θ| + |8 − θ|)Θ

)
, (87)

for all z ∈ S1 and all Θ > 0. It follows from (87) that

E
(
Λ (z) +

1
6
Ω1

A1 (z) −
1
6
Ω3

C3 (z) ,Θ
)

≥ E′
(
2ΦODD(z, z, z, z), 6

(
λ4
− λ2

16 − 3λ2

)
(|2 − θ| + |8 − θ|)Θ

)
, (88)

for all z ∈ S1 and all Θ > 0. So, if we take

ΩA1 (z) = −
1
6
Ω1

A1 (z) , and ΩC3 (z) =
1
6
Ω3

C3 (z) ,

we arrive our desired result. Hence the proof is complete.

Corollary 3.6. An odd function Λaqcq : S1 → S2 satisfies the functional inequality (75) for all z1, z2, z3, z4 ∈ S1 and
all Θ > 0 with ∆ a positive constant. Then there exists a unique additive mapping ΩA1 (z) : S1 → S2 and a unique
cubic mapping ΩC3 (z) : S1 → S2 such that

E (Λ (z) −ΩA1 (z) −ΩC3 (z) ,Θ)

≥



E′
(
∆, 3

(
λ4
− λ2

16 − 3λ2

)
(|1| + |7|)Θ

)
;

E′
(
∆
{
24 + 10 · 2Ψ + 2 · 3Ψ + 2 · (1 + λ)Ψ + 2 · (1 − λ)Ψ

+2 · (1 + 2λ)Ψ + 2 · (1 − 2λ)Ψ
} ∣∣∣ z

2

∣∣∣Ψ ,
3
(
λ4
− λ2

16 − 3λ2

) {∣∣∣2 − 2Ψ
∣∣∣ + ∣∣∣8 − 2Ψ

∣∣∣}Θ)
; Ψ , 1, 3

E′
(
∆
{
2 + 3 · 22Ψ + 24Ψ + 32Ψ + (1 + λ)2Ψ + (1 − λ)2Ψ

+(1 + 2λ)2Ψ + (1 − 2λ)2Ψ
} ∣∣∣ z

2

∣∣∣4Ψ ,
3
(
λ4
− λ2

16 − 3λ2

){ ∣∣∣2 − 24Ψ
∣∣∣ + ∣∣∣8 − 24Ψ

∣∣∣ }Θ)
; Ψ ,

1
4
,

3
4

E′
(
∆
{
26 + 11 · 24Ψ + 2 · 34Ψ + 2 · (1 + λ)4Ψ + 2 · (1 − λ)4Ψ

+2 · (1 + 2λ)4Ψ + 2 · (1 − 2λ)4Ψ + 3 · 22Ψ + 32Ψ

+(1 + λ)2Ψ + (1 − λ)2Ψ + (1 + 2λ)2Ψ + (1 − 2λ)2Ψ
}
,

3
(
λ4
− λ2

16 − 3λ2

){ ∣∣∣2 − 24Ψ
∣∣∣ + ∣∣∣8 − 24Ψ

∣∣∣ }Θ)
; Ψ ,

1
4
,

3
4

(89)
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for all z ∈ S1 and all Θ > 0.

4. Fuzzy Stability Results: Λ is Odd and Even

The generalized Ulam-Hyers stability of 4-D AQCQ functional equation (3) when Λ is odd and Even is
analyzed in this section.

Theorem 4.1. A function Λaqcq : S1 → S2 satisfies the functional inequality

E
(
Λaqcq (z1, z2, z3, z4) ,Θ

)
≥ E′ (Φ (z1, z2, z3, z4) ,Θ) (90)

where Φ : S4
1 → S3 be a mapping satisfying (5) and (50) where θ > 0 with 0 <

(
θ
2

)π
< 1, 0 <

(
θ
4

)π
< 1,

0 <
(
θ
8

)π
< 1, 0 <

(
θ
16

)π
< 1 and the conditions (6), (36), (51), (77) for all z1, z2, z3, z4 ∈ S1 and all Θ > 0 . Then

there exists a unique additive mapping ΩA1 (z) : S1 → S2 a unique quadratic mapping ΩQ2 (z) : S1 → S2 a unique
cubic mapping ΩC3 (z) : S1 → S2 a unique quartic mapping ΩQ4 (z) : S1 → S2 such that

E
(
Λ (z) −ΩA1 (z) −ΩQ2 (z) −ΩC3 (z) −ΩQ4 (z) , 4Θ

)
≥ E′

(
ΦEVEN(z, z, z, z) + ΦEVEN(−z,−z,−z,−z) + ΦODD(z, z, z, z) + ΦODD(−z,−z,−z,−z),

6Θ
{(
λ4
− λ2

19 + 12λ2

)
(|4 − θ| + |16 − θ|) +

(
λ4
− λ2

16 − 3λ2

)
(|2 − θ| + |8 − θ|)

} )
, (91)

where E′ (ΦEVEN(z, z, z, z),Θ), ΩQ2 (z), ΩQ4 (z), E′ (ΦODD(z, z, z, z),Θ), ΩA1 (z), ΩC3 (z) are given in (8), (9), (38),
(53), (54) and (79), respectively for all z ∈ S1 and all Θ > 0.

Proof. Assume a function ΛEVEN (z) by

ΛEVEN (z) =
1
2

(Λ (z) + Λ (−z)) . (92)

From this we see

ΛEVEN (0) = 0, ΛEVEN (−z) = ΛEVEN (z) , (93)

for all z ∈ S1. Now,

E
(
ΛEVENaqcq (z1, z2, z3, z4) , 2Θ

)
≥ min

{
E
(
Λaqcq (z1, z2, z3, z4) ,Θ

)
,E

(
Λaqcq (−z1,−z2,−z3,−z4) ,Θ

)}
≥ min {E′ (Φ (z1, z2, z3, z4) ,Θ) ,E′ (Φ (−z1,−z2,−z3,−z4) ,Θ)} , (94)

for all z ∈ S1 and all Θ > 0. From (94) and by Theorem 2.5, there exists a unique quadratic mapping
ΩQ2 (z) : S1 → S2 and a unique quartic mapping ΩQ4 (z) : S1 → S2 such that

E
(
ΛEVEN (z) −ΩQ2 (z) −ΩQ4 (z) , 2Θ

)
≥ min

{
E′

(
ΦEVEN(z, z, z, z), 3

(
λ4
− λ2

19 + 12λ2

)
(|4 − θ| + |16 − θ|)Θ

)
E′

(
ΦEVEN(−z,−z,−z,−z), 3

(
λ4
− λ2

19 + 12λ2

)
(|4 − θ| + |16 − θ|)Θ

)}
, (95)

for all z ∈ S1 and all Θ > 0.



J. M. Rassias et al. / Filomat 39:35 (2025), 12661–12689 12680

Assume a function ΛODD (z) by

ΛODD (z) =
1
2

(Λ (z) −Λ (−z)) . (96)

From this we see

ΛODD (0) = 0 ΛODD (−z) = −ΛODD (z) , (97)

for all z ∈ S1. Now,

E
(
ΛODDaqcq (z1, z2, z3, z4) , 2Θ

)
≥ min

{
E
(
Λaqcq (z1, z2, z3, z4) ,Θ

)
,E

(
Λaqcq (−z1,−z2,−z3,−z4) ,Θ

)}
≥ min {E′ (Φ (z1, z2, z3, z4) ,Θ) ,E′ (Φ (−z1,−z2,−z3,−z4) ,Θ)} , (98)

for all z ∈ S1 and all Θ > 0. From (98) and by Theorem 3.5, there exists a unique additive mapping
ΩA1 (z) : S1 → S2 and a unique cubic mapping ΩC3 (z) : S1 → S2 such that

E (ΛODD (z) −ΩA1 (z) −ΩC3 (z) , 2Θ)

≥ min
{

E′
(
ΦODD(z, z, z, z), 3

(
λ4
− λ2

16 − 3λ2

)
(|2 − θ| + |8 − θ|)Θ

)
E′

(
ΦODD(−z,−z,−z,−z), 3

(
λ4
− λ2

16 − 3λ2

)
(|2 − θ| + |8 − θ|)Θ

)}
, (99)

for all z ∈ S1 and all Θ > 0. Define a mapping Λ (z) by

Λ (z) = ΛEVEN (z) + ΛODD (z) , (100)

for all z ∈ S1. Using (95), (99) in (100) it follows that

E
(
Λ (z) −ΩA1 (z) −ΩQ2 (z) −ΩC3 (z) −ΩQ4 (z) , 4Θ

)
= E

(
ΛEVEN (z) + ΛODD (z) −ΩA1 (z) −ΩQ2 (z) −ΩC3 (z) −ΩQ4 (z) , 4Θ

)
≥ min

{
E
(
ΛEVEN (z) −ΩQ2 (z) −ΩQ4 (z) , 2Θ

)
,E (ΛODD (z) −ΩA1 (z) −ΩC3 (z) , 2Θ)

}
≥ min

{
E′

(
ΦEVEN(z, z, z, z), 3

(
λ4
− λ2

19 + 12λ2

)
(|4 − θ| + |16 − θ|)Θ

)
E′

(
ΦEVEN(−z,−z,−z,−z), 3

(
λ4
− λ2

19 + 12λ2

)
(|4 − θ| + |16 − θ|)Θ

)
E′

(
ΦODD(z, z, z, z), 3

(
λ4
− λ2

16 − 3λ2

)
(|2 − θ| + |8 − θ|)Θ

)
E′

(
ΦODD(−z,−z,−z,−z), 3

(
λ4
− λ2

16 − 3λ2

)
(|2 − θ| + |8 − θ|)Θ

)}
≥ E′

(
ΦEVEN(z, z, z, z) + ΦEVEN(−z,−z,−z,−z)

+ ΦODD(z, z, z, z) + ΦODD(−z,−z,−z,−z),

6Θ
{(
λ4
− λ2

19 + 12λ2

)
(|4 − θ| + |16 − θ|) +

(
λ4
− λ2

16 − 3λ2

)
(|2 − θ| + |8 − θ|)

} )
. (101)

Hence the proof is complete.



J. M. Rassias et al. / Filomat 39:35 (2025), 12661–12689 12681

Corollary 4.2. A function Λaqcq : S1 → S2 satisfies the functional inequality

E
(
Λaqcq (z1, z2, z3, z4) ,Θ

)
≥



E′ (∆,Θ) ,

E′
(
∆

4∑
τ=1
|zτ|Ψ ,Θ

)
,

E′
(
∆

4∏
τ=1
|zτ|Ψ ,Θ

)
,

E′
(
∆

{
4∑
τ=1
|zτ|4Ψ +

4∏
τ=1
|zτ|Ψ

}
,Θ

)
,

(102)

for all z1, z2, z3, z4 ∈ S1 and all Θ > 0 with ∆ a positive constant. Then there exists a unique additive mapping
ΩA1 (z) : S1 → S2 a unique quadratic mapping ΩQ2 (z) : S1 → S2 a unique cubic mapping ΩC3 (z) : S1 → S2 a
unique quartic mapping ΩQ4 (z) : S1 → S2 such that

E
(
Λ (z) −ΩA1 (z) −ΩQ2 (z) −ΩC3 (z) −ΩQ4 (z) , 4Θ

)

≥



E′
(
∆, 3Θ

{(
λ4
− λ2

19 + 12λ2

)
(|3| + |15|) +

(
λ4
− λ2

16 − 3λ2

)
(|1| + |7|)

})
;

E′
(
∆
{
30 + 18 2Ψ + 2 λΨ + 2 · 3Ψ + 2 · (1 + λ)Ψ + 2 · (1 − λ)Ψ

+2 · (1 + 2λ)Ψ + 2 · (1 − 2λ)Ψ
} ∣∣∣ z

2

∣∣∣Ψ ,
3Θ

{ (
λ4
− λ2

19 + 12λ2

) { ∣∣∣4 − 2Ψ
∣∣∣ + ∣∣∣16 − 2Ψ

∣∣∣ }
+

(
λ4
− λ2

16 − 3λ2

) { ∣∣∣2 − 2Ψ
∣∣∣ + ∣∣∣8 − 2Ψ

∣∣∣ }}) ;Ψ , 1, 2, 3, 4

E′
(
∆
{
3 + 3 24Ψ + λ4Ψ + 3 22Ψ + 32Ψ + (1 + λ)2Ψ + (1 − λ)2Ψ

+(1 + 2λ)2Ψ + (1 − 2λ)2Ψ
} ∣∣∣∣ z2 ∣∣∣∣4Ψ ,

3Θ
{ (
λ4
− λ2

19 + 12λ2

) { ∣∣∣4 − 2Ψ
∣∣∣ + ∣∣∣16 − 2Ψ

∣∣∣ }
+

(
λ4
− λ2

16 − 3λ2

) { ∣∣∣2 − 2Ψ
∣∣∣ + ∣∣∣8 − 2Ψ

∣∣∣ }}) ;Ψ , 1
2 ,

1
4 ,

3
4 , 1

E′
(
∆
{
33 + 21 24Ψ + 3λ4Ψ + 2 · 34Ψ + 2 · (1 + λ)4Ψ + 2 · (1 − λ)4Ψ

+2(1 + 2λ)4Ψ + 2(1 − 2λ)4Ψ + 3 22Ψ + 32Ψ

+(1 + λ)2Ψ + (1 − λ)2Ψ + (1 + 2λ)2Ψ + (1 − 2λ)2Ψ
} ∣∣∣∣ z2 ∣∣∣∣4Ψ ,

3Θ
{ (
λ4
− λ2

19 + 12λ2

) { ∣∣∣4 − 2Ψ
∣∣∣ + ∣∣∣16 − 2Ψ

∣∣∣ }
+

(
λ4
− λ2

16 − 3λ2

) { ∣∣∣2 − 2Ψ
∣∣∣ + ∣∣∣8 − 2Ψ

∣∣∣ }}) ;Ψ , 1
2 ,

1
4 ,

3
4 , 1

(103)

for all z ∈ S1 and all Θ > 0.

5. Fuzzy Stability Fixed Point Results: Λ is Odd

The generalized Ulam-Hyers stability of 4 D AQCQ functional equation (3) when Λ is odd is given in
this section.

5.1. Additive Case Fuzzy Stability Result
Theorem 5.1. An odd function Λaqcq : S1 → S2 satisfies the functional inequality (49) where Φ : S4

1 → S3 be a
mapping satisfying

lim
ϖ→∞

E′
(
Φ

(
ρϖδ z1, ρ

ϖ
δ z2, ρ

ϖ
δ z3, ρ

ϖ
δ z4

)
, ρϖδΘ

)
= 1; ρδ =

{
2 if δ = 0;
1
2 if δ = 1; (104)
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for all z1, z2, z3, z4 ∈ S1 and all Θ > 0 . If there exists L = L(δ), such that the function has the property

E′ (ΦODD(z, z, z, z),Θ) = E′
(
ΦODD

( z
2
,

z
2
,

z
2
,

z
2

)
,Θ

)
(105)

E′
(
L

1
∆δ
ΦODD

(
ρδz, ρδz, ρδz, ρδz

)
,Θ

)
= E′ (ΦODD(z, z, z, z),Θ) , (106)

for all z ∈ S1 and all Θ > 0. Then there exists a unique additive mapping ΩA1 (z) : S1 → S2 such that

E (Λ (2z) − 8Λ (z) −ΩA1 (z) ,Θ) ≥ E′
((

L1−δ

1 − L

)
ΦODD(z, z, z, z),

(
λ4
− λ2

16 − 3λ2

)
Θ

)
, (107)

where E′ (ΦODD(z, z, z, z),Θ) is given in (53) for all z ∈ S1 and all Θ > 0.

Proof. Consider a set

Ξ =
{
Λ1

∣∣∣∣Λ1 : S1 → S2,Λ1(0) = 0
}
. (108)

Define a general metric D on Ξ by

D (Λ1,Λ2) = inf
{
K ∈ (0,∞)

∣∣∣∣E (Λ1(z) −Λ2(z),Θ) ≥ E′ (ΦODD(z, z, z, z),KΘ)
}
, (109)

for all z ∈ S1 and all Θ > 0. It is easy to see that (Ξ,D) is complete.
Define Γ : Ξ→ Ξ by

ΓΛ1(z) =
1
ρδ
Λ1(ρδz), (110)

for all z ∈ S1. For Λ1,Λ2 ∈ Ξ, we see

D (Λ1,Λ2) ≤ K
⇒ E (Λ1(z) −Λ2(z),Θ) ≥ E′ (ΦODD(z, z, z, z),KΘ)

⇒ E
(

1
ρδ
Λ1(ρδz) −

1
ρδ
Λ2(ρδz),Θ

)
≥ E′

(
ΦODD

(
ρδz, ρδz, ρδz, ρδz

)
,KρδΘ

)
⇒ E (ΓΛ1(z) − ΓΛ1(z),Θ) ≥ E′ (ΦODD(z, z, z, z),KLΘ)
⇒ D (ΓΛ1,ΓΛ2) ≤ KL
⇒ D (ΓΛ1,ΓΛ2) ≤ LD (Λ1,Λ2) , (111)

for all z ∈ S1 and allΘ > 0. Thus, Γ is strictly contractive mapping on Ξwith Lipschitz constant L.With the
help of (106) when δ = 0, it follows from (74), we reach

E
(

1
2
ΛA1(2z) −ΛA1(z),

(
16 − 3λ2

λ4 − λ2

)
LΘ

)
≥ E′ (ΦODD(z, z, z, z),Θ)

⇒ D (ΓΛA1,ΛA1) ≤ L = L1−δ, (112)

for all z ∈ S1 and all Θ > 0. Changing z by z
2 in (73) and with the help of (105), (106) when δ = 1, it follows

from , we land

E
(
ΛA1(z) − 2ΛA1

( z
2

)
,

(
16 − 3λ2

λ4 − λ2

)
Θ

)
≥ E′

(
ΦODD

( z
2
,

z
2
,

z
2
,

z
2

)
,Θ

)
⇒ D (ΛA1,ΓΛA1) ≤ 1 = L1−δ, (113)
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for all z ∈ S1 and all Θ > 0. We conclude from (112) and (113)

D
(
ΛA1,ΓΛA1

)
≤ L1−δ. (114)

So, (FP1) of Theorem 1.6 holds. So by Theorem 1.6, we arrive at our desired result. Hence the proof is
complete.

Corollary 5.2. An odd function Λaqcq : S1 → S2 satisfies the functional inequality (75) for all z1, z2, z3, z4 ∈ S1 and
all Θ > 0 with ∆ a positive constant. Then there exists a unique additive mapping ΩA1 (z) : S1 → S2 such that (76)
for all z ∈ S1 and all Θ > 0.

Proof. Taking

E′ (Φ (z1, z2, z3, z4) ,Θ) =



E′ (∆,Θ) ,

E′
(
∆

4∑
τ=1
|zτ|Ψ ,Θ

)
,

E′
(
∆

4∏
τ=1
|zτ|Ψ ,Θ

)
,

E′
(
∆

{
4∑
τ=1
|zτ|4Ψ +

4∏
τ=1
|zτ|Ψ

}
,Θ

)
,

for all z1, z2, z3, z4 ∈ S1 and all Θ > 0. If we change

(z1, z2, z3, z4) =
(
∆ϖδ z1,∆

ϖ
δ z2,∆

ϖ
δ z3,∆

ϖ
δ z4

)
,

in the above equation, using (FBS3) and letting ϖ tends to infinity, we see (104) holds. By (105) and (53), we
have

E′ (ΦODD(z, z, z, z),Θ)

= E′
(
ΦODD

( z
2
,

z
2
,

z
2
,

z
2

)
,Θ

)

=



E′ (∆,Θ)

E′
(
∆

2Ψ
{
12 + 5 2Ψ + 3Ψ + (1 + λ)Ψ + (1 − λ)Ψ

+(1 + 2λ)Ψ + (1 − 2λ)Ψ
} ∣∣∣ z

2

∣∣∣Ψ , 11Θ
)
,

E′
(
∆

24Ψ

{
2 + 3 22Ψ + 24Ψ + 32Ψ + (1 + λ)2Ψ + (1 − λ)2Ψ

+(1 + 2λ)2Ψ + (1 − 2λ)2Ψ
} ∣∣∣ z

2

∣∣∣4Ψ , 11Θ
)
,

E′
(
∆

24Ψ

{
26 + 11 24Ψ + 2 34Ψ + 2(1 + λ)4Ψ + 2(1 − λ)4Ψ + 2 · (1 + 2λ)4Ψ

+2 · (1 − 2λ)4Ψ + 3 · 22Ψ + 32Ψ + (1 + λ)2Ψ + (1 − λ)2Ψ

+(1 + 2λ)2Ψ + (1 − 2λ)2Ψ
}
, 11Θ

)
,

(115)

and

E′
(

1
ρδ
ΦODD

(
ρδz, ρδz, ρδz, ρδz

)
,Θ

)
=


E′

(
ρ−1
δ ΦODD(z, z, z, z),Θ

)
,

E′
(
ρΨ−1
δ ΦODD(z, z, z, z),Θ

)
,

E′
(
ρ4Ψ−1
δ ΦODD(z, z, z, z),Θ

)
,

E′
(
ρ4Ψ−1
δ ΦODD(z, z, z, z),Θ

)
,

(116)
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for all z ∈ S1 and all Θ > 0. Now from (107), we have the following cases.

L = 2−1 if δ = 0,

E (Λ (2z) − 8Λ (z) −ΩA1 (z) ,Θ) ≥ E′
((

(2−1)1−0

1 − 2−1

)
ΦODD(z, z, z, z),

(
λ4
− λ2

16 − 3λ2

)
Θ

)
= E′

(
∆,

(
λ4
− λ2

16 − 3λ2

)
(1)Θ

)
.

L =
1

2−1 = 2 if δ = 1,

E (Λ (2z) − 8Λ (z) −ΩA1 (z) ,Θ) ≥ E′
((

(2)1−1

1 − 2

)
ΦODD(z, z, z, z),

(
λ4
− λ2

16 − 3λ2

)
Θ

)
= E′

(
∆,

(
λ4
− λ2

16 − 3λ2

)
(−1)Θ

)
.

L = 2Ψ−1 if δ = 0,

E (Λ (2z) − 8Λ (z) −ΩA1 (z) ,Θ)

≥ E′
((

(2Ψ−1)1−0

1 − 2Ψ−1

)
ΦODD(z, z, z, z),

(
λ4
− λ2

16 − 3λ2

)
Θ

)
= E′

(
∆

2Ψ

(
(2Ψ)

2 − 2Ψ

) {
12 + 5 2Ψ + 3Ψ + (1 + λ)Ψ + (1 − λ)Ψ

+ (1 + 2λ)Ψ + (1 − 2λ)Ψ
} ∣∣∣∣ z2 ∣∣∣∣Ψ , ( λ4

− λ2

16 − 3λ2

)
11Θ

)
= E′

(
∆
{
12 + 5 · 2Ψ + 3Ψ + (1 + λ)Ψ + (1 − λ)Ψ

+ (1 + 2λ)Ψ + (1 − 2λ)Ψ
} ∣∣∣∣ z2 ∣∣∣∣Ψ , 11

(
λ4
− λ2

16 − 3λ2

)
Θ

(
2 − 2Ψ

) )
.

L =
1

2Ψ−1 = 21−Ψ if δ = 1,

E (Λ (2z) − 8Λ (z) −ΩA1 (z) ,Θ)

≥ E′
((

(21−Ψ)1−1

1 − 21−Ψ

)
ΦODD(z, z, z, z),

(
λ4
− λ2

16 − 3λ2

)
Θ

)
= E′

(
∆

2Ψ

(
2Ψ

2Ψ − 2

) {
12 + 5 2Ψ + 3Ψ + (1 + λ)Ψ + (1 − λ)Ψ

+ (1 + 2λ)Ψ + (1 − 2λ)Ψ
} ∣∣∣∣ z2 ∣∣∣∣Ψ , ( λ4

− λ2

16 − 3λ2

)
11Θ

)
= E′

(
∆
{
12 + 5 2Ψ + 3Ψ + (1 + λ)Ψ + (1 − λ)Ψ

+ (1 + 2λ)Ψ + (1 − 2λ)Ψ
} ∣∣∣∣ z2 ∣∣∣∣Ψ , 11

(
λ4
− λ2

16 − 3λ2

)
Θ

(
2Ψ − 2

) )
.

Similarly one can prove the other cases. Hence the proof is completed.
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5.2. Cubic Case Fuzzy Stability Result
Theorem 5.3. An odd function Λaqcq : S1 → S2 satisfies the functional inequality (49) where Φ : S4

1 → S3 be a
mapping satisfying (104) for all z1, z2, z3, z4 ∈ S1 and all Θ > 0 . If there exists L = L(δ), such that the function has
the property (105), (106) for all z ∈ S1 and all Θ > 0. Then there exists a unique cubic mapping ΩC3 (z) : S1 → S2
such that

E (Λ (2z) − 2Λ (z) −ΩC3 (z) ,Θ) ≥ E′
((

L1−δ

1 − L

)
ΦODD(z, z, z, z),

(
λ4
− λ2

16 − 3λ2

)
|8 − θ|Θ

)
, (117)

where E′ (ΦODD(z, z, z, z),Θ) is given in (53) for all z ∈ S1 and all Θ > 0.

Proof. The proof follows by similar lines of Theorem 5.1, by define Γ : Ξ→ Ξ by

ΓΛ1(z) =
1
ρ3
δ

Λ1(ρδz), (118)

for all z ∈ S1.

Corollary 5.4. An odd function Λaqcq : S1 → S2 satisfies the functional inequality (75) for all z1, z2, z3, z4 ∈ S1 and
all Θ > 0 with ∆ a positive constant. Then there exists a unique cubic mappingΩC3 (z) : S1 → S2 such that (83) for
all z ∈ S1 and all Θ > 0.

5.3. Additive - Cubic Case Fuzzy Stability Result
Theorem 5.5. An odd function Λaqcq : S1 → S2 satisfies the functional inequality (49) where Φ : S4

1 → S3 be a
mapping satisfying (104) for all z1, z2, z3, z4 ∈ S1 and all Θ > 0 . If there exists L = L(δ), such that the function has
the property (105), (106) for all z ∈ S1 and allΘ > 0. Then there exists a unique additive mappingΩA1 (z) : S1 → S2
and a unique cubic mapping ΩC3 (z) : S1 → S2 such that

E (Λ (z) −ΩA1 (z) −ΩC3 (z) ,Θ)

≥ E′
(( L1−δ

1 − L

)
ΦODD(z, z, z, z), 3

(
λ4
− λ2

16 − 3λ2

)
Θ

)
, (119)

where E′ (ΦODD(z, z, z, z),Θ) is given in (53) for all z ∈ S1 and all Θ > 0.

Proof. The proof follows by Theorem 3.5.

Corollary 5.6. An odd function Λaqcq : S1 → S2 satisfies the functional inequality (75) for all z1, z2, z3, z4 ∈ S1 and
all Θ > 0 with ∆ a positive constant. Then there exists a unique additive mapping ΩA1 (z) : S1 → S2 and a unique
cubic mapping ΩC3 (z) : S1 → S2 such that (89) for all z ∈ S1 and all Θ > 0.

6. Fuzzy Stability Fixed Point Results: Λ is Even

The generalized Ulam-Hyers stability of 4 D AQCQ functional equation (3) when Λ is even is given in
this section.

6.1. Quadratic Case Fuzzy Stability Result
Theorem 6.1. An even function Λaqcq : S1 → S2 satisfies the functional inequality (4) where Φ : S4

1 → S3 be a
mapping satisfying (104) for all z1, z2, z3, z4 ∈ S1 and allΘ > 0 . If there exists L = L(δ), such that the function has the
property (105), (106) for all z ∈ S1 and all Θ > 0. Then there exists a unique quadratic mapping ΩQ2 (z) : S1 → S2
such that

E
(
Λ (2z) − 16Λ (z) −ΩQ2 (z) ,Θ

)
≥ E′

(( L1−δ

1 − L

)
ΦEVEN

(
z, z, z, z

)
,

(
λ4
− λ2

19 + 12λ2

)
Θ

)
(120)

. where E′
(
ΦEVEN

(
z, z, z, z

)
,Θ

)
is given in (8) for all z ∈ S1 and all Θ > 0.



J. M. Rassias et al. / Filomat 39:35 (2025), 12661–12689 12686

Proof. The proof follows by similar lines of Theorem 5.1, by define Γ : Ξ→ Ξ by

ΓΛ1(z) =
1
ρ2
δ

Λ1(ρδz), (121)

for all z ∈ S1.

Corollary 6.2. An even function Λaqcq : S1 → S2 satisfies the functional inequality (34) for all z1, z2, z3, z4 ∈ S1
and allΘ > 0 with ∆ a positive constant. Then there exists a unique quadratic mappingΩQ2 (z) : S1 → S2 such that
(35) for all z ∈ S1 and all Θ > 0.

6.2. Quartic Case Fuzzy Stability Result

Theorem 6.3. An even function Λaqcq : S1 → S2 satisfies the functional inequality (4) where Φ : S4
1 → S3 be a

mapping satisfying (104) for all z1, z2, z3, z4 ∈ S1 and all Θ > 0 . If there exists L = L(δ), such that the function has
the property (105), (106) for all z ∈ S1 and allΘ > 0. Then there exists a unique quartic mappingΩQ4 (z) : S1 → S2
such that

E
(
Λ (2z) − 4Λ (z) −ΩQ4 (z) ,Θ

)
≥ E′

((
L1−δ

1 − L

)
ΦEVEN(z, z, z, z),

(
λ4
− λ2

19 + 12λ2

)
|16 − θ|Θ

)
, (122)

where E′ (ΦEVEN(z, z, z, z),Θ) is given in (8) for all z ∈ S1 and all Θ > 0.

Proof. The proof follows by similar lines of Theorem 5.1, by define Γ : Ξ→ Ξ by

ΓΛ1(z) =
1
ρ4
δ

Λ1(ρδz), (123)

for all z ∈ S1.

Corollary 6.4. An even function Λaqcq : S1 → S2 satisfies the functional inequality (34) for all z1, z2, z3, z4 ∈ S1
and all Θ > 0 with ∆ a positive constant. Then there exists a unique quartic mapping ΩQ4 (z) : S1 → S2 such that
(42) for all z ∈ S1 and all Θ > 0.

6.3. Quadratic - Quartic Case Fuzzy Stability Result

Theorem 6.5. An even function Λaqcq : S1 → S2 satisfies the functional inequality (4) where Φ : S4
1 → S3 be a

mapping satisfying (104) for all z1, z2, z3, z4 ∈ S1 and allΘ > 0 . If there exists L = L(δ), such that the function has the
property (105), (106) for all z ∈ S1 and all Θ > 0. Then there exists a unique quadratic mapping ΩQ2 (z) : S1 → S2
and a unique quartic mapping ΩQ4 (z) : S1 → S2 such that

E
(
Λ (z) −ΩQ2 (z) −ΩQ4 (z) ,Θ

)
≥ E′

((
L1−δ

1 − L

)
ΦEVEN(z, z, z, z), 3

(
λ4
− λ2

19 + 12λ2

)
Θ

)
, (124)

where E′ (ΦEVEN(z, z, z, z),Θ) is given in (8) for all z ∈ S1 and all Θ > 0.

Proof. The proof follows by Theorem 2.5.

Corollary 6.6. An even function Λaqcq : S1 → S2 satisfies the functional inequality (34) for all z1, z2, z3, z4 ∈ S1
and all Θ > 0 with ∆ a positive constant. Then there exists a unique quadratic mapping ΩQ2 (z) : S1 → S2 and a
unique quartic mapping ΩQ4 (z) : S1 → S2 such that (48) for all z ∈ S1 and all Θ > 0.
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7. Fuzzy Stability Fixed Point Results: Λ is Odd and Even

The generalized Ulam-Hyers stability of 4 D AQCQ functional equation (3) when Λ is odd and Even is
given in this section.

Theorem 7.1. A function Λaqcq : S1 → S2 satisfies the functional inequality

E
(
Λaqcq (z1, z2, z3, z4) ,Θ

)
≥ E′ (Φ (z1, z2, z3, z4) ,Θ) , (125)

where Φ : S4
1 → S3 be a mapping satisfying (104) for all z1, z2, z3, z4 ∈ S1 and all Θ > 0 . If there exists L = L(δ),

such that the function has the property (105), (106) for all z ∈ S1 and all Θ > 0. Then there exists a unique
additive mapping ΩA1 (z) : S1 → S2 a unique quadratic mapping ΩQ2 (z) : S1 → S2 a unique cubic mapping
ΩC3 (z) : S1 → S2 a unique quartic mapping ΩQ4 (z) : S1 → S2 such that

E
(
Λ (z) −ΩA1 (z) −ΩQ2 (z) −ΩC3 (z) −ΩQ4 (z) , 4Θ

)
≥ E′

((
L1−δ

1 − L

) {
ΦEVEN(z, z, z, z) + ΦEVEN(−z,−z,−z,−z)

+ ΦODD(z, z, z, z) + ΦODD(−z,−z,−z,−z)
}
,

6Θ
{(
λ4
− λ2

19 + 12λ2

)
+

(
λ4
− λ2

16 − 3λ2

)})
, (126)

where E′ (ΦEVEN(z, z, z, z),Θ), E′ (ΦODD(z, z, z, z),Θ) are given in (8), (53), respectively for all z ∈ S1 and all Θ > 0.

Proof. The proof is similar lines to that of Theorem 4.1.

Corollary 7.2. A function Λaqcq : S1 → S2 satisfies the functional inequality (102) for all z1, z2, z3, z4 ∈ S1 and
all Θ > 0 with ∆ a positive constant. Then there exists a unique additive mapping ΩA1 (z) : S1 → S2 a unique
quadratic mapping ΩQ2 (z) : S1 → S2 a unique cubic mapping ΩC3 (z) : S1 → S2 a unique quartic mapping
ΩQ4 (z) : S1 → S2 such that (103) for all z ∈ S1 and all Θ > 0.
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