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Abstract. In this article, we introduce Nörlund-Orlicz sequence space over n-normed space and established
that under certain conditions these space become n-BK space. We investigate some useful algebraic and
topological properties of Nörlund-Orlicz sequence space. Additionally, we study the Köthe-Toeplitz duals
of Nörlund-Orlicz sequence space.

1. Introduction and Preliminaries

The Theory of sequence space plays an important role in mathematics. We shall write w, ℓ1, ℓp, ℓ∞, c and
c0 for the set of all complex, bounded, p-absolutely summable, absolutely summable, convergent and null
sequences, respectively. Let (U, ∥.∥) be a normed linear space and Γ be a scalar-valued sequence space, then
the vector-valued sequence space Γ(U) defined by

Γ(U) =
{
(ur) : ur ∈ U for all r ∈N and ∥u∥ ∈ Γ

}
.

The ℓp (1 < p < ∞) norm in a Banach space defined by

∥u∥ =
∞∑

r=1

(|ur|
p)

1
p .

Peyerimhoff [13] and Mears [10] introduced the concept of Nörlund means. Let (tr) be a sequence of non-

negetive real numbers with t0 > 0 and Tn =

n∑
r=0

tr for all n ∈ N. Then the Nörlund mean of the sequence

t = (tr) is denoted by σn and defined by

σn =

n∑
r=0

tn−rur

Tn
.
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Yeşilkayagil et al. [23] defined the Nörlund sequence space Nösp, 1 ≤ p < ∞, defined by

Nösp =

{
u = (ur) ∈ w : ∥u∥p =

( ∞∑
n=1

1
Tn

n∑
r=0

|tn−rur|
p
) 1

p

< ∞, 1 ≤ p < ∞
}
,

and

Nös∞ =
{

u = (ur) ∈ w : ∥u∥∞ = sup
n

1
Tn

n∑
r=0

|tn−rur| < ∞

}
.

The inclusion ℓp ⊂ Nösp(1 < p < ∞) is strict. Wang [22] defined and investigated the non-absolute Nörlund
sequence space Np as follows.

Np =

{
u = (ur) ∈ w : ∥u∥p =

( ∞∑
n=1

∣∣∣∣∣ 1
Tn

n∑
r=0

tn−rur

∣∣∣∣∣p) 1
p

< ∞, 1 ≤ p < ∞
}
,

and

N∞ =
{

u = (ur) ∈ w : ∥u∥∞ = sup
n

∣∣∣∣∣ 1
Tn

n∑
r=0

tn−rur

∣∣∣∣∣ < ∞}
.

Singh et al. [17] defined Nörlund difference sequence space Np(∆) and N∞(∆) as

Np(∆) =
{

u = (ur) ∈ w : ∥u∥p =
( ∞∑

n=1

∣∣∣∣∣ 1
Tn

n∑
r=0

tn−r∆ur

∣∣∣∣∣p) 1
p

< ∞, 1 ≤ p < ∞
}
,

and

N∞(∆) =
{

u = (ur) ∈ w : ∥u∥∞ = sup
n

∣∣∣∣∣ 1
Tn

n∑
r=0

tn−r∆ur

∣∣∣∣∣ < ∞}
.

and prove that for 1 ≤ p < ∞, the inclusions Np ⊂ Np(∆) and N∞ ⊂ N∞(∆) are strict. Also, we define the
following sequence spaces

Op(∆) =
{

u = (ur) ∈ w :
∞∑

n=1

( 1
Tn

n∑
r=0

|tn−r∆ur|

)p

< ∞, 1 ≤ p < ∞
}
,

and

O∞(∆) =
{

u = (ur) ∈ w : sup
n≥1

1
Tn

n∑
r=0

|tn−r∆ur| < ∞

}
.

The inclusions Op(∆) ⊂ Np(∆), Nösp ⊂ Np and Nösp ⊂ Op(∆) are strict for 1 ≤ p < ∞.
Kizmaz [6] introduced the concept of difference sequence space by studying ℓp(∆), ℓ∞(∆), c(∆) and c0(∆).
Et et al. [3] further generalized the concepts by introducing the spaces ℓ∞(∆ℓ), c(∆ℓ) and c0(∆ℓ). For the
sequence u = (ur),∆u = (∆ur) = (ur − ur+1), let k, ℓ be non-negative integers, then for Z = c, c0 and ℓ∞, we
have the sequence spaces

Z(∆ℓk) = {u = (ur) ∈ w : (∆ℓkur) ∈ Z},

where ∆ℓku = (∆ℓkur) = (∆ℓ−1
k ur − ∆

ℓ−1
k ur+1) and ∆0

k = ur for all r ∈ N. The binomial representation of
∆ℓku = (∆ℓkur) defined by

∆ℓkur =

ℓ∑
m=0

(−1)m
(
ℓ
m

)
ur+km.

For more details about the difference sequence space, refer to [18], [14], [2], [15].
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Definition 1.1. A Banach space (U, ∥ · ∥) is called a BK-space if it has continuous coordinates, that is, for a complex
sequence un = (un

r ),un
→ u (n→∞) in then un

r → ur (n→∞).

Definition 1.2. A real valued function ∥·, . . . , ·∥ on Un is called n-norm on U if it satisfy the following four conditions:
(1) ∥(u1,u2, . . . ,un)∥ = 0 if and only if u1,u2, . . . ,un are linear dependent in U,
(2) ∥(u1,u2, . . . ,un)∥ is invariant under permutation,
(3) ∥(γu1,u2, . . . ,un)∥ = |γ| ∥(u1,u2, . . . ,un)∥ for any γ ∈ R and
(4) ∥(u + u′,u2, . . . ,un) ≤ ∥(u,u2, . . . ,un)∥ + ∥(u′,u2, . . . ,un)∥.
The pair (U, ∥·, . . . , ·∥) is called n-normed space over the field R.

Remark 1.3. Let (U, ∥·, . . . , ·∥) be an n-normed space of dimension d ≥ n ≥ 2 and {b1, b2, . . . , bn} be linearly
independent set in U. Then the following function ∥·, . . . , ·∥ on Un−1 is defined by

∥(u1,u2, . . . ,un−1)∥∞ = max{∥(u1,u2, . . . ,un−1, bi)∥ : i = 1, 2, . . . ,n},

is called an (n − 1)-norm on U with respect to {b1, b2, . . . , bn}.

Definition 1.4. A sequence (ur) in an n-normed space (U, ∥·, . . . , ·∥) is said to converge to some T ∈ U if

lim
r→∞
∥(ur − T, f1, . . . , fn−1)∥ = 0,

for every f1, f2, . . . , fn−1 ∈ U.

Definition 1.5. A sequence (ur) in an n-normed space (U, ∥·, . . . , ·∥) is said to be a Cauchy if

lim
r,p→∞

∥(ur − up, f1, . . . , fn−1)∥ = 0,

for every Cauchy sequences f1, . . . , fn−1 ∈ U.

Remark 1.6. An n-Banach space is a complete normed-linear space with respect to the n-norm defined on U.

For more details about sequence space and n-normed spaces, one refer to [11], [4], [5].

Definition 1.7. A continuous, non-decreasing and convex function M : [0,∞) → [0,∞) is said to be an Orlicz
function if it satisfies the following conditions
(1)M(u) = 0 for u = 0,M(u) > 0 for u > 0,
(2)M(u)→∞ as u→∞.

Lindenstrauss and Tzafriri [8] used the idea of Orlicz function to define the following sequence space,

ℓM =

{
u = (ur) ∈ w :

∞∑
r=1

M

(
|ur|

τ

)
< ∞, for some τ > 0

}
.

The Orlicz sequence space ℓM is a Banach space with the norm defined by

∥u∥ = in f
{
τ > 0 :

∞∑
r=1

M

(
|ur|

τ

)
≤ 1

}
.

For more details about Orlicz sequence space, refer to [12], [19], [20], [21], [16], [1].
Let w(n − U) denotes U-valued sequence space, where (U, ∥·, . . . , ·∥) be an n-normed real linear space,
M = (Mi) be a sequence of Orlicz functions and v = (vr) be a sequence of positive real numbers. Then for
every nonzero f1, . . . , fn ∈ U, we define the following sequence spaces
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Np(M, v,∆ℓk, ∥·, . . . , ·∥) ={
(ur) ∈ w(n −U) :

∞∑
i=1

Mi

(∥∥∥∥∥ 1
Ti

i∑
r=0

vrtn−r∆
ℓ
kur

τ
, f1, . . . , fn−1

∥∥∥∥∥)p

< ∞,

for some τ > 0
}
,

N∞(M, v,∆ℓk, ∥·, . . . , ·∥)

=

{
(ur) ∈ w(n −U) : sup

i
Mi

(∥∥∥∥∥ 1
Ti

i∑
r=0

vrtn−r∆
ℓ
kur

τ
, f1, . . . , fn−1

∥∥∥∥∥) < ∞,
for some τ > 0

}
,

Lp(M, v,∆ℓk, ∥·, . . . , ·∥)

=

{
(ur) ∈ w(n −U) :

∞∑
r=1

Mr

(∥∥∥∥∥vr∆
ℓ
kur

τ
, f1, . . . , fn−1

∥∥∥∥∥)p

< ∞,

for some τ > 0
}
,

Op(M, v,∆ℓk, ∥·, . . . , ·∥)

=

{
(ur) ∈ w(n −U) :

∞∑
i=1

Mi

(
1
Ti

i∑
r=0

∥∥∥∥∥vrtn−r∆
ℓ
kur

τ
, f1, . . . , fn−1

∥∥∥∥∥)p

< ∞,

for some τ > 0
}
,

and

O∞(M, v,∆ℓk, ∥·, . . . , ·∥)

=

{
(ur) ∈ w(n −U) : sup

i
Mi

(
1
Ti

i∑
r=0

∥∥∥∥∥vrtn−r∆
ℓ
kur

τ
, f1, . . . , fn−1

∥∥∥∥∥) < ∞,
for some τ > 0

}
.

Lemma 1.8. For 1 ≤ p < ∞, the Banach spaces
(i) Np is normed by

∥u∥ =
( ∞∑

i=1

∣∣∣∣∣ 1
Ti

i∑
r=0

tn−rur

∣∣∣∣∣p) 1
p

.

(ii) Op is normed by

∥u∥ =
( ∞∑

i=1

1
Ti

i∑
r=0

∣∣∣∣∣tn−rur

∣∣∣∣∣p) 1
p

.
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(iii) ℓp is normed by

∥u∥ =
( ∞∑

i=1

|ui|
p
) 1

p

.

(iv) N∞ is normed by

∥u∥ = sup
i

∣∣∣∣∣ 1
Ti

i∑
r=0

tn−rur

∣∣∣∣∣.
(v) O∞ is normed by

∥u∥ = sup
i

1
Ti

i∑
r=0

|tn−rur|.

Throughout this article, we use the following inequality. Let p = (pr) be a sequence of positive real number
with 0 < pr ≤ sup

r
pr = F and let G = max{1, 2F−1

}. Then for the sequences (cr) and (dr) in the complex plane,

we have

|cr + dr|
pr ≤ G(|cr|

pr + |dr|
pr ). (1)

Also, |cr|
pr ≤ max{1, |c|F} for all c ∈ C.

2. Main Results

This section studies Nörlund Orlicz sequence space over n-normed space. Further, we study their com-
pleteness and interesting inclusion relations between these spaces.

Theorem 2.1. LetM = (Mi) be a sequence of Orlicz functions and v = (vr) be a sequence of positive real numbers.
Then the class of sequence Z(M, v,∆ℓk, ∥·, . . . , ·∥), is linear for 1 ≤ p < ∞ , where Z = Np,N∞,Op,O∞ and Lp.

Proof. Let u = (ur), z = (zr) ∈ Op(M, v,∆ℓk, ∥·, . . . , ·∥) and γ, δ ∈ R. Then there exist a positive numbers τ1, τ2
such that

∞∑
i=1

Mi

(
1
Ti

i∑
r=0

∥∥∥∥∥vrtn−r∆
ℓ
kur

τ1
, f1, . . . , fn−1

∥∥∥∥∥)p

< ∞, for some τ1 > 0

and

∞∑
i=1

Mi

(
1
Ti

i∑
r=0

∥∥∥∥∥vrtn−r∆
ℓ
kzr

τ2
, f1, . . . , fn−1

∥∥∥∥∥)p

< ∞, for some τ2 > 0

Let τ3 = max(2|γ|τ1, 2|δ|τ2). Since M = (Mi) is non-decreasing and convex so by using inequality (1), we
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have

∞∑
i=1

Mi

(
1
Ti

i∑
r=0

∥∥∥∥∥γvrtn−r∆
ℓ
kur + δvrtn−r∆

ℓ
kzr

τ3
, f1, . . . , fn−1

∥∥∥∥∥)p

≤

∞∑
i=1

Mi

(
1
Ti
|γ|

i∑
r=0

∥∥∥∥∥vrtn−r∆
ℓ
kur

τ3
, f1, . . . , fn−1

∥∥∥∥∥∥
)p

+

∞∑
i=1

Mi

(
1
Ti
|δ|

i∑
r=0

∥∥∥∥∥vrtn−r∆
ℓ
kzr

τ3
, f1, . . . , fn−1

∥∥∥∥∥)p

≤K
∞∑

i=1

Mi

(
1
Ti

i∑
r=0

∥∥∥∥∥vrtn−r∆
ℓ
kur

τ3
, f1, . . . , fn−1

∥∥∥∥∥)p

+K
∞∑

i=1

Mi

(
1
Ti

i∑
r=0

∥∥∥∥∥vrtn−r∆
ℓ
kzr

τ3
, f1, . . . , fn−1

∥∥∥∥∥)p

<∞.

Thus, γu+δz ∈ Op(M, v,∆ℓk, ∥·, . . . , ·∥). HenceOp(M, v,∆ℓk, ∥·, . . . , ·∥) is a linear space. Using similar arguments,
we can show that the space Z(M, v,∆ℓk, ∥·, . . . , ·∥) is linear for Z = Np,N∞,O∞ and Lp.

Theorem 2.2. LetM = (Mi) be a sequence of Orlicz functions, v = (vr) be a sequence of positive numbers, and U be
an n Banach space. Then for 1 ≤ p < ∞
(i) The space Z(M, v,∆ℓk, ∥·, . . . , ·∥) is an n Banach space, n-normed by ∥u1,u2, . . . ,un

∥Z(M,v,∆ℓk) = 0 if u1,u2,u3, . . . ,un

are linearly dependent and
ℓ∑

r=1

∥ur, f1, . . . , fn−1∥+
( ∞∑

i=1

Mi
1
Ti

i∑
r=0

∥∥∥∥∥vrtn−r∆
ℓ
kur

τ
, f1, . . . , fn−1

∥∥∥∥∥p) 1
p

for every f1, . . . , fn−1 ∈

U if u1,u2, . . . ,un are linearly independent, where Z = Np,Op,N∞ and O∞.
(ii) The spaceLp(M, v,∆ℓk, ∥·, . . . , ·∥) is an n Banach space, n-normed by ∥u1,u2, . . . ,un

∥
Lp(M,v,∆ℓk) = 0 if u1,u2,u3, . . . ,un

are linearly dependent and =
ℓ∑

r=1

∥ur, f1, . . . , fn−1∥ +
( ∞∑

r=0

Mr

∥∥∥∥∥vr∆
ℓ
kur

τ
, f1, . . . , fn−1

∥∥∥∥∥p) 1
p

for every f1, . . . , fn−1 ∈ U if

u1,u2, . . . ,un are linearly independent.

Proof. It is easy to show that the spaces Z(M, v,∆ℓk, ∥·, . . . , ·∥),Lp(M, v,∆ℓk, ∥·, . . . , ·∥) are n-normed spaces un-
der the n-norm as defined above. Here, we only prove the completeness for the spaceO∞(M, v,∆ℓk, ∥·, . . . , ·∥)
and the others can be proved by similar arguments. We consider (uh)∞h=1 be a Cauchy sequence in
O∞(M, v,∆ℓk, ∥·, . . . , ·∥), where uh = (uh

i ) = (uh
1,u

h
2, . . .) ∈ O∞(M, v,∆ℓk, ∥·, . . . , ·∥) for each h ∈ N. Let ε > 0.

Then there exist a positive integer N such that

∥uh
− up, 12, . . . , 1n

∥
O∞(M,v,∆ℓn) < ε

for all h, p ≥ N and for every 12, . . . , 1n
∈ O∞(M, v,∆ℓk, ∥·, . . . , ·∥).

We have

ℓ∑
r=1

∥uh
r − up

r , f1, . . . , fn−1∥

+ sup
i
Mi

(
1
Ti

i∑
r=0

∥∥∥∥∥ vrtn−r∆
ℓ
k(uh

r − up
r )

τ
, f1, . . . , fn−1

∥∥∥∥∥) < ε
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for all h, p ≥ N and for every f1, . . . , fn−1 ∈ U. This shows

ℓ∑
r=1

∥uh
r − up

r , f1, . . . , fn−1∥ < ε

and

sup
i
Mi

(
1
Ti

i∑
r=0

∥∥∥∥∥vrtn−r∆
ℓ
k(uh

r − up
r )

τ
, f1, . . . , fn−1

∥∥∥∥∥) < ε
for all h, p ≥ N and for every f1, . . . , fn−1 ∈ U. Hence, ∥uh

r − up
r , f1, . . . , fn−1∥ < ε for all r = 1, 2, . . . , ℓ and for

every f1, . . . , fn−1 ∈ U. Therefore, (uh
r ) is a Cauchy sequence for all r = 1, 2, . . . , ℓ in U, an n-Banach space.

Hence, (uh
r ) converges in U for all r = 1, 2, . . . , ℓ. Let lim

h→∞
uh

r = ur for all r = 1, 2, . . . , ℓ.

Further, we have

sup
i
Mi

(
1
Ti

i∑
r=0

∥∥∥∥∥vrtn−r∆
ℓ
k(uh

r − up
r )

τ
, f1, . . . , fn−1

∥∥∥∥∥) < ε,
for all h, p ≥ N and for every f1, . . . , fn−1 ∈ U. This implies for every f1, f2, . . . , fn−1 ∈ U

Mi
1
Ti

i∑
r=0

∥∥∥∥∥vrtn−r∆
ℓ
k(uh

r − up
r )

τ
, f1, . . . , fn−1

∥∥∥∥∥ < ε
for all h, p ≥ N and i ∈ N. Thus, (∆ℓkuh

r ) is a Cauchy sequence in O∞(M,u,∆ℓk, ∥·, . . . , ·∥) which is complete.
Hence, (∆ℓkuh

r ) converges for each r ∈N. Let lim
h→∞
∆ℓkuh

r = zr, for each r ∈N.

For r = 1, we have

lim
h→∞
∆ℓkuh

1 = lim
h→∞

ℓ∑
m=0

(−1)m
(
ℓ
m

)
u1+km = z1, (2)

Also,

lim
h→∞

uh
r = ur, (3)

for r = 1 + km, for m = 1, 2, . . . , ℓ − 1.
Thus, from equation (2) and (3), we have lim

h→∞
uh

1+ℓ exists. Let lim
h→∞

uh
1+ℓ = u1+ℓ. Proceeding in this way

inductively lim
h→∞

uh
r = ur exists for each r ∈N.

Now for every f1, . . . , fn−1 ∈ U

lim
p

ℓ∑
r=0

∥uh
r − up

r , f1, . . . , fn−1∥ =

ℓ∑
r=1

∥uh
r − ur, f1, . . . , fn−1∥ < ε,

for all h ≥ N.
Again, using the continuity of n-norm, we find that for every f1, . . . , fn−1 ∈ U

Mi

(
1
Ti

i∑
r=0

∥∥∥∥∥vrtn−r∆
ℓ
kuh

r

τ
− lim

p→∞

vrtn−r∆
ℓ
kup

r

τ
, f1, . . . , fn−1

∥∥∥∥∥) < ε,
for all h ≥ N and i ∈N. Hence, for every f1, . . . , fn−1 ∈ U

sup
i
Mi

(
1
Ti

i∑
r=0

∥∥∥∥∥vrtn−r∆
ℓ
kuh

r − vrtn−r∆
ℓ
kur

τ
, f1, . . . , fn−1

∥∥∥∥∥) < ε
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for all h ≥ N.
Thus, for every 12, . . . , 1n

∈ O∞(M,u,∆ℓk, ∥·, . . . , ·∥)

∥uh
− u, 12, . . . , 1n

∥
O∞(M,v,∆ℓk) < 2ε

for all h ≥ N. Hence, (uh
− u) ∈ O∞(M, v,∆ℓk, ∥·, . . . , ·∥). Since O∞(M, v,∆ℓk, ∥·, . . . , ·∥) is a linear space, thus

for all h ≥ N,u = uh
− (uh

− u) ∈ O∞(M, v,∆ℓk, ∥·, . . . , ·∥). Hence O∞(M, v,∆ℓk, ∥·, . . . , ·∥) is complete and is an
n-Banach space.

Corollary 2.3. If the base space is a Banach space. Then the spaces Z(M, v,∆ℓk, ∥·, . . . , ·∥) is an n-BK space, where
Z = Np,Op,Lp,N∞ and O∞.

Theorem 2.4. Let M = (Mi) be a sequence of Orlicz functions, v = (vr) be a sequence of positive numbers. Then
Z(M,u,∆ℓ−1

k , ∥·, . . . , ·∥) ⊂ Z(M,u,∆ℓk, ∥·, . . . , ·∥), where Z = Np,Op,Lp,N∞ and O∞.

Proof. Let u = (ur) ∈ Np(M, v,∆ℓ−1
k , ∥·, . . . , ·∥), 1 ≤ p < ∞. Then for every non zero f1, . . . , fn−1 ∈ U,

∞∑
i=1

Mi

(∥∥∥∥∥ 1
Ti

i∑
r=0

vrtn−r∆
ℓ−1
k ur

τ
, f1, . . . , fn−1

∥∥∥∥∥)p

< ∞. (4)

Now, we have for every nonzero f1, . . . , fn−1 ∈ U

Mi

(∥∥∥∥∥ 1
Ti

i∑
r=0

vrtn−r∆
ℓ
kur

τ
, f1, . . . , fn−1

∥∥∥∥∥)
≤Mi

(∥∥∥∥∥ 1
Ti

i∑
r=0

vrtn−r∆
ℓ−1
k ur

τ
, f1, . . . , fn−1

∥∥∥∥∥)
+Mi

(∥∥∥∥∥ 1
Ti

i∑
r=0

vrtn−r∆
ℓ−1
k ur+1

τ
, f1, . . . , fn−1

∥∥∥∥∥)
It is known that for 1 ≤ p < ∞, |c + d|p ≤ 2p(|c|p + |d|p). Hence, for 1 ≤ p < ∞,

Mi

(∥∥∥∥∥ 1
Ti

i∑
r=0

vrtn−r∆
ℓ
kur

τ
, f1, . . . , fn−1

∥∥∥∥∥)p

≤2p
{
Mi

(∥∥∥∥∥ 1
Ti

i∑
r=0

vrtn−r∆
ℓ−1
k ur

τ
, f1, . . . , fn−1

∥∥∥∥∥)p

+Mi

(∥∥∥∥∥ 1
Ti

i∑
r=0

vrtn−r∆
ℓ−1
k ur+1

τ
, f1, . . . , fn−1

∥∥∥∥∥)p}
.

Then for each positive integer r, we get

r∑
i=1

Mi

(∥∥∥∥∥ 1
Ti

i∑
r=0

vrtn−r∆
ℓ
kur

τ
, f1, . . . , fn−1

∥∥∥∥∥)p

≤2p
{ r∑

i=1

Mi

(∥∥∥∥∥ 1
Ti

i∑
r=0

vrtn−r∆
ℓ−1
k ur

τ
, f1, . . . , fn−1

∥∥∥∥∥)p

+

r∑
i=1

Mi

(∥∥∥∥∥ 1
Ti

i∑
r=0

vrtn−r∆
ℓ−1
k ur+1

τ
, f1, . . . , fn−1

∥∥∥∥∥)p}
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Taking r→∞ and using equation (4), we have

∞∑
i=1

Mi

(∥∥∥∥∥ 1
Ti

i∑
r=0

vrtn−r∆
ℓ
kur

τ
, f1, . . . , fn−1

∥∥∥∥∥)p

< ∞.

Thus,Np(M, v,∆ℓ−1
k , ∥·, . . . , ·∥) ⊂ Np(M, v,∆ℓk, ∥·, . . . , ·∥) for 1 ≤ p < ∞. Using similar arguments we can prove

for the spaces Z = Op,Lp,N∞ andO∞. The inclusion is strict, and it follows from the following example.

Example 2.5. Considering U = R3, a real linear space. Define ∥·, ·∥ : U × U → R by ∥u′, v′∥ = max{|u′1v′2 −
u′2v′1|, |u

′

2v′3 − v′3u′2|, |u
′

3v′1 − u′1v′3|}, where u′ = (u′1,u
′

2,u
′

3), v′ = (v′1, v
′

2, v
′

3) ∈ R. Then (U, ∥·, ·∥) is a 2-normed linear
space. Let (vr) = 1, tn−r = 1, (Mi) = I, for all i ∈ N, ℓ = 2 and k = 1. Let u′ = (u′r) = (r + 1, r + 1, r + 1) for all
r ∈ N. Then ∆2(u′r) = (0, 0, 0) for all r ∈ N. Hence, (u′r) ∈ Np(M, v,∆2, ∥·, ·∥), Thus ∆(u′r) = (−1,−1,−1) for all
r ∈N. Hence, (u′r) < Np(M, v,∆, ∥·, ·∥). The inclusion is strict.

Theorem 2.6. LetM = (Mi) be a sequence of Orlicz function, v = (vr) be a sequence of positive numbers. Then
(i) Op(M, v,∆ℓk, ∥·, . . . , ·∥) ⊂ Np(M, v,∆ℓk, ∥·, . . . , ·∥) ⊂ N∞(M, v,∆ℓk, ∥·, . . . , ·∥) and the inclusions are strict.
(ii) Op(M, v,∆ℓk, ∥·, . . . , ·∥) ⊂ O∞(M, v,∆ℓk, ∥·, . . . , ·∥) ⊂ N∞(M, v,∆ℓk, ∥·, . . . , ·∥) and the inclusions are strict.

Proof. Clearly, the inclusions follow from the definition.

Remark 2.7. Lp(M, v,∆ℓk, ∥·, . . . , ·∥) ⊊ Op(M, v,∆ℓk, ∥·, . . . , ·∥).

Example 2.8. Let p = 1 and 2-norm ∥·, ·∥ on U = R3 in example 2.5. Let ℓ = 2, k = 1, (vr) = 1 and (Mi) = I.
Consider the sequence (u′r) = {(2, 2, 2), (0, 0, 0), (0, 0, 0), . . .}. Then ∆2u′r = (2, 2, 2) for r = 1 and ∆2u′r = (0, 0, 0) for
all r > 1. Then (u′r) ∈ L(M, v,∆2, ∥·, ·∥) but (u′r) < O(M, v,∆2, ∥·, ·∥).

Theorem 2.9. For 1 ≤ p < q, we have
(i) Oq(M, v,∆ℓk, ∥·, . . . , ·∥) ⊃ Nq(M, v,∆ℓk, ∥·, . . . , ·∥);
(ii) Lq(M, v,∆ℓk, ∥·, . . . , ·∥) ⊃ Lp(M, v,∆ℓk, ∥·, . . . , ·∥);
(iii) Oq(M, v,∆ℓk, ∥·, . . . , ·∥) ⊃ Op(M, v,∆ℓk, ∥·, . . . , ·∥).

Proof. Let u ∈ Op(M, v,∆ℓk, ∥·, . . . , ·∥). Then there exist τ > 0 such that

∞∑
i=1

Mi

(∥∥∥∥∥ 1
Ti

i∑
r=0

vrtn−r∆
ℓ
kur

τ
, f1, . . . , fn−1

∥∥∥∥∥)p

< ∞.

This implies

∞∑
i=1

Mi

(∥∥∥∥∥ 1
Ti

i∑
r=0

vrtn−r∆
ℓ
kur

τ
, f1, . . . , fn−1

∥∥∥∥∥)p

< 1.

Since (Mi) is non decreasing for sufficiently large values of i, thus we get

∞∑
i=1

Mi

(∥∥∥∥∥ 1
Ti

i∑
r=0

vrtn−r∆
ℓ
kur

τ
, f1, . . . , fn−1

∥∥∥∥∥)q

≤

∞∑
i=1

Mi

(∥∥∥∥∥ 1
Ti

i∑
r=0

vrtn−r∆
ℓ
kur

τ
, f1, . . . , fn−1

∥∥∥∥∥)p

< ∞.

Thus, u ∈ Oq(M, v,∆ℓk, ∥·, . . . , ·∥). Using similar arguments we can establish the inclusions (i) and (ii).
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3. Köthe-Toeplitz duals of Nörlund Orlicz sequence space

Köthe and Toeplitz [7] introduced the idea of dual sequence space. Then Maddox [9] generalized this
notion to U-valued sequence classes where U is an n Banach space. The α and β-duals of a (complex-
valued) sequence space E, denoted by Eα and Eβ respectively, and defined by

Eα =
{
(cr) ∈ w :

∞∑
r=1

|crur| < ∞ for all u = (ur) ∈ w
}
,

Eβ =
{
(cr) ∈ w :

∞∑
r=1

crur converges for all u = (ur) ∈ w
}
.

Definition 3.1. A real valued n-functional defined on B1 × · · · ×Bn, where B1, . . . ,Bn are linear manifolds of a linear
n-normed space. Let H be an n-functional defined on a domain B1 × · · · × Bn. Then H is called a linear n-functional
whenever for all 1b1,1 b2, . . . ,1 bn ∈ B1,2 b1,2 b2, . . . ,2 bn ∈ B2 and nb1,n b2, . . . ,n bn ∈ Bn we have
(i) H(1b1,1 b2, . . . ,1 bn,2 b1,2 b2, . . . ,2 bn, . . . ,n b1,n b2, . . . ,n bn) =

∑
1≤i1, i2, ..., in≤n H(1bii ,

1 bi2 , . . . ,
1 bin )

(ii) H(β1b1, . . . , βnbn) = β1, . . . , βn H(b1, b2, . . . , bn), for all β1, β2, . . . , βn ∈ R.

Remark 3.2. Let H be an n-functional with domain D(H). Then H is called bounded if there is a real constant
R ≥ 0 such that |H(b1, . . . , bn)| ≤ R∥b1, . . . , bn∥ for all (b1, . . . , bn) ∈ D(H). If H is bounded, we define the norm
∥H∥ = 1lb{R : H(b1, . . . , bn) ≤ R∥b1, . . . , bn∥ for all (b1, . . . , bn) ∈ D(H)}. If H is not bounded, we define ∥H∥ = +∞.

Proposition 3.3. A linear n-functional H is continuous if and only if it is bounded.

Proposition 3.4. Let A∗ be the set of bounded linear n-functionals with domain A1× . . .×An. Then A∗ is an n-Banach
space up to linear dependence.

For any n(> 1)-normed space E, the continuous dual of E denote by E∗.

Definition 3.5. Let E be an n-normed linear space, normed by ∥·, . . . , ·∥E, the Köthe-Toeplitz dual of the sequence
space Z(E) whose base space is E, defined as

[Z(E)]α = {(vr) : vr ∈ E∗, r ∈N and (∥ur, 12, . . . , 1n∥E∥vr, f2, . . . , fn∥E∗ ) ∈ ℓ1}

for every f2, . . . , fn ∈ E∗, 12, . . . , 1n ∈ E, (ur) ∈ Z(E). Clearly for ϕ ∈ Uα, if U ⊂ V, then Vα ⊂ Uα.

Remark 3.6. We consider the set

SNp(M, v,∆ℓk, ∥·, . . . , ·∥) = {u = (ur) : u ∈ Np(M, v,∆ℓk, ∥·, . . . , ·∥),u1 = . . . = uℓ = 0}.

Then for 1 ≤ p < ∞, SNp(M, v,∆ℓk, ∥·, . . . , ·∥) is a subspace of Np(M, v,∆ℓk, ∥·, . . . , ·∥). The other subspaces are also
determined in the same way.

Theorem 3.7. u ∈ SN∞(∆ℓ) implies sup
r

r−ℓ∥ur, f2, . . . , fn∥ < ∞.

Proof. Since, u ∈ SN∞(∆ℓ), thus

sup
i

∥∥∥∥∥ 1
Ti

i∑
r=0

∆ℓurtn−r

∥∥∥∥∥ < ∞.
Let,

sup
r

∥∥∥∥∥ 1
Ti

i∑
r=0

∆ℓurtn−r

∥∥∥∥∥ < ∞
=⇒ sup

r

∥∥∥∥∥∥ 1
Ti
∆ℓ−1urtn−r −

1
Ti
∆ℓ−1ur+1tn−(r+1)

∥∥∥∥∥∥ < ∞.
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Now,∥∥∥∥∥∥ 1
Ti
∆ℓ−1u1tn−1 −

1
Ti
∆ℓ−1ur+1tn−(r+1)

∥∥∥∥∥∥ =
∥∥∥∥∥∥ 1

Ti

r∑
p=1

(
∆ℓ−1uptn−p − ∆

ℓ−1up+1tn−(p+1)

)∥∥∥∥∥
≤

r∑
p=1

∥∥∥∥∥∥ 1
Ti
∆ℓ−1uptn−p −

1
Ti
∆ℓ−1up+1tn−(p+1)

∥∥∥∥∥∥
=O(r).

This implies

sup
r

r−1
∥∥∥∥∥∆ℓ−1ur, f2, . . . , fn

∥∥∥∥∥ < ∞,
Similarly,

sup
r

r−2
∥∥∥∥∥∆ℓ−2ur, f2, . . . , fn

∥∥∥∥∥ < ∞,
continuing this process, we have

sup
r

r−k
∥∥∥∥∥∆ℓ−iur, f2, . . . , fn

∥∥∥∥∥ < ∞,
for k = 1, 2, . . . , ℓ.
For k = ℓ, we get the desired result.

Lemma 3.8. u ∈ SN∞(M, v,∆ℓk, ∥·, . . . , ·∥) implies sup
r

r−ℓ∥ur, f2, . . . , fn∥ < ∞ for every f2, . . . , fn ∈ U.

Proof. Using Theorem(3.7), we easily prove Lemma (3.8).

Theorem 3.9. Let v = (vr) be a sequence of positive numbers,M = (Mi) be a sequence of Orlicz functions. Then the
Köthe-Toeplitz duals of the space SNp(M, v,∆ℓk, ∥·, . . . , ·∥) isU, that is, [SN∞(M, v,∆ℓk, ∥·, . . . , ·∥)]

α =U, where

U =

{
c = (cr) :

∞∑
r=1

rℓ∥cr, f2, . . . , fn∥U∗ < ∞, for every f2, . . . , fn ∈ U
}
.

Proof. If c ∈ U, then

∞∑
r=1

∥cr, f2, . . . , fn∥U∗∥ur, 12, . . . , 1n∥U

=

∞∑
r=1

rℓ∥cr, f2, . . . , fn∥U∗ (r−ℓ∥ur, 12, . . . , 1n∥U)

< ∞,

for each u ∈ SN∞(M, v,∆ℓk, ∥·, . . . , ·∥) by Lemma (3.8). Hence, u ∈ [SN∞(M, v,∆ℓk, ∥·, . . . , ·∥)]
α.

Again, let c ∈ [SN∞(M, v,∆ℓk, ∥·, . . . , ·∥)]
α. Then

∞∑
r=1

∥cr, f2, . . . , fn∥U∗∥ur, 12, . . . , 1n∥U < ∞,

for each u ∈ SN∞(M, v,∆ℓk, ∥·, . . . , ·∥).
Define the sequence u = (ur) by
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ur =

0, r ≤ ℓ,
rℓ, r > ℓ

and choose 12, . . . , 1n ∈ U such that

∥rℓ, 12, . . . , 1n∥U = rℓ∥1, 12, . . . , 1n∥U =

0, r ≤ ℓ
rℓ, r > ℓ.

Thus, we have f2, . . . , fn ∈ U∗

∞∑
r=1

rℓ∥cr, f2, . . . , fn∥U∗ =
∞∑

r=1

∥rℓ, 12, . . . , 1n∥U∥cr, f2, . . . , fn∥U∗

=

ℓ∑
r=1

∥rℓ, 12, . . . , 1n∥U∥cr, f2, . . . , fn∥U∗

+

∞∑
r=1

∥rℓ, 12, . . . , 1n∥U∥cr, f2, . . . , fn∥U∗

<∞.

This implies c ∈ U.

Theorem 3.10. Let v = (vr) be a sequence of positive real numbers, M = (Mi) be a sequence of Orlicz functions
Then [SN∞(M, v,∆ℓk, ∥·, . . . , ·∥)]

α = [O∞(M, v,∆ℓk, ∥·, . . . , ·∥)]
α.

Proof. Since SN∞(M, v,∆ℓk ∥·, . . . , ·∥) ⊂ O∞(M, v,∆ℓk, ∥·, . . . , ·∥), we have [O∞(M, v,∆ℓk ∥·, . . . , ·∥)]
α
⊂ [SN∞(M, v,

∆ℓk, ∥·, . . . , ·∥)]
α. Let c ∈ [SN∞(M, v,∆ℓk, ∥·, . . . , ·∥)]

α and u ∈ O∞(M, v,∆ℓk, ∥·, . . . , ·∥). Consider the sequence
u = (ur) defined by

ur =

ur, r ≤ ℓ,
u′r, r > ℓ,

where, u′ = (u′r) ∈ SN∞(M, v,∆ℓk, ∥·, . . . , ·∥). Then we write

∞∑
r=1

∥cr, f2, . . . , fn∥U∗∥ur, 12, . . . , 1n∥U =

ℓ∑
r=1

∥cr, f2, . . . , fn∥U∗∥ur, 12, . . . , 1n∥U

+

∞∑
r=1

∥cr, f2, . . . , fn∥U∗∥u′r, 12, . . . , 1n∥U

<∞.

This implies c ∈ [O∞(M, v,∆ℓk·, . . . , ·∥)]
α.

Corollary 3.11. Let v = (vr) be a sequence of positive real numbers, M = (Mi) be a sequence of Orlicz functions.
Then [SN∞M, v,∆ℓk, ∥·, . . . , ·∥)]

α = [N∞(M, v,∆ℓk, ∥·, . . . , ·∥)]
α.

4. Conclusion

In this article, we obtained many useful topological and algebraic properties of Nörlund Orlicz sequence
space and established their Köthe-Toeplitz duals. These results will be helpful to study Euler, Hölder,
Hausdorff, and other means in the setting of Orlicz sequence space. Additionally, these investigations
generalize the concept of summability theory in the setting of Orlicz sequence space.
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