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Abstract. In this study, we employ proportional Caputo-Hybrid (PCH) operators to establish Hermite-
Hadamard (HH) type inequalities for multiplicative harmonically convex functions. A key advantage of
these fractional operators lies in their flexibility, allowing the recovery of various forms of inequalities.
Specifically, traditional HH-type inequalities for multiplicative harmonically convex functions emerge
when the parameter αo is set to 1, while for multiplicatively differentiable harmonic convex functions, they
appear whenαo = 0. To support our findings, we present graphical illustrations based on concrete examples.
Additionally, we explore applications to special functions, leading to novel multiplicative fractional order
recurrence relations. A promising avenue for future research involves extending these inequalities to
interval calculus, where functions take interval values rather than precise numbers, broadening their
applicability to uncertainty analysis, numerical approximations, and fractional differential equations..

1. Introduction

Let I = [ao, bo] ⊆ ℜ be an closed interval on the real line. A function ψ : [ao, bo] −→ ℜ is said to be
convex if it satisfies the fundamental convexity condition:

ψ(ßκ1 + (1 − ß)κ2) ≤ ßψ(κ1) + (1 − ß)ψ(κ2), (1)

for all κ1, κ2 ∈ [ao, bo] and ß ∈ [0, 1] [45].
This inequality encapsulates the essence of convexity by asserting that the function’s value at any convex

combination of two points does not exceed the corresponding convex combination of the function’s values
at those points.

A fundamental result in the theory of convexity is the inequality of HH-type, which provides a two-
sided bound for the integral mean of a convex function. Specifically, for any convex function ψ, defined on
the interval [ao, bo], the following inequality holds:

2020 Mathematics Subject Classification. Primary 26D15; Secondary 26A51, 26A33, 26D10.
Keywords. Multiplicative Calculus; Harmonically Convex Function; Hybrid Operators; Hermite-Hadamard Type Inequalities;

Modified Bessel Function.
Received: 31 July 2025; Accepted: 28 September 2025
Communicated by Miodrag Spalević
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ψ
(
ao + bo

2

)
≤

1
bo − ao

∫ bo

ao

ψ(κ)d(κ) ≤
ψ(ao) + ψ(bo)

2
. (2)

This inequality, independently established by Hermite and Hadamard, serves as a powerful tool in math-
ematical analysis and has been widely studied in various contexts [51]. It essentially states that, for a
convex function, the function’s value at the midpoint of an interval is less than or equal to the integral
mean, which in turn is bounded above by the arithmetic mean of its values at the endpoints. The mid-
point rule, the trapezoidal rule, and Ostrowski-type inequalities are only a few examples of the traditional
integral inequalities whose error limits may be improved and refined using the H.H. inequality. Due to its
fundamental importance, researchers have extensively generalized and extended inequality (2) to broader
function classes and different mathematical settings [12, 20, 47, 56].

Dragomir and Agarwal [20] took a significant step in this approach by creating a series of trapezoidal-
type inequalities for convex functions possessing differentiability. Their work paved the way for further
work, including the refinement of error estimates for trapezoidal approximations by Pearce and Pečarić
[52]. Motivated by these early attempts, Kirmaci and Özdemir [38] extended the study to midpoint-type
inequalities for differentiable convex functions, obtaining new results on integral approximation methods.

Other recent works constructed new HH type inequalities and their uses in several mathematical and
practical problems. Vivas-Cortez et al. [55] and Mehrez and Agarwal [42] provided new generalizations
which added further flexibility in applying HH type results. Additionally, Varošanec [53] created several
inequalities with respect to h-convex functions, a generalisation involving many convexity classes such
as s-convexity, Godunova-Levin convexity, and P-functions. One of the especially interesting extensions
of convexity is the function of exponential trigonometric convexity, applied in functional analysis and
optimization problems. Kadakal et al. [30] investigated the class of such functions and discovered new
HH type inequalities, adding to the known data on generalized convexity and integral inequalities. These
broad applications reflect the fundamental significance of convexity and the HH inequality to mathematical
analysis, numerical integration, and applied optimization. The continued evolution of these concepts
underscores their significance in theoretical as well as applied contexts.

Convexity is a fundamental concept in applied sciences, optimization, and mathematical analysis.
Convexity has been generalized several times with the passage of time to extend its applications in various
fields. Harmonic convexity is significant among these generalizations because it covers a broader class of
convex functions and has extremely practical applications. The idea of harmonic convex functions was first
introduced by Anderson et al. [5] and Í. Íşcan [27], introducing many innovations in theoretical as well as
applied mathematics.

Harmonic convexity is particularly relevant in electrical circuit theory, where it provides an essential
framework for understanding the resistance of parallel circuits. According to this principle, the total
resistance of two resistors connected in parallel is given by the sum of their reciprocals. Specifically, if s1
and s2 are two parallel resistors, the total resistance S is determined by the equation:

S =
1

1
s1
+ 1

s1

=
s1s2

s1 + s2
.

This expression is exactly half of the harmonic mean, which highlights the deep connection between
harmonic convexity and electrical engineering principles.

Beyond circuit theory, harmonic convexity also plays a crucial role in semiconductor physics. In this
context, the harmonic mean is used to determine the conductivity effective mass of a semiconductor,
which depends on the material’s crystallographic properties. The effective mass of charge carriers in a
semiconductor is an essential parameter in electronic device modeling, and its harmonic mean formulation
facilitates accurate conductivity calculations [21]. A critical aspect of harmonically convex functions is
their impact on frequency components in signal processing. These functions often exhibit higher frequency
variations that can distort the fundamental waveform, making them less desirable in certain applications.
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This characteristic has motivated extensive research into developing mathematical tools for analyzing and
mitigating such distortions. An important mathematical application of harmonic convexity is in variational
inequalities. Noor et al. [46] showed that the minima of differentiable harmonic convex functions may
be efficiently found using harmonic variational inequalities. This result has significant implications in
mathematical optimization and numerical analysis, particularly in problems involving harmonic energy
distributions. The HH inequality, a fundamental result in convex analysis, has also been extended to
the class of harmonic convex functions. Several researchers have investigated various generalizations of
HH type integral inequalities within this framework, leading to new insights and refined error estimates.
Notably, Í. Íşcan and S. Wu [28] explored HH type inequalities for harmonically convex functions using
fractional integrals, providing a bridge between harmonic convexity and fractional calculus.

Recent advancements in the study of harmonic convexity have led to significant contributions in math-
ematical analysis and applied sciences. Gao et al. [26] introduced n-polynomial harmonically exponential
type convex functions, establishing new inequalities with applications in applied mathematics. Du and
Awan [39] extended this field by utilizing fuzzy integral techniques to develop novel HH type inequalities
for harmonically convex functions, with particular relevance in decision-making models under uncertainty.
Butt et al. [13] further refined these concepts by formulating generalized fractal Jensen and Jensen-Mercer
inequalities, thereby extending classical results in functional analysis. Additionally, Özcan and Butt [48]
investigated multiplicatively harmonic convex functions, deriving new inequalities that generalize the
classical HH inequality. These contributions collectively highlight the growing importance of harmonic
convexity, driving further research and fostering innovative applications in optimization, electrical engi-
neering, semiconductor physics, and numerical integration.

Fractional calculus has engrossed a lot of curiosity from researchers and engineers currently because of
its massive potential for resolving challenging questions in an assortment of fields. In contrast to traditional
calculus, which compacts with differentiation and integration of integer order, fractional calculus delivers a
suppler and wide-ranging mathematical background by encompassing these notions to non-integer orders.
This has managed to a prodigious contract of research on numerous varieties of fractional integrals, each of
which has its peculiar exceptional mathematical features and usages. These comprise ψ-RL (ψ-Riemann-
Liouville) integrals [40], the generalised fractional integral operators defined in the mean square sense [36],
and functional Hadamard fractional integrals [7]. Academics have been predominantly fascinated by these.
A superior conception of these fractional integrals’ behavior and potential uses in an assortment of scientific
and technical arenas has stemmed from their thorough exploration. It must be noted that fractional integral
study has been momentously upgraded by a number of central works. One such noteworthy addition
was primed in 2016 by Sarikaya et al. [60], who reconnoitered the (k, s)-RL operators, accentuating their
semigroup features, commutativity, and the creation of a noticeably defined class. The underpinning for
later research was documented by Verma and Viswanathan [54], who carried out a thorough analysis of
Katugampola fractional integrals, underlining their continuity and potential bounded variation as key
characteristics for ensuring mathematical models that are well-posed. Fernandez and Ustaoglu [24] steered
another substantial research in this space, proposing a thorough exploration of the tempered fractional
integrals, underlining their inimitable properties and theoretical implications.

In recent years, there has been a significant rise in research exploring the boundedness properties
of fractional integrals across various functional spaces. A notable contribution in this direction is the
comprehensive study by Ledesma et al. [41], which thoroughly investigates the boundedness of tempered
fractional integrals within both continuous function spaces and Lebesgue spaces. Their findings not only
clarify how these operators behave in different analytical settings but also demonstrate their importance in
the broader context of functional analysis. Building on this, Cheng and Luo [17], examined the boundedness
of the more generalized (k, h)-RL integral operators in the function space χp

h(0,∞), thereby expanding the
theoretical applications of fractional calculus, particularly in the fields of mathematical modeling and
applied sciences. Alongside these theoretical developments, there has been a surge in the introduction of
new fractional operators that enhance the adaptability of fractional calculus to a wide range of scientific
problems. Among the most prominent of these are the Caputo-Fabrizio fractional derivative [16], known
for its non-singular exponential kernel; the Atangana-Baleanu derivative [6], which incorporates a Mittag-
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Leffler function to model complex memory effects; and the tempered fractional derivative [62], which
modifies classical operators by introducing exponential tempering to better represent processes with fading
memory. These innovative operators have significantly broadened the practical scope of fractional calculus,
enabling its application in areas such as dynamical systems, signal processing, and the study of viscoelastic
materials, among others.

The ensuing sources deliver advantageous information for someone who desires to learn further about
fractional integral properties: [10, 15, 63, 64]. These papers emphasize fractional integrals’ status as
indispensable mechanisms in modern mathematical analysis by providing vital means for exploring their
mathematical rigor, theoretical substructures, and real life applications.

Among the most notable ultimate purposes of fractional operators is to encompass classical integer-
order inequalities to fractional settings, thereby augmentation their applicability in mathematical analysis
and applied sciences. Amongst the numerous fractional integral operators, the P.C.H operators have
extended noteworthy attention due to their capability to assimilate different fractional calculus tactics.
These operators were first familiarized by Sarikaya [61], erection upon previous work by Baleanu et al. [8].
The groundbreaking contribution of Baleanu and his collaborators is the development of a hybrid fractional
operator that seamlessly integrates the proportional derivative with the Caputo derivative within a unified
theoretical framework. This novel operator is defined as a linear combination of the RL integral operators
and the fractional version of Caputo derivative, thereby establishing it as a powerful and versatile tool
in the field of fractional calculus. Identifying the potential of this new tactic, Sarikaya employed his
own definition of P.C.H operators to develop HH inequalities, encompassing classical outcomes in convex
analysis to the fractional dominion. By means of the same conception of P.C.H operators, Sarikaya auxiliary
lengthened this structure by acquaint with Simpson’s-type inequalities, showcasing its malleability in error
approximation and integral estimate. The connotation of these operators was additionally accentuated in
Demir’s work [18], which further another imperative accumulation to traditional numerical integration
techniques by utilizing P.C.H operators to stem Milne-type inequalities. Their theoretical substructures
and application were auxiliary concreted when Demir and Tunç later proposed an innovative technique for
instituting Simpson’s-type inequalities using P.C.H operators in [19].

These developments underscore the growing relevance of P.C.H operators in the study of fractional
integral inequalities. Their ability to bridge traditional and fractional calculus methods has led to pro-
found generalizations of classical inequalities, paving the way for novel applications in numerical analysis,
optimization, and various branches of applied mathematics.

The theory of multiplicative calculus has garnered significant attention in recent years, particularly after
the influential work of Ali et al. [3]. This alternative to classical calculus has proven to be a powerful
tool in the study of integral inequalities, leading to the development of numerous multiplicative integer-
order inequalities for different function classes. Several important extensions in this domain have been
established, including inequalities related to multiplicative preinvex P-convexity [29].

A range of multiplicative inequalities have been proposed by scholars, with notable contributions
focusing on H.H-type inequalities in the multiplicative integral setting. For instance, Khan and Budak
[35] developed such inequalities for ∗differentiable functions, while Xie et al. [59] extended these results
to ∗∗differentiable functions. Further research on integer-order inequalities, including those of Ostrowski,
Simpson, and Maclaurin types can be found in works such as [4, 43], which provide deeper insights into
the structural properties of these inequalities within multiplicative calculus.

Despite the substantial progress made in integer-order multiplicative inequalities, fractional versions,
particularly those involving multiplicative fractional integrals remained relatively unexplored for a long
time. A significant breakthrough occurred in 2020, when Budak and Özçelik [11] introduced multiplicative
R.L fractional integrals and established new HH type inequalities in this framework. This discovery
sparked further interest in the mathematical community, leading to subsequent advancements. Fu et al. [25]
extended these inequalities using a new class of operators, the multiplicative tempered fractional integrals,
which allowed them to explore multiplicative convex functions in greater depth. Building on these results,
Peng and Du [49] further generalized HH type inequalities by incorporating differentiable multiplicative
m-preinvexity and (s,m)-preinvexity into the framework of multiplicative tempered fractional integrals.

Peng et al. [50] presented multiplicative fractional integrals with exponential kernels in 2022, a recent
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milestone in this area. Upper bounds for integral inequalities were obtained using these operators on
various mathematical identities. Kashuri et al. [31] also explored this new class of operators in relation
to multiplicative Sarikaya fractional integrals, presenting new findings on HH type inequalities. Merad
et al. [44] made a significant contribution by establishing symmetric Maclaurin-type inequalities tailored
for multiplicatively convex functions within the context of multiplicative fractional calculus. Their work
extends classical inequalities by incorporating the structure of multiplicative derivatives, which are par-
ticularly suited for modeling growth and decay processes in a multiplicative rather than additive sense.
By framing these inequalities symmetrically, the authors enhance their applicability and analytical depth,
offering valuable insights for further developments in nonlinear analysis and fractional integral inequalities
within multiplicative settings.

Du et al. [22] established multiplicative fractional HH-type inequalities via multiplicative AB-fractional
integral operators. In a related study, Ai and Du [2] investigated Newton-type inequality bounds for twice
∗differentiable functions under multiplicative Katugampola fractional integrals. Furthermore, Du et al. [23]
examined Hadamard functional integral operators in the framework of fractional multiplicative calculus,
thereby contributing to the growing literature on multiplicative fractional inequalities. Umar et al. [14]
gave a landmark contribution to the subject by establishing integral inequalities for harmonically convex
functions in the case of P.C.H operators for the first time. This finding created new opportunities to use
multiplicative calculus in several types of convex analysis. Beyond these significant advancements, readers
seeking the most recent work on multiplicative fractional integrals should consult [1, 9, 33, 34], which
includes a wealth of recent papers providing further in-depth understanding of this quickly developing
field of study.

Generally, considerable developments in integral inequalities have caused from the improvement of
multiplicative calculus and its fractional developments, with implications for applied sciences, numerical
integration, and mathematical analysis. These results validate the accumulative connotation of fractional
and multiplicative calculus in up-to-date mathematical study and continue to stimulate its improvement.

The preceding analysis highlights the extensive research conducted on integer order and fractional order
inequalities, particularly in the framework of HH type inequalities. These inequalities have been widely
explored due to their significant applications in various mathematical and applied fields. However, despite
the considerable advantages that HH-type inequalities offer, an important research gap remains. Specifi-
cally, there has been limited exploration of the fractional version of HH-type inequalities within the setting
of P.C.H operators. While P.C.H operators have been successfully employed to establish fundamental in-
equalities, their potential in the fractional framework, particularly in connection with HH-type inequalities
remains largely unexplored. Additionally, another crucial aspect that requires further investigation is the
application of these fractional HH-type inequalities to special functions in the context of multiplicative
calculus. Special functions, which frequently appear in mathematical physics, engineering, and numeri-
cal analysis, could greatly benefit from the application of these inequalities. The multiplicative calculus
framework provides a natural and efficient alternative to classical calculus for dealing with growth-based
processes, making it a promising direction for future research in this area. Addressing these gaps would not
only enhance the theoretical foundation of fractional inequalities but also lead to new applications in fields
such as optimization, fractional differential equations, and mathematical modeling. Future research should
aim to develop generalized fractional inequalities of HH’s type via P.C.H operators, analyze their structural
properties, and explore their potential applications to special functions within multiplicative calculus.

The following is how this article is structured:
It begins with an introduction and preliminaries, where fundamental concepts and essential definitions

are provided to establish the groundwork for the study. Section 3 presents a detailed investigation of
HH’s type inequalities for harmonically convex functions within the framework of P.C.H operators. This
section explores the derivation and theoretical development of these inequalities. Moving forward, Section
4 focuses on the applications of the derived inequalities. This section demonstrates how the obtained
results can be utilized in various mathematical and applied contexts, highlighting their significance in
different domains. Finally, Section 5 provides concluding remarks and future directions, summarizing the
key findings of the study and outlining potential avenues for further research in this field.
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2. Preliminaries

This section provides a comprehensive review of fundamental definitions and lemmas that serve as
the foundational framework for our findings. These preliminary concepts are essential for understanding
the subsequent developments in the study and play a crucial role in establishing the theoretical results
presented in later sections.

Definition 2.1. [27] A function ψ : I ⊆ ℜ \ {0} → ℜ is called harmonic convex, if for all λo ∈ [0, 1] and ao, bo ∈ I,
the below mentioned condition

ψ
(

aobo

λoao + (1 − λo)bo

)
≤ λoψ(bo) + (1 − λo)ψ(ao), (3)

holds.

Remark 2.2. If “≤” in (3) reverses then ψ is termed as harmonic concave function.

The following is the HH type inequality for harmonic convex functions.

Theorem 2.3. [27] If a function ψ : I ⊆ ℜ \ {0} → ℜ, is harmonically convex on I, and ψ ∈ L[ao, bo], then

ψ
( 2aobo

ao + bo

)
≤
aobo

bo − ao

∫ bo

ao

ψ(x)
x2 dx ≤

ψ(ao) + ψ(bo)
2

, (4)

holds ∀ao, bo ∈ I, with ao < bo.

Lemma 2.4. [27] Let ψ : I ⊆ ℜ \ {0} → ℜ be a differentiable function on I◦ for ao, bo ∈ I with ao < bo. If
ψ′ ∈ L[ao, bo], then

ψ(ao) + ψ(bo)
2

−
aobo

bo − ao

∫ bo

ao

ψ(x)
x2 dx

=
aobo

bo − ao

∫ 1

0

1 − 2λo

(λobo + (1 − λo)ao)2ψ
′

(
aobo

λobo + (1 − λo)ao

)
dλo. (5)

In [27], Işcan proved the following results.

Theorem 2.5. Let ψ : I ⊆ (0,∞)→ℜ be a differentiable function on I◦ for ao, bo ∈ I with ao < bo and ψ′ ∈ L[ao, bo].
If |ψ′|q is possess harmonic convexity on [ao, bo] for q ≥ 1, then∣∣∣∣∣ψ(ao) + ψ(bo)

2
−
aobo

bo − ao

∫ bo

ao

ψ(x)
x2 dx

∣∣∣∣∣ ≤ aobo(bo − ao)
2

ß1
1− 1

q

[
ß2|ψ

′(ao)|q + ß3|ψ
′(bo)|q

] 1
q

, (6)

where

ß1 =
1
aobo

−
2

(bo − ao)2 ln
( (ao + bo)2

4aobo

)
,

ß2 =
−1

bo(bo − ao)
+

3ao + bo

(bo − ao)3 ln
( (ao + bo)2

4aobo

)
,

ß3 =
1

ao(bo − ao)
−

3bo + ao

(bo − ao)3 ln
( (ao + bo)2

4aobo

)
= ß1 − ß2.
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Theorem 2.6. Let ψ : I ⊆ (0,∞) → ℜ be a differentiable function on I◦ for ao, bo ∈ I, with ao < bo, and
ψ′ ∈ L[ao, bo]. If |ψ′|q, is harmonic convex function on [ao, bo] for q > 1, 1

p +
1
q = 1, then∣∣∣∣∣ψ(ao) + ψ(bo)

2
−
aobo

bo − ao

∫ bo

ao

ψ(x)
x2 dx

∣∣∣∣∣ ≤ aobo(bo − ao)
2

( 1
p + 1

) 1
p

(µ1|ψ
′(ao)|q + µ2|ψ

′bo|
q)

1
q , (7)

where

µ1 =

[
ao

2−2q + bo
1−2q[(bo − ao)(1 − 2q) − ao]

]
2(bo − ao)2(1 − q)(1 − 2q)

,

µ2 =

[
bo

2−2q
− ao

1−2q[(bo − ao)(1 − 2q) + bo]
]

2(bo − ao)2(1 − q)(1 − 2q)
.

The following examines a few well-known special functions.

[1] Beta function

ß(ao, bo) =
Γ(ao)Γ(bo)
Γ(ao + bo)

=

∫ 1

0
λo
ao−1(1 − λo)bo−1dλo, ao, bo > 0.

[2] Hypergeometric function

2F1(ao, bo; c; z) =
1

ß(bo, c − bo)

∫ 1

0
λo
bo−1(1 − λo)c−bo−1(1 − zλo)−ao dλo, c > bo > 0, |z| < 1.

Lemma 2.7. [57] For 0 ≤ ao < bo and 0 < αo ≤ 1, we obtain

|ao
αo − bo

αo | ≤ (bo − ao)αo . (8)

We present fundamental concepts related to fractional calculus in the following.

Definition 2.8. [60] The RL fractional operators with ao ≥ 0 and of order ß ≥ 0, are given by Iß
bo
−ψ(κ), and

Iß
ao
+ψ(κ), and defined as

Iß
ao
+ψ(κ) =

1
Γ(ß)

∫ κ

ao

(κ − yo)ß−1ψ(yo)dyo, (κ > ao), (9)

and

Iß
bo
−ψ(κ) =

1
Γ(ß)

∫ bo

κ

(yo − κ)ß−1ψ(yo)dyo, (κ < bo), (10)

where Γ(ß) =
∫
∞

0 yo
ß−1e−yo dyo, is defined as gamma function.

The following is an expression for the fractional form of the HH’s type inequality for harmonically
convex functions [28]:

Theorem 2.9. Let ψ : I ⊆ (0,∞) → ℜ be a harmonic convex function and ψ ∈ L[ao, bo], where ao, bo ∈ I and
Υ(λo) = 1

λo
, with ao < bo, then

ψ
( 2aobo

ao + bo

)
≤
Γ(αo + 1)

2

(
aobo

bo − ao

)αo[
Jαo
1/ao−

(ψ ◦ Υ)(1/bo)

+ Jαo

1/bo
+ (ψ ◦ Υ)(1/ao)

]
≤
ψ(ao) + ψ(bo)

2
, (11)

holds ∀ αo > 0.
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Definition 2.10. [8] Let ß > 0 and ß < {1, 2, ...}, n = [ß] + 1, ψ ∈ ACn[ao, bo], is the set of all functions having
absolute continuity and n-th derivatives, then the Caputo fractional derivatives of fractional order ß are defined as:

CDß
bo
−ψ(λo) =

1
Γ(n − ß)

∫ bo

κ

(λo − κ)n−ß−1ψ(n)(λo)dλo, κ < bo,

and

CDß
ao+
ψ(λo) =

1
Γ(n − ß)

∫ κ

ao

(κ − λo)n−ß−1ψ(n)(λo)dλo, κ > ao.

The Caputo operator is normally employed in aggregation with its derivative alike in fractional calculus.
When the order of differentiation is a non-integer value, it displays the fractional derivative of a function
pertaining to time. This makes it possible to characterize dynamic systems with memory effects in a
more adaptable and generalized approach. The P.C.H operators are non-local mathematical operators that
syndicate differentiation and integration constituents. It is a relatively new work in this area. The unique
feature of the P.C.H operator is its suave integration of the RL fractional integral and the Caputo derivative
into a single linear expression. Its hybrid character creates it more pertinent to a variety of defies, such as
numerical analysis, optimization problems, and fractional differential equations.

Definition 2.11. [8] Let ψ : I ⊂ ℜ+ →ℜ be a differentiable function on I◦ and ψ,ψ′ ∈ L1(I), then P.C.H operators
are defined as:

PC
0 Dß

λo
ψ(λo) =

1
Γ(1 − ß)

∫ λo

0
(K1(ß,κ)ψ(κ) + K0(ß,κ)ψ′(κ))(λo − κ)−ßdκ,

where ß ∈ [0, 1] and K0 and K1 are functions satisfying

lim
ß→0+

K0(ß,κ) = 0; lim
ß→1

K0(ß,κ) = 1; K0(ß,κ) , 0, ß ∈ (0, 1],

lim
ß→0+

K1(ß,κ) = 0; lim
ß→1−

K1(ß,κ) = 0; K1(ß,κ) , 0, ß ∈ [0, 1).

Definition 2.12. [61] For the same functions as given in Definition 2.11, the left and right P.C.H operators are
defined as:

PC
ao+

Dß
bo
ψ(bo) =

1
Γ(1 − ß)

∫ bo

ao

[
K1(ß, bo − κ)ψ(κ) + Ko(ß, bo − κ)ψ′(κ)

]
(bo − κ)−ßdκ,

and

PC
bo
−Dß
ao
ψ(ao) =

1
Γ(1 − ß)

∫ bo

ao

[
K1(ß,κ − ao)ψ(κ) + Ko(ß,κ − ao)ψ′(κ)

]
(κ − ao)−ßdκ,

where ß ∈ [0, 1] and Ko(ß, λo) = (1 − ß)2λo
1−ß and K1(ß, λo) = ß2λo

ß.

2.1. Multiplicative Calculus

This section introduces the fundamental concepts and key features of multiplicative calculus, establishing
a solid foundation for further research in this domain.
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Definition 2.13. [9] Assume that ψ :ℜ→ℜ is a positive mapping, then its multiplicative derivative is designated
by ψ∗ and is defined as.

ψ∗(κ) = lim
h→0

(ψ(κ + h)
ψ(κ)

) 1
h

.

Remark 2.14. The connection between ψ∗ and the standard derivative ψ′ is established through the following
expression:

ψ∗(κ) = e(lnψ(κ))′ = e
ψ′ (κ)
ψ(κ) .

The multiplicative derivative adheres to the following properties:

Proposition 2.15. [9] Suppose c > 0 and ψ and Υ are multiplicatively differentiable functions then ∗differentiable
functions cψ, ψΥ, ψ/Υ, and ψ + Υ are given as

1. (cψ)∗(κ) = ψ∗(κ),

2. (Υψ)∗(κ) = ψ∗(κ)Υ∗(κ),

3. (ψ + Υ)∗(κ) = ψ∗(κ)
ψ(κ)

ψ(κ)+Υ(κ)Υ∗(κ)
Υ(κ)

ψ(κ)+Υ(κ) ,

4.
(
ψ
Υ

)∗
(κ) = ψ∗(κ)

Υ∗(κ) ,

5. (ψΥ)∗(κ) = ψ∗(κ)Υ(κ)ψ(κ)Υ
′(κ).

The multiplicative integral, also known as the ∗integral, is represented by the notation
∫ bo

ao
(ψ(κ))dκ. This

notion was introduced by Bashirov et al. in their pioneering work [9], as an alternative to the classical
integral calculus, particularly useful in settings where multiplicative changes are more natural than additive
ones. In classical Riemann integration, the integral of a function ψ over an interval [ao, bo] is defined by
summing product terms of function values and small increments of the variable. However, in multiplicative
integration, the process entails exponentiating a product of terms rather than summing them, reflecting
an inherent exponential-like accumulation rather than an additive one. This makes the multiplicative
integral particularly suitable for applications in exponential growth models, population dynamics, financial
mathematics, and other multiplicative systems.

The relationship between the multiplicative integral and the Riemann integral can be expressed as
follows [9]:

Proposition 2.16. If ψ is positive and Riemann integrable on [ao, bo], then it is also multiplicatively integrable on
the same interval.∫ bo

ao

(ψ(κ))dκ = e
∫ bo
ao

ln(ψ(κ))dκ.

As shown in the work of Bashirov et al. [9], the multiplicative integral possesses several key character-
istics and fundamental properties, which include the following:

Proposition 2.17. If ψ is positive and Riemann integrable on [ao, bo], then it is also multiplicatively integrable on
that interval. This means that if a function ψ is Riemann integrable, then it is also multiplicatively integrable in
the sense of multiplicative calculus. In other words, the existence of the classical Riemann integral ensures that the
multiplicative integral of ψ on [ao, bo] is well-defined.

If ψ is Riemann integrable on [ao, bo], then it is also *integrable on [ao, bo].

1.
bo∫
ao

((
ψ (κ)

)p
)dκ

=

 bo∫
ao

((
ψκ

))dκ

p

,
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2.
bo∫
ao

(
ψ (κ)Υ (κ)

)dκ =
bo∫
ao

(
ψ (κ)

)dκ .
bo∫
ao

(Υ (κ))dκ ,

3.
bo∫
ao

(
ψ(κ)
Υ(κ)

)dκ
=

∫ bo
ao (ψ(κ))dκ∫ bo
ao

(Υ(κ))dκ ,

4.
bo∫
ao

(
ψ (κ)

)dκ =
c∫
ao

(
ψ (κ)

)dκ .
bo∫
c

(
ψ (κ)

)dκ , ao ≤ c ≤ bo,

5.
ao∫
ao

(
ψ (κ)

)dκ = 1 and
bo∫
ao

(
ψ (κ)

)dκ =

 ao∫
bo

(
ψ (κ)

)dκ

−1

.

Alternatively, the subsequent multiplicative RL fractional integrals were put forward by Abdeljawed and
Grossman [1].

Definition 2.18. The symbol (ao J
ß
∗ψ)(κ) is a designation of multiplicative left RL fractional integral of order ß ∈

C,Re(ß) > 0, with ß as an initial point is given by

(ao J
ß
∗ψ)(κ) = e(Jß

ao+
(ln ◦ψ))(κ),

and what defines the multiplicative right one is

(∗Jß
bo
ψ)(κ) = e(Jß

bo−
(ln ◦ψ))(κ).

Here Jß
bo
− and Jß

ao+
describe the right and left RL fractional integral, given by [37]

Jß
bo
−ψ(λo) =

1
Γ(ß)

∫ bo

κ

(λo − κ)ß−1ψ(λo)dλo, bo > κ,

and

Jß
ao+
ψ(λo) =

1
Γ(ß)

∫ κ

ao

(κ − λo)ß−1ψ(λo)dλo, ao < κ,

accordingly, where Γ(ß) =
∫
∞

0 e−uuß−1du. Here is J0
bo
−ψ(κ) = ψ(κ) = J0

ao+
ψ(κ).

Theorem 2.19. (Multiplicative integration by parts [9]) Let ψ : [ao, bo] → ℜ and Υ : [ao, bo] → ℜ possess
∗differentiability and differentiable respectively, so the function ψΥ is ∗ integrable then it implies that

∫ bo

ao

(
ψ∗(κ)Υ(κ)

)dκ

=
ψ(bo)Υ(bo)

ψ(ao)Υ(ao)
·

1∫ bo

ao

(
ψ(κ)Υ′(κ)

)dκ
.

Lemma 2.20. [3] Let ψ : [ao, bo]→ℜ and Υ : [ao, bo]→ℜ be ∗differentiable and differentiable respectively, so ψΥ

is ∗integrable then∫ bo

ao

(
ψ∗(h(κ))h′(κ)Υ(κ)

)dκ

=
ψ(h(bo))Υ(bo)

ψ(h(ao))Υ(ao)
.

1∫ bo

ao

(
ψ(h(κ))Υ′(κ)

)dκ
.



S. I. Butt et al. / Filomat 39:35 (2025), 12725–12756 12735

In what follows, we provide an overview of the essential terminology and foundational principles of
multiplicative calculus, which will underpin the theoretical framework employed throughout this study.

Proposition 2.21. The convexity of logψ and logΥ, implies the convexity of log(ψΥ) and the convexity of logψ
and the concavity of logΥ, implies the convexity of log

(
ψ
Υ

)
.

Theorem 2.22. Let ψ be a multiplicatively convex on [ao, bo], then

ψ
(
ao + bo

2

)
≤

( ∫ bo

ao

(ψ(κ))dκ
) 1
bo−ao

≤ G(ψ(ao), ψ(bo)), (12)

holds. Where the symbol G(., .) stands for geometric mean.

However, the inequality of H.H type for multiplicative RL fractional integrals was demonstrated in [11],
which is a noteworthy inequality.

Theorem 2.23. Let ψ be a multiplicatively convex on [ao, bo], then we obtain the below mentioned H.H inequality
involving end points of the interval for multiplicative fractional integrals of RL

ψ
(
ao + bo

2

)
≤

[
ao I

ß
∗ψ(bo).∗Iß

bo
ψ(ao)

] Γ(ß+1)
2(bo−ao )ß

≤ G(ψ(ao), ψ(bo)), (13)

where the notation G(., .) stands for geometric mean.

Theorem 2.24. [11] Let the positive function ψ possess multiplicatively convexity on [ao, bo], then we obtain the
subsequent H.H inequality midpoints of the interval for multiplicative fractional integrals of RL:

ψ
(
ao + bo

2

)
≤

[
ao+bo

2
Iß
∗ψ(bo).∗Iß

ao+bo
2
ψ(ao)

] 2ß−1Γ(ß+1)
(bo−ao )ß

≤ G(ψ(ao), ψ(bo)), (14)

where the notation G(., .) stands for geometric mean.

Definition 2.25. Let the function ψ : I ⊆ ℜ \ {0} → ℜ be a multiplicatively harmonic convex, then

ψ
(

aobo

λoao + (1 − λo)bo

)
≤ [ψ(bo)]λo [ψ(ao)]1−λo , (15)

holds ∀ ao, bo ∈ I and λo ∈ [0, 1].

2.2. Multiplicative P.C.H-fractional integrals

The behaviour of RL-fractional integral operators is similar to that of P.C.H-fractional integral operators.
The inspiration and logical basis for developing and presenting the idea of consecutive multiplicative P.C.H-
fractional integrals are provided by this resemblance. Stated differently, it is both natural and illuminating
to extend the concept to multiplicative calculus by defining a consecutive or repeated application of the
P.C.H-fractional integral in a multiplicative framework because the two types of fractional integrals have
similar qualities.

Definition 2.26. The multiplicative left P.C.H operator of order ß ∈ C designated by (ao D
ß
∗ψ)(κ) with Re(ß) > 0 by

assuming ß as an initial point is given by

(ao D
ß
∗ψ)(ao) = exp

{
PC
bo
−Dß
ao

(ln ◦ψ)(ao)
}

= exp
{ 1
Γ(1 − ß)

∫ bo

ao

[
K1(ß,κ − ao)(ln ◦ ψ)(κ) + K0(ß,κ − ao)(ln ◦ ψ∗)(κ)

]
(κ − ao)−ßdκ

}
,
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and what defines the multiplicative right one is

(∗Dß
bo
ψ)(bo) = exp

{
PC
ao+

Dß
bo

(ln ◦ψ)(bo)
}

= exp
{ 1
Γ(1 − ß)

∫ bo

ao

[
K1(ß, bo − κ)(ln ◦ ψ)(κ) + K0(ß, bo − κ)(ln ◦ ψ∗)(κ)

]
(bo − κ)−ßdκ

}
,

where the expression Γ(ß) =
∫
∞

0 κ
ß−1exp{−κ}dκ, ß ∈ [0, 1], K0(ß, λo) = (1 − ß)2λo

1−ß and K1(ß, λo) = ß2λo
ß.

Several scholars have overextended their studies afar integer-order integrals to investigate fractional
order inequalities of the HH type because of the various applicability of fractional integrals and HH type
inequalities. Using fractional integral approaches, an increasing number of HH type inequalities for diverse
classes of functions have been initiated in current years. Emerging HH type inequalities for harmonically
convex functions in the framework of P.C.H fractional integral operators is the painstaking objective of
this work. Furthermore, it protracts the theoretic foundations of fractional calculus and its applications by
means of an identity settled for fractional integrals to paradigm novel integral inequalities.

3. Main Result

The first goal of our paper is to get the HH’s inequalities for the P.C.H operators.

Theorem 3.1. Let ψ : I ⊂ ℜ+ →ℜ be a differentiable function on I◦, where I◦ is the interior of I, where ao, bo ∈ I◦

with ao < bo and the functions ψ,ψ∗ are multiplicatively harmonic convex on I and Υ(λo) = 1
λo

, then

ψ
( 2aobo

ao + bo

)αo
2
(
bo−ao
aobo

)αo

· ψ∗
( 2aobo

ao + bo

) (1−αo )
2

(
bo−ao
aobo

)1−αo

≤

[ (
1
ao

Dαo
∗ (ψ ◦ Υ)

( 1
bo

)) (
∗Dαo

1
bo

(ψ ◦ Υ)
( 1
ao

)) ] Γ(1−αo )
2

(
bo−ao
aobo

)1−αo

≤

[
G(ψ(ao), ψ(bo))

]αo
2
(
bo−ao
aobo

)αo [
G(ψ∗(ao), ψ∗(bo))

](1−αo)

(
bo−ao
aobo

)1−αo

, (16)

holds with αo > 0.

Proof. Since the functions ψ and ψ∗ possess multiplicative harmonic convexity on [ao, bo], ∀ x,y ∈ [ao, bo] (with
λo = 1/2 in the inequality (15)), we attain

ψ
( 2xy

x + y

)
≤ ψ(x)

1
2ψ(y)

1
2 .

Choosing x = aobo
λobo+(1−λo)ao

, y = aobo
λoao+(1−λo)bo

, we get

ψ
( 2aobo

ao + bo

)
≤ ψ

(
aobo

λobo + (1 − λo)ao

) 1
2

· ψ

(
aobo

λoao + (1 − λo)bo

) 1
2

lnψ
( 2aobo

ao + bo

)
≤

1
2

lnψ
(

aobo

λobo + (1 − λo)ao

)
+

1
2

lnψ
(

aobo

λoao + (1 − λo)bo

)
. (17)

Similarly for ψ∗,
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ψ∗
( 2aobo

ao + bo

)
≤ ψ∗

(
aobo

λobo + (1 − λo)ao

) 1
2

· ψ∗
(

aobo

λoao + (1 − λo)bo

) 1
2

lnψ∗
( 2aobo

ao + bo

)
≤

1
2

lnψ∗
(

aobo

λobo + (1 − λo)ao

)
+

1
2

lnψ∗
(

aobo

λoao + (1 − λo)bo

)
. (18)

Multiplying (17) by αo
2
(
bo−ao
aobo

)αo

and (18) by (1 − αo)2
(
bo−ao
aobo

)1−αo

λo
1−2αo , respectively, we have

αo
2
(
bo − ao

aobo

)αo

lnψ
( 2aobo

ao + bo

)
≤

1
2

[
αo

2
(
bo − ao

aobo

)αo

lnψ
(

aobo

λobo + (1 − λo)ao

)
+ αo

2
(
bo − ao

aobo

)αo

lnψ
(

aobo

λoao + (1 − λo)bo

)]
,

and

(1 − αo)2
(
bo − ao

aobo

)1−αo

λo
1−2αo lnψ∗

( 2aobo

ao + bo

)
≤

1
2

[
(1 − αo)2

(
bo − ao

aobo

)1−αo

λo
1−2αo lnψ∗

(
aobo

λobo + (1 − λo)ao

)
+ (1 − αo)2

(
bo − ao

aobo

)1−αo

λo
1−2αo lnψ∗

(
aobo

λoao + (1 − λo)bo

)]
.

By summing these two expressions term by term and subsequently integrating the resulting equation with respect to
λo, over the interval [0, 1], we obtain:

αo
2
(
bo − ao

aobo

)αo

lnψ
( 2aobo

ao + bo

)
+ (1 − αo)2

(
bo − ao

aobo

)1−αo

lnψ∗
( 2aobo

ao + bo

) ∫ 1

0
λo

1−2αo dλo

≤
1
2

∫ 1

0

[
αo

2
(
bo − ao

aobo

)αo

λo
αo lnψ

(
aobo

λobo + (1 − λo)ao

)
+ (1 − αo)2

(
bo − ao

aobo

)1−αo

λo
1−αo lnψ∗

(
aobo

λobo + (1 − λo)ao

)]
λo
−αo dλo

+
1
2

∫ 1

0

[
αo

2
(
bo − ao

aobo

)αo

λo
αo lnψ

(
aobo

λoao + (1 − λo)bo

)
+ (1 − αo)2

(
bo − ao

aobo

)1−αo

λo
1−αo lnψ∗

(
aobo

λoao + (1 − λo)bo

)]
λo
−αo dλo.

Using the change of variable, we obtain that

αo
2
(
bo − ao

aobo

)αo

lnψ
( 2aobo

ao + bo

)
+

1
2

(1 − αo)
(
bo − ao

aobo

)1−αo

lnψ∗
( 2aobo

ao + bo

)
≤

1
2

(
bo − ao

aobo

) ∫ 1
ao

1
bo

[
αo

2
(
τ −

1
bo

)αo

lnψ
(1
τ

)
+ (1 − αo)2

(
τ −

1
bo

)1−αo

lnψ∗
(1
τ

)](
τ −

1
bo

)−αo

dτ

+
1
2

(
bo − ao

aobo

) ∫ 1
ao

1
bo

[
αo

2
( 1
ao
− τ

)αo

lnψ
(1
τ

)
+ (1 − αo)2

( 1
ao
− τ

)1−αo

lnψ∗
(1
τ

)]( 1
ao
− τ

)−αo

dτ
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=
Γ(1 − αo)

2

(
bo − ao

aobo

)[
PC

1
ao
−Dαo

1
bo

ln(ψ ◦ Υ)
( 1
bo

)
+ PC

1
bo
+Dαo

1
ao

ln(ψ ◦ Υ)
( 1
ao

)]
× ψ

( 2aobo

ao + bo

)αo
2
(
bo−ao
aobo

)αo

· ψ∗
( 2aobo

ao + bo

) (1−αo )
2

(
bo−ao
aobo

)1−αo

≤

[ (
1
bo

Dαo
∗ (ψ ◦ Υ)

( 1
bo

)) (
∗Dαo

1
ao

(ψ ◦ Υ)
( 1
ao

)) ] Γ(1−αo )
2

(
bo−ao
aobo

)
.

Thus, we successfully derive the first part of inequality (16).
To proceed with the second part of the proof, let ψ and ψ∗ be two harmonically convex functions. Then, for all

λo ∈ [0, 1], the following holds. By applying the definition of harmonic convexity, we obtain:

lnψ
(

aobo

λoao + (1 − λo)bo

)
+ lnψ

(
aobo

λobo + (1 − λo)ao

)
≤ lnψ(ao) + lnψ(bo)

and

lnψ∗
(

aobo

λoao + (1 − λo)bo

)
+ lnψ∗

(
aobo

λobo + (1 − λo)ao

)
] ≤ lnψ∗(ao) + lnψ∗(bo).

Multiplying the result by αo
2
(
bo−ao
aobo

)αo

and (1 − αo)2
(
bo−ao
aobo

)1−αo

λo
1−2αo respectively, we have

αo
2
(
bo − ao

aobo

)αo

lnψ
(

aobo

λobo + (1 − λo)ao

)
+ αo

2
(
bo − ao

aobo

)αo

lnψ
(

aobo

λoao + (1 − λo)bo

)
≤ αo

2
(
bo − ao

aobo

)αo

[lnψ(ao) + lnψ(bo)]

and

1
2

[
(1 − αo)2

(
bo − ao

aobo

)1−αo

λo
1−2αo lnψ∗

(
aobo

λobo + (1 − λo)ao

)
+ (1 − αo)2

(
bo − ao

aobo

)1−αo

λo
1−2αo lnψ∗

(
aobo

λoao + (1 − λo)bo

)]
≤

1
2

(1 − αo)2
(
bo − ao

aobo

)1−αo

λo
1−2αo [lnψ∗(ao) + lnψ∗(bo)].

By summing these two expressions side by side and integrating the resulting equation with respect to λo over the
interval [0, 1], we obtain:

1
2

∫ 1

0

[
αo

2
(
bo − ao

aobo

)αo

λo
αo lnψ

(
aobo

λobo + (1 − λo)ao

)
+ (1 − αo)2

(
bo − ao

aobo

)1−αo

λo
1−αo lnψ∗

(
aobo

λobo + (1 − λo)ao

)]
λo
−αo dλo

+
1
2

∫ 1

0

[
αo

2
(
bo − ao

aobo

)αo

λo
αo lnψ

(
aobo

λoao + (1 − λo)bo

)
+ (1 − αo)2

(
bo − ao

aobo

)1−αo

λo
1−αo lnψ∗

(
aobo

λoao + (1 − λo)bo

)]
λo
−αo dλo
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≤ αo
2
(
bo − ao

aobo

)αo[ lnψ(ao) + lnψ(bo)
2

]
+ (1 − αo)2

(
bo − ao

aobo

)1−αo[ lnψ∗(ao) + lnψ∗(bo)
2

] ∫ 1

0
λo

1−2αo dλo.

Through the substitution of the variable, we achieve

Γ(1 − αo)
2

(
bo − ao

aobo

)1−αo[
PC

1
ao
−Dαo

1
bo

(lnψ ◦ Υ)
( 1
bo

)
+ PC

1
bo
+Dαo

1
ao

ln(ψ ◦ Υ)
( 1
ao

)]
≤ αo

2
(
bo − ao

aobo

)αo[ lnψ(ao) + lnψ(bo)
2

]
+ (1 − αo)

(
bo − ao

aobo

)1−αo[ lnψ∗(ao) + lnψ∗(bo)
4

]
×

[ (
1
bo

Dαo
∗ (ψ ◦ Υ)

( 1
bo

)) (
∗Dαo

1
ao

(ψ ◦ Υ)
( 1
ao

)) ] Γ(1−αo )
2

(
bo−ao
aobo

)

≤

[
G(ψ(ao), ψ(bo))

]αo
2
(
bo−ao
aobo

)αo [
G(ψ∗(ao), ψ∗(bo))

](1−αo)

(
bo−ao
aobo

)1−αo

.

Hence, we obtain the second part of (16).

Example 3.2. The Figure 1 explains the validity of Theorem 3.1 for ψ(xo) = exp{x4
o}. Let Lt,Mt and Rt, represent the

left, middle and right terms of Theorem 3.1.

Figure 1: A visual representation that demonstrates that Theorem 3.1 is true for ao ∈ [0, 0.3], bo ∈ [0.4, 0.8] and αo = 0.5.
.

Lemma below is required to bolster our other main conclusions:

Lemma 3.3. Let ψ : I ⊂ ℜ+ → ℜ be a differentiable function on I◦. Let ao, bo ∈ I◦, with ao < bo and ψ∗, ψ∗∗ ∈
L[ao, bo], Υ(λo) = 1

λo
, then the following identity holds,

I1 × I2 × I3 =

[
ψ (ao)ψ (bo)

]αo
2
(
aobo
bo−ao

)1−2αo

·
[
ψ∗ (ao)ψ∗ (bo)

] (1−αo )
2[(

1
ao

Dαo
∗ (ψ ◦ Υ)( 1

ao
)
)
·

(
∗Dαo

1
bo

(ψ ◦ Υ)( 1
bo

)
)]Γ(1−αo)

(
aobo
bo−ao

)2−2αo
, (19)
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where

I1 =


1∫

0

ψ∗ ( aobo

boλo + (1 − λo)ao

)1−2λo
dλo


αo2aobo (bo−ao )

(boλo+(1−λo )ao )2

(
aobo
bo−ao

)1−2αo

,

I2 =


1∫

0

ψ∗∗ ( aobo

boλo + (1 − λo)ao

)λo
2−2αo 

dλo


(αo−1)aobo (bo−ao )
2(boλo+(1−λo )ao )2

,

and

I3 =


1∫

0

ψ∗∗ ( aobo

boλo + (1 − λo)ao

)(1−λo)2−2αo 
dλo


(1−αo )aobo (bo−ao )
2(boλo+(1−λo )ao )2

.

Proof. Using integration by parts for multiplicative integrals from I1, we have

I1 =


1∫

0

ψ∗ ( aobo

boλo + (1 − λo)ao

)1−2λo
dλo


αo2aobo (bo−ao )

(boλo+(1−λo )ao )2

(
aobo
bo−ao

)1−2αo

=

1∫
0

ψ∗
(

aobo

boλo + (1 − λo)ao

) aobo (bo−ao)
(boλo+(1−λo )ao )2

αo
2
(
aobo
bo−ao

)1−2αo
(1−2λo)


dλo

=

[
ψ (ao)

]αo
2
(
aobo
bo−ao

)1−2αo

[
ψ (bo)

]−αo2

(
aobo
bo−ao

)1−2αo
·

1

1∫
0

ψ (
aobo

boλo+(1−λo)ao

)2αo2

(
aobo
bo−ao

)1−2αo 
dλo
.

It implies that

I1 =
[
ψ (ao)ψ (bo)

]αo
2
(
aobo
bo−ao

)1−2αo

·
1

exp

2αo
2
(
aobo
bo−ao

)2−2αo

1
ao∫

1
bo

ln(ψ
(

1
κ

)
)dκ


. (20)

Similarly for I2, we acquire

I2 =


1∫

0

ψ∗∗ ( aobo

boλo + (1 − λo)ao

)λo
2−2αo 

dλo


(αo−1)aobo (bo−ao )
2(boλo+(1−λo )ao )2

=

1∫
0

ψ∗∗
(

aobo

boλo + (1 − λo)ao

) −aobo (bo−ao )
(boλo+(1−λo )ao )2

(1−αo )λo2−2αo
2


dλo

=
[
ψ∗ (ao)

] (1−αo )
2 ·

1
1∫

0

(
ψ∗

(
aobo

boλo+(1−λo)ao

)(1−αo)2λo
1−2αo

)dλo
.
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It implies that

I2 =
[
ψ∗ (ao)

] (1−αo )
2 ·

1

exp

(1 − αo)2
(
aobo
bo−ao

)2−2αo

1
ao∫

1
bo

ln(ψ∗
(

1
κ

)
)
(
κ − 1

bo

)1−2αo
dκ


. (21)

By moving in the same fashion

I3 =


1∫

0

ψ∗∗ ( aobo

boλo + (1 − λo)ao

)(1−λo)2−2αo 
dλo


(1−αo )aobo (bo−ao )
2(boλo+(1−λo )ao )2

=

1∫
0

ψ∗∗
(

aobo

boλo + (1 − λo)ao

) −aobo (bo−ao )
(aoλo+(1−λo )bo )2

(αo−1)
2 (1−λo)2−2αo


dλo

=
[
ψ∗ (bo)

] (1−αo )
2 ·

1
1∫

0

(
ψ∗

(
aobo

boλo+(1−λo)ao

)(1−αo)2(1−λo)1−2αo
)dλo

.

It implies tha

I3 =
[
ψ∗ (bo)

] (1−αo )
2 ·

1

exp

(1 − αo)2
(
aobo
bo−ao

)2−2αo

1
ao∫

1
bo

ln(ψ∗
(

1
κ

)
)
(

1
ao
− κ

)1−2αo
dκ


. (22)

Using (20), (21) and (22), we get

I1 × I2 × I3 =
[
ψ (ao)ψ (bo)

]αo
2
(
aobo
bo−ao

)1−2αo

·
[
ψ∗ (ao)ψ∗ (bo)

] (1−αo )
2

×
1

exp

( aobo
bo−ao

)2−2αo

1
ao∫

1
bo

[
αo

2 ln(ψ
(

1
κ

)
)
(
κ − 1

bo

)αo
+ (1 − αo)2 ln(ψ∗

(
1
κ

)
)
(
κ − 1

bo

)1−αo
] (
κ − 1

bo

)−αo
dκ


×

1

exp

( aobo
bo−ao

)2−2αo

1
ao∫

1
bo

[
αo

2 ln(ψ
(

1
κ

)
)
(

1
ao
− κ

)αo
+ (1 − αo)2 ln(ψ∗

(
1
κ

)
)
(

1
ao
− κ

)1−αo
] (

1
ao
− κ

)−αo
dκ


=

[
ψ (ao)ψ (bo)

]αo
2
(
aobo
bo−ao

)1−2αo

·
[
ψ∗ (ao)ψ∗ (bo)

] (1−αo )
2

exp
{
Γ (1 − αo)

(
aobo
bo−ao

)2−2αo

[(
PC

1
ao
−D

αo
1
bo

ln(ψ ◦ Υ)( 1
bo

)
)
+

(
PC

1
bo
+D

αo
1
ao

ln(ψ ◦ Υ)( 1
ao

)
)] } .

It implies that

I1 × I2 × I3 =

[
ψ (ao)ψ (bo)

]αo
2
(
aobo
bo−ao

)1−2αo

·
[
ψ∗ (ao)ψ∗ (bo)

] (1−αo )
2[(

1
bo

Dαo
∗ (ψ ◦ Υ)( 1

bo
)
)
·

(
∗Dαo

1
ao

(ψ ◦ Υ)( 1
ao

)
)]Γ(1−αo)

(
aobo
bo−ao

)2−2αo
. (23)

Which is the desire inequality (19).
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The resulting integral inequality may be derived using Lemma 3.3.

Theorem 3.4. Let ψ : I ⊂ ℜ+ → ℜ be a differentiable function on I◦, with ao, bo ∈ I◦ where ao < bo. If |ψ∗|q, |ψ∗∗|q

are multilplicative harmonically convex on [ao, bo] for some fixed q ≥ 1 and Υ(λo) = 1
λo

, then∣∣∣∣∣∣∣∣∣∣∣∣∣∣
[
ψ (ao)ψ (bo)

]αo
2
(
aobo
bo−ao

)1−2αo

·
[
ψ∗ (ao)ψ∗ (bo)

] (1−αo )
2[(

1
ao

Dαo
∗ (ψ ◦ Υ)( 1

ao
)
)
·

(
∗Dαo

1
bo

(ψ ◦ Υ)( 1
bo

)
)]Γ(1−αo)

(
aobo
bo−ao

)2−2αo

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤

[
(ψ∗(ao))(ß2)

1
q
· (ψ∗(bo))(ß3)

1
q
]αo

2aobo(bo−ao)
(
aobo
bo−ao

)1−2αo
ß1

1−1/q

×

[
(ψ∗∗(ao))(C2(αo;ao,bo))

1
q
· (ψ∗∗(bo))(C3(αo;ao,bo))

1
q
](1−αo) aobo (bo−ao )

2 C1
1−1/q(αo;ao,bo)

, (24)

holds, where ß1, ß2, ß3 are defined in Theorem 2.5, and

C1(αo; ao, bo) =
ao
−2

3 − 2αo

[
2F1

(
2, 1; 4 − 2αo; 1 −

bo

ao

)
+ 2F1

(
2, 3 − 2αo; 4 − 2αo; 1 −

ao

bo

)]

C2(αo; ao, bo) =
ao
−2

4 − 2αo

[
2F1

(
2, 2; 5 − 2αo; 1 −

bo

ao

)
+ 2F1

(
2, 4 − 2αo; 5 − 2αo; 1 −

ao

bo

)]
,

C3(αo; ao, bo) =
ao
−2

3 − 2αo

[
2F1

(
2, 1; 5 − 2αo; 1 −

bo

ao

)
+ 2F1

(
2, 3 − 2αo; 5 − 2αo; 1 −

ao

bo

)]
,

Proof. Let Uλo = λobo + (1 − λo)ao. Using the modulus property, the power mean inequality, and the multiplicative
harmonic convexity of (lnψ∗)q and (lnψ∗∗)q, we obtain the following result from Lemma 3.3:∣∣∣∣∣∣∣∣∣∣∣∣∣∣

[
ψ (ao)ψ (bo)

]αo
2
(
aobo
bo−ao

)1−2αo

·
[
ψ∗ (ao)ψ∗ (bo)

] (1−αo )
2[(

1
ao

Dαo
∗ (ψ ◦ Υ)( 1

ao
)
)
·

(
∗Dαo

1
bo

(ψ ◦ Υ)( 1
bo

)
)]Γ(1−αo)

(
aobo
bo−ao

)2−2αo

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ exp

{
αo

2aobo(bo − ao)
(
aobo

bo − ao

)1−2αo( ∫ 1

0

|1 − 2λo|

A2
λo

dλo

)1−1/q

×

( ∫ 1

0

|1 − 2λo|[λo(lnψ∗(ao))q + (1 − λo)(lnψ∗(bo))q]

A2
λo

dλo

)1/q

+ (1 − αo)
aobo(bo − ao)

2

( ∫ 1

0

|(1 − λo)2−2αo − λo
2−2αo |

A2
λo

dλo

)1−1/q

×

( ∫ 1

0

|(1 − λo)2−2αo − λo
2−2αo |[λo(lnψ∗∗(ao))q + (1 − λo)(lnψ∗∗(bo))q]

A2
λo

dλo

)1/q}
≤ exp

{
αo

2aobo(bo − ao)
(
aobo

bo − ao

)1−2αo( ∫ 1

0

|1 − 2λo|

A2
λo

dλo

)1−1/q
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×

( ∫ 1

0

|1 − 2λo|[λo(lnψ∗(ao))q + (1 − λo)(lnψ∗(bo))q]

A2
λo

dλo

)1/q

+ (1 − αo)
aobo(bo − ao)

2

( ∫ 1

0

[(1 − λo)2−2αo + λo
2−2αo ]

A2
λo

dλo

)1−1/q

×

( ∫ 1

0

[(1 − λo)2−2αo + λo
2−2αo ][λo(lnψ∗∗(ao))q + (1 − λo)(lnψ∗∗(bo))q]

A2
λo

dλo

)1/q}
≤ exp

{
αo

2aobo(bo − ao)
(
aobo

bo − ao

)1−2αo

ß1
1−1/q

[
ß2(lnψ∗(ao))q + ß3(lnψ∗(bo))q

]1/q

+ (1 − αo)
aobo(bo − ao)

2
C1

1−1/q(αo; ao, bo)
[
C2(αo; ao, bo)(lnψ∗∗(ao))q + C3(αo; ao, bo)(lnψ∗∗(bo))q

]1/q}
≤ exp

{
αo

2aobo(bo − ao)
(
aobo

bo − ao

)1−2αo

ß1
1−1/q

×

[ (
(ß2)

1
q lnψ∗(ao)

)q
+

(
(ß3)

1
q lnψ∗(bo)

)q ]1/q

+ (1 − αo)
aobo(bo − ao)

2
C1

1−1/q(αo; ao, bo)

×

[ (
(C2(αo; ao, bo))

1
q lnψ∗∗(ao)

)q
+

(
(C3(αo; ao, bo))

1
q lnψ∗∗(bo)

)q ]1/q}
.

By the use of Aq + Bq
≤ (A + B)q for A ≥ 0,B ≥ 0 with q ≥ 1, we have that∣∣∣∣∣∣∣∣∣∣∣∣∣∣

[
ψ (ao)ψ (bo)

]αo
2
(
aobo
bo−ao

)1−2αo

·
[
ψ∗ (ao)ψ∗ (bo)

] (1−αo )
2[(

1
ao

Dαo
∗ (ψ ◦ Υ)( 1

ao
)
)
·

(
∗Dαo

1
bo

(ψ ◦ Υ)( 1
bo

)
)]Γ(1−αo)

(
aobo
bo−ao

)2−2αo

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ exp

{
αo

2aobo(bo − ao)
(
aobo

bo − ao

)1−2αo

ß1
1−1/q

[
(ß2)

1
q lnψ∗(ao) + (ß3)

1
q lnψ∗(bo)

]
+ (1 − αo)

aobo(bo − ao)
2

C1
1−1/q(αo; ao, bo)

[
(C2(αo; ao, bo))

1
q lnψ∗∗(ao) + (C3(αo; ao, bo))

1
q lnψ∗∗(bo)

]}
=

[
(ψ∗(ao))(ß2)

1
q
· (ψ∗(bo))(ß3)

1
q
]αo

2aobo(bo−ao)
(
aobo
bo−ao

)1−2αo
ß1

1−1/q

×

[
(ψ∗∗(ao))(C2(αo;ao,bo))

1
q
· (ψ∗∗(bo))(C3(αo;ao,bo))

1
q
](1−αo) aobo (bo−ao )

2 C1
1−1/q(αo;ao,bo)

. (25)

Calculating ß1, ß2, ß3, C1(αo; ao, bo), C2(αo; ao, bo), and C3(αo; ao, bo), we have

ß1 =

∫ 1

0

|1 − 2λo|

A2
λo

dλo =
1
aobo

−
2

(bo − ao)2 ln
( (ao + bo)2

4aobo

)
,

ß2 =

∫ 1

0

|1 − 2λo|λo

A2
λo

dλo =
−1

bo(bo − ao)
+

3ao + bo

(bo − ao)3 ln
( (ao + bo)2

4aobo

)
,

ß3 =

∫ 1

0

|1 − 2λo|(1 − λo)
A2
λo

dλo =
1

ao(bo − ao)
−

3bo + ao

(bo − ao)3 ln
( (ao + bo)2

4aobo

)
= ß1 − ß2,
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C1(αo; ao, bo) =
[(1 − λo)2−2αo + λo

2−2αo ]
A2
λo

dλo

=
ao
−2

3 − 2αo

[
2F1

(
2, 1; 4 − 2αo; 1 −

bo

ao

)
+ 2F1

(
2, 3 − 2αo; 4 − 2αo; 1 −

bo

ao

)]

C2(αo; ao, bo) =
[(1 − λo)2−2αo + λo

2−2αo ]λo

A2
λo

dλo

=
ao
−2

4 − 2αo

[
2F1

(
2, 2; 5 − 2αo; 1 −

bo

ao

)
+ 2F1

(
2, 4 − 2αo; 5 − 2αo; 1 −

bo

ao

)]

C3(αo; ao, bo) =
[(1 − λo)2−2αo + λo

2−2αo ](1 − λo)
A2
λo

dλo

=
ao
−2

3 − 2αo

[
2F1

(
2, 1; 5 − 2αo; 1 −

bo

ao

)
+ 2F1

(
2, 3 − 2αo; 5 − 2αo; 1 −

bo

ao

)]
.

Hence the proof.

Remark 3.5. If αo = 1 is taken in Theorem 3.4, then one attains∣∣∣∣∣ (ψ(ao)ψ(bo)
) bo−ao
aobo(∫ 1

ao
1
bo

(
ψ( 1

xo
)
)dxo

)2

∣∣∣∣∣ ≤ [(
ψ∗(ao)

) ß2
q ·

(
ψ∗(bo)

) ß3
q

](bo−ao)2[ß1]1− 1
q

.

Example 3.6. The following graph describes the viability of Theorem 3.4 for ψ(xo) = exp{x4
o}. Let Lt,Mt and Rt,

represent the left, middle and right terms of Theorem 3.4.

Figure 2: A visual representation that demonstrates that Theorem 3.4 is true for ao ∈ [0.1, 0.3], bo ∈ [0.4, 0.7] and αo = 0.5.
.



S. I. Butt et al. / Filomat 39:35 (2025), 12725–12756 12745

By applying Lemma 2.7 and Lemma 3.3, we establish an additional conclusion for multiplicative harmoni-
cally convex functions within the range 0 ≤ αo ≤ 1.

Theorem 3.7. Let ψ : I ⊂ ℜ+ →ℜ be a differentiable function on I◦, with ao, bo ∈ I◦ where ao < bo. If (ψ∗)q, (ψ∗∗)q

are multilplicative harmonically convex on [ao, bo] for some fixed q ≥ 1 and Υ(λo) = 1
λo

, then∣∣∣∣∣∣∣∣∣∣∣∣∣∣
[
ψ (ao)ψ (bo)

]αo
2
(
aobo
bo−ao

)1−2αo

·
[
ψ∗ (ao)ψ∗ (bo)

] (1−αo )
2[(

1
ao

Dαo
∗ (ψ ◦ Υ)( 1

ao
)
)
·

(
∗Dαo

1
bo

(ψ ◦ Υ)( 1
bo

)
)]Γ(1−αo)

(
aobo
bo−ao

)2−2αo

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤

[
(ψ∗(ao))(ß2)

1
q
· (ψ∗(bo))(ß3)

1
q
]αo

2aobo(bo−ao)
(
aobo
bo−ao

)1−2αo
ß1

1−1/q

×

[
(ψ∗∗(ao))(K2(αo;ao,bo))

1
q
· (ψ∗∗(bo))(K3(αo;ao,bo))

1
q
](1−αo) aobo (bo−ao )

2 K1
1−1/q(αo;ao,bo)

, (26)

holds, where

K1(αo; ao, bo) =
ao
−2

3 − 2αo

[
2F1

(
2, 3 − 2αo; 4 − 2αo; 1 −

bo

ao

)
− 2F1

(
2, 1; 4 − 2αo; 1 −

bo

ao

)
+ 2F1

(
2, 1; 4 − 2αo;

1
2

(
1 −
bo

ao

))]
,

K2(αo; ao, bo) =
ao
−2

4 − 2αo

[
2F1

(
2, 3 − 2αo; 5 − 2αo; 1 −

bo

ao

)
−

1
3 − 2αo

2F1

(
2, 2; 5 − 2αo; 1 −

bo

ao

)
+

1
3 − 2αo

2F1

(
2, 2; 5 − 2αo;

1
2

(
1 −
bo

ao

))]
,

and

K3(αo; ao, bo) =
ao
−2

4 − 2αo

[ 1
3 − 2αo

2F1

(
2, 3 − 2αo; 5 − 2αo; 1 −

bo

ao

)
− 2F1

(
2, 1; 5 − 2αo; 1 −

bo

ao

)
+ 2F1

(
2, 1; 5 − 2αo;

1
2

(
1 −
bo

ao

))]
.

Proof. Assume that Uλo = λobo + (1 − λo)ao. By utilizing the modulus property, the power mean inequality, and
the multiplicative harmonic convexity of (ψ∗)q and (ψ∗∗)q in conjunction with Lemma (3.3), we derive the following
result: ∣∣∣∣∣∣∣∣∣∣∣∣∣∣

[
ψ (ao)ψ (bo)

]αo
2
(
aobo
bo−ao

)1−2αo

·
[
ψ∗ (ao)ψ∗ (bo)

] (1−αo )
2[(

1
ao

Dαo
∗ (ψ ◦ Υ)( 1

ao
)
)
·

(
∗Dαo

1
bo

(ψ ◦ Υ)( 1
bo

)
)]Γ(1−αo)

(
aobo
bo−ao

)2−2αo

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ exp

{
αo

2aobo(bo − ao)
(
aobo

bo − ao

)1−2αo( ∫ 1

0

|2λo − 1|
U2
λo

dλo

)1−1/q

×

( ∫ 1

0

|2λo − 1|[λo| lnψ∗(ao)|q + (1 − λo)| lnψ∗(bo)|q]

U2
λo

dλo

)1/q
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+ (1 − αo)
aobo(bo − ao)

2

( ∫ 1

0

|(1 − λo)2−2αo − λo
2−2αo |

U2
λo

dλo

)1−1/q

×

( ∫ 1

0

|(1 − λo)2−2αo − λo
2−2αo |[λo| lnψ∗∗(ao)|q + (1 − λo)| lnψ∗∗(bo)|q]

U2
λo

dλo

)1/q}
≤ exp

{
αo

2aobo(bo − ao)
(
aobo

bo − ao

)1−2αo

ß1
1−1/q

[
ß2| lnψ∗(ao)|q + ß3| lnψ∗(bo)|q

]1/q

+ (1 − αo)
aobo(bo − ao)

2
K1

1−1/q(αo; ao, bo)
[
K2(αo; ao, bo)|ψ∗∗(ao)|q + K3(αo; ao, bo)|ψ∗∗(bo)|q

]1/q}
≤ exp

{
αo

2aobo(bo − ao)
(
aobo

bo − ao

)1−2αo

ß1
1−1/q

[ (
(ß2)

1
q lnψ∗(ao)

)q
+

(
(ß3)

1
q lnψ∗(bo)

)q ]1/q

+ (1 − αo)
aobo(bo − ao)

2
K1

1−1/q(αo; ao, bo)
[ (

(K2(αo; ao, bo))
1
q lnψ∗∗(ao)

)q

+
(
(K3(αo; ao, bo))

1
q lnψ∗∗(bo)

)q ]1/q}
.

By the use of Aq + Bq
≤ (A + B)q for A ≥ 0,B ≥ 0 with q ≥ 1, we have that

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
[
ψ (ao)ψ (bo)

]αo
2
(
aobo
bo−ao

)1−2αo

·
[
ψ∗ (ao)ψ∗ (bo)

] (1−αo )
2[(

1
ao

Dαo
∗ (ψ ◦ Υ)( 1

ao
)
)
·

(
∗Dαo

1
bo

(ψ ◦ Υ)( 1
bo

)
)]Γ(1−αo)

(
aobo
bo−ao

)2−2αo

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ exp

{
αo

2aobo(bo − ao)
(
aobo

bo − ao

)1−2αo

ß1
1−1/q

[
(ß2)

1
q lnψ∗(ao) + (ß3)

1
q lnψ∗(bo)

]
+ (1 − αo)

aobo(bo − ao)
2

K1
1−1/q(αo; ao, bo)

[
(K2(αo; ao, bo))

1
q lnψ∗∗(ao) + (K3(αo; ao, bo))

1
q lnψ∗∗(bo)

]}
=

[
(ψ∗(ao))(ß2)

1
q
· (ψ∗(bo))(ß3)

1
q
]αo

2aobo(bo−ao)
(
aobo
bo−ao

)1−2αo
ß1

1−1/q

×

[
(ψ∗∗(ao))(K2(αo;ao,bo))

1
q
· (ψ∗∗(bo))(K3(αo;ao,bo))

1
q
](1−αo) aobo (bo−ao )

2 K1
1−1/q(αo;ao,bo)

. (27)

Now calculating K1,K2 and K3 , by Lemma (2.7), we have

K1(αo; ao, bo) =
∫ 1

0

(1 − λo)2−2αo − λo
2−2αo

U2
λo

dλo

=

∫ 1
2

0

(1 − λo)2−2αo − λo
2−2αo

U2
λo

dλo +

∫ 1

1
2

λo
2−2αo − (1 − λo)2−2αo

U2
λo

dλo

=

∫ 1

0

λo
2−2αo − (1 − λo)2−2αo

U2
λo

dλo + 2
∫ 1

2

0

(1 − λo)2−2αo − λo
2−2αo

U2
λo

dλo

≤

∫ 1

0
λo

2−2αo U−2
λo

dλo −

∫ 1

0
(1 − λo)2−2αo U−2

λo
dλo + 2

∫ 1
2

0
(1 − 2λo)2−2αo U−2

λo
dλo

=

∫ 1

0
λo

2−2αo U−2
λo

dλo −

∫ 1

0
(1 − λo)2−2αo U−2

λo
dλo +

∫ 1

0
(1 − u)2−2αo U−2

(
1 − u

1
2

(
1 −
bo

ao

))−2

du
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K1(αo; ao, bo) ≤
ao
−2

3 − 2αo

[
2F1

(
2, 3 − 2αo; 4 − 2αo; 1 −

bo

ao

)
− 2F1

(
2, 1; 4 − 2αo; 1 −

bo

ao

)
+ 2F1

(
2, 1; 4 − 2αo;

1
2

(
1 −
bo

ao

))]
. (28)

similarly we get

K2(αo; ao, bo) ≤
∫ 1

0

(1 − λo)2−2αo − λo
2−2αo

U2
λo

λodλo

≤

∫ 1

0
λo

3−2αo U−2
λo

dλo −

∫ 1

0
(1 − λo)2−2αoλo U−2

λo
dλo + 2

∫ 1
2

0
(1 − 2λo)2−2αoλoU−2

λo
dλo

=
ao
−2

4 − 2αo

[
2F1

(
2, 3 − 2αo; 5 − 2αo; 1 −

bo

ao

)
−

1
3 − 2αo

2F1

(
2, 2; 5 − 2αo; 1 −

bo

ao

)
+

1
3 − 2αo

2F1

(
2, 2; 5 − 2αo;

1
2

(
1 −
bo

ao

))]
, (29)

K3(αo; ao, bo) =
∫ 1

0

(1 − λo)2−2αo − λo
2−2αo

U2
λo

(1 − λo)dλo

≤

∫ 1

0
λo

2−2αo (1 − λo)U−2
λo

dλo −

∫ 1

0
(1 − λo)3−2αoλo U−2

λo
dλo + 2

∫ 1
2

0
(1 − 2λo)2−2αo (1 − λo)U−2

λo
dλo

=
ao
−2

4 − 2αo

[ 1
3 − 2αo

2F1

(
2, 3 − 2αo; 5 − 2αo; 1 −

bo

ao

)
− 2F1

(
2, 1; 5 − 2αo; 1 −

bo

ao

)
+ 2F1

(
2, 1; 5 − 2αo;

1
2

(
1 −
ao

bo

))]
.

Hence the proof.

Theorem 3.8. Let ψ : I ⊂ ℜ+ →ℜ be a differentiable function on I◦, the interior of the interval I, where ao, bo ∈ I◦

with ao < bo. If (ψ∗)q, (ψ∗∗)q are multilplicatively harmonic convex on [ao, bo] for some fixed q > 1 and 1
p +

1
q = 1

and Υ(λo) = 1
λo

, then∣∣∣∣∣∣∣∣∣∣∣∣∣∣
[
ψ (ao)ψ (bo)

]αo
2
(
aobo
bo−ao

)1−2αo

·
[
ψ∗ (ao)ψ∗ (bo)

] (1−αo )
2[(

1
ao

Dαo
∗ (ψ ◦ Υ)( 1

ao
)
)
·

(
∗Dαo

1
bo

(ψ ◦ Υ)( 1
bo

)
)]Γ(1−αo)

(
aobo
bo−ao

)2−2αo

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤

[
(ψ∗(ao))µ1

1
q
· (ψ∗(bo))µ2

1
q
]αo

2aobo(bo−ao)
(
aobo
bo−ao

)1−2αo(
1

p+1

)1/p

×

[
ψ∗∗(ao) · ψ∗∗(bo)

](1−αo) aobo (bo−ao )
4 (K1/p

4 +K1/p
5 )

, (30)

holds, where

K4 =
ao
−2p

2p(1 − αo) − 1 2F1

(
2p, 1; 2p(1 − αo) + 2; 1 −

bo

ao

)
,
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and

K5 =
ao
−2p

2p(1 − αo) − 1 2F1

(
2p, 2p(1 − αo) + 1; 2p(1 − αo) + 2; 1 −

bo

ao

)
.

with µ1 and µ2 are defined in Theorem 2.6.

Proof. Let Uλo = λobo + (1−λo)ao. Lemma (3.3) and (2.7) can be determined by using the Hölder inequality and the
multiplicative harmonically convexity of (ψ∗)q and (ψ∗∗)q.∣∣∣∣∣∣∣∣∣∣∣∣∣∣

[
ψ (ao)ψ (bo)

]αo
2
(
aobo
bo−ao

)1−2αo

·
[
ψ∗ (ao)ψ∗ (bo)

] (1−αo )
2[(

1
ao

Dαo
∗ (ψ ◦ Υ)( 1

ao
)
)
·

(
∗Dαo

1
bo

(ψ ◦ Υ)( 1
bo

)
)]Γ(1−αo)

(
aobo
bo−ao

)2−2αo

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ exp

{
αo

2aobo(bo − ao)
(
aobo

bo − ao

)1−2αo( ∫ 1

0
|1 − 2λo|

pdλo

) 1
p

×

( ∫ 1

0

1

U2q
λo

(
lnψ∗

(
aobo

U2q
λo

))q

dλo

) 1
q

+ (1 − αo)
aobo(bo − ao)

2

[( ∫ 1

0

(1 − λo)2−2αop

U2p
λo

dλo

)1/p(∫ 1

0

(
lnψ∗∗

(
aobo

U2
λo

))q

dλo

)1/q

+
[( ∫ 1

0

λo
2−2αop

U2p
λo

dλo

)1/p(∫ 1

0

(
lnψ∗∗

(
aobo

U2
λo

))q

dλo

)1/q]}
≤ exp

{
αo

2aobo(bo − ao)
(
aobo

bo − ao

)1−2αo( 1
p + 1

)1/p

×

( ∫ 1

0

λo(lnψ∗∗(ao))q + (1 − λo)(lnψ∗∗(bo))q

U2q
λo

dλo

)1/q

+ (1 − αo)
aobo(bo − ao)

2
(K1/p

4 + K1/p
5 )

( ∫ 1

0
λo(lnψ∗∗(ao))q + (1 − λo)(lnψ∗∗(bo))q

)1/q}
≤ exp

{
αo

2aobo(bo − ao)
(
aobo

bo − ao

)1−2αo( 1
p + 1

)1/p(
µ1(lnψ∗(ao))q + µ2(lnψ∗(bo))q

) 1
q

+ (1 − αo)
aobo(bo − ao)

2
(K1/p

4 + K1/p
5 )

( (lnψ∗∗(ao))q + (lnψ∗∗(bo))q

2

)1/q}
≤ exp

{
αo

2aobo(bo − ao)
(
aobo

bo − ao

)1−2αo( 1
p + 1

)1/p ((
µ1

1
q lnψ∗(ao)

)q
+

(
µ2

1
q lnψ∗(bo)

)q) 1
q

+ (1 − αo)
aobo(bo − ao)

2
(K1/p

4 + K1/p
5 )

( (1
2

) 1
q

ln(ψ∗∗(ao))

q

+

(1
2

) 1
q

ln(ψ∗∗(bo))

q )1/q}
.

By the use of Aq + Bq
≤ (A + B)q for A ≥ 0,B ≥ 0 and

(
1
2

) 1
q
≤

1
2 with q ≥ 1, we have that∣∣∣∣∣∣∣∣∣∣∣∣∣∣

[
ψ (ao)ψ (bo)

]αo
2
(
aobo
bo−ao

)1−2αo

·
[
ψ∗ (ao)ψ∗ (bo)

] (1−αo )
2[(

1
ao

Dαo
∗ (ψ ◦ Υ)( 1

ao
)
)
·

(
∗Dαo

1
bo

(ψ ◦ Υ)( 1
bo

)
)]Γ(1−αo)

(
aobo
bo−ao

)2−2αo

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ exp

{
αo

2aobo(bo − ao)
(
aobo

bo − ao

)1−2αo( 1
p + 1

)1/p [
µ1

1
q lnψ∗(ao) + µ2

1
q lnψ∗(bo)

]
+ (1 − αo)

aobo(bo − ao)
2

(K1/p
4 + K1/p

5 )
[ (1

2

) 1
q

ln(ψ∗∗(ao)) +
(1

2

) 1
q

ln(ψ∗∗(bo))
]}
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=
[
(ψ∗(ao))µ1

1
q
· (ψ∗(bo))µ2

1
q
]αo

2aobo(bo−ao)
(
aobo
bo−ao

)1−2αo(
1

p+1

)1/p

×

[
ψ∗∗(ao) · ψ∗∗(bo)

](1−αo) aobo (bo−ao )
4 (K1/p

4 +K1/p
5 )

.

Calculating µ1, µ2,K4 and K5, we have

µ1 =

∫ 1

0

λo

U2q
λo

dλo =
[ao

2−2q + bo
1−2q[(bo − ao)(1 − 2q) − ao]]

2(bo − ao)2(1 − q)(1 − 2q)
,

µ2 =

∫ 1

0

1 − λo

U2q
λo

dλo =
[bo

2−2q + ao
1−2q[(bo − ao)(1 − 2q) + bo]]

2(bo − ao)2(1 − q)(1 − 2q)
,

K4 =
( ∫ 1

0

(1 − λo)2−2αop

U2p
λo

dλo

)
=

ao
−2p

2p(1 − αo) − 1 2F1

(
2p, 1; 2p(1 − αo) + 2; 1 −

bo

ao

)
,

and

K5 =
( ∫ 1

0

λo
2−2αop

U2p
λo

dλo

)
=

ao
−2p

2p(1 − αo) − 1 2F1

(
2p, 2p(1 − αo) + 1; 2p(1 − αo) + 2; 1 −

bo

ao

)
.

Hence the proof.

Theorem 3.9. Let ψ : I ⊂ ℜ+ →ℜ be a differentiable function on I◦, with ao, bo ∈ I◦ where ao < bo. If (ψ∗)q, (ψ∗∗)q

are multilplicative harmonically convex on [ao, bo] for some fixed q > 1 and Υ(λo) = 1
λo

, then∣∣∣∣∣∣∣∣∣∣∣∣∣∣
[
ψ (ao)ψ (bo)

]αo
2
(
aobo
bo−ao

)1−2αo

·
[
ψ∗ (ao)ψ∗ (bo)

] (1−αo )
2[(

1
ao

Dαo
∗ (ψ ◦ Υ)( 1

ao
)
)
·

(
∗Dαo

1
bo

(ψ ◦ Υ)( 1
bo

)
)]Γ(1−αo)

(
aobo
bo−ao

)2−2αo

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤

[
(ψ∗(ao))µ1

1
q
· (ψ∗(bo))µ2

1
q
]αo

2aobo(bo−ao)
(
aobo
bo−ao

)1−2αo(
1

p+1

)1/p

×

[ (
ψ∗∗(ao)

)K1/p
10 ·

(
ψ∗∗(bo)

)K1/p
11

](1−αo) aobo (bo−ao )
4 (K1/p

9 )

, (31)

holds, where µ1 and µ2 are defined in Theorem 2.6.

Proof. Let Uλo = λobo + (1 − λo)ao. Lemma (3.3) and (2.7) may be determined by using the Hölder inequality and
the multiplicative harmonically convexity of (ψ∗)q and (ψ∗∗)q.∣∣∣∣∣∣∣∣∣∣∣∣∣∣

[
ψ (ao)ψ (bo)

]αo
2
(
aobo
bo−ao

)1−2αo

·
[
ψ∗ (ao)ψ∗ (bo)

] (1−αo )
2[(

1
ao

Dαo
∗ (ψ ◦ Υ)( 1

ao
)
)
·

(
∗Dαo

1
bo

(ψ ◦ Υ)( 1
bo

)
)]Γ(1−αo)

(
aobo
bo−ao

)2−2αo

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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≤ exp
{
αo

2aobo(bo − ao)
(
aobo

bo − ao

)1−2αo( ∫ 1

0
|1 − 2λo|

pdλo

) 1
p

×

( ∫ 1

0

1

U2q
λo

(
lnψ∗

(
aobo

U2q
λo

))q

dλo

) 1
q

+ (1 − αo)
aobo(bo − ao)

2

( ∫ 1

0
|(1 − λo)2−2αo − λo

2−2αo |
pdλo

)1/p(∫ 1

0

(
lnψ∗∗

(
aobo

U2
λo

))q

dλo

)1/q}
≤ exp

{
αo

2aobo(bo − ao)
(
aobo

bo − ao

)1−2αo( 1
p + 1

)1/p( ∫ 1

0

λo(lnψ∗∗(ao))q + (1 − λo)(lnψ∗∗(bo))q

U2q
λo

dλo

)1/q

+ (1 − αo)
aobo(bo − ao)

2

( ∫ 1

0
|1 − 2λo|

(2−2αo)pdλo

) 1
p
( ∫ 1

0

λo(lnψ∗∗(ao))q + (1 − λo)(lnψ∗∗(bo))q

U2q
λo

dλo

)1/q}
≤ exp

{
αo

2aobo(bo − ao)
(
aobo

bo − ao

)1−2αo( 1
p + 1

)1/p(
µ1(lnψ∗(ao))q + µ2(lnψ∗(bo))q

) 1
q

+ (1 − αo)
aobo(bo − ao)

2
K1/p

9

(
K10(lnψ∗∗(ao))q + K11(lnψ∗∗(bo))q

)1/q}
≤ exp

{
αo

2aobo(bo − ao)
(
aobo

bo − ao

)1−2αo( 1
p + 1

)1/p ((
µ1

1
q lnψ∗(ao)

)q
+

(
µ2

1
q lnψ∗(bo)

)q) 1
q

+ (1 − αo)
aobo(bo − ao)

2
K1/p

9

( (
(K10)

1
q ln(ψ∗∗(ao))

)q
+

(
(K11)

1
q ln(ψ∗∗(bo))

)q )1/q}
.

By the use of Aq + Bq
≤ (A + B)q for A ≥ 0,B ≥ 0 with q ≥ 1, we have that∣∣∣∣∣∣∣∣∣∣∣∣∣∣

[
ψ (ao)ψ (bo)

]αo
2
(
aobo
bo−ao

)1−2αo

·
[
ψ∗ (ao)ψ∗ (bo)

] (1−αo )
2[(

1
ao

Dαo
∗ (ψ ◦ Υ)( 1

ao
)
)
·

(
∗Dαo

1
bo

(ψ ◦ Υ)( 1
bo

)
)]Γ(1−αo)

(
aobo
bo−ao

)2−2αo

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ exp

{
αo

2aobo(bo − ao)
(
aobo

bo − ao

)1−2αo( 1
p + 1

)1/p [
µ1

1
q lnψ∗(ao) + µ2

1
q lnψ∗(bo)

]
+ (1 − αo)

aobo(bo − ao)
2

K1/p
9

[
(K10)

1
q ln(ψ∗∗(ao)) + (K11)

1
q ln(ψ∗∗(bo))

]}
=

[
(ψ∗(ao))µ1

1
q
· (ψ∗(bo))µ2

1
q
]αo

2aobo(bo−ao)
(
aobo
bo−ao

)1−2αo(
1

p+1

)1/p

×

[ (
ψ∗∗(ao)

)K1/p
10 ·

(
ψ∗∗(bo)

)K1/p
11

](1−αo) aobo (bo−ao )
4 (K1/p

9 )

.

where∫ 1

0
|1 − 2λo|

(2−2αo)pdλo =
1

(2 − 2αo)p + 1
,

∫ 1

0
λoU−2q

λo
dλo = ao

−2q
∫ 1

0
λo

(
1 − λo

(
1 −
bo

ao

))−2q

dλo =
1

2ao
2q 2ψ1

(
2q, 2; 3; 1 −

ao

bo

)
,

and ∫ 1

0
(1 − λo)U−2q

λo
dλo =

1
2ao

2q 2ψ1

(
2q, 1; 3; 1 −

ao

bo

)
.

Hence the proof.
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Theorem 3.10. Let ψ : I ⊂ ℜ+ → ℜ be a differentiable on I◦, with ao, bo ∈ I◦ where ao < bo. If (ψ∗)q, (ψ∗∗)q, are
multilplicatively harmonic convex on [ao, bo] for some fixed q > 1 and Υ(λo) = 1

λo
, then∣∣∣∣∣∣∣∣∣∣∣∣∣∣

[
ψ (ao)ψ (bo)

]αo
2
(
aobo
bo−ao

)1−2αo

·
[
ψ∗ (ao)ψ∗ (bo)

] (1−αo )
2[(

1
ao

Dαo
∗ (ψ ◦ Υ)( 1

ao
)
)
·

(
∗Dαo

1
bo

(ψ ◦ Υ)( 1
bo

)
)]Γ(1−αo)

(
aobo
bo−ao

)2−2αo

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤

(
ψ∗(bo) · ψ∗(ao)

) αo2aobo(bo−ao)
2

(
aobo
bo−ao

)1−2αo
(

1
q+1

)1/q(
L

2−2/p
2p−2 (ao ,bo )

(ab)2p−1

)1/p

×

(
ψ∗∗(bo) · ψ∗∗(bo)

)(1−αo) aobo (bo−ao )
2

(
1

(2−2αo )q+1

)1/q
(

L
2−2/p
2p−2 (ao ,bo )

(ab)2p−1

)1/p

,

holds, where L2p−2(a, b) =
(
bo

2p−1
−ao

2p−1

(2p−1)(bo−ao)

)1/(2p−2)

is 2p − 2–Logarithmic mean.

Proof. Suppose that Uλo = λobo + (1 − t)ao. From 3.3 and 2.7 (ψ∗∗)q, we derive the following, assuming the
multiplicative harmonic convexity of (ψ∗)q and the Hölder inequality∣∣∣∣∣∣∣∣∣∣∣∣∣∣

[
ψ (ao)ψ (bo)

]αo
2
(
aobo
bo−ao

)1−2αo

·
[
ψ∗ (ao)ψ∗ (bo)

] (1−αo )
2[(

1
ao

Dαo
∗ (ψ ◦ Υ)( 1

ao
)
)
·

(
∗Dαo

1
bo

(ψ ◦ Υ)( 1
bo

)
)]Γ(1−αo)

(
aobo
bo−ao

)2−2αo

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ exp

{
αo

2aobo(bo − ao)
(
aobo

bo − ao

)1−2αo( ∫ 1

0

1

U2p
λo

dλo

)1/p( ∫ 1

0
|1 − 2λo|

q
(
lnψ∗

(
aobo

Uλo

))q

dλo

)1/q

+ (1 − αo)
aobo(bo − ao)

2

( ∫ 1

0

1

U2p
λo

dλo

)1/p( ∫ 1

0
|1 − 2λo|

(2−2αo)q
(
lnψ∗∗

(
aobo

Uλo

))q

dλo

)1/q}
≤ exp

{
αo

2aobo(bo − ao)
(
aobo

bo − ao

)1−2αo( ∫ 1

0

1

U2p
λo

dλo

)1/p

( ∫ 1

0
|1 − 2λo|

q[λo(lnψ∗(bo))q + (1 − λo)(lnψ∗(ao))q]dλo

)1/q

+ (1 − αo)
aobo(bo − ao)

2

( ∫ 1

0

1

U2p
λo

dλo

)1/p( ∫ 1

0
|1 − 2λo|

(2−2αo)q[λo(lnψ∗∗(bo))q + (1 − λo)(lnψ∗∗(ao))q]dλo

)1/q}

= exp
{
αo

2aobo(bo − ao)
(
aobo

bo − ao

)1−2αo(L2−2/p
2p−2 (ao, bo)

(ab)2p−1

)1/p( 1
2(q + 1)

(lnψ∗(bo))q +
1

2(q + 1)
(lnψ∗(ao))qdλo

)1/q

+ (1 − αo)
aobo(bo − ao)

2

(L2−2/p
2p−2 (ao, bo)

(ab)2p−1

)1/p( 1
(2 − 2αo)q + 1

)1/q( (lnψ∗∗(bo))q + (lnψ∗∗(bo))q

2

)1/q}
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

[
ψ (ao)ψ (bo)

]αo
2
(
aobo
bo−ao

)1−2αo

·
[
ψ∗ (ao)ψ∗ (bo)

] (1−αo )
2[(

1
ao

Dαo
∗ (ψ ◦ Υ)( 1

ao
)
)
·

(
∗Dαo

1
bo

(ψ ◦ Υ)( 1
bo

)
)]Γ(1−αo)

(
aobo
bo−ao

)2−2αo

∣∣∣∣∣∣∣∣∣∣∣∣∣∣



S. I. Butt et al. / Filomat 39:35 (2025), 12725–12756 12752

≤

(
ψ∗(bo) · ψ∗(ao)

) αo2aobo(bo−ao)
2

(
aobo
bo−ao

)1−2αo
(

1
q+1

)1/q(
L

2−2/p
2p−2 (ao ,bo )

(ab)2p−1

)1/p

×

(
ψ∗∗(bo) · ψ∗∗(bo)

)(1−αo) aobo (bo−ao )
2

(
1

(2−2αo )q+1

)1/q
(

L
2−2/p
2p−2 (ao ,bo )

(ab)2p−1

)1/p

.

Where∫ 1

0

1

U2p
λo

dλo = ao
−2p

∫ 1

0

(
1 − λo

(
1 −
bo

ao

))−2p

dλo = ao
−2p.2ψ1

(
2p, 1; 2, 1 −

bo

ao

)
=

L2−2/p
2p−2 (ao, bo)

(aobo)2p−1 ,

∫ 1

0
|1 − 2λo|

qλodλo =

∫ 1/2

0
(1 − 2λo)qλodλo +

∫ 1

1/2
(2λo − 1)qλodλo =

1
2(q + 1)

,

∫ 1

0
|1 − 2λo|

q(1 − λo)dλo =
1

2(q + 1)
,

∫ 1

0
|1 − 2λo|

(2−2αo)qλodλo =

∫ 1/2

0
(1 − 2λo)(2−2αo)qλodλo +

∫ 1

1/2
(2λo − 1)(2−2αo)qλodλo =

1
2((2 − 2αo)q + 1)

,

and ∫ 1

0
|1 − 2λo|

(2−2αo)q(1 − λo)dλo =
1

2((2 − 2αo)q + 1)
.

The proof ends at this stage.

Example 3.11. The following graph explains the veracity of Theorem 3.10 for ψ(xo) = exp{x4
o}.

Figure 3: Graphical explanation that confirms the veracity of Theorem 3.10 for ao ∈ [1, 1.99], bo ∈ [2, 2.8], q = 3 and αo = 0.5.
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4. Applications to Bessel function

Here, we present a new function expressed through the modified first-kind Bessel function. Exploiting
the function, new fractional recurrence equations for the first kind modified Bessel function that cannot be
realized using standard analytic methods are formulated.

We consider here the modified first-kind Bessel function Jp [58]. The function is fundamental in many
areas of mathematical physics and engineering. Applying its characteristics under the scope of fractional
calculus, we find recurrence relations which allow us to further understand its applications and behavior.

Jp(κ) =
∞∑
n=0

(κ2 )p+2n

n!Γ(p + n + 1)
, where κ ∈ ℜ. (32)

The authors of [15] and [32] introduced a novel function, denoted asJs(κ), which is defined over the domain
[0,∞) and maps to the range [0,∞). This function is formulated in terms of the modified Bessel function
of the first kind and is specifically defined for p ≥ 1 and p ∈ Z+. The explicit definition of this function is
given by

Js(κ) = κpJp(κ). (33)

J
′

s(κ) = κpJp−1(κ). (34)

J
′′

s (κ) = κp−1Jp−1(κ) + κpJp−2(κ). (35)

As J
′′

s (κ) > 0, ∀ κ > 0 and p ≥ 1. ⇒ Js(κ) is convex on [0,∞[. Since the function Js(κ) is increasing
too, therefore we can term it as harmonic convex function, it implies that exp{Js(κ)}, is multiplicative
harmonically convex function.

Proposition 4.1. Let p ≥ 1, and ao, bo ∈ [0,∞[ such that 0 < ao < bo, then

exp
{( 2aobo

ao + bo

) (1−αo )(bo−ao )p
2aobo

[
αo

2
−( aobobo−ao )αo ]

Jp

( 2aobo

ao + bo

)αo
2
(
bo−ao
aobo

)αo
−

(1−αo )
2

(
bo−ao
aobo

)1−αo

Jp−1

( 2aobo

ao + bo

) (1−αo )
2

(
bo−ao
aobo

)1−αo }
≤

[
exp

{( 1
aobo

)p} (
1
ao

Dαo
∗ (Jp ◦ Υ)

( 1
bo

)) (
∗Dαo

1
bo

(Jp ◦ Υ)
( 1
ao

)) ] Γ(1−αo)
2

(
bo−ao
aobo

)1−αo

≤ exp

(aobo)
αo2(1−αo )(bo−ao)p

aobo

[
G(Jp(ao),Jp(bo))

]αo
2
(
bo−ao
aobo

)αo [
G(Jp−1(ao),Jp−1(bo))

](1−αo)

(
bo−ao
aobo

)1−αo
 , (36)

holds.

Proof. The result (36) is obtained by employing Theorem 3.1 for ß > 0 and changing ψ(κ) by exp {Js(κ)} where

Js(κ) = κpJp(κ).

Hence the proof.
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Proposition 4.2. Let p ≥ 1, and ao, bo ∈ [0,∞[ such that 0 ≤ ao < bo, then∣∣∣∣∣∣∣∣∣∣∣∣∣∣
exp

{
αo

2
(
aobo
bo−ao

)1−2αo
[
ao
pJp(ao) + bo

pJp(bo) +
(

1−αo
2

[
Jp−1(ao)
Jp(ao)

])]
+

(
1−αo

2

[
Jp−1(ao)
Jp(ao)

])}
[(

1
ao

Dαo
∗ (Js ◦ Υ)

(
1
ao

))
·

(
∗Dαo

1
bo

(Js ◦ Υ)
(

1
bo

))]Γ(1−αo)
(
aobo
bo−ao

)2−2αo

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ exp

αo
2aobo(bo − ao)

2

( aobo

bo − ao

)1−2αo
( 1

q + 1

)1/q(L2−2/p
2p−2 (ao, bo)

(aobo)2p−1

)1/p [
Jp−1 (ao)
Jp (ao)

+
Jp−1 (bo)
Jp (ao)

]
× exp

{ (1 − αo)aobo(bo − ao)
2((2 − 2αo)q + 1)1/q

(L2−2/p
2p−2 (ao, bo)

(aobo)2p−1

)1/p[bo
p−1Jp−1 (bo) + bo

pJp−2 (bo) − bo
2pJ2

p−1 (bo)

bo
2pJ2

p (bo)

+
ao

p−1Jp−1 (ao) + ao
pJp−2 (ao) − ao

2pJ2
p−1 (ao)

ao
2pJ2

p (ao)

]}
, (37)

holds.

Proof. The result (37) is obtained by employing Theorem 3.1 for ß > 0 and changingψ(κ) by Js(κ) whereΥ(λo) = 1
λo

Js(κ) = κpJp(κ).

Hence the proof.

5. Conclusion

In this study, we successfully employed P.C.H operators to establish HH type inequalities for multiplica-
tive harmonically convex functions. Our findings highlight the adaptability of these fractional operators,
which allow the retrieval of various forms of HH-type inequalities based on different choices of the pa-
rameter αo. Specifically, when αo = 1, the inequalities correspond to the first derivative, while for αo = 0,
they apply to the second derivative. This flexibility underscores the significance of P.C.H operators in
generalizing and extending classical integral inequalities within the multiplicative calculus framework.

Furthermore, we supported our theoretical results with graphical representations, demonstrating their
validity through concrete examples. We also explored the implications of our derived inequalities in the
context of special functions, leading to the formulation of new multiplicative fractional-order recurrence
relations. These results add to the expanding corpus of work on integral inequalities, fractional calculus,
and its uses in numerical techniques, optimization, and uncertainty analysis.
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[11] H. Budak and K. Özçelik, On Hermite-Hadamard type inequalities for multiplicative fractional integrals, Miskolc Math. Notes.,

21(1)(2020), 91-99.
[12] S. I. Butt, Generalized Jensen-Hermite-Hadamard Mercer type inequalities for generalized strongly convex functions on fractal sets, Turkish

Journal of Scince, 8(2) (2024),51-63.
[13] S. I. Butt, P. Agarwal, S. Yousaf and J. L. G. Guirao, Generalized fractal Jensen and Jensen-Mercer inequalities for harmonic convex

function with applications, J. Inequal. Appl., 2022 (1), 1–18.
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[19] İ. Demir and T. Tunç, A new approach to Simpson-type inequality with proportional Caputo-hybrid operator, Math. Meth. Appl. Sci.,

2024, 1-14.
[20] S. S. Dragomir and R. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to

trapezoidal formula, Appl.Math.Lett, 11(5) (1998), 91-95.
[21] S. Dimitrijev, Effective mass in semiconductors, Bart J. Van Zeghbroeck, (1997).
[22] T. S. Du, Y. Long and J. G. Liao, Multiplicative fractional HH-type inequalities via multiplicative AB-fractional integral operators, J.

Comput. Appl. Math., 474 (2026), 116970.
[23] T. S. Du, Z. Y. Zhou and Z. R. Tan, Hadamard functional integral operators within fractional multiplicative calculus, Chaos Solitons

Fractals, 199 (2025), 116710.
[24] A. Fernandez and C. Ustao1̆lu, On some analytic properties of tempered fractional calculus, J. Comput. Appl. Math., 366 (2020), 112400.
[25] H. Fu, Y. Peng and T. S. Du, Some inequalities for multiplicative tempered fractional integrals involving the λ-incomplete gamma functions,

AIMS Math., 6(7)(2021), 7456-7478.
[26] W. Gao, A. Kashuri, S. I. Butt, M. Tariq, A. Aslam and M. Nadeem, New inequalities via n-polynomial harmonically exponential type

convex functions, AIMS Mathematics, 5(6) (2020), 6856–6873.
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