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Abstract. Functional equations are widely used in various fields for solving practical examples, exploring
theoretical ideas, and modeling complex relationships and the study of their stability is essential for
understanding how small changes in the inputs or functional form affect the solutions. This has both
theoretical significances and practical applications across mathematics, science, and engineering. For this
purpose, in this paper, we explore the Ulam-Hyers stability of

A(Zl +Zz+/\(Z3 +Z4))+A(21 +Zz—/\(Z3+Z4))
:/\Z{A(Zl +22+Z3+Z4)+A(Zl +Zz—23—Z4)}+2(1—A2)A(Zl +Zz)
pe-x)
12 {

a generalized 4-dimensional AQCQ functional equation in fuzzy normed spaces using two different meth-
ods.

+ ARz +24) + A(=2(23 +20) — 4 (A (23 + 24) + A(=23 - 22) },

1. Introduction

During the past eight decades, many researchers have extensively studied the solutions of functional
equations and their stability results using several techniques, one can refer to [2, 19, 20, 46, 49, 50, 53]. The

generalized terminology Ulam-Hyers stability comes from these backgrounds. These terminologies are
also applied to the case of other functional equations.

C. Park et al. [36] proved the generalized Hyers-Ulam stability of the following additive-quadratic-
cubic-quartic functional equation briefly, AQCQ-functional equation

fG+2y)+f(x-2y) =4[f(x+y)+ f(x—y)] - 6f ()
+fQ2y) + f(-2y) —4f (y) —4f (-y) 1)
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in Banach Spaces. Later, Hyers-Ulam stability results have been established of (1) in various normed spaces
[17, 37-41].
In [51], Ravi et al. introduced a general mixed-type AQCQ- functional equation

flr+ay) + fx—ay)=a[f(x+y)+ f (-] +2(1-?) f ()
()

@)+ f(=29) - 4f () - 4f (=], ()

which is a generalized form of the AQCQ-functional equation (1) and obtained its general solution and
generalized Hyers-Ulam stability for a fixed integer a with a # 0, +1 in Banach spaces.

Various other types of functional equations including AQCQ functional equations were introduced and
investigated the stability problems in several spaces including fuzzy normed spaces have been investigated
in [1, 3-9, 12-14, 16, 21, 23, 33, 34, 42-45, 47, 48, 52] and references mentioned there in.

1.1. Basics of Fuzzy Banach Space

A K. Katsaras [24] defined a fuzzy norm on a vector space to construct a fuzzy vector topological
structure on the space. Some mathematicians have defined fuzzy norms on a vector space from various
points of view [18, 26, 54]. In particular, T. Bag and S.K. Samanta [10], following S.C. Cheng and J.N.
Mordeson [15], gave an idea of the fuzzy norm in such a manner that the corresponding fuzzy metric is of
Kramosil and Michalek type [25]. They established a decomposition theorem of a fuzzy norm into a family
of crisp norms and investigated some properties of fuzzy normed spaces [11]. We use the definition of
fuzzy normed spaces given in [29-32].

Definition 1.1. Let X be a real linear space. A function E : X X R — [0, 1] is said to be a fuzzy norm on X if for all
x,y € Xandalls,t € R,
(FBS1) E(x,c)=0forc<0;
(FBS2) x=0ifand onlyif E(x,c) =1 forallc > 0;
(FBS3) E(cx,t)=E(x, L)ifc#0;
(FBS4) E(x+y,s+t)>min{E(x,s), E(y,1)};
(FBS5) E(x,) is a non-decreasing function on R and tlgg E(x,t)=1;
(FBS6)  for x # 0, E(x,-) is (upper semi) continuous on R.
The pair (X, E) is called a fuzzy normed linear space.

Example 1.2. Let (X, || - |[) be a normed linear space. Then

— >0, xeX
E (x,t)= {t+Ixll

0, t<0, xeX
is a fuzzy norm on X.

Definition 1.3. Let (X, E) be a fuzzy normed linear space. Let x,, be a sequence in X. Then x,, is said to be convergent
if there exists x € X such that lim E(x, — x,t) = 1 for all t > 0. In that case, x is called the limit of the sequence x,
n—oo

and we denote it by E (lim X, — X, t) =1.
n—00

Definition 1.4. A sequence x,, in X is called Cauchy if for each € > 0 and each t > 0 there exists ngy such that for all
n 2 ng and all p > 0, we have E(x,4p — X, t) > 1 — €.

Definition 1.5. Every convergent sequence in a fuzzy normed space is Cauchy. If each Cauchy sequence is convergent,
then the fuzzy norm is said to be complete and the fuzzy normed space is called a fuzzy Banach space.

Now, we will recall the fundamental results in fixed point theory.
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Theorem 1.6. [27](The alternative of fixed point) Suppose that for a complete generalized metric space (X,d) and a
strictly contractive mapping T : X — X with Lipschitz constant L. Then, for each given element x € X, either

(F1) d(T"x, T"1x) =0, ¥ n2>0,

or

(F2) there exists a natural number ng such that:

(FP1) d(T"x, T"*1x) < oo forall n > ng ;

(FP2)The sequence (T"x) is convergent to a fixed point y* of T;

(FP3) y* is the unique fixed point of T in the set Y = {y € X : d(T"™x, y) < oo};

(EPY) d(y,y) < 1= d(y, Ty) forall y € .

In this paper, we explore the Ulam-Hyers stability of a generalized 4-dimensional AQCQ functional
equation

A(Zl +22+A(Z3+Z4))+A(Zl +22—A(Z3+Z4))
= /\2{/\(21 +22+Z3+Z4)+A(Zl +Zz—Z3—Z4)}+2(1—/\2)A(Zl +Zz)
-39
A @+ 20) + A (202 +2) ~4(A G + ) + Az - 2) ), ©

for all positive integers A with A > 2 in fuzzy Banach Space using two different methods. It is easy to verify
that (2) and (3) are equivalent to each other.

To provide stability analysis, assume that (S1, E), (Sz, E’) and (S3,E’) are linear space, fuzzy Banach
space and fuzzy normed space, respectively. For, notation we may assume a mapping Ay, : S1 — Sz by

Aach (le 22,23, Z4)
= A(21 + z7 +/\(Z3 +Z4)) +A(Zl + 2z —/\(Z3 +Z4))
- AZ{A(Zl +Zy + 23 +Z4) +A(Zl +2Zr —Z3 —Z4)}—2<1 —/\2)/\(21)
-2

— A @+ 20) + A (2023 +20) ~ 4 (A (2 +24) + Alz3 - 29) ).

Also, we take non zero substitutions for proving the results.

2. Fuzzy Stability Results: A is Even

The generalized Ulam-Hyers stability of 4-dimensional AQCQ functional equation (3) when A is even
is analyzed in this section.

2.1. Quadratic Case Fuzzy Stability Result
Theorem 2.1. An even function Ay : S1 — So satisfies the functional inequality

E(Augeq (21,72,23,24),©) 2 E' (@ (21,22, 73,24), ©), @)
where ® : S} — 83 be a mapping satisfying

El (A (271@21/ 27“022/ 271(023, ZmDZ‘I) 12 G))
> E' (07D (21,22, 23,24),©); ne{-1,1} (5)

where 6 > 0 with 0 < (g) < 1 and the condition

lim E' (@ (2™%zq,2™0z,,2™P25,2™%24) ,4™°0) = 1, (6)

D—00
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forall z1,25,23,24 € Sy and all © > 0. Then there exists a unique quadratic mapping Qg (z) : S1 — Sy such that

E (A (22) - 16A (2) - Q2 (2), ©)

At — )2
>FE ((DEVEN(Z/ Z,2,2), (m) |4 -6 @)),

where

S

E’ (®pyen(z,2,2,2),®) > min {E’( - —),@),E’ (D(z,-z2,2,2),0),

, zZ z z z , Az Az z z
Elo(z333)e)El(3 7 53))

and the mapping

E(lim % {A (2(@*1>“z) —16A (2“%)} -Q (2) ,@) =1,

O—00

forallz € Sy and all © > 0.

Proof. Setting (z1, 22, z3,24) by (g, _?Z, g, g) in (4) and using evenness of A, one can have

E[2A (A2) - 2A2A( )—M@A(z )~ 8A()),© >E'(q>(5 =25)9)
z z 12 z 2,2 = 22'22)°)

and with the help of (FBS3), we have
E(24(1 - A%)A (A2) - 24(1 - A)A2A@) — (1 - 12) (A* = 12) (2A(22) - 8A(2)),

)2 ’ E__ZEE) )
1201- %8) 2 F'((3, 55,5, 5).0),

for all z € §j and all © > 0. Replacing z by 2z in (10), one can arrive

(=)
g (2A(42) - 8A@22)),©

E|2A (2Az) = 2A2A(22) — :

>FE’ (CD (Z, _Z/Z/Z)/®)/

and with the help of (FBS3), we arrive

/\4 _ AZ
g (2A(4z) — 8A(2z)), 6@] >E (D(z,-z272),0),

E
2

12A (2Az) — 12A%2A(22) —

forallz € S;and all ©® > 0.

Again setting (z1, 22, 23, z4) by (g ) in (4) and using evenness of A, one can obtain

z2zz
22’3
E(A (A +1)2)+ A (A= 1)2) = 124 (22) - 2(1 - 22) AG)

- @ 2A (22) - 8A (z)),@) >F (cp(g, 2z g)@),

(10)

(11)

(12)

(13)

(14)
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and with the help of (FBS3), we obtain
E(12A2A((A + 1) 2) + 12A2A (A = 1) 2) - 12A*A (22) - 24A% (1 - 12) A(2)

S (122 - 0)z£/(0(5,%2,2),0)
A2 (A% = A?) (2A (22) - 8A (2)),124%0) > E (@(2,2,2,2 ,0), (15)
forallz € S; and all ® > 0.

A
Further setting (z1, 22, z3, z4) by (%, ?Z, %, g) in (4) and using evenness of A, one can get

E(A (212) = A2 (A (A +1)2) + A((A = 1)2) = 2(1 = A?) A(A2)

- @ (A (22) - 8(Az)),®) >E (qn(

and with the help of (FBS3), we get

Az Az z z)’ )’ (16)

272’22

E(12A (212) - 1222 (A (A + 1) 2) + A (A = 1)2)) - 24(1 - 12) A (A2)

(17)

—(A‘*—A2)(2A(zz)—8(Az)),12®)ZE' (@(AZ Az z Z), )

272’22
for all z € S7 and all © > 0. With the help of (FBS4) and it follows from (11), (13), (15), (17), we achieve

E ({A(4z) — 20A(22) + 64A(2)}, (%) 6)

> min {E (24(1 — 1?) A(A2) - 24(1 = A)A%A(2)
—(1-22)(A* - 2?) {2422 - 8A@)}, 12(1 - 1) ©),
E(12A2Az) — 12A%A (22) - (A* = A?) {A(4z) - 4A(2z)}, 60),
E(12A2A((A + 1) 2) + 12A2A (A = 1) 2) = 12A*A (22) - 24A% (1 - 12) A(2)
= A2 (A= 2%)2A(22) - BA (1)}, 1242 ©),
E(12AQ2Az2) - 1222{A (A + 1) 2) + A (A= 1)2) } - 24 (1 = A?) A(A2)
- (- 2?){2A22) - 8(A2)}, 120 )}
E (cp(%, % = %),@ )} — E' (@pven (2,2,2,2),0), (18)
forall z € Sy and all © > 0. Define a function A, : Sy — S, by
Ao (2) = AQ2z) - 16A(z), (19)
for all z € Sy. It follows from (18) and (19), we reach

19 + 1242
E (AQz(ZZ) - 4AQ2(Z), (w) @)

2 min o

= ({A(4z) - 16A(22)} - 4{A(22) - 16A(2)}, (13%1%2) @)

= EI (CDEVEN(Z/ z,Z, Z)/@ ) 7 (20)



J. M. Rassias et al. / Filomat 39:35 (2025), 12661-12689 12666
for all z € §; and all © > 0. With the help of (FBS3) and it follows from (20) that

19 + 12A2 1
A —A2 ] 4

E (}I AQZ(ZZ) - AQZ(Z)/ ( 6) = EI (CDEVEN (Z/ z,z, Z) ’ @ )/ (21)

for all z € 87 and all © > 0. With the help of (FBS3) and (FBS4), changing z by 2? z in (21) and again
changing © by 6° © in the resulting inequality, we land

1 1 o 1 (1941222) [0
g (4@+1 A (22) = g5 272), ( Oy ) 14l ®)
2 E (CDEVEN (Z/ Z,2, Z) ’ G)) ’ (22)

for all z € S; and all ©® > 0. One can easy to verify from (22) that

E | Ag(z) - 41@ A (2°z), — (19 - 12)\2) i [g]
p=0

[0

[0
1 1 1 (19 + 1272 071°
= prl ) _ — P Z === . el
_E[ZO{WAQZ(Z - 4 A @)} (Mz);m 0

> U min {E ({4P+1 AQz( p+1z) - % A (2%)},;L .(1i4+_1i/2\2) ) [g]p @)}

[0]
> | ) min(E' @even (2,2,2,2),©)) = B (@even (2,2,2,2),0), (23)

for all z € §j and all ® > 0. With the help of (FBS3), changing z by 2% z in (23) and again changing © by
0¥ © in the resulting inequality, we obtain

1 1 1 [(19+ 1242\ & [0+
E| oA @ 2) - 5 A (2°2°2), (—)ZH ©

4w 4orw 4 A4 — A2 4
p=0
> EI (q)EVEN(Z/ z,z, Z)/ ®) ’ (24)

for all z € S; and all © > 0. With the help of (FBS3), it follows from (24) that

E( L p o (29 2) = —— Agp (27 272), @)

4‘(0 4(D +w

> E' | Prven (2,2, 2, 2), , (25)

for all z € §; and all ® > 0. By data and the Cauchy criterion for convergence, (FBS5), implies that the
sequence {% A (2“’2)} is a Cauchy sequence in fuzzy Banach space (Sy, E’) and this sequence converges
to Qx(z) . So, by notation, we write

1
E (QQZ (@) - lim = A (2°2), @)

=F ( lim Oz (2) - 4% {A(2°72) (22) - 16A (202)},@) =1, (26)
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forall z € §j and all © > 0. Taking w = 0 and @ tends to infinity in (25), we arrive

(/\4 - AZ) (4-0) O
(19 + 12A2) ’

E(Ag(2) - Q(@), ©) 2 E'| Peven (2,2,2,2), (27)

for all z € §; and all ® > 0. Now, we have to prove the existence of Qg (z) satisfies (3), substituting
(21,22, 23, 24) by (2921,2%23,2%23,2%24) in (4) and using (FBS3) , we get

1
E (g5 Mug (2°21,2°2,2°23,2°2),0 | 2 B (@(2°71,2°2,2°2,2°21) 4° ©), (28)

for all z € §7 and all © > 0. Now, from (6), (26), (27), (28) and taking @ tends to infinity, we arrive

E (QQQ (Z1 +2z,+ A (Z3 + Z4)) + QQ2 (21 +z,— A (Z3 + Z4))

- AZ{QQZ (z1+ 20 +2z3+24) + Qoo (21 + 20 — 23 — 24) } -2 (1 - /\2) Qg2 (21)
-

— 51002 (22 +24)) + Q2 (<223 + 24))

- 4{QQ2 (z3 +24) + Q0o (—23 — 24) }})

> min {E (QQz (Zl + 2z + /\(Z3 + Z4)) - %A (2lD (Zl + 2z + /\(23 + Z4)))),

@

E (QQZ (z1 + 22 — A(z3 + z4)) — 4%/\ (2% (z1 + 22 — Azs + Z4)))),

E( - /\2 {QQ2 (21 +2zy +2Z3 + Z4) + QQZ (Z1 +2zy —Z3 — Z4)}
2
40

+ {A(2‘D (21 +zy + 23 -1-24))+/\(2(D (21 + 2y —Z3 —24))}),

2(1-22)

E [—2 (1 - )\2) Qg (1) + =5

A (2@ Zl)] 7
2

E(_M

1002 (223 + 24)) + Q02 (<223 + 24))

—4 {QQZ (23 +24) + Qo2 (—23 — 24)} }

(A4 B /\2){

F (AR 27 (23 4 20) + A 220 (23 +20)
~4{A Q% (4 2) + AQY (-z-2))})
E(%@A (2° (21 + 22+ Azs +22))) + 4%/\ (2° (21 + 22 — Az +2)))
12 2(1-22)

+ 4—@ {A (26D (21 +2Zp +2z3+ Z4)) + /\(26D (21 + 2y —23 — 24))} + A(2® Zl)

4o
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(A4 B /\2){

MEETYT

A (2 2@ (23 + Z4)) + A (—2 2@ (Z3 + Z4))

~4AQ° @5 +29)+ AQ° (-2 -2 )}

> min{l, 1,1,1,1,EF (q>(2wz1,2@z2, 2@z3,2@z4), 42 @ )}
=min{1,1,1,1,1,1}
=1, (29)

for all z1,25,23,24 € S and all ® > 0. Using (FBS2) in the above inequality, which gives the existence of
Qo (z) satisfies (3). It is easy to see that the existence of Qg; (z) is unique. Indeed, from (FBS3) and taking
o tends to infinity and using (FBS5), we obtain

E(Qa (2) - QS (2),20)

_E (4% [Q02 (272) - A (2°2) + A (2°2) - Q2 (2°2)} 2 @)

> min {E (Qg2 (2°2) - A (2°2),4° ©), E(A 2°2) - QF, (2°2) ,4° ©)}

(1*-12) @4-0) 40
(19 + 1212)

Dryen (2%2,2%2,2%2,2%7), )

> min {E’

(/\4 - )\2) (4-0)4°0
(19 + 1212)

E’ [q)EVEN (Z(DZ, Z(DZ, Z(DZ, 202) ,

|

(/\4 ~N2) (4-0) 420

=F
(19 + 1212)

Dpyen (292,292,292,272),

=F

Drven (2,2,2,2), 02 (19 + 12A2)

=1, (30)

for all z € S; and all ® > 0. By (FBS2) and (30), we see QO (z) is unique for all z € S; and all © > 0. Thus
the theorem holds for = = 1. .
On the other hand, changing z by 5 in (20) and using (5), (FBS3), we achieve

4 19+12A2 , 7z 7z z z
; (AQZ & ‘4AQZ(§)’(W) 9) =k (q’EVEN(ii’ﬁfﬁ)f@)
= E’ ((DEVEN(Z/Z/Z/Z)/Q @ ), (31)

()L4—/\2) (4-9)4@@]

forallz € §; and all © > 0. With the help of (FBS3) and (FBS4), changing z by 2% in (31) and again changing

O by 6% in the resulting inequality, we land

2 2\ (19 +1202\[47° ,
E(4wAQ2(2—®)-4@+1AQ2(2Q+1),( o1 )[5] ®)ZE @even (2,2,2,2),0), 32)

for all z € §; and all © > 0. It follows from the above inequality that

(C]
—(131322)[%](0 / (33)

zZ Z ’
E (4(DAQ2 (2_0) - 4(D+1AQ2 (W) 7 @) = E (DEVEN (Z/ Z,z, Z) 7
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for all z € §; and all ® > 0. The rest of the proof is similar to that of the previous case. Hence the proof is
complete. [

Corollary 2.2. An even function Ay, : S1 — Sa satisfies the functional inequality

E' (A, 0),
4
E, (A Z |ZT|\II 16)/

7=1

E(Aach (21122/ Z3/Z4)/® ) > E’ (A ﬁ |ZT|\I],®), (34)
=1

4 4
E’ (A { Yz + 11 |zT|‘V} , @),
=1 =1

forall z1,25,23,z4 € S1 and all ©® > 0 with A a positive constant. Then there exists a unique quadratic mapping
Qo (2) : S1 = S such that

E(A(22) - 16A(2) - Q (2), ©)

At A2
EA | S—2= ;
( ’(19+12/\2)|3|®)’

V' 4 _ 12
E’({6A+8A2‘I’+2A/\‘V}E' ,4( A A

19 + 1242
A= A2

——— | -2 0;,v~1
) -2l @)+
A4—/\2
19 + 1242

) |4—2‘1’|®);\1'¢2

\%

(35)
E’({A+2A2“’+A)\“’}|§r\y,4

24 W
E’({7A+10A2“’+3A/\4W}|§| ,4( )|4—24‘1’| @);\y;t%

forallz € Syand all © > 0.

2.2. Quartic Case Fuzzy Stability Result
Theorem 2.3. An even function Ay : S1 — Sy satisfies the functional inequality (4) where ® : S — Sz be a
mapping satisfying (5) where 6 > 0 with 0 < (%) < 1 and the condition

lim E’ (CD (271@ 21,2”“7 Zn, an Z3, 27‘[@ Z4) P 16mD ® ) = 1, (36)

D— 00

orall z1,25,23,24 € S1 and all ® > 0. Then there exists a unigue quartic mapping Qo4 (z) : S1 — S such that
f que q pping Qg

4_q2
E(A(22) -4A(2) - Qu(2),0 ) 2 E/ (@EVEN(Z, z,2,2), (1;—1;2) 116 - 6] @), (37)

where E' (Peyen(z, 2, 2, 2), © ) is given in (8) and the mapping

E(lim

@—00 16T @

[A (200 72) ~4A 27 92)) - Qs (2), @) =1, (38)
forallz € Sy and all © > 0.

Proof. Now, Define a function Ags : S1 = S, by

Aou(z) = A(2z) — 4A(z), (39)
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for all z € 8;. It follows from (18) and (39), we reach

19 + 12A?
E (AQ4(ZZ) - 16AQ4(Z), (W) @)

~F ({A(4z) — 4A(22)} - 16{A(22) - 4A(2)}, (%) @)

= E, (CDEVEN(Z/ z,z, Z)/ ® ) ’ (40)
for all z € §; and all © > 0. With the help of (FBS3) and it follows from (40) that

, 19 + 1222\ 1
E (E Aos(22) - AQ@/(h) 16

for all z € §; and all ® > 0. The rest of the proof is similar to that of Theorem 2.1. Hence the proof is
complete. [

@) >F (CDEVEN(Z,Z, zZ, Z),@ ), (41)

Corollary 2.4. An even function Ny : S1 — Sy satisfies the functional inequality (34) for all zy,22,23,z4 € S1
and all © > 0 with A a positive constant. Then there exists a unique quartic mapping Qos (z) : S1 — S such that

E(A(22) - 4A(2) - Qe (2),©)

’ /\4_/\2 .
Y 4 _ 12
E’({6A+8A2‘P+2A)\‘V}’§q, (ﬁ) 16 - 27| @);‘I’iél
z ZpY [ A2 “2)
E’({A+2A24‘V+A/\4“’}|§| ,4(m) |16 — 24 @);\I’qtl
E'({7A+10A24‘1’+3AA4‘I’}|§|N,4 (%) |16 — 247 @);‘I’i 1

forallz € Sy and all © > 0.

2.3. Quadratic-Quartic Case Fuzzy Stability Result
Theorem 2.5. An even function Ay : St — Sy satisfies the functional inequality (4) where ® : S} — Sj be

TT TT
a mapping satisfying (5) where 6 > 0 with 0 < (g) <10< (%) < 1 and the conditions (6), (36) for all

21,22,23,24 € S1 and all ® > 0. Then there exists a unique quadratic mapping Qg (z) : S1 — S, and a unique
quartic mapping Qoa (z) : S1 — Sy such that

E(A@) - Q@ (2) - Qu(2),0)

, /\4 _ )\2
> E ((DEVEN(Z, 2,2,2),3 (m) {14-61+16-0) }@), (43)

where E' (Prven(z,2,2,2),0 ), Qoo (2) and Qoy (2) are given in (8), (9) and (38), respectively for all z € Sy and all
0 >0.

Proof. By Theorem 2.1, there exists a unique quadratic mapping QZQ2 (2).: 81 — & such that

, /\4 _ A2
E(AQ2)-16A(2) - Q% (2),0) > E ((DEVEN(Z, 2,2,2), (m) 4 - 6] @), (44)

forallz € S;and all © > 0.
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Also, by Theorem 2.3, there exists a unique quartic mapping Q‘é 4 (2) : 81 — & such that

A4 _ /\2
4 ’
E(AQR2)-4A(2) - Qb (2),© ) 2 E (@EVEN(Z, 2,2,2), (m) 116 - O] @),
for all z € S; and all ® > 0. Now,
E(12A(2) + O3, (2) - O}, (2),20)
= E(A(22) - 4A(2) - Qf, (2) — A (22) + 16A (2) + Q2 () ,20)

> min {E (A (22) - 4A (2) - O, (2),©),E(A (22) - 16A (2) - 02, (2), ©) }

A - A2
—F (2 ®even(z, 2,2, 2), (m) {14-061+116-0) }@),

for all z € S; and all ® > 0. It follows from (46) that

E(r@+ 5 Loz ) - 1@34@) o)

/\4 _ /\2
> FE’ - = - -
>E (2<1>EVEN(Z,Z,Z, z),6( 5T Az) {14-01+116 - 0] }@),
for allz € S; and all ® > 0. So, if we take

1 1
Qo (Z)Z_E%Z (z, and Qg (Z)zﬁ%‘l @),

we arrived at our desired result. Hence the proof is complete. [

12671

(45)

(46)

(47)

Corollary 2.6. An even function Aageq 81 — 8 satisfies the functional inequality (34) for all z1,z5,23,24 € Sy
and all © > 0 with A a positive constant. Then there exists a unique quadratic mapping Qg (z) : S1 — Sy and a

unique quartic mapping Qou (z) : S1 — Sy such that
E(A@)-Qq(2) - Qu(2),0)
) M-
E(A3(19 12/\2) {13] + 15} )
E'({6A+8A2‘1’+2AA‘V| |
AT-A w w .
(19”2/\2) {Ja=27] + 16 - 27|} @),\P¢2,4
E({A+2A2“’+A/\“’| |
*(vrar)|

\%

19 + 1212
E'({7A+10A2“’+3AA4‘V |§'

(%) {ja = 2%%| + 16 — 247} @);\I’ #1,1

|4 - 24%| + 16 - 247} G));\I’ #1311

forallz € S and all © > 0.

3. Fuzzy Stability Results: A is Odd

(48)

The generalized Ulam-Hyers stability of 4 D AQCQ functional equation (3) when A is odd is analyzed

in this section.
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3.1. Additive Case Fuzzy Stability Result
Theorem 3.1. An odd function Nggeq : S1 — Sy satisfies the functional inequality

E (Aach (21,22,23,24) ,© ) > E' (D (z1,22,23,24),©) (49)
where ® : 8} — 83 be a mapping satisfying
E'(AQ7® 21,27 25,27 23,27 % 24),0) = E' (0™ ® D (21,22,23,24),0 ) ; m € {-1,1} (50)
9 Ve
where 0 > 0 with 0 < (E) < 1 and the condition
lim E' (@ (2™ 21,27 z,, 2™ 7z3,27%7,),2"* @) =1, (51)

D—00

forall z1,2,23,24 € S1 and all © > 0. Then there exists a unique additive mapping Qa1 (z) : S1 — Sy such that

4_ 12
E(A(2z) —8A(z) — Qa1 (2),0) > E’ (fbopp(z,z,z, Z)'(l/\6 — BA)\Z) |2 - 0| @), (52)

where
E’' (®opp(z,z,2,z),0)
Zz 2z z zZ z zZ z
> . ’ e ’ e ’ e
‘mm{E (q)(z’z’z’z)’@)’E (cp(z’z’z’z)’G)’E (q)(z’z’z’z)’ )

E,(q)((1+/\)z (1+A)z z z)’@),E,(cD((l—/\)z (1—/\)2,;%),@)

©)

2 72 272 2 72

o2 222 '
F(o(3555).0)F@Gzz2,0),
, zZ z , z z 3z 3z
E (cp(z’z’z’z)’G)’E ((D(z’z’ 2'72 )’6)’
, (1+240)z 1+20)z z z , 1-20)z 1-2A)z z z
E (®( 2 7 2 /2/2 I® IE (D 2 7 2 /2/2 /® 7 (53)
and the mapping
E( lim % A(2@D72) —8A (27 P2)} — Qa1 (2),0) =1, (54)
u)—>002

forallz € Sy and all © > 0.

Z Z zZ Z

375075 E) in (49) and using oddness of A, one can have

Proof. Setting (z1,22, 23, z4) by (

E(A((1+A)2) + A((1-1)2) - A*A(22) - 2(1 - %) A(2), ©)

(o222 2
2e(0(3533)9) =)

and with the help of (FBS3), we have
E(z(l — A+ N)2)+201 =AHA (1= A1)2) =2 A%(1 =A%) A(22)

~4(1-2)A@,20-1)0) > F (cp(g, g gg)@)) (56)
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forallz € S;and all ® > 0.

Again setting (z1, 22, 23, z4) by (z, z, g, g) in (49) and using oddness of A, one can obtain

E(A (Q+M)2)+A((2-7A)z) = A2A (32) — A2A (2) = 2 (1 - A?)A(22), @)

/ zz
>F (CD(Z,Z,Z,Z),@), (57)

and with the help of (FBS3), we obtain
E(A2A(@2+A)2) + A2A (2= V)2) - A*A(32) - AA(2) - 202 (1= A2) A(22), A2 ©))
’ zz
>E (CD(Z,Z,Z,Z),@), (58)

forallz € S;and all ©® > 0.

z z
Further setting (z1, 22, z3, z4) by (— =

25 z, Z) in (49) and using oddness of A, one can get

E(A (1+21)2) + A((1 = 21)) = A2A (32) + A2A(z) = 2 (1 - /\2) A(2) ,@)
No(? 2
>E (@(Z,Z,Z,z),e), (59)
forallz € S; and all ® > 0.
(I+A)z I+A)z z z
2 ' 2 '2'2

Once again setting (z1, 22,23, z4) by ( ) in (49) and using oddness of A, one can

arrive
E(A (1 +20)2) + A(2) = A2A((2 + A)z) — A2A (A2)
1+A)z 1+A)z z z) @)

(60)

_2(1—A2)A((1+/1)z),®)ZE’(CD( 555

forallz € S;and all ® > 0.
1-A)z 1-A)z zz
2 7 2 2’2

Finally setting (z1, z2, z3, z4) by ( ) in (49) and using oddness of A, one can reach

E(A((1=2M)2) + A () = AA (2 - )2) + A2A (Az)

(1-AN)z I-A)z z z o
2 7 2 1212 7 7

~2(1-2%)A((1-A)2),0) 2 E (qn( (61)

forallz € S;and all ® > 0.
With the help of (FBS4) and it follows from (56), (58), (59), (60), (61), we achieve

E((A*-22) {A (32) — 4 A (22) + 5A (2) } (5-12)0)
e (o(2 35 30 #(o(s 32 0) ol 33 0).
E,(q)((1+/\)z 1+A)z z z),®),E,(q)((l—)\)z 1-Mz z E),@)}, ©2)

2 7 2 22 2 7 2 22
for all z € §j and all © > 0. Put z by 2z in (55) , we have

E(A(z 1+M)2)+AQ1-A)z)— A2 A(dz) - 2(1 - AZ)A(ZZ),G)) > E' (D(z,z,2,2),©) (63)
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and with the help of (FBS3), we have
E(AAQ1+1)2)+ A2 A@Q(1-1)2) - A* A(dz) - 242 (1-12)A(22),1%©)
> E'(D(z,2,2,2),0), (64)

forall z € §; and all © > 0. From (59) with the help of (FBS3), we obtain

E(z (1 - /\2) A((1+24)z) +2 (1 - )\2) + A((1-21)) - 242 (1 - /\2)A (32)
£202(1-22)AE) -4(1- 2 A@),2(1-12) ©) = F (cp(g, g,z,z),(a), (65)
forallz € S; and all ® > 0.
Again putting (z1, 22, 23, z4) by (

€8]

32—2, Z) in (49) and using oddness of A, one can arrive

N

zz
22’
E(A((1+3A)z)+A((1—3/\)z)—/\2A(4z)+)L2A (22)—2(1—/\2)A(z), @)
2E’(¢>(— z = —),@), (66)
forallz € S;and all ® > 0.

14240z 1+20)z z z
2 7 2 '2'2

Once again putting (z1, z2, z3, z4) by ( ) in (49) and using oddness of A, one can

arrive
E(A((1+30)2) + A((1+A)2) = PAQ(1+ A)2) - A2A 2A2) - 2(1 = A2) A((1 + 2A)2), ©)

, 1+20)z 1+20)z z z
ZE (CD( > s 2 /E/E)/@)/ (67)

forallz € S;and all ® > 0.
1-20)z (1-2M)z zz
2 7 2 2’2

Finally putting (z1, 2, z3, z4) by ( ) in (49) and using oddness of A, one can arrive

E(A((1=30)z) + A((1 - A)2) = PAQ(1 - D)2) + A2A (2A2) - 2(1 = A2) A((1 - 2A)2), © )

, 1-20)z 1-2M)z z z
ZE (CD( 5 s 2 /E/E)/(a)/ (68)

forallz € Sy and all ©® > 0.
With the help of (FBS4) and it follows from (55), (63), (65), (66), (67), (68), we achieve

E ((A4 - /\2) {A (4z) — 2A (32) — 2A (22) + 6A (2)}, (6 - )\2) @)
> min{E’ (@(;%;;)@)E (®(2,2,2,7),0), E (cp(g, g,z,z),(a),

E’(@(Z z 3z 32),@),E’(®((1+2A)Z 1+20)z z Z),G)),

22272 2 2 22

, 1-20)z (1-20)z z z
PSR ) )
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for all z € §; and all © > 0. With the help of (FBS3) (FBS4) and it follows from (62), (69) , we reach
E((A* - 22){A (42) - 10A (22) + 16A (2)}, (16 - 312) ©)
nle (02222 0)F (o2 (ofzz 2 2
= mm{E (q)(z' 2’72 2)'® )’E (q)(z' 2'2’2)’6 )’E (q)(z’z’ 2’ 2)’6 )

I @((1+/\)2 1+A)z z z) @),E’(@((l_/\)z,(l_/\)z z E) ®)

( 2 22 2 2 '2"2)
(
(
|

, ,g ) G)) E (®(z,2,2,2),0),

z

2

z , z z 3z 3z
/E/ ) ) E (®(§/§/7/?)/®)/
+

(1 2/\2 1+20)z z z , 1-20)z (1-2A0)z z z
22 2 2) o o L2202, 020 2 2 o )|

=F (CDODD(Z/ X Z) C) )/ (70)

S

for all z € §; and all © > 0. With the help of (FBS3) it follows from (70), that

16 — 3A2

E (A (42) — 10A (22) + 16A (2), ( ~ 12

)@) > E' (Popp(z,z,2,2),0), (71)

for all z € §; and all ® > 0. Define a function Aa; : S1 — S by
Am(z) = A(2z) - 8A(z), (72)

for all z € S;. It follows from (71) and (72), we reach

2
E@mm)zvmwm %)@

=E ({A (4z) — 8A (22) } - Z{A (22) - 8A (2) }’(1/\64—_3;\22) @)
> E' (Popp(z,2,2,2),0), o

for all z € §; and all © > 0. With the help of (FBS3) and it follows from (63) that

2
E(% Aa1(2z) = 2A41(2), (—16 oA ) L

P E@) > E' (Popp(z,2,2,2),©) (74)

for all z € §; and all ® > 0. The rest of the proof is similar to that of Theorem 2.1. Hence the proof is
complete. [

Corollary 3.2. An odd function Aageg : S1 — S satisfies the functional inequality
E' (A 0©),
E (A 241 Jz] ¥
E (Aach (z1, 20,23, 24) ,@) 29\ (A T‘f_ll iz,
=1
(8{£ v+ T} ),

@)
®y (75)

El
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for all z1,25,23,24 € 81 and all ® > 0 with A a positive constant. Then there exists a unique additive mapping
Qa1 (2) : 81 = S; such that

E(A(2z) - 8A(2) — Qa1 (2),0)

A -2
E(A 10);
( ’(16—3A2)| '6)’

E’(A{24+10‘2‘*’+2‘3‘*’+2‘(1+/\)‘*’+2-(1—)\)‘*’

+2-(1+2A)‘1’+2-(1—2/\)‘I’}|5\p 11 AL |2—2‘I’|®)-\y¢1
2l 7 \16-322 ’
’ YA 4 4V 2W 2V _ bAY
. E(A{2+32 M 32V (14 Y 4 (1 - A) 76

A4 )2

16 — 32

E’(A{26 +11-20% 4238 12 (1 + )Y 42 (1 - )WY
421420 42 (1 =20 +3-22Y 132 L 1+ )Y + (1 - 1)2Y

A4 _ /\2
+(1+20)2Y + (1 - 2427, 11 ( )|2 - 24| @);\If #1

(142027 + (1 —2A)2‘1’}|§1”,11( )|2—24“’|®);\y ;e}i

16 — 312
forallz € Sy and all © > 0.

3.2. Cubic Case Fuzzy Stability Result
Theorem 3.3. An odd function Nsyey : S1 — Sy satisfies the functional inequality (49) where @ : S‘f — S3bea

mapping satisfying (50) where 6 > 0 with 0 < (g) < 1 and the condition
gim E (D (2™Pz1,2™Pz,,2™%25,2™%2,) ,8™0) = 1, (77)

forall z1,2,23,z4 € Sy and all © > 0. Then there exists a unique cubic mapping Qcs (z) : S1 = S, such that

4_ 92
E(A(2z) —2A(2) - Qc3(2),0) > E (CDODD(Z, Z,2,2), (%) |8 — 6] @) , (78)

where E' (Popp(z, 2,2, 2), ©) is given in (53) and the mapping

E ( lim 87% {A(2€72) - 2A 272)} - Qcs (2) ,@) =1, (79)

O—00

forallz € Sy and all © > 0.
Proof. Define a function Acz : S1 — Sy by
Acs(z) = A(22) - 2A(2), (80)

for all z € S;. It follows from (71) and (80), we reach

_ 2
E (Acg(zz) - 8Acg(Z), (%) @)

=E ({A(4z) - 2A(22)} - 8{A(22) - 8A(2)}, (1)\64%3;22) @)

> EI (CDODD (Z/ z,z, Z)/ ®) ’ (81)
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for all z € §; and all © > 0. With the help of (FBS3) and it follows from (81) that

1 2\ 1
B ) 50) 2 E @onntezz0,0), )

E ;Acs(zz) AC3(Z)( 3

for all z € §; and all ® > 0. The rest of the proof is similar to that of Theorem 2.1. Hence the proof is

complete. [

Corollary 3.4. An odd function Aggeq : S1 — Sy satisfies the functional inequality (75) for all z1, 22, 23,24 € Sy and
all ©® > 0 with A a positive constant. Then there exists a unique cubic mapping Qcs (z) : S1 — S» such that

E(A(22) -2A(2) = Qc3(2),0)

, At - A2
E (Af(m)'” @),
E'(A{24+10.2‘V+2-3‘1’+2.(1+A)‘1’+2-(1—A)‘1’

A4
“’,11(16 3A2)|8 2o 3

P(Af2 4322 42 + Y 4 (L4 APV + (1

+2-(1+20)% +2-(1-24)"}|3

> (83)
Y A4 o 3
HL+ 2007 4+ (1- 20 |3 ,11(m)|8 2o«
E'(A{26+11.24‘1’+2-34‘V+2.(1+A)4‘V+2.(1—A)4‘I’
F2- (1T + 204 +2- (1 =204 +3.22% 4 32¥ + (1 + )2V + (1 - 1)V
/\4
2V 2V 4\ 3
+(1+20)2Y + (1-21) },11(16 3)\2)|8 2 1®)W¢
forallz € Sy and all © > 0.

3.3. Additive - Cubic Case Fuzzy Stability Result
Theorem 3.5. An odd function Auyey : S1 — So satisfies the functional inequality (49) where @ : S‘f — 83 be

Tt

a mapping satisfying (50) where 6 > 0 with 0 < (g) <1,0< (g) < 1 and the conditions (51), (77) for all

21,22,23,24 € S1and all ® > 0. Then there exists a unique additive mapping Qa1 (z) : S1 = S, and a unique cubic
mapping Qcs (z) : S1 — Sy such that

E(A(2) - Qa1 (2) - Qcs (2), ©)

16 — 342

where E' (Popp(z, 2, 2, 2), ©), Qa1 (z) and Qcs (z) are given in (53), (54) and (79), respectively for all z € Sy and all
0 >0.

>F (q>ODD(z, 7,7,2),3 (M) (2-61+18-0] )@) (84)

Proof. By Theorem 3.1, there exists a unique additive mapping Q! (z).: 81 — S, such that

4 2
E(A(22) -8A(2) - Q}; (2),©) 2 E/ (%DD(Z, 2,2,2), (%) 2 -6 @) (85)

forallz € S; and all ® > 0.
Also, by Theorem 3.3, there exists a unique cubic mapping (2, (z) : S; — S, such that

M- A2
E(AQ2)-2A(2) - Q3 (2),0) > E (cDODD(z, 2,2,2), ( T A2) 18— 0 @) (86)
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for all z € S; and all ® > 0. Now,

E(6A(2) + Q) (2) - Q% (2),20)

= E(A(22) - 2A(2) - Q% (2) - A(22) + 8A (2) + Q) (2),20)

> min {E (A (22) - 2A (2) - Q% (2),©),E(A (22) - 8A (2) - Q) (2), O

A — )2
> min {E’ ((DODD(Z, Z,2,7), (m) 2 - 0] @) ,

/\4 _ /\2
E ((DODD(Z/ Z,2,2), (m) 18 -0 6)}

, /\4 _ /\2
= E"|2®opp(z, 2,2, 2), 6312 (2-01+18-0)0O], (87)

forallz € §; and all © > 0. It follows from (87) that
1 1
E (A (@) + 20l () - 0% (z),@)

/\4 _ A2
m) (12-01+18-0) 6)/ (88)

forallz € S; and all ® > 0. So, if we take

Z El (Zq)ODD(Z, Z/ Z/ Z)/ 6 (

1 1
Qa1 (z) = _EQ}“ (2), and Qc3(2) = EQ?B (2),

we arrive our desired result. Hence the proof is complete. [

Corollary 3.6. An odd function Aggeq : S1 — Sy satisfies the functional inequality (75) for all z1, 2, 23,24 € Sy and
all © > 0 with A a positive constant. Then there exists a unique additive mapping Qa1 (z) : S1 — S, and a unique
cubic mapping Qcs (z) : S1 — Sy such that

E(A(2) = Qa1 (2) - Qcs (2), ©)

, PpE:
E (A,3(m) (1 + |7|)@),

E'(A{z4+10-2‘P+2-3‘1’+2-(1+A)W+2-(1—A)‘P
¥2-(1+20) +2-(1-20)7) [3]"

3(L){|2 27|+ |8 2%} ); W#1,3

16 — 3A2

E’(A{Z +3-22% 4 2% 1 3 1+ )Y 4 (1 - AP

\%

(89)

7

+(1+2A)2‘P+(1—2A)2W}§
A )2 . . 13
3(—16_3A2){|2—2 |+[8-2"|}e); Vg
E’(A{26+11-24“’+2-34‘1’+2-(1+/\)4‘y+2-(1—/\)4“’

+2- (14208 +2- (1 =214 +3. 22V 4 327
F(L+ )PP+ (1= APV + (1+ 202 + (1-20)27),

A4 13
3(16 3A2){|2 24| + |8 - z”)}) WL
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forallz € Sy and all © > 0.

4. Fuzzy Stability Results: A is Odd and Even

The generalized Ulam-Hyers stability of 4-D AQCQ functional equation (3) when A is odd and Even is
analyzed in this section.

Theorem 4.1. A function Nsyey : S1 — Sy satisfies the functional inequality
E (Aﬂqu (21/ ZZ/ Z3/ 24) 4 ®) Z El (q) (le ZZ/ Z3/ Z4) 7 ®) (90)

s T
where O : S‘l1 — 83 be a mapping satisfying (5) and (50) where 6 > 0 with 0 < (g) <1,0< (g) <1,

0< (g) <1,0< (%) < 1 and the conditions (6), (36), (51), (77) for all z1,25,23,24 € Sy and all © > 0. Then

there exists a unique additive mapping Qa1 (z) : S1 — S» a unique quadratic mapping Qg (z) : S1 — Sz a unique
cubic mapping Qcs (z) : S1 — Sy a unique quartic mapping Qo4 (z) : S1 — S, such that
E(A®) - O () - Qe (2) — Qcs (2) — Q04 (2), 40)

> E'((DEVEN(Z, z,z,z) + Opven(=z, 2z, ~2z,~z) + Popp(2, 2, 2, 2) + Popp(—2, —2, —z, —2),

At =22 M- )2
60 {(m) (4-06]+16 - 06]) + (m) (2-0]+(8 - QI)} ), 91)

where E' (Peven(z, 2,2, 2), ©), Qo (2), Qo4 (2), E' (Popp(z, 2, 2, 2), ©), Qa1 (2), Qcs (2) are given in (8), (9), (38),
(53), (54) and (79), respectively for all z € S and all © > 0.

Proof. Assume a function Agyen (z) by

(A@) +A(-2). (92)

N =

Apven (2) =
From this we see

Apven (0) =0, Apven (=2) = Apven (2), (93)
for all z € S;. Now,

E (AEVENach (21,22,23,24), 2@)

> min {E (Aach (Zl/ 22,23, 24) ’ ®) ,E (Aach (_er —Z2, 723, _24) ’ 6)}
> min{E" (P (z1,22,23,24),©), E' (P (21, —22, —23, ~24) , O)}, (94)

for all z € S; and all © > 0. From (94) and by Theorem 2.5, there exists a unique quadratic mapping
Qo (z) : S1 = S, and a unique quartic mapping Qo4 (z) : S1 — S, such that

E(Agven (2) - Qoo (2) - Qs (2),20)

) , /\4 _ AZ
> min {E (CDEVEN(Z/ z, Z,Z),3 (m) (|4 —-0|+]16 — Ql) @)
A+ — A2
E'(®pven(=2, 2, —2,—2), 3| ———2— ) (14— 6] + |16 —
( EVEN( Z,—2,-%, Z>,3(19+12A2)(| 9' +| 6 9|)®)}/ (95)

forallz € S;and all © > 0.
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Assume a function Aopp (z) by

Aopn (@) = 5 (A (&) = A(-2).
From this we see

Aopp(0) =0 Aopp (-z) = —Aopp (2),
for all z € S;. Now,

E (AODDach (21,22,23,24), 2®>

= min {E (At‘lch (er 22,23, Z4) ’ @) ’ E (Aﬂch (_er —Zy,—Z3, _24) 7 6)}
> min {E" (P (z1,22,23,24),©), E' (P (~21, —22, —23,—24) , O)},

12680

(96)

(97)

(98)

for all z € §; and all ® > 0. From (98) and by Theorem 3.5, there exists a unique additive mapping

Qa1 (z) : 81 = S, and a unique cubic mapping Qcs (z) : S1 — S; such that

E (Aopp (2) — Qa1 (2) = Qc3 (2),20)

A4 _ /\2

m)(lZ —0|+18 - 9|)®)
A4 _ /\2
16 — 372

> min {E’ ((DODD(ZI z,2,z),3 (

E’ (CDODD(—Z, -z,-2, —z),3( ) (2-6|+18-19) @)} ,

for all z € §7 and all © > 0. Define a mapping A (z) by
A(z) = Apven (2) + Aopp (2),

for all z € S§;. Using (95), (99) in (100) it follows that

E(A®) - Qi (2) - Qg (2) - Qcs (2) - Qqu (2), 40)

=E (AEVEN (z) + Aopp (2) = Qa1 (2) — Q2 (2) — Qcz (2) = Qa (2), 4@))

> min {E (Agven (2) - Qo2 (2) — Qoa (2),20) , E (Aopp (2) - Qa1 (2) - Qcs (2), 20)
A =22

19 + 12A2
At =2

19 + 12A2
A4 _ /\2

16 — 312
A4 _ /\2

16 — 3A2

> min {E’ (CDEVEN(Z, z, z,z),3( )(|4 —-0|+116 - 0)) @)

E (CDEVEN(—Z, -z,-2,-2), 3( ) (4-6|+]16 - 0)) @)

E’ (CDODD(Z, z,Z,Z),3( )(IZ -6 +8- 9l)®)

E’ (QDODD(—Z, -z,-2,-2), 3( )(|2 -0|+18-19) @)}

> El(q)EVEN(Z/ z,2,z) + Prven(-z,—z,~2z,—2)

+ ®opp(z,2,2,2) + Popp(-2z,~2z,~2,-2),

/\4_A2 /\4_A2
(4 - 16 — 2- - .
6@{(19+12A2)(| 0]+ 116 9|)+(16—3)\2)(| 0]+ 8 9|>})

Hence the proof is complete. [

(99)

(100)

(101)
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Corollary 4.2. A function Nayey : S1 — S satisfies the functional inequality
E'(A,0),
4
E, (A Z |ZT|\P/®)/
=1

E (Aach (le 22,23, 24) ’ ®) 2 E'(A ﬁ |ZT|W , e} , (102)

=1
4 4
E (A{Z 2™ + 1 IZTIW},G)),
=1 =1

for all z1,2,23,z4 € S1 and all ® > 0 with A a positive constant. Then there exists a unique additive mapping
Qa1 (2) : S1 = Sy a unique quadratic mapping Qg (z) : S1 — S a unique cubic mapping Qcz (z) : S1 — S»a
unique quartic mapping Qqa (z) : S1 — Sy such that

E(A®) -0 () - Qa (2) - Qcs (2) — Q04 (2), 40)

, /\4 _ AZ /\4 _ /\2 .
E (A, 30 {(m) (3] +115]) + (16 — 3A2)(I1I + I7I)}),

E'(A{30+182% +2AY +2-37+2-(1+ )V +2- (1 - 1)¥
+2-(1+20)Y +2- (1-20)%} |3

A4—/\2
3@{(m){(4—2‘1’|+|16—2‘1’|}
(/\4_A2

* m)“z—zﬂ + |8—2‘1’|}});\y #1,2,3,4
E/(A3+328 + A% 43227 132V 1 (14 A2 + (1 - APV

4
’

(14202 + (1 - 202 |§|4W,

> A4—/\2 (103)
/\4 —)\2
+(m){|2—2‘1’|+|8—2‘y(}}),\11¢ %,}1,?—1,1
E'(A{33+2120 + 304 4234 £ 2. (1 + )™ +2- (1 - )Y
+2(1 + 20)* +2(1 = 22)*Y + 322V 4+ 32¥
HLH DY+ (1 DY+ (142027 + (1 - 2A)2Y) E'w,
A4 =72
3@{(—19+12A2){14—2‘1’| +[16 - 2|}
/\4 —AZ
(e -2 - 2]} 2 4 420
forallz € Sy and all © > 0.

5. Fuzzy Stability Fixed Point Results: A is Odd

The generalized Ulam-Hyers stability of 4 D AQCQ functional equation (3) when A is odd is given in
this section.

5.1. Additive Case Fuzzy Stability Result
Theorem 5.1. An odd function Mgy : S1 — Sy satisfies the functional inequality (49) where @ : S — Ss be a
mapping satisfying

o O
Il
Hp

~.

(104)

e
=N

lim E'((pz1, 0322, p§ 23, p§21) ,p§O) = 1, po = {

NI= N
—
=N
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forall z1,25,23,24 € Sy and all © > 0. If there exists L = L(0), such that the function has the property

Z Z zZ Z
E' (@opp(z,2,2,2),©) = E (cDODD(2 = 2) @) (105)
1
E (L A_E(DODD (psz, psz, Psz, Psz) , ®) = E' (®Popp(z,2,2,2),0), (106)

forall z € Sy and all © > 0. Then there exists a unique additive mapping Qa (z) : S1 = Sy such that

1-6

E(A(2z) - 8A Q os>re([L_)o A ) 107
( ( Z)_ (Z)_ Al (Z)/ )— 1-L ODD(Z/Z/Z/Z)/ m ’ ( )

where E' (Popp(z, 2, 2, 2), ©) is given in (53) for all z € Sy and all © > 0.

Proof. Consider a set

5= {A1|A1 £ 81— 8o, Ay(0) = 0}. (108)
Define a general metric D on E by

D (A1, Ag) = inf{K € (0,00)E (A1(2) - A2(2), ) > E' (®ann(z,2,2,2), KO, (109)

for all z € §j and all © > 0. It is easy to see that (E, D) is complete.
DefineI' : £ — E by

TALD) = —Ai(ps2), (110)
Ps

for allz € S;. For A1, A; € &, we see

D(A1,Ap) <K
=>E (Al (Z) - AZ(Z)/ 8) = E ((DODD(Z/ z,z, Z)/ K®)

1 1
=E BAl(P(sZ) - gl\z(paz), @) > E' (Popp (psz, psz, psz, psz) , Kps®)

=>E (rAl (Z) - rAl (Z)I G)) = E ((DODD(ZI z,z, Z)r KL@)
— D(TA,,TA,) < KL
— D(TA1,TAy) < LD (Ay, As), (111)

forallz € S; and all © > 0. Thus, I' is strictly contractive mapping on E with Lipschitz constant L. With the
help of (106) when 6 = 0, it follows from (74), we reach

16 — 3A?
12
= D (A, Am) <L =L"°, (112)

E (%A/u (22) — Aa1 (Z),( )L@) > E' (®opp(z,2,2,2),0)

for all z € §; and all ® > 0. Changing z by 5 in (73) and with the help of (105), (106) when 6 = 1, it follows
from , we land

z E) )

"2'2

-5

(AAl(Z) 2AA1(2) (1;?3/{\22) )>E’ (Q)ODD (g
1=

= D (Aa1,TAa1) <

NIN

(113)
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for all z € S; and all ® > 0. We conclude from (112) and (113)
D(Am, TAx) < L', (114)

So, (FP1) of Theorem 1.6 holds. So by Theorem 1.6, we arrive at our desired result. Hence the proof is
complete. [

Corollary 5.2. An odd function Aggeq : S1 — Sy satisfies the functional inequality (75) for all z1, 22, 23,24 € Sy and
all ©® > 0 with A a positive constant. Then there exists a unique additive mapping Qa1 (z) : S1 — S» such that (76)
forallz € Sy and all © > 0.

Proof. Taking
E'(A, ®) /

E’ (A Y 2" )
|

E@Hwﬁ®,

({zm@+ﬁm} )

for all z1, 25, z3,z4 € 81 and all © > 0. If we change

E ((D (Zl/ZZI 23124) /®) =

— 0 0 0 0
(21,22,23,24) = (AE, 21,0522, A 73, Ay 24) ,

in the above equation, using (FBS3) and letting @ tends to infinity, we see (104) holds. By (105) and (53), we
have

E' (Popp(z, 2, 2,2),0)

Z Z Z Z
= ((DODD(Z 2/ 2) ®)

E' (A, ©)
E'(Z%{u 527 43% 4 1+ )Y + (1)

+(1+20) + (1 -2

2", 11@),

E (sz (24322 424 4 3% L (14 PV + (1- A2

- (115)
HL+ 207 + (-2 [3], 11@),
E’(z%{% +11 2% 423" 21 + )M + 21 - )Y +2- (1 + 204
+2-(1 =204 +3.22% 4 32Y L (1 + )2 + (1 - 1)
HL+ 20027 + (1 - 202, 11@)),
and
E’ (p ®opp(z,2,2,2), @)
1 E (p 1Dopp(z,2,2,2), @))
E|=® L 052, P52, 0s2), © - 116
Ps opp (péz Poz. sz péz) E'( 4V 1q30D13 (z,2,2,2), @) (116)

E(p 4‘1’ l®opp(z,2,2,2), )
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forall z € §; and all © > 0. Now from (107), we have the following cases.

L=2"1 if 6=0,

9-1y1-0 4_ )2
E(A(22) - 8A (2) — Qu1 (2), @)>E’(( ) )q’ODD(““)(g—sAAZ)@)

/\4 _ AZ
E(A(2z) —8A(z) — Qa1 (2),0) > E’ (( )(DODD(Z Z,2,2), (—)@)

16 — 312
A - )2
(s (22 eve)
L=2Y"1 if 6=0,
E(A(2z) - 8A(2) — Qa1 (2),0)

, (2‘11—1)1—0 /\4 _ AZ
>E ((m Popn(z,2,2,2),| 17377 |©

- E’(z% (2(321){12 +52% 3% 4 (14 )Y + (A=)

F(12) +(1-20)7) 'g‘w , (%) 11@)

:E'(A{12+5-2‘1’+3‘V+(1+A)‘P+(1—A)‘I’

FA2)Y +(1-20)Y) E‘W,n(%)@(z - 2‘1’))

1
L= = 2V if 5=1,

E(A(22) = 8A(2) — Qa1 (2),©)
([ (@171 AL )2
>E ((m) q)ODD(Z/Z/Z/Z)/(m)@)

_p(A (2 (124527 +37 + @+ )7 + (1 - )Y
27 \2v -2

1207 +(1— 2A)‘1’}H (1):_—;;2)116)

- E'(A{1z+52‘1’ 31+ )Y+ (1= )Y

F (14207 + (120" 'g'w 11 (%) (2" -2) )

Similarly one can prove the other cases. Hence the proof is completed. [
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5.2. Cubic Case Fuzzy Stability Result

Theorem 5.3. An odd function Mgy : S1 — Sy satisfies the functional inequality (49) where @ : S — Ss be a
mapping satisfying (104) for all z1,z5,23,2z4 € S1 and all © > 0. If there exists L = L(0), such that the function has
the property (105), (106) for all z € Sy and all © > 0. Then there exists a unique cubic mapping Qcs (z) : S1 = Sz
such that

1-0

1-L 16 — 3A2

where E' (Popp(z, 2,2, 2), ©) is given in (53) for all z € Sy and all © > 0.

E(A(2z) —-2A(2) — Qc3(2),0) > E (( L )(DODD(Z,Z,Z, z),(u) |8 — 6] @), (117)

Proof. The proof follows by similar lines of Theorem 5.1, by defineI' : E — E by

AR = = As(ps2), (118)
Ps

forallze S;. O

Corollary 5.4. An odd function Aggeq : S1 — Sy satisfies the functional inequality (75) for all z1, 22, 23,24 € Sy and
all © > 0 with A a positive constant. Then there exists a unique cubic mapping Qcs (z) : S1 — S, such that (83) for
allz € Sy and all ©® > 0.

5.3. Additive - Cubic Case Fuzzy Stability Result

Theorem 5.5. An odd function Nsyey = S1 — Sy satisfies the functional inequality (49) where @ : S‘lL — S3bea
mapping satisfying (104) for all z1,z5,23,z4 € S1 and all © > 0. If there exists L = L(0), such that the function has
the property (105), (106) for all z € Sy and all © > 0. Then there exists a unique additive mapping Qa1 (z) : S1 = S»
and a unique cubic mapping Qcs (z) : S1 — Sy such that

E(A(z) = Qa1 (2) = Q3 (2),0O)
1-5

L Py
>E ((1 — L)q)ODD(Z/Z/ZrZ)/?’(m)@)/ (119)

where E' (Popp(z, 2, 2, 2), ©) is given in (63) for all z € Sy and all © > 0.

Proof. The proof follows by Theorem 3.5. [

Corollary 5.6. An odd function Aggeq : S1 — Sy satisfies the functional inequality (75) for all z1, 22, 23,24 € Sy and
all © > 0 with A a positive constant. Then there exists a unique additive mapping Qa1 (z) : S1 — Sy and a unique
cubic mapping Qcs (z) : S1 = Sy such that (89) for all z € S and all © > 0.

6. Fuzzy Stability Fixed Point Results: A is Even

The generalized Ulam-Hyers stability of 4 D AQCQ functional equation (3) when A is even is given in
this section.

6.1. Quadratic Case Fuzzy Stability Result

Theorem 6.1. An even function Aseq : S1 — Sy satisfies the functional inequality (4) where ® : S — S; be a
mapping satisfying (104) for all z1, 22,23, z4 € S1and all©® > 0. Ifthere exists L = L(), such that the function has the
property (105), (106) for all z € Sy and all © > 0. Then there exists a unique quadratic mapping Qg (z) : S1 = S
such that

E(AQR2)-16A(2) - Q(2),0) 2 E (( 1L 1__2) Dryen(z 2, z#(%) @) (120)

. where E’ ((DEVEN(Z, Z,2, z),@ ) is given in (8) for all z € Sy and all © > 0.
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Proof. The proof follows by similar lines of Theorem 5.1, by defineI' : E — E by

FA12) = = Av(ps), (121)
o

forallze S;. O

Corollary 6.2. An even function Ngeq : S1 — Sy satisfies the functional inequality (34) for all zy,22,23,24 € $q
and all © > 0 with A a positive constant. Then there exists a unique quadratic mapping Qq, (z) : S1 — So such that
(35) for all z € Sy and all © > 0.

6.2. Quartic Case Fuzzy Stability Result

Theorem 6.3. An even function Amey : S1 — Sy satisfies the functional inequality (4) where ® : S — Ss be a
mapping satisfying (104) for all z1,z5,23,2z4 € Sy and all © > 0. If there exists L = L(0), such that the function has
the property (105), (106) for all z € Sy and all ® > 0. Then there exists a unique quartic mapping Qqs (z) : S1 = S»
such that

E (A (22) — 4A (2) — Q04 (2), @)

Ll—b /\4 _ /\2
>FE D —||16 - 122
= ((1—L) EVEN(Z/Z/Z/Z)/(19+12/\2)| 6 6|@))/ ( )

where E' (Pryen(z, 2, 2, 2), ©) is given in (8) for all z € Sy and all © > 0.

Proof. The proof follows by similar lines of Theorem 5.1, by defineI' : & — E by

FAY2) = —Au(ps), (123)
Ps

forallze S;. O

Corollary 6.4. An even function Nggeq : S1 — Sy satisfies the functional inequality (34) for all z1,25,23,z4 € $1
and all ® > 0 with A a positive constant. Then there exists a unique quartic mapping Qqou (z) : S1 — S such that
(42) for all z € Sy and all © > 0.

6.3. Quadratic - Quartic Case Fuzzy Stability Result

Theorem 6.5. An even function Amey : S1 — Sy satisfies the functional inequality (4) where ® : S — S3 be a
mapping satisfying (104) for all z1, 22,23, z4 € S1and all © > 0. Ifthere exists L = L(0), such that the function has the
property (105), (106) for all z € Sy and all © > 0. Then there exists a unique quadratic mapping Qg (z) : S1 = S
and a unique quartic mapping Qoa (z) : S1 — Sy such that

E(A(2) - Qg (2) - Q04 (2), ©)

1-6 4 _ 2
>F (( 1L_ )q)EVEN(z, z,2,2),3 (—1/\ A )®), (124)

L 9+ 12A2
where E' (Peyen(z, 2, 2, 2), ©) is given in (8) for all z € Sy and all © > 0.
Proof. The proof follows by Theorem 2.5. [
Corollary 6.6. An even function Neygeq : S1 — S satisfies the functional inequality (34) for all z1,z3,23,24 € S

and all © > 0 with A a positive constant. Then there exists a unique quadratic mapping Qg (z) : S1 — Sy and a
unique quartic mapping Qos (z) : S1 — Sy such that (48) for all z € Sy and all © > 0.
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7. Fuzzy Stability Fixed Point Results: A is Odd and Even

The generalized Ulam-Hyers stability of 4 D AQCQ functional equation (3) when A is odd and Even is
given in this section.

Theorem 7.1. A function Nsyey : S1 — Sy satisfies the functional inequality

E (Aach (21,22, Z3,Z4),@) > E' (D (z1,22,23,24),9), (125)
where @ : S‘l1 — 83 be a mapping satisfying (104) for all z1,z5,23,z4 € Sy and all © > 0. If there exists L = L(0),
such that the function has the property (105), (106) for all z € 81 and all © > 0. Then there exists a unique
additive mapping Qa1 (z) : S1 — S» a unique quadratic mapping Q (z) + S1 = S a unique cubic mapping
Qc3 (2) : S1 = 8o a unique quartic mapping Qo4 (z) : S1 — Sy such that

E(A®) - Qm (2) - Qg (2) - Qcs (2) - Qqu (2), 40)

[1-0
> E (( = L) {(DEVEN(Z/ z,2,2) + Peven(-2, -2z, -z, -2)

+ Dopp(z,2,2,2) + Popp(~2z,~2, 2, —Z)},
/\4 _ AZ )\4 _ /\2
© {(19 n 12)\2) " (16 - 3/\2)})' (126)

where E' (Peven(z, 2, 2, 2), ©), E' (Popp (2, Z, 2, ), ©) are given in (8), (53), respectively for all z € Sy and all © > 0.

Proof. The proof is similar lines to that of Theorem 4.1. [J
Corollary 7.2. A function Ageq : S1 — Sy satisfies the functional inequality (102) for all z1,2),23,z4 € Sy and
all ©® > 0 with A a positive constant. Then there exists a unique additive mapping Qa1 (z) : S1 — S a unique
quadratic mapping Q (z) : S1 = Sy a unique cubic mapping Qcz (z) : S1 — S a unique quartic mapping
Qo4 (2) : S1 — Sy such that (103) for all z € Sy and all © > 0.
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