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Abstract. Approximation by positive linear operators is a mathematical concept that deals with approx-
imating functions using a class of operators that are linear and preserve positivity. These operators are
typically defined on function spaces and are commonly used in approximation theory and numerical analy-
sis. Taking this concept further, in this article we introduce a modification to Lupas type operators, referred
to as Durrmeyer type operators, which are constructed based on the Pélya-Eggenberger distribution. In
the second section, we establish essential auxiliary results pertinent to these newly devised operators. Our
subsequent analysis is twofold: firstly, we investigate a Voronovskaja-type asymptotic formula, and sec-
ondly, we deduce estimates for the rate of approximation, incorporating both the modulus of smoothness
and the Ditzian-Totik modulus of smoothness. Moreover, we determine the rate at which convergence
occurs for differential functions characterized by derivatives of bounded variation. Finally, we employ
Maple software to visually demonstrate the operators’ convergence towards a specific function.

1. Introduction

The theory of approximation by positive linear operators provides a mathematical foundation for
understanding the convergence properties and error analysis of approximation methods. It has applications
in various fields, including numerical analysis, signal processing, image reconstruction, and probability
theory. A positive linear operator is an operator that maps functions to functions while preserving positivity.
That is, if T is a positive linear operator defined on a function space, then for any non-negative function f,
the image T(f) is also non-negative. The advantage of using positive linear operators for approximation is
that they ensure the approximations remain non-negative, which is often desirable in applications where
the functions being approximated have a physical or probabilistic interpretation. One common example
of positive linear operators used for approximation is the family of Bernstein operators. The Bernstein
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operators [10], which are extensively studied attached to G € C[0, 1] (the space of all continuous functions
on [0, 1]), are given by

BuGi0 =) bu06(5) (el 1lneN), )
1=0

where b,,,(£) = 0if1 <0 or1>nand
bua(£) = ( " )m - o,

Durrmeyer [15] derived the integral modification of the Bernstein operators (1) as follows:

n 1
M0 =0+ 1Y b0 [ 6,060
1=0

Numerous recent developments involve broadening and adapting these types of operators [8, 9, 28,
29]. Pélya and Eggenberger [16] created the initial Pélya-Eggenberger urn model in 1923. The Pdlya-
Eggenberger urn model consists b black balls and w white balls. A ball is randomly selected, then it is
replaced with other s balls of the same colour. This process is done m times while observing how the
random variable Y, which represents how frequently a white ball is drawn, is distributed. The formula for
Y distribution is

m)b(b+s)-...-(b+m—]—1s)w(w+s)-...-(w+]—_15) 2

Pr(Y=J)=(]

b+w)b+w+s)-...-(b+w+m—1s)
fory=0,1,2,--- ,m—1,mand j — 1s = (j—1)s. The distribution (2) is referred to as a Pélya-Eggenberger dis-
tribution with parameters (s, b, w, m) and it includes binomial and hypergeometric distributions as specific
cases.

In 1968 a new set of positive linear operators connected to a real-valued function G : [0,1] — R was
presented by Stancu [36]. Using the Pélya-Eggenberger distribution (2) provided by

)

n

n n NN A = €+ va) [T (€ + pa)
[a] (m. p\ [a] i _ n v=0 u=0 ]
PGt = ;;p”'f({’})g(n) - ;(]) (1+a)1+2a)---(1+ (n—1)a) g( )

The fundamental Stancu polynomials pL“]] are present and « > 0 is a parameter that may depend on the
natural number 7. For the case of a = 0, operators (3) become the original Bernstein operators (1) [10] and
fora =%, m > 0,n € N, we have a particular case

AHg0=Y g (), @
7=0

where qn,’;](f) = ﬁ

Yilmaz et al. [37].
The space of bounded Lebesgue integral functions on [0,1] is denoted by Lg[0,1], and the space of

polynomials with degrees up to n € IN is denoted by II,. In 2007, the following class of operators

Uy, : L[0,1] — TI, was introduced by Paltdnea [34] as:

7 )(nf)],m(n = 1)y and (), = x(x + m)(x + 2m)...(x + (n — 1)m) introduced by

Up (G50 = ) pu)(OF,(G)
7=0

n—-1

= (1= 0"fO) + " f(1) + Y | pn,]w)( 0
7=1

1 (1 = p)m=ne-1ye-1

B(jo, (n — 1)o) GO)di), ©
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where g > 0, Fﬁ,](g) = 01 %g(z)dz, the Bernstein basis polynomial p, (f) = (r]’)ff (1-¢"7, and
Euler’s Beta function (£, x) = fol 1711 — 1)*'d1 for £,x > 0. Gonska and Piltinea [17] have conducted
further research on the operators mentioned in (5). They have created a recursive formula for computing
moments and estimating derivatives simultaneously. The author demonstrated that the operators U, ,g can
link the commonly used Bernstein operators with their real Bernstein-Durrmeyer counterparts.

Now, we are presenting here a new type sequence of operators called Lupas-Durrmeyer operators

UL,%;] : Lg[0,1] — IT,,, which is defined as follows:
[%] - [%] ! [o]
ulig0=Y ko [ Agoa
7=0 0
= 7, (OG(O) + 4,5 (OG(1) + Z B (O) ( f L?}gu)dz), (6)

[Q] 1o 'l(l l)n No-1
where z,;({) = oo -

In thls study, anew Durrmeyer-type modification of Lupas type operators based on the P6lya-Eggenberger
distribution is presented. For the case m = 0 and ¢ — oo for each G € C[0, 1], the operator (6) converges
uniformly to the Bernstein polynomials (1). Several essential auxiliary outcomes are established in the
second part for these new operators. The asymptotic behavior and uniform convergence of these operators
are the main topics of our current research. We will create some quantitative theorems in order to determine
the degree of approximation.

Despite the fact that these operators (3) were introduced a while ago, there is still a lot of interest in
studying them and they have been subject to generalizations up to the present day. Some examples of these
kinds of generalizations and modifications in operators and their associated approximation properties can
be seen in the papers of Agrawal et al. [5, 6] , Kajla et al. [21, 23], Gupta et al. [18, 19], Neer et al. [31] and
Deo et al [12]. In the literature survey, the authors also recommend papers [7, 20, 22, 24-27, 30, 32, 33, 35].

2. Auxiliary Results

Let Ny = IN U {0} and IN be the collection of positive numbers. The test functions, also known as the
monomials ¢,({) = ¢/ for j € Ny, are important in linear positive operator uniform approximation. We offer
a suitable form of these operators for determining the images of the monomials by the Lupag-Durrmeyer
type operators (6).

Lemma 2.1. For the Lupas-Durrmeyer type operators hold;

o u - —1+n)nf? t(m+n+np+mn,

u*[ifngl(eo; =1, U,[ijg](el;f) =G U,[q,"@](ez;f) = ((m+n)()1+n§) + ((n1+n)(i+ng)0);

[=1, . (=2+n)(=1+n)n2 3 ? [2(3(—1+n)nzg+3(—1+n)nzgz+3m(—1+n)ng(2+ng))
Uy (€3;0) = Grmamemng o (nrm@mn (1 +19)2+10)
€(2n +3n2 g+12 2 +3mn(2+np)+3mnp(2+ng)+2m?(1+ng)(2+ng))
(m+n)2m+n)(1+np)(2+np) 4
[,,] (=3+n)(=2+n)(=1+n)nd 4> E(6(=2+n)(—1+m)n? Bm-+n) P +6(1+m)(-2+n)(-1+n)n g )
(64’ 5) (m+n)(2m+n)(3m+n)(1+n0)(2+n0)(3+np) (m+n)(2m+n)(3m+n)(1+np)(2+ng)(3+np)

[2(11( 1+n)nm-+n)Gm-+n) o+18(=1+m)n? Bm-+n) 0 +18m(—1+n)n Bm+n) @ +(1+m)(—1+m)n?(7n+m(-1+11n))g%)
+ (m+n)2m+n)Bm+n)(1+ng)(2+np)(3+np)
€(11mn(2m+n)(3m+n)o+6n2(3m+n)g2+18mn Bm+n) 2 +12m*n? Bm+n) 2 +(1+m)n? (n+m(=1+6(1+m)n))o®)  €(6(m-+n)2m-+n)Bm-+n)+11nQ2m-+n)Bm-+n)o)
(m+n)(2m+n)(3m+n)(1+n0)(2+n)(3+np) (m+n)(2m+n)(3m+n)(1+n0)(2+n0)(3+np)

For the purpose of conciseness, we will write ML Tor(€) = E,%;] ((e1 — 0); ), where n € N, ¥ € Ny, in order
to calculate the central moments of the operators (6).
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Lemma 2.2. For the Lupas-Durrmeyer type operators hold;

[%] . [%] _ (A=-O(m+n+(1+m)ng) .
Mn,g,l (5) =0; Mn,g,Z(f) - (m+n)(1+ng) ’

3 2 = _ 6+ (—
n3€4(_ 18m° (1+np)(2+np)(3+n0) —18(1+Q)+3(—6+71)Q(1+@)+3(—2+n)02(1+@)+ 3m~ (2+n9)(3+np)(=11+(-12+n)g) + 6m(3+ng)(1+9)(=6+(-4+n)o) )

M[ %] (6) — n3 n2 n

n,04 (m+n)2m+n)Bm+n)(1+np)(2+n0)(3+np)
133 (18+180—3(~6+n) 0—3(—6+n) 0> —3(=2+1) 0> —3(~2+1n) >
((m+n)(2m+n)(Bm+n)(1+n0)(2+np)(3+ng))
N n3t’3(18(1+Q)—3(—6+n)g(1+g)—3(—2+n)gz(1+g)— 12m(1+p)(76+£:4+n)g)(3+ng) _ émz(—'l1+(—12:r21)g)(2+ng)(3+ny) + 36m3(l+ng’),(§+ng)(3+ng))
((m+n)2m+n)(3m+n)(1+np)(2+np)(3+ng))
1302 (—18—180+3(—=6+1) 0+3(—6+1) > +3(=2+1) *+3(—=2+n) 0> —6(1+0)~50(1+0)— 0 (1+0))
((m+n)(2m+n)(Bm+n)(1+np)(2+n0)(3+ng))
713€2(— 24m3(1 +110)(2+10)(3+10) + m(1+0)(—144+0(-91+p+n(—-29-319+610))) + mz(—264+[)(—282+n(—202+g(—234+g+3n(—10+(—16+n)g))))) )
n n P

((m+n)2m+n)(3m+n)(1+n0)(2+n0)(3+np))

3 — 2 —
n3€(6+1lg+6@2+03+ 36rr1(nl+g) + [ (1+ng)’(,23+ng)(3+ng) + m(}(1+g)(19-;11n 0+7n9) L m (1+g)(66+7;g(55 0+12n9)) )

(m+n)(2m~+n)(3m+n)(1+np)(2+n0)(3+np)

Lemma 2.3. For ¢ > 0and ¢ € (0,1), we get

1
[%] 1 o _ a-on
Uy (G 6) = ﬁ(@ (1—()11)](; N 1= U (G Dd,

m’ m

where U, ,(G, 1) is defined in equation (5).

Proof. Applying the relationship between gamma and beta functions

T (0T (x)

B, x) = m,

where I'(s) is Gamma function defined by

T'(s) =f wle™du, s> 0,
0

withI'(s+n) =s(s+1)-...-(s+n—1)I(s), for n € N, then we get

_ (& r(&=on _ . -1 B
o, 0 [)n+n_])= (2 + )T (52 +n-)) ](f)(rjz) ﬂ(f_n’(l f)n)'

_
m r(z+n) = g ' m

Hence

1
Ao =()(s(m 2 (% S0 ),

] m m m
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and it follows

. n-1 , a- [)" _ 1
a0 = L (7)ﬁ< ;(]f = "):)n : T Jp #7079 g
n Q=on oy, 0= {’)n
+ﬁfgm;_n 121176 ) ) ("E (; {)n) )g(l)

1 v n ! 1y (a=0n 6) -
= m[zl(])fo (1) -y S g,
m’ m 1=
me $71(1 = )G (s)ds + G(0) f -1

1)L[\ (] - (1”"‘1d)

n -1 1=0n _
‘77H3g' T (1= T U, (G 1)de.
ﬁ(z’ m ) 0

Chan-14,

O

We provide four results involving Lupas-Durrmeyer type operators (6) below without providing any
justification because all that is required to obtain them is mechanical work. The following provides the
images of the test functions created by operators (6) for ; € Ny and ¢,(¢) =

Lemma 2.4. For any natural number n, we can express

Vea -0

m D
[7] . 0
1, oz(f) Uy, (e1 = 0% 0) < 1+ng

the equation involves a positive constant Z)L%], which depends on both o and m and can be taken as DL%] =1+p+mp.

Lemma 2.5. If % — 0as n — oo, and m, o being constant, then

lim nM,") (6) = 0

n—oo

A+ o+mp)(l-120)

i ML) =

lim nML(0) = ; :
i 2! 0 = 3021 + 0)(1 + o + 2mp) ~ 631 + o + mp)? . 43+ 302 + o+ 2m(1 + o + mp)))
=00 np4N T Qz Qz Qz )

3. Theorems and local approximation

Our ongoing research focuses on the qualitative aspects of operators of the Lupas-Durrmeyer type,
including uniform convergence and asymptotic behavior.

Theorem 3.1. Suppose G € C[0,1] and %' > 0 is a parameter that depends on n € IN. If % — 0 as n approaches
]

infinity, and m, o being constant, then lim U[ (G; €) converges uniformly to G({) over the interval [0, 1].
n—oo
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m m m _ 2
Proof. Since UL:’@](l;[) =1, U,[qul(el ;0) = € and U,[q,"@](ez;f) = Llnlo | Lmbntnotnng) 4 go)1ows

(mem)(Tng) + ~ (mrm(i+ng) ’
lim ultle; 0 = e(0), for1=0,1,2.
By utilizing the established Korovkin’s theorem, we can derive the following
lim ut=\(G; &) = G(6) uniformly on [0, 1].

O
The following result provides a Voronovskaja-type result for the operators of the Lupag-Durrmeyer type.
Theorem 3.2. Let G :[0,1] - R, &} — 0asn — oo, and m, o being constant. If G € C?[0,1], then

m 1 01-2¢

Proof. 1t is as follows using Taylor’s expansion formula for the function G

/ 1 1/
G0 =6O)+G (O -0+ 56" - 0 + %, O - €, )
where lin'[} #(1,€) = 0 and the function x(1,{) := #(1 — {) is bounded. Given that Lupas-Durrmeyer type

operators are linear, and after applying the operators U,[ﬁg] to both sides of the previous equation (7), we
obtain

m m , 1 m . m
U, (G0 = 6(0) = Uy (@1 = 0:06 () + 5Uy (e = 0% ) G0 + Uy (1,0 - (1 = 03 £)..
By using Lemma 2.2, the result as follows

m (1 -06)(1 m
lim 7 (uL;j(g; 0) - g(f)) _ U )(2; or mg)g”(f) + lim 7 (UL;'Q] (%(z, 0 (e - 5)2;5)). 8)

Using the Cauchy-Schwarz’s inequality, we estimate the final component on the right-hand side of the
previous equality, resulting in

nULE) (561, 0) - e = €73€) < UL 62, 0,0 Y2 U (@1 - 0% 0), 9)

Because %2(6’, £) =0and %2(-, ¢) € C[0, 1], utilizing the convergence established in Theorem 3.1, the result is
as follows

lim UL (%3G, 0); €) = %3¢, 0) = 0. (10)
n—oo =
Conclusion reached by using Lemma 2.5 in combination with equations (9) and (10)

lim n (UL (3¢, 0) - (e1 = £73€)) = 0,

and by applying (8), we discover how the Lupas-Durrmeyer type operators (6) behave asymptotically. [

Moduli of smoothness [14] are the basic parameters used to assess the degree of linear positive operators
approximation to the identity operator. The first order and second order smoothness moduli of G € C[0, 1]
and A > 0 are defined as follows:

w1(G,A) == sup{lGL+h) — G(O) : £,L+he[0,1], 0 <h < A},
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respectively,
w2(G, A) :=sup{lG(€ + h) = 2G(0) + G(€ = )| : (,L+h €[0,1], 0 <h < A}.

Also, let us define Peetre’s K-functional [13]

Kx(G, A) = inf{IG — gll + Allg”|l = g € C*[0,1]}, for A > 0. (11)
There exists a constant M > 0, such that

Ka(G, A) < Man (G, V). (12)

Proposition 3.3. If G is a continuous real-valued function that is bounded to the domain [0,1], with |Gl =
maxcefo,1] 1G(0), then

Ui (G:0| < 161l

Proof. According to Lemma 2.1 and the definition of Lupag-Durrmeyer type operators, it follows

Uy )| =

X1 (OF;, (@) < )P (OF:, 16D < 11U (o: ) = 161
7=0 =0

O

The following discussion provides direct calculations utilizing Peetre’s K-functional and moduli of smooth-
ness.

Theorem 3.4. Let G be a differentiable function on the interval [0, 1], and its derivative G’ € Cg[0,1]. Then, for any
value of € € [0, 1], the following statement holds

1-=8tm+n+ (1 +mnp)
(m+n)(1 +np)

ulrlG; 0 -6 < %wl(g',)\), with A = \/

Proof. Using with the identity
G -G =G'O0-0+G0)-G() -G (O0-10),
we get for ¢ between 1 and £
G -G -G'O-0=G"0)-GO0-9),

using the Lagrange mean value theorem (there exists a c between 1 and ¢, such that G(1) - G({) = G'(c)(1 - {).
Because |c — €| < |1 — £, it follows

GO-GO<w (G, (-0)<(1+A700%)wi (G, 1)

and

G0 -G -G O-0<(1- L+~ 0w (G, A).
Applying the linear positive Lupas-Durrmeyer type operators to the inequality

GO -G <GWOa-0+(-0O+1" - 0w (@A),

following from the above relationship, we obtain

m , m m 1 m ,
U560 - 60| < 16/ OIS er = €:0 + (W7 er = €:0 + TULE (e = 0%) ) an (6, 0.
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Using Cauchy-Schwarz for linear positive operators, we have

UL en = 00 < (UL (e 0) (L) (ea - 025 00),
and the outcomes attained in Lemma 2.1 and Lemma 2.2 lead to
ulrlG; 0 - g(£)| < ((u;’;?gl(eo;f))% (s (e = 0% 5))% +

Ulf) (@ - 07 f)) w1 (@M

< (ul) (e - 13)2;{3))% (1 + %(uﬁ) (e - {3)2,-5));)601 G, A).
Because

(M,[ﬂz(f))% () (@ - g)z;g))% _ \/(1 ~Olm +n+ (1+ mng) % \/(m +n+ (1Lt mng)

(m+n)(1 +np) (m +n)(1 + np)
and using A = , /%, we get

U560 - 60| < Zan@, 1),
O

Estimates combining the first and second-order smoothness moduli are more accurate than those ap-
plying just the first modulus of continuity.

Theorem 3.5. If any function G € Cl0, 1], then for any value £ within the interval [0,1] and A > 0, it follows

1
m+n+no+mnp \?
m+n+mno+nng| |

n 3
Ui3(G:0-6(0| < Son [g(
Proof. The well-known property of the first-order smoothness property (first modulus of continuity) is

IG() ~ GO < (G, 1~ €) < (1+ A7 = l) (G, ).

By using the previous inequality with the linear positive Lupas-Durrmeyer type operators, it is as follows
m m 1 m
U560 - 60| < (W eos 0+ T Ui e - 4:0) an(G, ).
For positive linear operators, the Cauchy- Schwarz inequality results in

n m 1 m 1
Uy (ex = €0 < Uy, (e0; 0)” - (U (e = 0% €))°
Understanding that operators of the Lupas-Durrmeyer type retain constants and are conformable to the
conclusions of Lemma 2.2

(1= 0m +n+ (1 +m)ng)

B ooy — 15 (o 2. p) =
M0 = Uy ((er = 0%5¢) T

we get

A =6m+n+ (1+m)np)
(m +n)(1 +np)

UL(G:6) - 6(0)| < [1 e \/ Jw1 GN).

Using the inequality +/¢(1-¢) < 1 into account and choosing A = ,/%, we get the desired
result. O
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Theorem 3.6. Let G € C[0, 1], then for any € € [0, 1] yields

" . 1 [1+o+m
U560 - 60| < Man (6,11, with 1= %ﬂg@

where M is an absolute constant.

Proof. Using Taylor’s expansion formula to obtain the following expression for any function f € C?[0,1]
and for any values of 7, £ € [0, 1], we have

0= FO+6- 07O+ | (- W ()du
By using the Lupas-Durmeyer type operators UE,i] on both sides of the equation mentioned earlier, we get
ulrl(0 - £ = Fou e - o+ Uy ( f[ l(z 1) f”(u)du;t’)
- ul! ( f,; z(z —u) f” (u)du; 5),

applying the results of Lemma 2.2, the result is as follows

[ (- W ()du

Further, keeping in mind the inequality generated at Lemma 2.5, we reach at the following inequality

< @=L

(%1 (] 1mng ol
UL (F30) = FO] < IFIUL ((e1 = 0% €) < Gty ey < 20 ) = A% 7).

For any function G € C[0,1] and f € C?[0,1], by applying the Proposition 3.3, it follows

UL (60 - 60| < U6 - 0]+ U (0 - £ + 160 - f)
<26 - fll+ AU =2(16 - fIl+ S1F71).

Using the relation (12) and the infimum on the right-hand side across all of f € C2[0, 1], we can now obtain

UG 0 - 6(0] < 2Ks (6, 307) < Mws (6, 31), with A =} (ﬂ”) ,

where DL%] istakenas1+ o+ mp. O

Theorem 3.7. Suppose that G € C[0, 1]. Then for any value of £ € [0,1] and A > O, the following statement holds

(m+n+ Q1 +mnp)
(m+n)(1 + np)

UF(6:0-60)] < 202(G,1) with 1= \/
Proof. Applying Paltanea result [33] for a linear positive operator £

1630~ 601 < 1£6e; 0 = GO + 1 1L6er = 601G, M) + (Lo 0+ 535 £((e1 — 0736)) (6, ),



S. Berwal et al. / Filomat 39:35 (2025), 12691-12709 12700

we get the estimate for LIL,@] =L

m m 1
Ui(G:0 - 60| < | @ 0~ 1] 1601 + £

Uk (e - 60| (G, M)

[2] Lo
(U e 0+ 55U (0= 0756))wn(@, ).

Theorem 2.2 and Lemma 2.1 are taken into consideration, and by selecting A = / {rentQmng) e arrive at

(m+n)(1+ng)
the desired outcome. O
4. Estimates of the rate of approximation using weighted moduli

In order to prove a global approximation theorem for Lupas-Durmeyer type operators that takes into
account the Ditzian-Totik modulus of smoothness, we find references to certain results from [14]. The
Ditzian-Totik smoothness moduli of the first and second orders for any G € Cp[0,1] and A > 0 by

WG N =sup  sup |G(£+ (D) -G (€~ Lmp(o))|,

[hl<A £+(h/2)(6)€[0,1]

and

@G A)=sup sup |G(L+hyp(l)) -2G() + G (L~ hy(0)

<A Lxhp(£)e[0,1]

, (13)

with ¢ (€) = \/€(1 - ¢), € € [0,1]. The second order K-functional can be expressed as follows

K (g a%) = _inf (16~ fll+ 2w ])), (14)

freACicl01

where f” € ACjoc[0, 1] denotes that f is differentiable and that f” is absolutely continuous on all closed in-
tervals [a,b] C [0, 1]. Aninequality between the K-functional (14) and second order modulus of smoothness
(13), which is given for a positive constant N, is established in [14] by

K} (G, A?) < Nwj (G, A). (15)
Using the information presented, we can provide a proof for the following statement.

Theorem 4.1. Let G € C[0, 1], then for any € € [0, 1] yields

m ) oLl \2
UG 0 - 60| < Nw¥ (G, 1), with 1 = (m) ,
where N is an absolute constant.

Proof. Using Taylor’s expansion formula, in the proof of Theorem 3.6 we show that for any function
f € C?[0,1] and for any values 1, ¢ € [0,1]

o - s < i [T o= onae). »

Since ¢({) is a concave function on [0, 1], for v = A¢ + (1 — At with 1 <v < £ and A € [0, 1], it follows

=yl _ =A== Al = €] -]
PA) - PRALH (1= T APRO + (1= )2 T A0
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By applying the inequality derived above to the equation (16) and utilizing Lemma 2.4 , we arrive at the
following expression

n % l |Z 7 4 n .
50 - 0] < Ul [t l2r7) < s I Ut e - 0%
D lea -0 D!
< ll)z(g) 2 01 — Hl;ljzf” 1
0 +n@

Using the in equality we derived earlier and Proposition 3.3, we can conclude that for any function G € C[0, 1]
and any function G € ACj [0, 1] the following statement holds

Uyy(G:0 - 6(0)| <

<|uy) G - f€)|
szng—f||+#ng1|¢2f“ =

+ U0 - £ 1 +16(0) - f(O)
2 (ng — fll+ 2(?1;) [w?f”

)

Take the infimum of the right-hand side of the previous inequality over all functions G € ACj, [0, 1] and
utilize the relation (15), we obtain the following expression

: ol \*
UG o) - g(5)|<21<2 (G,1?) < Nwj (G, 1), w1thA=(z<1‘+ng>) :

O

5. Rate of convergence

Determine the rate of convergence for differentiable functions whose derivatives have bounded variation
on the interval [0,1]. The set of differentiable functions G defined on [0, 1], whose derivatives G’ are of
bounded variation on [0, 1], is denoted as G € DBV[0, 1] can be represented as

£
G(0) = fo Gl)di + GO).
[z

The operators um](g) can be represented as integrals

ulilg: 0 f K5 0G0, 17)
where the kernel ‘an is given by

11@—1(1 —7)(n=ne-1

" ; ~ Uil L=
oy (1) = 415 (05() + gh (D5(1 1)+Zq G0 -Do

where 6(u) is the Dirac-delta function.

Lemma 5.1. Considering a parameter %' form > 0 and n € IN. As n — oo then ' must approaches zero. For a fixed

value of € € (0, 1), the conclusion holds
[31

D, (1-¢)
el —f«,ﬁnl ¢ T o<y<¢C
D -

. [ o [5]
i) 1-0,,((z2):= j; Ky (€, 1)d1 < A+10) =02 {<z<1.
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Proof. i) Using Lemma 2.4, we get

y
m m Ve — 2
(51 _ (5] 1 [2]
ey = [Kieas [ (7)o
0

[2]
1 ey o DV o
= gt (@ = 0% 0) S e

ii) The proof doesn’t require any further explanation or elaboration, so it has been omitted. [J

Theorem 5.2. Assuming that G € DBVI[0,1], and that the 2 — 0 as n — oo. Then, for every £ € (0,1), and
n — oo, we have

(o (D=0 gen -geo DT A-0KE
U})6:0-6(0) < 1+ ng) 2 9 Z \/ G

[n]f [n] (+((1—- f’)/]) (1_ 0
\f v Gl Y @ m

(~(¢/ )

(+((1-0)/ V)

G

where \/2(@2) denotes the total variation of G| on [a,b] and G is defined by

GO-G(), 0si<t
G0 = 0 1=t 19
GO -G (+), <1<l

Proof. The Lupas-Durmeyer type operators maintain constants and by utilizing equation (17), this applies
to every value of ¢ € (0,1), we have

ullr0 -6 = f K1, (G6) - G(0) di = f %el(e, z)f G’ (u)du du. (19)
For any function G € DBV[0, 1], using equation (18), we get
GUN+G(tr) G -G'({)

g'w =g+ T —Hsgntu- 0 0
(g7 - CEEO),
where
v={ 5 430
Obviously,
1 1 / / m
f ( f (g’(u)—M)Af(u)du)v(,igl({f,z)dlz
0 ¢ 2 )

and

f( [EEEE I
0

w f (t - 0K e, s _w Uy, (er = 60 =



S. Berwal et al. / Filomat 39:35 (2025), 12691-12709 12703

The following is the result of using the Chauchy-Schwarz’s inequality for linear positive operators:

7(1501(,; ) f Msgn(u f)du)dz 'g'(“) gl f - 65 (€, )

S e - g 90 -GN (21, ;0"

ulnli - a0 <

By applying Lemma 2.2 or Lemma 2.4 together with equation (19) and (20), a new result can be

UG 0 - 60|

_lgen =gy [2a-o
2 1+ no)

Let us focus on

A 1
MG, 0= fo ( f( Q}(u)du)?([”]w )ds,

1 1
FilgG,, 0 = f[ ( j; g;(u)du)T(,[,,”g]({’,z)dz.

In order to finalize the proof, it is enough to estimate ﬂ[g] and ME,;,] Since fe / d,@,[f;](f z) 1 for all

{ 1 - 1 1 .
f ( f g;(u)du)v(n[;](f,z)dz+ f ( f gg(u)du)xgjio](f,z)dz.
0 t € t

(21)

[0,1] C [0, 1]. Utilizing the integration formula by parts and applying Lemma 5.1 with y = £ — 7, to express
the following
21 “(( (21 21
M, ol= | ( f( g;(u)du) 40,5y = | | ErE G
! [ (%]
(f ] JeronelZene
[51 ¢
Z) (1 -0) > ¢ )
“ [ \/(Qg)(f—z) av [ Vigpa
[3] ¢
Z) t(1-1¢) >
e [ V@f)(l—z) ae = V@
Now put u = £/(¢ —1), we find
[5] - ¢ [ ]
D@n 5(1 _ {) —(€] \n) )
—= -2 \/(G)di = f Gydu
T by CTTVE T f\([/,u)( )
[5]
(1 g)\f] 1 L Du(_
Q 0
g L)V @ < Z \ @
=y 1= =)
Thus
(2] [ ]( —0) [Vl ¢
MG, 0] <2 e Z \/ @)+ V G)). (22)
J=1 4=(t/) f €/ vn)
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By utilizing the integration formula by parts and implementing Lemma 5.1 with z = £ + @ \/f), the result is
as follows:

Fai (Gl 0)

- f ( f f;(u)du)W},?;](f,z)dz
= f ( f ff(u)du) (1- @0(51 f ( f f[(u)du) (1- e, 1)
|| [ 5ot eifenad] - [ s -elien dz+f(ffg<udu) (1-el )

Z m m m 1
- f[ f{;(u)du(l—@i,?g]({f,z))— fg fg(z)(l—@L?é}(f,z))dH ff f,;(u)du(l—@i,?g](f,z))]z

_ f 1 £0(1 -84, n)d

:'fzf{;(z) 1-0:¢) dz+f £0) (1635 n)d
1)[" o1 -0

T ngf(z—f) 2dz+f\/(g€)dz

[ L+((1-0)/ Nn)
D, 5(1 -0 1- 5)
- - 0)2d o)
A +n0)  Jesa-o7vm \/(gf)(l yrd r 0
By the substitution of v = (1 - £)/(1 — {), we get
[ ] £’+((1 0)/v) (+((1-0)/ Nn)
-0 v 1-0
[%] 1 /
rig.ol< 2 | N L @3)

D[ n][ [vVal j+1 (+((1=0)/v) (1 f) C+((1-6)/ Vn) )
f (G))do + @)
4

(1 + ng) Vn \/

@Ln ]5 [W] L+((1=0/7) {+((1-0)/ Vn

3 1-0 ,
" (1+np) = \/ @G0+ SV \g/ ©G)

Collecting the estimates (21)-(23), we get the required result. [J

6. Chebyshev-Griiss theorem

Theorem 6.1. Using the Chebyshev-Griiss inequality[4], [ Theorem 6,[11]], a uniform inequality hold for U,[qi] G0

C[0,1] — CI0, 1] that is:
1.1, (m+n+1+mnp) | _| (m+n+ Q1 +mnp)
SA_Lw[g'z\/ 2(m + n)(1 + no) ]-w[9,2\/ 2m+n)(1+mno) |

7. Griiss-Voronovskaya theorems

ulihge) - ulthgu' )

Theorem 7.1. Let g, 0 € C?[0, 1]. Then following equality hold
lim 7 [U,1,(G0) - U3 (@)U, (0)] = =Y$G'0, y e [0,11.
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Proof. LetY =€(1—€)and S = i 4m)ng) 0 hgpe

(m+n)(1+ng)

n[uieo - uieuio] = wful)Go-6o-(3e 0+260 +g0)

- ultie-6-(1g")|- uie|uie -0~ (320

2n
- Sgo-(20)o-uie]),

applying the Theorem 3.1 and 3.2, we get

lim 7 [U,,(G0) - U,,3 (@)U, (0)] = ~YSG'0'.

8. Numerical Examples

Example 8.1. Let’s consider the function G = €2 sin(2m€)(blue), where 0 =10, m = 0.1, and n takes on the value of

n 0.1 01
20,40,60 and 80. To calculate the convergence of operator Uy ,. The resulting value of Uy, (green), U,q , (magenta),

0.1 0.1
Uy 1o(red), Ugg (black) plot on a graph to observe the convergence Fig. 1. As the value of n increases, the plots of the
operator become progressively closer to the function graph. This trend is shown by the convergence of the operator’s

plots towards the function graph.

0 A

0.2 0.4

-0.14

-0.2

-0.3

0.4

-0.57

-0.6

Figure 1: Approximation process
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T T
0.2 0.4

-0.14
0.5

-0.24

-0.31

-0.44

054

-0.61 -0.5
Figure 2: Convergence of ui,(g; {) and Uﬁ‘,p(g; {) to the Figure 3: Convergence of u,f’fg(g; {) and u;{p(g; {) to the
function G(€) = 2 sin(2ntl) function G(¢) = £ cos(27f)

Example 8.2. We analyze the convergence of the operator U,f’i (G, O)(magenta) and Kajla Stancu-Durrmeyer type
operators [23] Uy, ,(G; )(green) , we need to evaluate how well they approximate the function G(€) = * sin(2m)(blue)

for the give value of o = p = 10, m = 0.1, @ = 5= and n = 50. Since it was observed that U,fa G, {) give a better
approximation to G(£) than Uy ,(G;{) in Fig. 2. While in Fig. 3, consider the function G(£) = € cos(2nt€)(blue) over

the interval [0,1]. We want to approximate G(€) using the operators ll; G; O)(magenta) and U5 (G; £)(green) with

n = 30 and using the same parametric values as above. Both operators have a similar shape, but u,; (G, O)(magenta)
is more closer to G(blue).

Example 8.3. Consider the function G({) = €2 sin(37tf) (blue), with parameters o = p = 10, m = 0.1, n = 20, and
a = 0.1. In Fig. 4, we compare the operator U,; , (green) with:

Stancu operators [36] (red),

Lupasg operators [27] (magenta),

Kajla operators [21] (cyan), where T(x) = 1=,

Kajla-Stancu-Durrmeyer type operators [23] (yellow).

The graph illustrates their convergence toward G({).
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0.7+ 041
0.6
0.5
0.3
0.4 /\ \
0.3
0.21
0.2
0.1+
0.1+
0 T !
0.8 1
-0.14
i 0 T
~02 0 02 0.4 0.6 08 1
X
Figure 4: Comparison process. Figure 5: Error Estimation for m = 0.1(red), m = 0.5(green) and

m = 0.8(magenta).

Example 8.4. The error of approximation of the operators U,% G 0) for the function G(£) = €*sin(3nl) for the
parameter values of o = 10, m = 0.1 n = 30(green), n = 40(magenta) and n = 50(red) display in Fig 6. The error of

approximation is defined as E;! (G; €) = U} (G; €) — G(E)!.

In Fig. 5 error of approximation of the operators Un%, (G 0) for the function G(£) = €sin(3nl) using the parameter
values of o = 10, n = 15 with different value of m.

In Fig. 7. the error of approximation of the operators for these parametric values given above and G(€) = {* cos(3mf).
The operator’s performance is indicated by the curve on the graph, with a lower curve indicating a better performance
and a higher curve indicating a poor performance. By increasing the value of n we can minimize the error between
the operator’s approximation and the certain function.

0.14
0.161
0.12 0.14-
0.10 0.124
0.10-
0.081
0.08
0.06 1
0.061
0.041
0.04
02
00 0.02-
0 . : . . , 0 . . . . ,
0 02 0.4 0.6 08 1 0 02 0.4 0.6 0.8 1
X X

Figure 6: Error Estimation for G(¢) = £2 sin(3nf) Figure 7: Error Estimation for G({) = 2 cos(3tt)
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9. Conclusion

m
il

e The new operators UE,,@

defined on the interval [0, 1] converge uniformly to continuous functions.

e These operators have two parameters, m and g, which provide a more generalized framework. By
choosing suitable values of m and g, various types of operators can be derived.

e Numerical example demonstrate that decreasing the value of m results in a reduction of approximation
error, highlighting the effectiveness of the proposed operators.

e In comparison graphs, our operators show the best approximation results compared to other opera-
tors, proving their superiority.
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