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Abstract. Approximation by positive linear operators is a mathematical concept that deals with approx-
imating functions using a class of operators that are linear and preserve positivity. These operators are
typically defined on function spaces and are commonly used in approximation theory and numerical analy-
sis. Taking this concept further, in this article we introduce a modification to Lupaş type operators, referred
to as Durrmeyer type operators, which are constructed based on the Pólya-Eggenberger distribution. In
the second section, we establish essential auxiliary results pertinent to these newly devised operators. Our
subsequent analysis is twofold: firstly, we investigate a Voronovskaja-type asymptotic formula, and sec-
ondly, we deduce estimates for the rate of approximation, incorporating both the modulus of smoothness
and the Ditzian-Totik modulus of smoothness. Moreover, we determine the rate at which convergence
occurs for differential functions characterized by derivatives of bounded variation. Finally, we employ
Maple software to visually demonstrate the operators’ convergence towards a specific function.

1. Introduction

The theory of approximation by positive linear operators provides a mathematical foundation for
understanding the convergence properties and error analysis of approximation methods. It has applications
in various fields, including numerical analysis, signal processing, image reconstruction, and probability
theory. A positive linear operator is an operator that maps functions to functions while preserving positivity.
That is, if T is a positive linear operator defined on a function space, then for any non-negative function f ,
the image T( f ) is also non-negative. The advantage of using positive linear operators for approximation is
that they ensure the approximations remain non-negative, which is often desirable in applications where
the functions being approximated have a physical or probabilistic interpretation. One common example
of positive linear operators used for approximation is the family of Bernstein operators. The Bernstein
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operators [10], which are extensively studied attached to G ∈ C[0, 1] (the space of all continuous functions
on [0, 1]), are given by

Bn(G; ℓ) =
n∑
ı=0

bn,ı(ℓ)G
(
ı
n

)
(ℓ ∈ [0, 1],n ∈N), (1)

where bn,ı(ℓ) = 0 if ı < 0 or ı > n and

bn,ı(ℓ) =
(

n
ı

)
ℓı(1 − ℓ)n−ı.

Durrmeyer [15] derived the integral modification of the Bernstein operators (1) as follows:

Mn(G; ℓ) = (n + 1)
n∑
ı=0

bn,ı(ℓ)
∫ 1

0
bn,ı(t)G(t)dt.

Numerous recent developments involve broadening and adapting these types of operators [8, 9, 28,
29]. Pólya and Eggenberger [16] created the initial Pólya-Eggenberger urn model in 1923. The Pólya-
Eggenberger urn model consists b black balls and w white balls. A ball is randomly selected, then it is
replaced with other s balls of the same colour. This process is done m times while observing how the
random variable Y, which represents how frequently a white ball is drawn, is distributed. The formula for
Y distribution is

Pr(Y = ȷ) =
(
m
ȷ

)
b(b + s) · . . . · (b +m − ȷ − 1s)w(w + s) · . . . · (w + ȷ − 1s)

(b + w)(b + w + s) · . . . · (b + w +m − 1s)
, (2)

for ȷ = 0, 1, 2, · · · ,m−1,m and ȷ − 1s = ( ȷ−1)s. The distribution (2) is referred to as a Pólya-Eggenberger dis-
tribution with parameters (s, b,w,m) and it includes binomial and hypergeometric distributions as specific
cases.

In 1968 a new set of positive linear operators connected to a real-valued function G : [0, 1] → R was
presented by Stancu [36]. Using the Pólya-Eggenberger distribution (2) provided by

P[α]
n (G; ℓ) =

n∑
ȷ=0

p[α]
n, ȷ (ℓ)G

( ȷ
n

)
=

n∑
ȷ=0

(
n
ȷ

)∏n− ȷ−1
ν=0 (1 − ℓ + να)

∏ ȷ−1
µ=0(ℓ + µα)

(1 + α)(1 + 2α) · · · (1 + (n − 1)α)
G

( ȷ
n

)
. (3)

The fundamental Stancu polynomials p[α]
n, ȷ are present and α ≥ 0 is a parameter that may depend on the

natural number n. For the case of α = 0, operators (3) become the original Bernstein operators (1) [10] and
for α = m

n ,m > 0,n ∈N, we have a particular case

P[ m
n ]

n (G; ℓ) =
n∑
ȷ=0

q[ m
n ]

n, ȷ (ℓ)G
( ȷ

n

)
, (4)

where q[ m
n ]

n, ȷ (ℓ) = 1
(n)n,m

(
n
ȷ

)
(nℓ) ȷ,m(n − nℓ)n− ȷ,m and (x)n,m = x(x + m)(x + 2m)...(x + (n − 1)m) introduced by

Yilmaz et al. [37].
The space of bounded Lebesgue integral functions on [0, 1] is denoted by LB[0, 1], and the space of

polynomials with degrees up to n ∈ N is denoted by Πn. In 2007, the following class of operators
Un,ϱ : LB[0, 1]→ Πn was introduced by Păltănea [34] as:

Un,ϱ(G; ℓ) =
n∑
ȷ=0

pn, ȷ(ℓ)F
ϱ
n, ȷ(G)

= (1 − ℓ)n f (0) + ℓn f (1) +
n−1∑
ȷ=1

pn, ȷ(ℓ)
(∫ 1

0

(1 − ı)(n− ȷ)ϱ−1ı ȷϱ−1

β( ȷϱ, (n − ȷ)ϱ)
G(ı)dı

)
, (5)
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where ϱ > 0, Fϱn, ȷ(G) =
∫ 1

0
(1−ı)(n− ȷ)ϱ−1ı ȷϱ−1

β( ȷϱ,(n− ȷ)ϱ) G(ı)dı, the Bernstein basis polynomial pn, ȷ(ℓ) =
(n
ȷ

)
ℓ ȷ(1 − ℓ)n− ȷ, and

Euler’s Beta function β(ℓ, x) =
∫ 1

0 ı
ℓ−1(1 − ı)x−1dı for ℓ, x > 0. Gonska and Păltănea [17] have conducted

further research on the operators mentioned in (5). They have created a recursive formula for computing
moments and estimating derivatives simultaneously. The author demonstrated that the operators Un,ϱ1 can
link the commonly used Bernstein operators with their real Bernstein-Durrmeyer counterparts.

Now, we are presenting here a new type sequence of operators called Lupaş-Durrmeyer operators
U[ m

n ]
n,ϱ : LB[0, 1]→ Πn, which is defined as follows:

U[ m
n ]

n,ϱ (G; ℓ) =
n∑
ȷ=0

q[ m
n ]

n, ȷ (ℓ)
∫ 1

0
z[ϱ]

n, ȷG(ı)dı

= q[ m
n ]

n,0 (ℓ)G(0) + q[ m
n ]

n,n (ℓ)G(1) +
n−1∑
ȷ=1

q[ m
n ]

n, ȷ (ℓ)
(∫ 1

0
z[ϱ]

n, ȷG(ı)dı
)
, (6)

where z[ϱ]
n, ȷ(ℓ) =

ı ȷϱ−1(1−ı)(n− ȷ)ϱ−1

β( ȷϱ,(n− ȷ)ϱ) .
In this study, a new Durrmeyer-type modification of Lupaş type operators based on the Pólya-Eggenberger

distribution is presented. For the case m = 0 and ϱ → ∞ for each G ∈ C[0, 1], the operator (6) converges
uniformly to the Bernstein polynomials (1). Several essential auxiliary outcomes are established in the
second part for these new operators. The asymptotic behavior and uniform convergence of these operators
are the main topics of our current research. We will create some quantitative theorems in order to determine
the degree of approximation.

Despite the fact that these operators (3) were introduced a while ago, there is still a lot of interest in
studying them and they have been subject to generalizations up to the present day. Some examples of these
kinds of generalizations and modifications in operators and their associated approximation properties can
be seen in the papers of Agrawal et al. [5, 6] , Kajla et al. [21, 23], Gupta et al. [18, 19], Neer et al. [31] and
Deo et al [12]. In the literature survey, the authors also recommend papers [7, 20, 22, 24–27, 30, 32, 33, 35].

2. Auxiliary Results

Let N0 = N ∪ {0} and N be the collection of positive numbers. The test functions, also known as the
monomials e ȷ(ℓ) = ℓ ȷ for ȷ ∈N0, are important in linear positive operator uniform approximation. We offer
a suitable form of these operators for determining the images of the monomials by the Lupaş-Durrmeyer
type operators (6).

Lemma 2.1. For the Lupaş-Durrmeyer type operators hold;

U[ m
n ]

n,ϱ (e0; ℓ) = 1; U[ m
n ]

n,ϱ (e1; ℓ) = ℓ; U[ m
n ]

n,ϱ (e2; ℓ) = (−1+n)nℓ2ϱ
(m+n)(1+nϱ) +

ℓ(m+n+nϱ+mnϱ)
(m+n)(1+nϱ) ;

U[ m
n ]

n,ϱ (e3; ℓ) = (−2+n)(−1+n)n2ℓ3ϱ2

(m+n)(2m+n)(1+nϱ)(2+nϱ) +
ℓ2(3(−1+n)n2ϱ+3(−1+n)n2ϱ2+3m(−1+n)nϱ(2+nϱ))

(m+n)(2m+n)(1+nϱ)(2+nϱ)

+
ℓ(2n2+3n2ϱ+n2ϱ2+3mn(2+nϱ)+3mnϱ(2+nϱ)+2m2(1+nϱ)(2+nϱ))

(m+n)(2m+n)(1+nϱ)(2+nϱ) ;

U[ m
n ]

n,ϱ (e4; ℓ) = (−3+n)(−2+n)(−1+n)n3ℓ4ϱ3

(m+n)(2m+n)(3m+n)(1+nϱ)(2+nϱ)(3+nϱ) +
ℓ3(6(−2+n)(−1+n)n2(3m+n)ϱ2+6(1+m)(−2+n)(−1+n)n3ϱ3)

(m+n)(2m+n)(3m+n)(1+nϱ)(2+nϱ)(3+nϱ)

+
ℓ2(11(−1+n)n(2m+n)(3m+n)ϱ+18(−1+n)n2(3m+n)ϱ2+18m(−1+n)n2(3m+n)ϱ2+(1+m)(−1+n)n2(7n+m(−1+11n))ϱ3)

(m+n)(2m+n)(3m+n)(1+nϱ)(2+nϱ)(3+nϱ)

+
ℓ(11mn(2m+n)(3m+n)ϱ+6n2(3m+n)ϱ2+18mn2(3m+n)ϱ2+12m2n2(3m+n)ϱ2+(1+m)n2(n+m(−1+6(1+m)n))ϱ3)

(m+n)(2m+n)(3m+n)(1+nϱ)(2+nϱ)(3+nϱ) +
ℓ(6(m+n)(2m+n)(3m+n)+11n(2m+n)(3m+n)ϱ)

(m+n)(2m+n)(3m+n)(1+nϱ)(2+nϱ)(3+nϱ) .

For the purpose of conciseness, we will write M[ m
n ]

n,ϱ,r(ℓ) := U[ m
n ]

n,ϱ ((e1 − ℓ)r; ℓ), where n ∈N, r ∈N0, in order
to calculate the central moments of the operators (6).
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Lemma 2.2. For the Lupaş-Durrmeyer type operators hold;
M[ m

n ]
n,ϱ,1(ℓ) = 0; M[ m

n ]
n,ϱ,2(ℓ) = ℓ(1−ℓ)(m+n+(1+m)nϱ)

(m+n)(1+nϱ) ;

M[ m
n ]

n,ϱ,4(ℓ) =
n3ℓ4

(
−

18m3(1+nϱ)(2+nϱ)(3+nϱ)
n3 −18(1+ϱ)+3(−6+n)ϱ(1+ϱ)+3(−2+n)ϱ2(1+ϱ)+ 3m2(2+nϱ)(3+nϱ)(−11+(−12+n)ϱ)

n2 +
6m(3+nϱ)(1+ϱ)(−6+(−4+n)ϱ)

n

)
(m+n)(2m+n)(3m+n)(1+nϱ)(2+nϱ)(3+nϱ)

+
n3ℓ3(18+18ϱ−3(−6+n)ϱ−3(−6+n)ϱ2

−3(−2+n)ϱ2
−3(−2+n)ϱ3

((m+n)(2m+n)(3m+n)(1+nϱ)(2+nϱ)(3+nϱ))

+
n3ℓ3(18(1+ϱ)−3(−6+n)ϱ(1+ϱ)−3(−2+n)ϱ2(1+ϱ)− 12m(1+ϱ)(−6+(−4+n)ϱ)(3+nϱ)

n −
6m2(−11+(−12+n)ϱ)(2+nϱ)(3+nϱ)

n2 +
36m3(1+nϱ)(2+nϱ)(3+nϱ)

n3 )
((m+n)(2m+n)(3m+n)(1+nϱ)(2+nϱ)(3+nϱ))

+
n3ℓ2(−18−18ϱ+3(−6+n)ϱ+3(−6+n)ϱ2+3(−2+n)ϱ2+3(−2+n)ϱ3

−6(1+ϱ)−5ϱ(1+ϱ)−ϱ2(1+ϱ))
((m+n)(2m+n)(3m+n)(1+nϱ)(2+nϱ)(3+nϱ))

+
n3ℓ2

(
−

24m3(1+nϱ)(2+nϱ)(3+nϱ)
n3 +

m(1+ϱ)(−144+ϱ(−91+ϱ+n(−29−31ϱ+6nϱ)))
n +

m2(−264+ϱ(−282+n(−202+ϱ(−234+ϱ+3n(−10+(−16+n)ϱ)))))
n2

)
((m+n)(2m+n)(3m+n)(1+nϱ)(2+nϱ)(3+nϱ))

+
n3ℓ

(
6+11ϱ+6ϱ2+ϱ3+

36m(1+ϱ)
n +

6m3(1+nϱ)(2+nϱ)(3+nϱ)
n3 +

mϱ(1+ϱ)(19+11n−ϱ+7nϱ)
n +

m2(1+ϱ)(66+nϱ(55−ϱ+12nϱ))
n2

)
(m+n)(2m+n)(3m+n)(1+nϱ)(2+nϱ)(3+nϱ) .

Lemma 2.3. For ϱ > 0 and ℓ ∈ (0, 1), we get

U[ m
n ]

n,ϱ (G; ℓ) =
1

β
(
ℓn
m ,

(1−ℓ)n
m

) ∫ 1

0
ı
ℓn
m −1(1 − ı)

(1−ℓ)n
m −1Un,ϱ(G; ı)dı,

where Un,ϱ(G, ı) is defined in equation (5).

Proof. Applying the relationship between gamma and beta functions

β(ℓ, x) =
Γ(ℓ)Γ(x)
Γ(ℓ + x)

,

where Γ(s) is Gamma function defined by

Γ(s) =
∫
∞

0
us−1e−udu, s > 0,

with Γ(s + n) = s(s + 1) · . . . · (s + n − 1)Γ(s), for n ∈N, then we get

β

(
ℓn
m
+ ȷ,

(1 − ℓ)n
m

+ n − ȷ
)
=
Γ
(
ℓn
m + ȷ

)
Γ
(

(1−ℓ)n
m + n − ȷ

)
Γ
(

n
m + n

) = q[ m
n ]

n, ȷ (ℓ)
(
n
ȷ

)−1

β

(
ℓn
m
,

(1 − ℓ)n
m

)
.

Hence

q[ m
n ]

n, ȷ (ℓ) =
(
n
ȷ

) (
β

(
ℓn
m
,

(1 − ℓ)n
m

))−1

β

(
ℓn
m
+ ȷ,

(1 − ℓ)n
m

+ n − ȷ
)
,
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and it follows

U[ m
n ]

n,ϱ (G; ℓ) =

n−1∑
ȷ=1

(
n
ȷ

)β (
ℓn
m + ȷ,

(1−ℓ)n
m + n − ȷ

)
β
(
ℓn
m ,

(1−ℓ)n
m

) 1
β( ȷϱ, (n − ȷ)ϱ)

∫ 1

0
s ȷϱ−1(1 − s)(n− ȷ)ϱ−1

G(s)ds

+
β
(
ℓn
m ,

(1−ℓ)n
m + n

)
β
(
ℓn
m ,

(1−ℓ)n
m

) G(0) +
β
(
ℓn
m + n, (1−ℓ)n

m

)
β
(
ℓn
m ,

(1−ℓ)n
m

) G(1)

=
1

β
(
ℓn
m ,

(1−ℓ)n
m

) n−1∑
ȷ=1

(
n
ȷ

) ∫ 1

0
ı
ℓn
m + ȷ−1(1 − ı)

(1−ℓ)n
m +n− ȷ−1dı

×
1

β( ȷϱ, (n − ȷ)ϱ)

∫ 1

0
s ȷϱ−1(1 − s)(n− ȷ)ϱ−1

G(s)ds +G(0)
∫ 1

0
ı
ℓn
m −1(1 − ı)

(1−ℓ)n
m +n−1dı

+G(1)
∫ 1

0
ı
ℓn
m +n−1(1 − ı)

(1−ℓ)n
m −1dı

)
=

1

β
(
ℓn
m ,

(1−ℓ)n
m

) ∫ 1

0
ı
ℓn
m −1(1 − ı)

(1−ℓ)n
m −1Un,ϱ(G; ı)dı.

We provide four results involving Lupaş-Durrmeyer type operators (6) below without providing any
justification because all that is required to obtain them is mechanical work. The following provides the
images of the test functions created by operators (6) for ȷ ∈N0 and e ȷ(ℓ) = ℓ ȷ.

Lemma 2.4. For any natural number n, we can express

M[ m
n ]

n,ϱ,2(ℓ) = U[ m
n ]

n,ϱ ((e1 − ℓ)2; ℓ) ≤
D

[ m
n ]
ϱ ℓ(1 − ℓ)

1 + nϱ
,

the equation involves a positive constantD[ m
n ]
ϱ , which depends on both ϱ and m and can be taken asD[ m

n ]
ϱ = 1+ϱ+mϱ.

Lemma 2.5. If m
n → 0 as n→∞, and m, ϱ being constant, then

lim
n→∞

nM[ m
n ]

n,ϱ,1(ℓ) = 0,

lim
n→∞

nM[ m
n ]

n,ϱ,2(ℓ) =
(1 + ϱ +mϱ)ℓ(1 − ℓ)

ϱ
,

lim
n→∞

n2M[ m
n ]

n,ϱ,4(ℓ) =
3ℓ2(1 + ϱ)(1 + ϱ + 2mϱ)

ϱ2 −
6ℓ3(1 + ϱ +mϱ)2

ϱ2 +
ℓ4(3 + 3ϱ(2 + ϱ + 2m(1 + ϱ +mϱ)))

ϱ2 .

3. Theorems and local approximation

Our ongoing research focuses on the qualitative aspects of operators of the Lupaş-Durrmeyer type,
including uniform convergence and asymptotic behavior.

Theorem 3.1. Suppose G ∈ C[0, 1] and m
n ≥ 0 is a parameter that depends on n ∈ N. If m

n → 0 as n approaches

infinity, and m, ϱ being constant, then lim
n→∞

U[ m
n ]

n,ϱ (G; ℓ) converges uniformly to G(ℓ) over the interval [0, 1].
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Proof. Since U[ m
n ]

n,ϱ (1; ℓ) = 1, U[ m
n ]

n,ϱ (e1; ℓ) = ℓ and U[ m
n ]

n,ϱ (e2; ℓ) = (−1+n)nℓ2ϱ
(m+n)(1+nϱ) +

ℓ(m+n+nϱ+mnϱ)
(m+n)(1+nϱ) , it follows

lim
n→∞

U[ m
n ]

n,ϱ (eı; ℓ) = eı(ℓ), for ı = 0, 1, 2.

By utilizing the established Korovkin’s theorem, we can derive the following

lim
n→∞

U[ m
n ]

n,ϱ (G; ℓ) = G(ℓ) uniformly on [0, 1].

The following result provides a Voronovskaja-type result for the operators of the Lupaş-Durrmeyer type.

Theorem 3.2. Let G : [0, 1]→ R, m
n → 0 as n→∞, and m, ϱ being constant. If G ∈ C2[0, 1], then

lim
n→∞

n
(
U[ m

n ]
n,ϱ (G; ℓ) − G(ℓ)

)
=

(1 + ϱ +mϱ)ℓ(1 − ℓ)
2ϱ

G
′′(ℓ).

Proof. It is as follows using Taylor’s expansion formula for the function G

G(ı) = G(ℓ) +G′(ℓ)(ı − ℓ) +
1
2
G
′′(ℓ)(ı − ℓ)2 + κ(ı, ℓ)(ı − ℓ)2, (7)

where lim
ı→ℓ
κ(ı, ℓ) = 0 and the function κ(ı, ℓ) := κ(ı − ℓ) is bounded. Given that Lupaş-Durrmeyer type

operators are linear, and after applying the operators U[ m
n ]

n,ϱ to both sides of the previous equation (7), we
obtain

U[ m
n ]

n,ϱ (G; ℓ) − G(ℓ) = U[ m
n ]

n,ϱ ((e1 − ℓ); ℓ)G′(ℓ) +
1
2

U[ m
n ]

n,ϱ

(
(e1 − ℓ)2; ℓ

)
G
′′(ℓ) +U[ m

n ]
n,ϱ

(
κ(ı, ℓ) · (e1 − ℓ)2; ℓ

)
.

By using Lemma 2.2, the result as follows

lim
n→∞

n
(
U[ m

n ]
n,ϱ (G; ℓ) − G(ℓ)

)
=
ℓ(1 − ℓ)(1 + ϱ +mϱ)

2ϱ
G
′′(ℓ) + lim

n→∞
n
(
U[ m

n ]
n,ϱ

(
κ(ı, ℓ) · (e1 − ℓ)2; ℓ

))
. (8)

Using the Cauchy-Schwarz’s inequality, we estimate the final component on the right-hand side of the
previous equality, resulting in

nU[ m
n ]

n,ϱ

(
κ(ı, ℓ) · (e1 − ℓ)2; ℓ

)
≤

√
U[ m

n ]
n,ϱ (κ2(ı, ℓ); ℓ)

√
n2U[ m

n ]
n,ϱ ((e1 − ℓ)4; ℓ). (9)

Because κ2(ℓ, ℓ) = 0 and κ2(·, ℓ) ∈ C[0, 1], utilizing the convergence established in Theorem 3.1, the result is
as follows

lim
n→∞

U[ m
n ]

n,ϱ

(
κ2(ı, ℓ); ℓ

)
= κ2(ℓ, ℓ) = 0. (10)

Conclusion reached by using Lemma 2.5 in combination with equations (9) and (10)

lim
n→∞

n
(
U[ m

n ]
n,ϱ

(
κ(ı, ℓ) · (e1 − ℓ)2; ℓ

))
= 0,

and by applying (8), we discover how the Lupaş-Durrmeyer type operators (6) behave asymptotically.

Moduli of smoothness [14] are the basic parameters used to assess the degree of linear positive operators
approximation to the identity operator. The first order and second order smoothness moduli of G ∈ C[0, 1]
and λ ≥ 0 are defined as follows:

ω1(G, λ) := sup{|G(ℓ + h) − G(ℓ)| : ℓ, ℓ + h ∈ [0, 1], 0 ≤ h ≤ λ},
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respectively,
ω2(G, λ) := sup{|G(ℓ + h) − 2G(ℓ) +G(ℓ − h)| : ℓ, ℓ ± h ∈ [0, 1], 0 ≤ h ≤ λ}.

Also, let us define Peetre’s K-functional [13]

K2(G, λ) = inf{∥G − 1∥ + λ∥1′′∥ : 1 ∈ C2[0, 1]}, for λ > 0. (11)

There exists a constant M > 0, such that

K2(G, λ) ≤Mω2

(
G,
√

λ
)
. (12)

Proposition 3.3. If G is a continuous real-valued function that is bounded to the domain [0, 1], with ∥G∥ =
maxℓ∈[0,1] |G(ℓ)|, then ∣∣∣∣U[ m

n ]
n,ϱ (G; ℓ)

∣∣∣∣ ≤ ∥G∥.
Proof. According to Lemma 2.1 and the definition of Lupaş-Durrmeyer type operators, it follows

∣∣∣∣U[ m
n ]

n,ϱ (G; ℓ)
∣∣∣∣ =

∣∣∣∣∣∣∣∣
n∑
ȷ=0

p[ m
n ]

n, ȷ (ℓ)Fϱn, ȷ(G)

∣∣∣∣∣∣∣∣ ≤
n∑
ȷ=0

p[ m
n ]

n, ȷ (ℓ)Fϱn, ȷ(|G|) ≤ ∥G∥U
[ m

n ]
n,ϱ (e0; ℓ) = ∥G∥.

The following discussion provides direct calculations utilizing Peetre’s K-functional and moduli of smooth-
ness.

Theorem 3.4. Let G be a differentiable function on the interval [0, 1], and its derivative G′ ∈ CB[0, 1]. Then, for any
value of ℓ ∈ [0, 1], the following statement holds

∣∣∣∣U[ m
n ]

n,ϱ (G; ℓ) − G(ℓ)
∣∣∣∣ ≤ 3λ

4
ω1(G′, λ), with λ =

√
(1 − ℓ)ℓ(m + n + (1 +m)nϱ)

(m + n)(1 + nϱ)
.

Proof. Using with the identity

G(ı) − G(ℓ) = G′(ℓ)(ı − ℓ) +G(ı) − G(ℓ) − G′(ℓ)(ı − ℓ),

we get for c between ı and ℓ

G(ı) − G(ℓ) − G′(ℓ)(ı − ℓ) = G′(c) − G′(ℓ)(ı − ℓ),

using the Lagrange mean value theorem (there exists a c between ı and ℓ, such that G(ı)−G(ℓ) = G′(c)(ı− ℓ).
Because |c − ℓ| ≤ |ı − ℓ|, it follows

G
′(c) − G′(ℓ) ≤ ω1 (G′, (ı − ℓ)) ≤

(
1 + λ−1(ı − ℓ)2

)
ω1 (G′, λ)

and
G(ı) − G(ℓ) − G′(ℓ)(ı − ℓ) ≤

(
ı − ℓ + λ−1(ı − ℓ)2

)
ω1 (G′, λ) .

Applying the linear positive Lupaş-Durrmeyer type operators to the inequality

G(ı) − G(ℓ) ≤ G′(ℓ)(ı − ℓ) +
(
(ı − ℓ) + λ−1(ı − ℓ)2

)
ω1 (G′, λ) ,

following from the above relationship, we obtain∣∣∣∣U[ m
n ]

n,ϱ (G; ℓ) − G(ℓ)
∣∣∣∣ ≤ |G′(ℓ)|U[ m

n ]
n,ϱ (|e1 − ℓ|; ℓ) +

(
U[ m

n ]
n,ϱ (|e1 − ℓ|; ℓ) +

1
λ

U[ m
n ]

n,ϱ

(
(e1 − ℓ)2; ℓ

))
ω1 (G′, λ) .
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Using Cauchy-Schwarz for linear positive operators, we have

U[ m
n ]

n,ϱ (|e1 − ℓ|; ℓ) ≤
√(

U[ m
n ]

n,ϱ (e0; ℓ)
)√(

U[ m
n ]

n,ϱ ((e1 − ℓ)2; ℓ)
)
,

and the outcomes attained in Lemma 2.1 and Lemma 2.2 lead to∣∣∣∣U[ m
n ]

n,ϱ (G; ℓ) − G(ℓ)
∣∣∣∣ ≤ ((

U[ m
n ]

n,ϱ (e0; ℓ)
) 1

2
(
U[ m

n ]
n,ϱ

(
(e1 − ℓ)2; ℓ

)) 1
2
+

1
λ

U[ m
n ]

n,ϱ

(
(e1 − ℓ)2; ℓ

))
ω1 (G′, λ)

≤

(
U[ m

n ]
n,ϱ

(
(e1 − ℓ)2; ℓ

)) 1
2

(
1 +

1
λ

(
U[ m

n ]
n,ϱ

(
(e1 − ℓ)2; ℓ

)) 1
2

)
ω1 (G′, λ) .

Because(
M[ m

n ]
n,ϱ,2(ℓ)

) 1
2
=

(
U[ m

n ]
n,ϱ

(
(e1 − ℓ)2; ℓ

)) 1
2
=

√
(1 − ℓ)ℓ(m + n + (1 +m)nϱ)

(m + n)(1 + nϱ)
≤

1
2

√
(m + n + (1 +m)nϱ)

(m + n)(1 + nϱ)
,

and using λ =
√

(m+n+(1+m)nϱ)
(m+n)(1+nϱ) , we get ∣∣∣∣U[ m

n ]
n,ϱ (G; ℓ) − G(ℓ)

∣∣∣∣ ≤ 3λ
4
ω1(G′, λ).

Estimates combining the first and second-order smoothness moduli are more accurate than those ap-
plying just the first modulus of continuity.

Theorem 3.5. If any function G ∈ CB[0, 1], then for any value ℓ within the interval [0, 1] and λ > 0, it follows∣∣∣∣U[ m
n ]

n,ϱ (G; ℓ) − G(ℓ)
∣∣∣∣ ≤ 3

2
ω1

G, ( m + n + nϱ +mnϱ
m + n +mnϱ + nnϱ

) 1
2
 .

Proof. The well-known property of the first-order smoothness property (first modulus of continuity) is

|G(ı) − G(ℓ)| ≤ ω1(G, |ı − ℓ|) ≤
(
1 + λ−1

|ı − ℓ|
)
ω1(G, λ).

By using the previous inequality with the linear positive Lupaş-Durrmeyer type operators, it is as follows∣∣∣∣U[ m
n ]

n,ϱ (G; ℓ) − G(ℓ)
∣∣∣∣ ≤ (

U[ m
n ]

n,ϱ (e0; ℓ) +
1
λ

U[ m
n ]

n,ϱ (|e1 − ℓ|; ℓ)
)
ω1(G, λ).

For positive linear operators, the Cauchy- Schwarz inequality results in

U[ m
n ]

n,ϱ (|e1 − ℓ|; ℓ) ≤
(
U[ m

n ]
n,ϱ (e0; ℓ)

) 1
2
·

(
U[ m

n ]
n,ϱ

(
(e1 − ℓ)2; ℓ

)) 1
2
.

Understanding that operators of the Lupaş-Durrmeyer type retain constants and are conformable to the
conclusions of Lemma 2.2

M[ m
n ]

n,ϱ,2(ℓ) = U[ m
n ]

n,ϱ

(
(e1 − ℓ)2; ℓ

)
=

(1 − ℓ)ℓ(m + n + (1 +m)nϱ)
(m + n)(1 + nϱ)

,

we get ∣∣∣∣U[ m
n ]

n,ϱ (G; ℓ) − G(ℓ)
∣∣∣∣ ≤

1 + λ−1

√
(1 − ℓ)ℓ(m + n + (1 +m)nϱ)

(m + n)(1 + nϱ)

ω1 (G, λ) .

Using the inequality
√
ℓ(1 − ℓ) ≤ 1

2 into account and choosing λ =
√

(m+n+(1+m)nϱ)
(m+n)(1+nϱ) , we get the desired

result.
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Theorem 3.6. Let G ∈ C[0, 1], then for any ℓ ∈ [0, 1] yields

∣∣∣∣U[ m
n ]

n,ϱ (G; ℓ) − G(ℓ)
∣∣∣∣ ≤Mω2

(
G, 1

2λ
)
, with λ =

1
2

√
1 + ϱ +mϱ

1 + nϱ
,

where M is an absolute constant.

Proof. Using Taylor’s expansion formula to obtain the following expression for any function f ∈ C2[0, 1]
and for any values of ı, ℓ ∈ [0, 1], we have

f (ı) = f (ℓ) + (ı − ℓ) f ′(ℓ) +
∫ ı

ℓ
(ı − u) f ′′(u)du.

By using the Lupaş-Durmeyer type operators U[ m
n ]

n,ϱ on both sides of the equation mentioned earlier, we get

U[ m
n ]

n,ϱ ( f ; ℓ) − f (ℓ) = f ′(ℓ)U[ m
n ]

n,ϱ (e1 − ℓ; ℓ) +U[ m
n ]

n,ϱ

(∫ ı

ℓ
(ı − u) f ′′(u)du; ℓ

)
= U[ m

n ]
n,ϱ

(∫ ı

ℓ
(ı − u) f ′′(u)du; ℓ

)
,

applying the results of Lemma 2.2, the result is as follows∣∣∣∣∣∫ ı

ℓ
(ı − u) f ′′(u)du

∣∣∣∣∣ ≤ (ı − ℓ)2
∥ f ′′∥.

Further, keeping in mind the inequality generated at Lemma 2.5, we reach at the following inequality∣∣∣∣U[ m
n ]

n,ϱ ( f ; ℓ) − f (ℓ)
∣∣∣∣ ≤ ∥ f ′′∥U[ m

n ]
n,ϱ

(
(e1 − ℓ)2; ℓ

)
≤

(m+n+(1+m)nϱ)
4(m+n)(1+nϱ) ∥ f ′′∥ ≤

D
[ m

n ]
ϱ

4(1+nϱ)∥ f ′′∥ = λ2
∥ f ′′∥.

For any function G ∈ C[0, 1] and f ∈ C2[0, 1], by applying the Proposition 3.3, it follows∣∣∣∣U[ m
n ]

n,ϱ (G; ℓ) − G(ℓ)
∣∣∣∣ ≤ ∣∣∣∣U[ m

n ]
n,ϱ (G − f ; ℓ)

∣∣∣∣ + ∣∣∣∣U[ m
n ]

n,ϱ ( f ; ℓ) − f (ℓ)
∣∣∣∣ + |G(ℓ) − f (ℓ)|

≤ 2∥G − f ∥ + λ2
∥ f ′′∥ = 2

(
∥G − f ∥ + λ2

2 ∥ f ′′∥
)
.

Using the relation (12) and the infimum on the right-hand side across all of f ∈ C2[0, 1], we can now obtain

∣∣∣∣U[ m
n ]

n,ϱ (G; ℓ) − G(ℓ)
∣∣∣∣ ≤ 2K2

(
G, 1

2λ
2
)
≤Mω2

(
G, 1

2λ
)
, with λ = 1

2

(
D

[ m
n ]
ϱ

1+nϱ

) 1
2

,

whereD[ m
n ]
ϱ is taken as 1 + ϱ +mϱ.

Theorem 3.7. Suppose that G ∈ C[0, 1]. Then for any value of ℓ ∈ [0, 1] and λ > 0, the following statement holds

∣∣∣∣U[ m
n ]

n,ϱ (G; ℓ) − G(ℓ)
∣∣∣∣ ≤ 9

8
ω2(G, λ) with λ =

√
(m + n + (1 +m)nϱ)

(m + n)(1 + nϱ)
.

Proof. Applying Păltănea result [33] for a linear positive operator L

|L(G; ℓ) − G(ℓ)| ≤ |L(e0; ℓ) − 1||G(ℓ)| +
1
λ
|L(e1 − ℓ; ℓ)|ω1(G, λ) +

(
L(e0; ℓ) +

1
2λ2L

(
(e1 − ℓ)2; ℓ

))
ω2(G, λ),
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we get the estimate for U[ m
n ]

n,ϱ := L∣∣∣∣U[ m
n ]

n,ϱ (G; ℓ) − G(ℓ)
∣∣∣∣ ≤ ∣∣∣∣U[ m

n ]
n,ϱ (e0; ℓ) − 1

∣∣∣∣ |G(ℓ)| +
1
λ

∣∣∣∣U[ m
n ]

n,ϱ (e1 − ℓ; ℓ)
∣∣∣∣ω1(G, λ)

+
(
U[ m

n ]
n,ϱ (e0; ℓ) +

1
2λ2 U[ m

n ]
n,ϱ

(
(e1 − ℓ)2; ℓ

))
ω2(G, λ).

Theorem 2.2 and Lemma 2.1 are taken into consideration, and by selecting λ =
√

(m+n+(1+m)nϱ)
(m+n)(1+nϱ) , we arrive at

the desired outcome.

4. Estimates of the rate of approximation using weighted moduli

In order to prove a global approximation theorem for Lupaş-Durmeyer type operators that takes into
account the Ditzian-Totik modulus of smoothness, we find references to certain results from [14]. The
Ditzian-Totik smoothness moduli of the first and second orders for any G ∈ CB[0, 1] and λ ≥ 0 by

ω
ψ
1 (G, λ) = sup

|h|≤λ
sup

ℓ±(h/2)ψ(ℓ)∈[0,1]

∣∣∣∣G (
ℓ + 1

2 hψ(ℓ)
)
− G

(
ℓ − 1

2 hψ(ℓ)
)∣∣∣∣ ,

and

ω
ψ
2 (G, λ) = sup

|h|≤λ
sup

ℓ±hψ(ℓ)∈[0,1]

∣∣∣G (
ℓ + hψ(ℓ)

)
− 2G(ℓ) +G

(
ℓ − hψ(ℓ)

)∣∣∣ , (13)

with ψ(ℓ) =
√
ℓ(1 − ℓ), ℓ ∈ [0, 1]. The second order K-functional can be expressed as follows

Kψ
2

(
G, λ2

)
= inf

f ′∈ACloc[0,1]

(
∥G − f ∥ + λ2

∥∥∥ψ2 f ′′
∥∥∥) , (14)

where f ′ ∈ ACloc[0, 1] denotes that f is differentiable and that f ′ is absolutely continuous on all closed in-
tervals [a, b] ⊂ [0, 1]. An inequality between the K-functional (14) and second order modulus of smoothness
(13), which is given for a positive constant N, is established in [14] by

Kψ
2

(
G, λ2

)
≤ Nωψ2 (G, λ). (15)

Using the information presented, we can provide a proof for the following statement.

Theorem 4.1. Let G ∈ C[0, 1], then for any ℓ ∈ [0, 1] yields

∣∣∣∣U[ m
n ]

n,ϱ (G; ℓ) − G(ℓ)
∣∣∣∣ ≤ Nωψ2 (G, λ), with λ =

(
D

[ m
n ]
ϱ

2(1+nϱ)

) 1
2

,

where N is an absolute constant.

Proof. Using Taylor’s expansion formula, in the proof of Theorem 3.6 we show that for any function
f ∈ C2[0, 1] and for any values ı, ℓ ∈ [0, 1]∣∣∣∣U[ m

n ]
n,ϱ ( f ; ℓ) − f (ℓ)

∣∣∣∣ ≤ U[ m
n ]

n,ϱ

(∫ ı

ℓ
|ı − ν| · | f ′′(ν)|dν; ℓ

)
. (16)

Since ψ2(ℓ) is a concave function on [0, 1], for ν = λℓ + (1 − λ)ı with ı < ν < ℓ and λ ∈ [0, 1], it follows

|ı − ν|

ψ2(ν)
=
|ı − λt − (1 − λ)t|
ψ2(λℓ + (1 − λ)t)

≤
λ|ı − ℓ|

λψ2(ℓ) + (1 − λ)ψ2(ı)
≤
|ı − ℓ|

ψ2(ℓ)
.
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By applying the inequality derived above to the equation (16) and utilizing Lemma 2.4 , we arrive at the
following expression∣∣∣∣U[ m

n ]
n,ϱ ( f ; ℓ) − f (ℓ)

∣∣∣∣ ≤ U[ m
n ]

n,ϱ

(∫ ı

ℓ

|ı − ν|

ψ2(ν)
dν; ℓ

) ∥∥∥ψ2 f ′′
∥∥∥ ≤ 1

ψ2(ℓ)

∥∥∥ψ2 f ′′
∥∥∥ U[ m

n ]
n,ϱ

(
(e1 − ℓ)2; ℓ

)
≤

1
ψ2(ℓ)

∥∥∥ψ2 f ′′
∥∥∥ D[ m

n ]
ϱ ℓ(1 − ℓ)

1 + nϱ
=

∥∥∥ψ2 f ′′
∥∥∥ D[ m

n ]
ϱ

1 + nϱ
.

Using the in equality we derived earlier and Proposition 3.3, we can conclude that for any functionG ∈ C[0, 1]
and any function G ∈ ACloc [0, 1] the following statement holds∣∣∣∣U[ m

n ]
n,ϱ (G; ℓ) − G(ℓ)

∣∣∣∣ ≤ ∣∣∣∣U[ m
n ]

n,ϱ (G − f ; ℓ)
∣∣∣∣ + ∣∣∣∣U[ m

n ]
n,ϱ ( f ; ℓ) − f (ℓ)

∣∣∣∣ + |G(ℓ) − f (ℓ)|

≤ 2∥G − f ∥ +
D

[ m
n ]
ϱ

1+nϱ

∥∥∥ψ2 f ′′
∥∥∥ = 2

(
∥G − f ∥ +

D
[ m

n ]
ϱ

2(1+nϱ)

∥∥∥ψ2 f ′′
∥∥∥) .

Take the infimum of the right-hand side of the previous inequality over all functions G ∈ ACloc[0, 1] and
utilize the relation (15), we obtain the following expression

∣∣∣∣U[ m
n ]

n,ϱ (G; ℓ) − G(ℓ)
∣∣∣∣ ≤ 2K2

(
G, λ2

)
≤ Nωψ2 (G, λ), with λ =

(
D

[ m
n ]
ϱ

2(1+nϱ)

) 1
2

.

5. Rate of convergence

Determine the rate of convergence for differentiable functions whose derivatives have bounded variation
on the interval [0, 1]. The set of differentiable functions G defined on [0, 1], whose derivatives G′ are of
bounded variation on [0, 1], is denoted as G ∈ DBV[0, 1] can be represented as

G(ℓ) =
∫ ℓ

0
G(ı)dı +G(0).

The operators U[ m
a ]

n,ϱ (G) can be represented as integrals

U[ m
n ]

n,ϱ (G; ℓ) =
∫ 1

0
K

[ m
n ]

n,ϱ (ℓ, ı)G(ı)dı, (17)

where the kernelK [ m
n ]

n,ϱ is given by

K
[ m

n ]
n,ϱ (ℓ, ı) = q[ m

n ]
n,0 (ℓ)δ(ı) + q[ m

n ]
n,n (ℓ)δ(1 − ı) +

n−1∑
ȷ=1

q[ m
n ]

n, ȷ (ℓ)
ı ȷϱ−1(1 − ı)(n− ȷ)ϱ−1

β( ȷϱ, (n − ȷ)ϱ)
,

where δ(u) is the Dirac-delta function.

Lemma 5.1. Considering a parameter m
n for m > 0 and n ∈N. As n→∞ then m

n must approaches zero. For a fixed
value of ℓ ∈ (0, 1), the conclusion holds

i) Θ
[ m

n ]
n,ϱ (ℓ, y) :=

∫ y

0
K

[ m
n ]

n,ϱ (ℓ, ı)dı ≤
D

[ m
n ]
ϱ

(1 + nϱ)
ℓ(1 − ℓ)
(ℓ − y)2 , 0 ≤ y < ℓ;

ii) 1 −Θ[ m
n ]

n,ϱ (ℓ, z) :=
∫ 1

z
K

[ m
n ]

n,ϱ (ℓ, ı)dı ≤
D

[ m
n ]
ϱ

(1 + nϱ)
ℓ(1 − ℓ)
(z − ℓ)2 , ℓ < z < 1.
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Proof. i) Using Lemma 2.4, we get

Θ
[ m

n ]
n,ϱ (ℓ, y) =

y∫
0

K
[ m

n ]
n,ϱ (ℓ, ı)dı ≤

∫ y

0

(
ℓ − ı
ℓ − y

)2

K
[ m

n ]
n,ϱ (ℓ, ı)dı

=
1

(ℓ − y)2 U[ m
n ]

n,ϱ

(
(e1 − ℓ)2; ℓ

)
≤
D

[ m
n ]
ϱ

(1 + nϱ)
ℓ(1 − ℓ)
(ℓ − y)2 .

ii) The proof doesn’t require any further explanation or elaboration, so it has been omitted.

Theorem 5.2. Assuming that G ∈ DBV[0, 1], and that the m
n → 0 as n → ∞. Then, for every ℓ ∈ (0, 1), and

n→∞, we have

∣∣∣∣U[ m
n ]

n,ϱ (G; ℓ) − G(ℓ)
∣∣∣∣ ≤

√
D

[ m
n ]
ϱ ℓ(1 − ℓ)

(1 + nϱ)
|G
′(ℓ+) − G′(ℓ−)|

2
+
D

[ m
n ]
ϱ (1 − ℓ)

(1 + nϱ)

[
√

n]∑
ȷ=1

ℓ∨
ℓ−(ℓ/ȷ)

(G′ℓ)

+
ℓ
√

n

ℓ∨
ℓ−(ℓ/

√
n)

(G′ℓ) +
D

[ m
n ]
ϱ ℓ

(1 + nϱ)

[
√

n]∑
ȷ=1

ℓ+((1−ℓ)/ȷ)∨
ℓ

(G′ℓ) +
(1 − ℓ)
√

n

ℓ+((1−ℓ)/
√

n)∨
ℓ

(G′ℓ),

where
∨b

a(G′ℓ) denotes the total variation of G′ℓ on [a, b] and G′ℓ is defined by

G
′

ℓ(ı) =


G
′(ı) − G′(ℓ−), 0 ≤ ı < ℓ

0, ı = ℓ
G
′(ı) − G′(ℓ+), ℓ < ı < 1.

(18)

Proof. The Lupaş-Durmeyer type operators maintain constants and by utilizing equation (17), this applies
to every value of ℓ ∈ (0, 1), we have

U[ m
n ]

n,ϱ ( f ; ℓ) − G(ℓ) =
∫ 1

0
K

[ m
n ]

n,ϱ (ℓ, ı) (G(ı) − G(ℓ)) dı =
∫ 1

0
K

[ m
n ]

n,ϱ (ℓ, ı)
∫ ı

ℓ
G
′(u)du dı. (19)

For any function G ∈ DBV[0, 1], using equation (18), we get

G
′(u) = G′ℓ(u) +

G
′(ℓ+) +G′(ℓ−)

2
+
G
′(ℓ+) − G′(ℓ−)

2
sgn(u − ℓ) (20)

+λℓ(u)
(
G
′(u) −

G
′(ℓ+) +G′(ℓ−)

2

)
,

where

λℓ(u) =
{

1, u = ℓ
0, u , ℓ.

Obviously,∫ 1

0

( ∫ ı

ℓ

(
G
′(u) −

G
′(ℓ+) +G′(ℓ−)

2

)
λℓ(u)du

)
K

[ m
n ]

n,ϱ (ℓ, ı)dı = 0,

and ∫ 1

0

( ∫ ı

ℓ

G
′(ℓ+) +G′(ℓ−)

2
du

)
K

[ m
n ]

n,ϱ (ℓ, ı)dı

=
G
′(ℓ+) +G′(ℓ−)

2

∫ 1

0
(t − ℓ)K [ m

n ]
n,ϱ (ℓ, ı)dı =

G
′(ℓ+) +G′(ℓ−)

2
·U[ m

n ]
n,ϱ (e1 − ℓ; ℓ) = 0.
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The following is the result of using the Chauchy-Schwarz’s inequality for linear positive operators:∣∣∣∣∣∣
∫ 1

0
K

[ m
n ]

n,ϱ (ℓ, ı)
( ∫ ı

ℓ

G
′(ℓ+) − G′(ℓ−)

2
sgn(u − ℓ)du

)
dı

∣∣∣∣∣∣ ≤ |G′(ℓ+) − G′(ℓ−)|
2

∫ 1

0
|ı − ℓ|K

[ m
n ]

n,ϱ (ℓ, ı)dı

≤
|G
′(ℓ+) − G′(ℓ−)|

2
U[ m

n ]
n,ϱ (|ı − ℓ|; ℓ) ≤

|G
′(ℓ+) − G′(ℓ−)|

2

(
U[ m

n ]
n,ϱ ((ı − ℓ)2; ℓ)

)1/2
.

By applying Lemma 2.2 or Lemma 2.4 together with equation (19) and (20), a new result can be∣∣∣∣U[ m
n ]

n,ϱ (G; ℓ) − G(ℓ)
∣∣∣∣

≤
|G
′(ℓ+) − G′(ℓ−)|

2

√
D

[ m
n ]
ϱ ℓ(1 − ℓ)

(1 + nϱ)
+

∣∣∣∣∣ ∫ ℓ

0

(∫ ı

ℓ
G
′

ℓ(u)du
)
K

[ m
n ]

n,ϱ (ℓ, ı)dı +
∫ 1

ℓ

(∫ ı

ℓ
G
′

ℓ(u)du
)
K

[ m
n ]

n,ϱ (ℓ, ı)dı
∣∣∣∣∣.

(21)

Let us focus on

M
[ m

n ]
n,ϱ (G′ℓ, ℓ) =

∫ ℓ

0

(∫ ı

ℓ
G
′

ℓ(u)du
)
K

[ m
n ]

n,ϱ (ℓ, ı)dı,

F
[ m

n ]
n,ϱ (G′ℓ, ℓ) =

∫ 1

ℓ

(∫ ı

ℓ
G
′

ℓ(u)du
)
K

[ m
n ]

n,ϱ (ℓ, ı)dı.

In order to finalize the proof, it is enough to estimate F [ m
n ]

n,ϱ and M[ m
n ]

n,ϱ . Since
∫ 1

e dıΘ
[m]
n,ϱ (ℓ, ı) ≤ 1 for all

[0, l] ⊂ [0, 1]. Utilizing the integration formula by parts and applying Lemma 5.1 with y = ℓ− ℓ
√

n
, to express

the following∣∣∣∣M[ m
n ]

n,ϱ (G′ℓ, ℓ)
∣∣∣∣ = ∣∣∣∣∣ ∫ ℓ

0

(∫ ı

ℓ
G
′

ℓ(u)du
)

dıΘ
[ m

n ]
n,ϱ (ℓ, ı)

∣∣∣∣∣ = ∣∣∣∣∣ ∫ ℓ

0
Θ

[ m
n ]

n,ϱ (ℓ, ı)G′ℓ(ı)dı
∣∣∣∣∣

≤

( ∫ y

0
+

∫ ℓ

y

)
|G
′

ℓ(ı)||Θ
[ m

n ]
n,ϱ (ℓ, ı)|dı

≤
D

[ m
n ]
ϱ ℓ(1 − ℓ)

(1 + nϱ)

∫ y

0

ℓ∨
ı

(G′ℓ)(ℓ − ı)
−2dı +

∫ ℓ

y

ℓ∨
ı

(G′ℓ)dı

≤
D

[ m
n ]
ϱ ℓ(1 − ℓ)

(1 + nϱ)

∫ y

0

ℓ∨
ı

(G′ℓ)(l − ı)
−2dı +

ℓ
√

n

ℓ∨
ℓ−(ℓ

√
n)

(G′ℓ).

Now put u = ℓ/(ℓ − ı), we find

D
[ m

n ]
ϱ ℓ(1 − ℓ)

(1 + nϱ)

∫ ℓ−(ℓ/
√

n)

0
(ℓ − ı)−2

ℓ∨
ı

(G′ℓ)dı =
D

[ m
n ]
ϱ (1 − ℓ)

(1 + nϱ)

∫ √
n

1

ℓ∨
ℓ−(ℓ/u)

(G′ℓ)du

≤
D

[ m
n ]
ϱ (1 − ℓ)

(1 + nϱ)

[
√

n]∑
ȷ=1

∫ ȷ+1

ȷ

ℓ∨
ℓ−(ℓ/ȷ)

(G′ℓ)du ≤
D

[ m
n ]
ϱ (1 − ℓ)

(1 + nϱ)

[
√

n]∑
ȷ=1

ℓ∨
ℓ−(ℓ/ȷ)

(G′ℓ).

Thus∣∣∣∣M[ m
n ]

n,ϱ (G′ℓ, ℓ)
∣∣∣∣ ≤ D[ m

n ]
ϱ (1 − ℓ)

(1 + nϱ)

[
√

n]∑
ȷ=1

ℓ∨
ℓ−(ℓ/ȷ)

(G′ℓ) +
ℓ
√

n

ℓ∨
ℓ−(ℓ/

√
n)

(G′ℓ). (22)
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By utilizing the integration formula by parts and implementing Lemma 5.1 with z = ℓ + (1−ℓ)
√

n
, the result is

as follows:∣∣∣∣F [ m
n ]

n,ϱ (G′ℓ, ℓ)
∣∣∣∣

=

∣∣∣∣∣ ∫ 1

ℓ

(∫ ı

ℓ
f ′ℓ (u)du

)
K

[ m
n ]

n,ϱ (ℓ, ı)dı
∣∣∣∣∣

=

∣∣∣∣∣ ∫ z

ℓ

(∫ ı

ℓ
f ′ℓ (u)du

)
dı

(
1 −Θ[ m

n ]
n,ϱ (ℓ, ı)

)
+

∫ 1

z

(∫ ı

ℓ
f ′ℓ (u)du

)
dı

(
1 −Θ[ m

n ]
n,ϱ (ℓ, ı)

) ∣∣∣∣∣
=

∣∣∣∣∣[ ∫ ı

ℓ
f ′ℓ (u)

(
1 −Θ[ m

n ]
n,ϱ (ℓ, ı)

)
du

]z

ℓ
−

∫ z

ℓ
f ′ℓ (ı)

(
1 −Θ[ m

n ]
n,ϱ (ℓ, ı)

)
dı +

∫ 1

z

(∫ ı

ℓ
f ′ℓ (u)du

)
dı

(
1 −Θ[ m

n ]
n,ϱ (ℓ, ı)

) ∣∣∣∣∣
=

∣∣∣∣∣ ∫ z

ℓ
f ′ℓ (u)du

(
1 −Θ[ m

n ]
n,ϱ (ℓ, z)

)
−

∫ z

ℓ
f ′ℓ (ı)

(
1 −Θ[ m

n ]
n,ϱ (ℓ, ı)

)
dı +

[ ∫ ı

ℓ
f ′ℓ (u)du

(
1 −Θ[ m

n ]
n,ϱ (ℓ, ı)

) ]1

z

−

∫ 1

z
f ′ℓ (ı)

(
1 −Θ[ m

n ]
n,ϱ (ℓ, ı)

)
dı

∣∣∣∣∣
=

∣∣∣∣∣ ∫ z

ℓ
f ′ℓ (ı)

(
1 −Θ[ m

n ]
n,ϱ (ℓ, ı)

)
dı +

∫ 1

z
f ′ℓ (ı)

(
1 −Θ[ m

n ]
n,ϱ (ℓ, ı)

)
dı

∣∣∣∣∣
≤
D

[ m
n ]
ϱ ℓ(1 − ℓ)

(1 + nϱ)

∫ 1

z

ı∨
ℓ

(G′ℓ)(ı − ℓ)
−2dı +

∫ z

ℓ

ı∨
ℓ

(G′ℓ)dı

=
D

[ m
n ]
ϱ ℓ(1 − ℓ)

(1 + nϱ)

∫ 1

ℓ+((1−ℓ)/
√

n)

ı∨
ℓ

(G′ℓ)(ı − ℓ)
−2dı +

(1 − ℓ)
√

n

ℓ+((1−ℓ)/
√

n)∨
ℓ

(G′ℓ).

By the substitution of v = (1 − ℓ)/(ı − ℓ), we get∣∣∣∣F [ m
n ]

n,ϱ (G′ℓ, ℓ)
∣∣∣∣ ≤ D[ m

n ]
ϱ ℓ(1 − ℓ)

(1 + nϱ)

∫ √
n

1

ℓ+((1−ℓ)/v)∨
ℓ

(G′ℓ)(1 − ℓ)
−1dv +

(1 − ℓ)
√

n

ℓ+((1−ℓ)/
√

n)∨
ℓ

(G′ℓ) (23)

≤
D

[ m
n ]
ϱ ℓ

(1 + nϱ)

[
√

n]∑
ȷ=1

∫ ȷ+1

ȷ

ℓ+((1−ℓ)/v)∨
ℓ

(G′ℓ)dv +
(1 − ℓ)
√

n

ℓ+((1−ℓ)/
√

n)∨
ℓ

(G′ℓ)

=
D

[ m
n ]
ϱ ℓ

(1 + nϱ)

[
√

n]∑
ȷ=1

ℓ+((1−ℓ)/ȷ)∨
ℓ

(G′ℓ) +
(1 − ℓ)
√

n

ℓ+((1−ℓ))/
√

n∨
ℓ

(G′ℓ).

Collecting the estimates (21)-(23), we get the required result.

6. Chebyshev-Grüss theorem

Theorem 6.1. Using the Chebyshev-Grüss inequality[4], [ Theorem 6,[11]], a uniform inequality hold for U[ m
n ]

n,ϱ (G; ℓ) :
C[0, 1]→ C[0, 1] that is:

U[ m
n ]

n,ϱ (Gθ) −U[ m
n ]

n,ϱ (G)U[ m
n ]

n,ϱ (θ)
∣∣∣∣∣ ≤ 1

4
ω̃

G; 2

√
(m + n + (1 +m)nϱ)

2(m + n)(1 + nϱ)

 · ω̃
θ; 2

√
(m + n + (1 +m)nϱ)

2(m + n)(1 + nϱ)

 .
7. Grüss-Voronovskaya theorems

Theorem 7.1. Let g, θ ∈ C2[0, 1]. Then following equality hold

lim
n→∞

n
[
U[ m

n ]
n,ϱ (Gθ) −U[ m

n ]
n,ϱ (G)U[ m

n ]
n,ϱ (θ)

]
= −YSG′θ′, y ∈ [0, 1].
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Proof. Let Y = ℓ(1 − ℓ) and S = (m+n+(1+m)nϱ)
(m+n)(1+nϱ) , we have

n
[
U[ m

n ]
n,ϱ (Gθ) −U[ m

n ]
n,ϱ (G)U[ m

n ]
n,ϱ (θ)

]
= n

{
U[ m

n ]
n,ϱ (Gθ) − (Gθ) −

(YS
2n

(G′′θ + 2G′θ′ +Gθ′′)
)

− θ
[
U[ m

n ]
n,ϱ (G) − G −

(YS
2n
G
′′

)]
−U[ m

n ]
n,ϱ (G)

[
U[ m

n ]
n,ϱ (θ) − θ −

(YS
2n
θ′′

)]
−

YS
n
G
′θ′ −

(YS
2n
θ′′

) [
G −U[ m

n ]
n,ϱ (G)

] }
,

applying the Theorem 3.1 and 3.2, we get

lim
n→∞

n
[
U[ m

n ]
n,ϱ (Gθ) −U[ m

n ]
n,ϱ (G)U[ m

n ]
n,ϱ (θ)

]
= −YSG′θ′.

8. Numerical Examples

Example 8.1. Let’s consider the function G = ℓ2 sin(2πℓ)(blue), where ϱ = 10, m = 0.1, and n takes on the value of

20,40,60 and 80. To calculate the convergence of operator U
m
n

n,ϱ. The resulting value of U
0.1
20

20,10(green), U
0.1
40

40,10(magenta),

U
0.1
60

60,10(red), U
0.1
80

80,10(black) plot on a graph to observe the convergence Fig. 1. As the value of n increases, the plots of the
operator become progressively closer to the function graph. This trend is shown by the convergence of the operator’s
plots towards the function graph.

Figure 1: Approximation process
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Figure 2: Convergence of U
m
n

n,ϱ(G; ℓ) and Uα
n,ρ(G; ℓ) to the

function G(ℓ) = ℓ2 sin(2πℓ)
Figure 3: Convergence of U

m
n

n,ϱ(G; ℓ) and Uα
n,ρ(G; ℓ) to the

function G(ℓ) = ℓ cos(2πℓ)

Example 8.2. We analyze the convergence of the operator U
m
n

n,ϱ(G; ℓ)(magenta) and Kajla Stancu-Durrmeyer type
operators [23] Uα

n,ρ(G; ℓ)(green) , we need to evaluate how well they approximate the functionG(ℓ) = ℓ2 sin(2πℓ)(blue)

for the give value of ϱ = ρ = 10, m = 0.1, α = 1
2n and n = 50. Since it was observed that U

m
n

n,ϱ(G; ℓ) give a better
approximation to G(ℓ) than Uα

n,ρ(G; ℓ) in Fig. 2. While in Fig. 3, consider the function G(ℓ) = ℓ cos(2πℓ)(blue) over

the interval [0,1]. We want to approximate G(ℓ) using the operators U
m
n

n,ϱ(G; ℓ)(magenta) and Uα
n,ρ(G; ℓ)(green) with

n = 30 and using the same parametric values as above. Both operators have a similar shape, but U
m
n

n,ϱ(G; ℓ)(magenta)
is more closer to G(blue).

Example 8.3. Consider the function G(ℓ) = ℓ2 sin(3πℓ) (blue), with parameters ϱ = ρ = 10, m = 0.1, n = 20, and
α = 0.1. In Fig. 4, we compare the operator U

m
n

n,ϱ (green) with:

• Stancu operators [36] (red),

• Lupaş operators [27] (magenta),

• Kajla operators [21] (cyan), where τ(x) = 1
1+x ,

• Kajla-Stancu-Durrmeyer type operators [23] (yellow).

The graph illustrates their convergence toward G(ℓ).
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Figure 4: Comparison process. Figure 5: Error Estimation for m = 0.1(red), m = 0.5(green) and
m = 0.8(magenta).

Example 8.4. The error of approximation of the operators U
m
n

n,ϱ(G; ℓ) for the function G(ℓ) = ℓ2 sin(3πℓ) for the
parameter values of ϱ = 10, m = 0.1 n = 30(green), n = 40(magenta) and n = 50(red) display in Fig 6. The error of
approximation is defined as E

m
n

n,ϱ(G; ℓ) = |U
m
n

n,ϱ(G; ℓ) − G(ℓ)|.

In Fig. 5 error of approximation of the operators U
m
n

n,ϱ(G; ℓ) for the function G(ℓ) = ℓ sin(3πℓ) using the parameter
values of ϱ = 10, n = 15 with different value of m.
In Fig. 7. the error of approximation of the operators for these parametric values given above and G(ℓ) = ℓ2 cos(3πℓ).
The operator’s performance is indicated by the curve on the graph, with a lower curve indicating a better performance
and a higher curve indicating a poor performance. By increasing the value of n we can minimize the error between
the operator’s approximation and the certain function.

Figure 6: Error Estimation for G(ℓ) = ℓ2 sin(3πℓ) Figure 7: Error Estimation for G(ℓ) = ℓ2 cos(3πℓ)
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9. Conclusion

• The new operators U[ m
n ]

n,ϱ defined on the interval [0, 1] converge uniformly to continuous functions.

• These operators have two parameters, m and ϱ, which provide a more generalized framework. By
choosing suitable values of m and ϱ, various types of operators can be derived.

• Numerical example demonstrate that decreasing the value of m results in a reduction of approximation
error, highlighting the effectiveness of the proposed operators.

• In comparison graphs, our operators show the best approximation results compared to other opera-
tors, proving their superiority.
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