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Abstract. In this paper, we investigate the regularity for the viscosity solution to the Dirichlet problem{
−∆N

∞
u = f (x) in Ω,

u = 0 on ∂Ω,

where Ω is a bounded convex domain and f (x) ∈ C(Ω). For 0 < finf = infΩ f ≤ f ≤ supΩ f = fsup < +∞, we
first prove the 1

2 -concavity of the viscosity solution by the convex envelope method of Alvarez-Lasry-Lions,
and then establish the C1-regularity based on the upper estimate of semiconcave functions at the singular
point. The similar result holds for −∞ < finf ≤ f ≤ fsup < 0.

1. Introduction

In this paper, we study the regularity of the unique viscosity solution to the Dirichlet problem−∆N
∞u = f (x) in Ω,

u = 0 on ∂Ω,
(1)

whereΩ ⊂ Rn is a bounded convex domain and f (x) ∈ C(Ω) satisfies 0 < finf = infΩ f ≤ f ≤ supΩ f = fsup <
+∞. The normalized infinity Laplacian is given by

∆N
∞u := |Du|−2

〈
D2uDu,Du

〉
,

which has received significant attention in recent years. The infinity Laplacian ∆N
∞u is singular and highly

degenerate, which also has wide applications in mass transportation [13], shape deformation [8] and
differential games [20, 25].
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Infinity Laplacian ∆∞u := ⟨D2uDu,Du⟩ was introduced by Aronsson [3–6] in studying the absolutely
minimizing Lipschitz extension. Jensen [16] proved the uniqueness of the viscosity solution to the Dirichlet
problem{

∆∞u = 0 in Ω,
u = 1(x) on ∂Ω,

where 1 ∈ C(∂Ω). For the planar infinity harmonic functions u, Savin [26] and Evans-Savin [14] established
the C1 and C1,α-regularity with some α > 0, respectively. Furthermore, Koch-Zhang-Zhou [18] established
the sharp Sobolev W1,2

loc -estimate for the gradient Du. For n ≥ 3, Evans-Smart [15] gained the everywhere
differentiability of the infinity harmonic functions.

For the inhomogeneous equation, Lu-Wang [24] obtained the existence and uniqueness of the viscosity
solution to the Dirichlet problem{

∆∞u = f (x) in Ω,
u = 1(x) on ∂Ω,

where f ∈ C(Ω) with infΩ f > 0 or supΩ f < 0 and 1 ∈ C(∂Ω). If f ∈ C(B1)
⋂

L∞(B1) and 1 ∈ ∂B1, Lindgren
[21] obtained the linear approximation property. Furthermore, if f ∈ C1(B1)

⋂
L∞(B1) and 1 ∈ ∂B1, he also

established the everywhere differentiability. If f ∈ BVloc(Ω)
⋂

C(Ω) with | f | > 0, Koch-Zhang-Zhou [19]
proved |Du|α ∈ W1,2

loc (Ω) with α > 3/2 and |Du|α ∈ W1,p
loc (Ω) with 0 < α ≤ 3/2 with 1 ≤ p < 3/(3 − α) in

two-dimension. If f ∈ C0,1(Ω), Lu-Miao-Zhou [22] proved the everywhere differentiability of the viscosity
solution. In fact, they obtained the regularity of viscosity solutions to the generalized inhomogeneous
Aronsson’s equation. If f (x) ≡ 1 and 1(x) ≡ 0, Crasta-Fragalà [11] obtained the C1-regularity in a bounded
convex domain satisfying the interior sphere condition.

With the probability methods, Peres-Schramm-Sheeld-Wilson [25] obtained the existence and unique-
ness of the viscosity solution to the following Dirichlet problem{

∆N
∞u = f (x) in Ω,

u = 1(x) on ∂Ω,

where f ∈ C(Ω) with infΩ f > 0 or supΩ f < 0 and 1 ∈ C(∂Ω). Lu-Wang [23] and Armstrong-Smart [2] gave
another proof by the PDE’s methods and the finite difference methods, respectively. If f (x,u) = uq with
0 ≤ q < 1 and 1(x) = 0, Juutinen [17] explored the power-concavity property of the positive solution in a
bounded convex domain. If q = 1, he also proved the log-concavity by a concavity maximum principle.
For f (x) ≡ 1, Crasta-Fragalà [12] established the C1-regularity for the unique viscosity solution based on
the convex envelope method in a bounded convex domain.

Our main results are stated as follows.

Theorem 1.1. Let Ω be a bounded convex domain of Rn. If f (x) ∈ C(Ω) satisfies 0 < finf ≤ f ≤ fsup < +∞, then
the unique viscosity solution u to Problem (1) is 1

2 -concave in Ω.

Theorem 1.2. Let Ω be a bounded convex domain of Rn. If f (x) ∈ C(Ω) satisfies 0 < finf ≤ f ≤ fsup < +∞, then
the unique viscosity solution u to Problem (1) is of class C1.

Theorem 1.1 demonstrates that the solution enjoys the power-concavity with exponent 1/2. Our proof
is based on the Alvarez-Lasry-Lions convex envelope technique in [1] and the comparison principle estab-
lished in [23, 25].

Theorem 1.2 shows the C1-regularity of the viscosity solution. The key is to combine the solution’s local
semiconcavity with an upper estimate for semiconcave functions at singular points.

By similar arguments, we can obtain the following symmetric result.

Remark 1.3. Let Ω be a bounded convex domain of Rn. If the inhomogeneous term f (x) ∈ C(Ω) satisfies −∞ <
finf ≤ f ≤ fsup < 0, then the unique viscosity solution to Problem (1) is of class C1.
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The paper is organized as follows. In Section 2, we review the definition of the normalized infinity
Laplacian, the concept of viscosity solutions and some related properties. In Section 3, we prove the
power-concavity of the solution. In Section 4, we establish the C1-regularity of the solution based on the
power-concavity result.

2. Definitions of viscosity solutions

In this section, we give the definition of the viscosity solutions to the normalized infinity Laplacian
equation involving lower terms

−∆N
∞u(x) = 1(x,u(x),Du(x)) in Ω, (2)

where 1 : Ω ×R ×Rn
→ R is a continuous function.

For a symmetric matrix A ∈ Rn×n
sym, λmin(A) and λmax(A) denote respectively the minimum and the

maximum eigenvalue of A, where the setRn×n
sym represents the set of all n× n real symmetric matrices. In the

following, if u, v : Ω→ R are two functions and x ∈ Ω, by u ≺x v, we mean that u(x) = v(x) and u(y) ≤ v(y)
for every y ∈ Ω.

Due to the singularity and high degeneracy of the operator, we adopt the definition in Lu and Wang
[23] based on the continuous extension.

Definition 2.1. For a C2-function φ defined in a neighborhood of x ∈ Rn, we define the operators

∆+∞φ(x) :=

|Dφ(x)|−2
⟨D2φ(x)Dφ(x),Dφ(x)⟩ if Dφ(x) , 0,

λmax(D2φ(x)) if Dφ(x) = 0,

∆−∞φ(x) :=

|Dφ(x)|−2
⟨D2φ(x)Dφ(x),Dφ(x)⟩ if Dφ(x) , 0,

λmin(D2φ(x)) if Dφ(x) = 0.

Definition 2.2. Suppose that u ∈ C(Ω) is twice differentiable at x0 ∈ Ω. We define the normalized infinity Laplacian
of u at x0 to be the closed interval

∆N
∞u(x0) = [∆−∞u(x0),∆+∞u(x0)],

and if ∆N
∞u(x0) contains only one real number, we do not distinguish ∆N

∞u(x0) from its single element.

Definition 2.3. Let Ω be a bounded set and 1 : Ω ×R ×Rn
→ R be a continuous function.

An upper semicontinuous function u is called a viscosity sub-solution of (2) in Ω if

−∆+∞φ(x0) ≤ 1(x0,u(x0),Du(x0)),

whenever u ≺x0 φ for any x0 ∈ Ω and C2-test function φ.
Similarly, a lower semicontinuous function u is called a viscosity super-solution of (2) in Ω, if

−∆−∞φ(x0) ≥ 1(x0,u(x0),Du(x0)),

whenever φ ≺x0 u for any x0 ∈ Ω and C2-test function φ.
A continuous function u is called a viscosity solution of (2) if u is both a viscosity sub-solution and super-solution

of Equation (2) in Ω.

Now we recall the concepts of superjets and subjets.

Definition 2.4. Let u ∈ C(Ω). The second-order super-jet of u at x0 ∈ Ω is defined to be the set

J2,+
Ω

u(x0) =
{(

Dφ(x0),D2φ(x0)
)

: φ is C2 and u ≺x0 φ
}
,
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whose closure is defined to be

J
2,+
Ω u(x0) =

{
(p,X) ∈ Rn

×Rn×n
sym : ∃(xn, pn,Xn) ∈ Ω ×Rn

×Rn×n
sym such that (pn,Xn) ∈ J2,+

Ω
u(xn)

and (xn,u(xn), pn,Xn)→ (x0,u(x0), p,X)
}
.

The second-order sub-jet of u at x0 ∈ Ω is defined to be the set

J2,−
Ω

u(x0) =
{(

Dφ(x0),D2φ(x0)
)

: φ is C2 and φ ≺x0 u
}
,

whose closure is defined to be

J
2,−
Ω u(x0) =

{
(p,X) ∈ Rn

×Rn×n
sym : ∃(xn, pn,Xn) ∈ Ω ×Rn

×Rn×n
sym such that (pn,Xn) ∈ J2,−

Ω
u(xn)

and (xn,u(xn), pn,Xn)→ (x0,u(x0), p,X)
}
.

In terms of superjets and subjets, we can also give the equivalent definition of viscosity solutions. See
for example [10].

Definition 2.5. Let Ω ⊂ Rn be a bounded set and 1 : Ω ×R ×Rn
→ R be a continuous function.

For any x0 ∈ Ω, an upper semicontinuous function u is called a viscosity sub-solution of (2) in Ω, if for any

(p,X) ∈ J
2,+
Ω u(x0), there holds{
−|p|−2 〈

Xp, p
〉
≤ 1(x0,u(x0), p) if p , 0,

−λmax(X) ≤ 1(x0,u(x0), 0) if p = 0.

Similarly, a lower semicontinuous function u is called a viscosity super-solution of (2) in Ω, if for any (p,X) ∈

J
2,−
Ω u(x0), there holds{

−|p|−2 〈
Xp, p

〉
≥ 1(x0,u(x0), p) if p , 0,

−λmin(X) ≥ 1(x0,u(x0), 0) if p = 0.

A continuous function u is called a viscosity solution of (2) if u is both a viscosity sub-solution and super-solution
of Equation (2) in Ω.

Remark 2.6. The viscosity solution u to Problem (1) is strictly positive in Ω. Indeed, u is non-negative by the
comparison principle proved in [23, 25]. Assume by contradiction that u(x0) = 0 at some point x0 ∈ Ω. Then
the function φ ≡ 0 touches u from below at x0, and hence u cannot be a viscosity super-solution to the equation
−∆N
∞u = f (x) > 0.

3. Power concavity

In this section, we prove the 1
2 -concavity of the viscosity solution u to Problem (1) by transforming

it to U = −u1/2 which allows us to resolve critical-point singularities with restricted viscosity solutions.
The preservation of convex envelopes is ensured under the interior sphere condition via the comparison
principle. One can extend the 1

2 -concavity to any convex domain through outer parallel approximation
technique.

The map u 7→ U := −u1/2 establishes a bijective correspondence between positive viscosity sub-solutions
and super-solutions of Equation (1) in Ω and a constrained class of negative viscosity super-solutions and
sub-solutions of the associated equation

−∆N
∞U =

|DU|2

U
+

f
2U

in Ω. (3)

By Remark 2.6, the viscosity solution u is strictly positive in Ω, which ensures that U = −u1/2 is well-
defined and negative.
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Lemma 3.1. Let Ω be a bounded domain and f (x) ∈ C(Ω) satisfy finf > 0. For a strictly positive function
u : Ω→ (0,+∞), there hold:

(i) An upper semicontinuous u is a viscosity sub-solution of (1) if and only if U := −u1/2 is a viscosity super-
solution to (3) in Ω.

(ii) A lower semicontinuous u is a viscosity super-solution of (1) if and only if U is a viscosity sub-solution to (3)
in Ω.

Proof. We only prove (i) since the proof of (ii) is similar. For any x ∈ Ω and φ ∈ C2(Ω) , let u ≺x φ. Since
u > 0, we have φ(x) = u(x) > 0. By direct calculations, we obtain

u ≺x φ ⇐⇒ ψ := −φ1/2
≺x U.

Then

Dψ(x) = −
Dφ(x)

2φ(x)1/2

and

D2ψ(x) =
1

4φ(x)3/2
Dφ(x) ⊗Dφ(x) −

1
2φ(x)1/2

D2φ(x).

For the case Dψ(x) , 0, the result is obvious. For the case Dψ(x) = 0, we have Dφ(x) = 0 and
D2ψ(x) = − 1

2|ψ(x)|D
2φ(x). Particularly, −λmax(D2φ(x)) ≤ f (x) implies −λmin(D2ψ(x)) ≥ − f (x)

2U(x) . Thus, U is a
viscosity super-solution to (3) in Ω.

To establish the 1
2 -power concavity of the viscosity solution of Problem (1), we need the following

condition:

(ΩISC): Ω is a convex domain and satisfies the interior sphere condition.

First, we show that the convex envelope U∗∗ of a restricted super-solution U to Equation (3) is still a restricted
super-solution in Ω based on the convex envelope technique introduced by Alvarez, Lasry and Lions [1].
Next, by the comparison principle established in [23, Theorem 3.3], we deduce that ifΩ satisfies (ΩISC), then
U is convex, or equivalently, u1/2 is concave. Finally, through the approximation of Ω using outer parallel
sets, we have that u1/2 is concave in any bounded convex domain. Condition (ΩISC) plays an essential role
in the proof of Lemma 3.2 below, which allows us to avoid imposing state constraint boundary conditions
on ∂Ω.

Next we prove that, if Ω satisfies (ΩISC) and U is a viscosity solution to−∆N
∞U − 1

U

(
|DU|2 + f

2

)
= 0 in Ω,

U = 0 on ∂Ω,
(4)

then U is convex. We denote by U∗∗ the largest convex function below U. First, we establish that, under
Condition (ΩISC), for every x ∈ Ω, within the characterization

U∗∗(x) = inf

 k∑
i=1

λiU(xi) : x =
k∑

i=1

λixi, xi ∈ Ω, λi > 0,
k∑

i=1

λi = 1, k ≤ n + 1

 ,
the infimum is attained only at interior points xi ∈ Ω.

Lemma 3.2. Assume that Ω satisfies Condition (ΩISC) and f (x) ∈ C(Ω) satisfies finf > 0. Let u be the solution of
Problem (1). Set U := −u1/2. For a fixed x ∈ Ω, let x1, . . . , xk ∈ Ω, λ1, . . . , λk > 0 with

∑k
i=1 λi = 1 be such that

x =
k∑

i=1

λixi, U∗∗(x) =
k∑

i=1

λiU(xi).

Then x1, . . . , xk ∈ Ω.
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Proof. For the sake of contradiction, assume that at least one of the points xi, say x1, lies on ∂Ω. Let BR(y) ⊂ Ω
be a ball such that ∂BR(y) ∩ ∂Ω = {x1}. Since finf > 0, u satisfies −∆∞u ≥ 0 in Ω. By [9], the function

min
x∈∂Br(y)

u(x) − u(y)
r

is non-increasing with respect to r. Thus, for any 0 < r < R, there holds

min
x∈∂Br(y)

u(x) − u(y)
|x − y|

≥ min
x∈∂BR(y)

u(x) − u(y)
|x − y|

= −
u(y)

R
. (5)

That is,

u(x) ≥ u(y)
(
1 −
|x − y|

R

)
, ∀x ∈ BR(y).

Hence,

U(x) ≤ U(y)
(
1 −
|x − y|

R

)1/2

, ∀x ∈ BR(y). (6)

Define α := x−x1
|x−x1 |

(the unit vector in the direction of x in Ω) and β := y−x1

|y−x1 |
(the inner normal of ∂Ω at

x1). Since Ω is convex, for any t ∈ [0, 1], we have x1 + tα ∈ Ω and ⟨β, α⟩ > 0. By the definition of convex
envelope, we have U ≥ U∗∗. Since U∗∗(x1) = U(x1) = 0, there exists µ > 0 such that

U(x1 + tα) ≥ U∗∗(x1 + tα) = −µt for t ∈ [0, 1].

By (6), we obtain

−µt ≤ U(y)
(
1 −
|Rβ − tα|

R

)1/2

, t ∈ [0, 1].

Since

|Rβ − tα| = R
(
1 −

t
R
⟨β, α⟩ − o(t)

)
,

there holds

−µt ≤ U(y)
(

t⟨β, α⟩
R
+ o(t)

)1/2

, t→ 0+.

Direct calculations yield

µ
√

t ≥ |U(y)|
(
⟨β, α⟩ + o(1)

R

)1/2

, t→ 0+,

which leads to a contradiction. We have finished the proof.

Lemma 3.3. Assume that Ω satisfies Condition (ΩISC) and f (x) ∈ C(Ω) satisfies finf > 0. If U is a restricted
viscosity super-solution to (4) in Ω, then U∗∗ is also a restricted viscosity super-solution to the same problem in Ω.

Proof. By [1, Lemma 4], we have U∗∗ = 0 on ∂Ω. To show that U∗∗ is still a restricted viscosity super-solution
to (4), we only need to verify that U∗∗ is a viscosity super-solution of (3) in Ω. In terms of sub-jets, this
property can be reformulated as,

∀x ∈ Ω, ∀(p,A) ∈ J2,−
Ω

U∗∗(x) =⇒

−
〈
A p
|p| ,

p
|p|

〉
≥
|p|2

U∗∗
+

f
2U∗∗

if p , 0

−λmin(A) ≥ f
2U∗∗

if p = 0.
(7)
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Let x ∈ Ω and (p,A) ∈ J2,−
Ω

U∗∗(x), with p , 0 and A positive semidefinite. For every ϵ > 0 small enough,
we select points x1, . . . , xk ∈ Ω, positive numbers λ1, . . . , λk with

∑k
i=1 λi = 1, and elements (p,Ai) ∈ J2,−

Ω
U(xi),

with Ai positive semidefinite. Then, we have

k∑
i=1

λixi = x,
k∑

i=1

λiU(xi) = U∗∗(x), A − ϵA2
≤

 k∑
i=1

λiA−1
i


−1

=: B.

Recall that, we may without loss of generality assume the matrices A,A1, · · · ,Ak are positive definite,
since the case of degenerate matrices can be addressed as in [1, pp. 273]. Since U is a super-solution to (4)
in Ω, we have

−U(xi) ≤
1

⟨Aip, p⟩

(
|p|4 +

f
2
|p|2

)
.

Hence, one has

−
1∑k

i=1 λiU(xi)

(
|p|4 +

f
2
|p|2

)
≥

 k∑
i=1

λi
1

⟨Aip, p⟩


−1

.

Then, exploiting the degenerate ellipticity of the operator and concavity of the mapping Q 7→ 1/tr((p⊗p)Q−1)
(see [1]), we have

−⟨(A − ϵA2)p, p⟩ −
1

U∗∗(x)

(
|p|4 +

f (x)
2
|p|2

)
≥ −⟨Bp, p⟩ −

1∑k
i=1 λiU(xi)

(
|p|4 +

f (x)
2
|p|2

)
≥ 0.

On the other hand, if (0,A) ∈ J2,−
Ω

U∗∗(x), it is necessary to demonstrate that

λmin(A) ≤ −
f (x)

2U∗∗(x)
.

In terms of test functions, this means

ψ ≺x U∗∗, Dψ(x) = 0 =⇒ λmin(D2ψ(x)) ≤ −
f (x)

2U∗∗(x)
.

Since U∗∗ is convex, the conditions ψ ≺x U∗∗ and Dψ(x) = 0 imply that x is a minimum point of U∗∗. In
particular, U(x1) = · · · = U(xk) = U∗∗(x).

If k = 1, we have U∗∗(x) = U(x) and B = A1. Thus, λmin(A − ϵA2) ≤ λmin(B) = λmin(A1) ≤ − f (x)/(2U(x)).
If k > 1, we have that x is not a strict minimum point. Since x is the relative interior of the convex

polyhedron with vertices x1, · · · , xk, choosing q := (x1 − x)/|x1 − x|, we have that U∗∗(x + tq) is constant for |t|
small enough. Thus, ψ(x + tq) ≤ U∗∗(x) = ψ(x) for |t| small enough. Hence,

λmin(D2ψ(x)) ≤ ⟨D2ψ(x)q, q⟩ ≤ 0 < −
f (x)

2U∗∗(x)
.

Proof of Theorem 1.1. First, we prove that the unique solution u to (1) is 1/2-concave if Ω satisfies Condition
(ΩISC).

Let U = −u1/2. By Lemma 3.1, U is a restricted super-solution to (6) in Ω. Then, U∗∗ is a restricted
super-solution to (6) in Ω by Lemma 3.3. By Lemma 3.1, the function v := (U∗∗)2 is a viscosity sub-solution
to (1) in Ω.
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On ∂Ω, we have u = 0 and U = 0, which imply U∗∗ = 0. Thus, v = (U∗∗)2 = 0 = u on ∂Ω. Since
−∆N
∞v ≤ f = −∆N

∞u in Ω, by the comparison principle in [23, Theorem 3.3], we deduce v ≤ u in Ω, i.e.
(U∗∗)2

≤ U2 inΩ. Since U∗∗ ≤ U (by the definition of convex envelope) and U ≤ 0 inΩ, we have (U∗∗)2
≥ U2.

Then U = U∗∗ is a convex function in Ω. That is, u is 1/2-concave in Ω.
Next, we show that the power-concavity of u remains true if Ω is any bounded convex domain.
For any ε ∈ (0, 1], let Ωε denote the outer parallel body of Ω defined by

Ωε := {x ∈ Rn : dist(x,Ω) < ε} ,

and uε denote the viscosity solution to−∆N
∞uε = fε in Ω′,

uε = 0 on ∂Ω′,

whereΩ ⊂ Ωε ⊆ Ω′ and { fε} is a sequence of continuous functions satisfying 0 < ( fε)inf ≤ fε ≤ ( fε)sup < +∞,
which converges uniformly to f in Ω′. By Theorem 5.3 in [23], as ε→ 0+, uε → u uniformly in Ω′.

SinceΩε satisfies an interior sphere condition of the radius ε, the function u1/2
ε is concave inΩε. To show

that u1/2 is concave in Ω, we only need to prove that as ε→ 0+, uε → u uniformly on ∂Ω.
For any y ∈ ∂Ω, take xε ∈ ∂Ωε satisfying |xε − y| = ε and consider the polar quadratic polynomial

η(x) :=
1
2

diam(Ωε)|x − xε| −
( fε)sup

2
|x − xε|2.

Since uε ≤ η on ∂Ωε, by the comparison property with the polar quadratic polynomial [23, Theorem
2.2], we have uε ≤ η in Ωε. In particular,

uε(y) ≤
ε
2

(diam(Ω) + 1) −
( fε)sup

2
ε2.

Thus, uε|∂Ω converges uniformly to 0.

4. C1-regularity

In this section, we establish the C1-regularity of the viscosity solution to Problem (1) based on an upper
estimate of semiconcave functions at singular points.

We first recall the definition of semiconcave function. The function u : Ω→ R is referred to as semiconcave
(with constant C) in Ω if

u(λx + (1 − λ)y) ≥ λu(x) + (1 − λ)u(y) − C
λ(1 − λ)

2
|x − y|2,

for all line segments [x, y] ⊂ Ω and every λ ∈ [0, 1]. Additionally, u is said to be locally semiconcave in Ω if it
is semiconcave on any compact subset of Ω.

Next, we quote an estimate for locally semiconcave functions in the neighborhood of singular points,
which will be used to establish the C1-regularity.

For a function u ∈ C(Ω), let Σ(u) denote the singular set of u, i.e., the set of points where u is not
differentiable. At each x0 ∈ Σ(u), the super-differential of u at x0 is defined by:

D+u(x0) :=
{

p ∈ Rn : lim sup
x→x0

u(x) − u(x0) − ⟨p, x − x0⟩

|x − x0|
≤ 0

}
,

which is a non-empty compact convex set distinct from a singleton. In particular, D+u(x0) \ extr D+u(x0)
is non-empty and contains non-zero elements, where extr D+u(x0) denotes the set of extreme points of the
convex set D+u(x0).
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Lemma 4.1. [11, Theorem 2] Let u : Ω → R be a locally semiconcave function. Fix x0 ∈ Σ(u) and let p ∈
D+u(x0) \ extrD+u(x0). Assume that there exists R > 0 such that BR(x0) ⊂ Ω, and C is the semiconcavity constant
of u on BR(x0). Then there exist a constant K > 0 and a unit vector ζ ∈ Rn satisfying the following

u(x) ≤ u(x0) + ⟨p, x − x0⟩ − K|⟨ζ, x − x0⟩| +
C
2
|x − x0|

2, ∀x ∈ BR(x0). (8)

In particular, for any c > 0, setting δ := min{K/c,R}, we have

u(x) ≤ u(x0) + ⟨p, x − x0⟩ − c⟨ζ, x − x0⟩
2 +

C
2
|x − x0|

2, ∀x ∈ Bδ(x0). (9)

Moreover, if p , 0, the vector ζ can be chosen such that ⟨ζ, p⟩ , 0.

Now we are ready to give the C1-regularity.

Theorem 4.2. LetΩ be a bounded convex domain ofRn and f (x, t, p) ∈ C(Ω×R×Rn) satisfy 0 < finf ≤ f ≤ fsup <
+∞. Suppose that u ∈ C(Ω) is a viscosity solution to −∆N

∞u = f (x,u,Du) in Ω. If u enjoys local semiconcavity in
Ω, then u is everywhere differentiable in Ω (thereby belonging to the C1-class).

Proof. Let u ∈ C(Ω) be a locally semiconcave viscosity solution to −∆N
∞u = f (x,u,Du) in Ω. For the sake

of contradiction, suppose that the singular set Σ(u) is non-empty. Let x0 ∈ Σ(u). Take p ∈ D+u(x0) \
extrD+u(Σ(u)) with p , 0. By Theorem 4.1, there exists a unit vector ζ ∈ Rn satisfying ⟨ζ, p⟩ , 0, such that
for any c > 0, there holds

u(x) ≤ u(x0) + ⟨p, x − x0⟩ − c⟨ζ, x − x0⟩
2 +

C
2
|x − x0|

2, ∀x ∈ Bδ(x0),

where δ depending on c and C is the local semiconcavity constant of u in Bδ(x0). Define

φ(x) := u(x0) + ⟨p, x − x0⟩ − c⟨ζ, x − x0⟩
2 +

C
2
|x − x0|

2, x ∈ Bδ(x0).

Obviously, u ≺x0 φ. Since Dφ(x0) = p , 0 and u is a viscosity subsolution to −∆N
∞u = f (x,u,Du) in Ω, we

derive

−∆+∞φ(x0) ≤ f (x0,u(x0),Dφ(x0)) = f (x0,u(x0), p).

By direct computations, we have

∆+∞φ(x0) =
1
|p|2
⟨D2φ(x0)p, p⟩ = −2c

⟨ζ, p⟩2

|p|2
+ C.

Clearly, choosing c > 1
2
|p|2

⟨ζ,p⟩2 ( fsup + C) large enough, we get −∆+∞φ(x0) > f (x0,u(x0), p), which contradicts the
definition of the viscosity subsolution. That is, u has no singular points and is everywhere differentiable in
Ω. By [7, Proposition 3.3.4], we have u ∈ C1(Ω).

Now we are ready to give the proof of Theorem 1.2.
Proof of Theorem 1.2. By Theorem 4.2, to prove u ∈ C1(Ω), it is sufficient to prove that u is locally semiconcave
in Ω.

Let K be an arbitrary compact convex domain of Ω and M denote the Lipschitz constant of v := u1/2 on
K. For any x, y ∈ K and λ ∈ [0, 1], by Theorem 1.1, there holds

u(λx + (1 − λ)y) − λu(x) − (1 − λ)u(y) +M2λ(1 − λ)|x − y|2

≥

∣∣∣λv(x) + (1 − λ)v(y)
∣∣∣2 − λv(x)2

− (1 − λ)v(y)2 +M2λ(1 − λ)|x − y|2

= λ(1 − λ)
[
M2
|x − y|2 −

∣∣∣v(x) − v(y)
∣∣∣2] ≥ 0.

Thus, u is semiconcave in K with the semiconcavity constant of C = 2M2.
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Remark 4.3. LetΩ satisfy Condition (ΩISC). If u is the viscosity solution to Problem (1), then u is locally semiconcave
in Ω by the proof of Theorem 1.2. Indeed, recall that the function U := −v = −u1/2 satisfies (6). Let y ∈ Ω and
x1 ∈ ∂Ω ∩ BR(y). Choosing x = x1 + λν with U(x1) = 0 and 0 < λ < R, we have

lim
λ→0+

U(x1 + λν) −U(x1)
λ

≤ lim
λ→0+

U(y)
λ

(
λ
R

)1/2

= −∞.

That is, the normal derivative of U with respect to the external normal tends to +∞ on ∂Ω. Hence, M → +∞ as
K→ Ω.
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[8] G. Cong, M. Esser, B. Parvin, G. Bebis, Shape metamorphism using p-Laplace equation, Proceedings of the 17th International

Conference on Pattern Recognition 4 (2004), 15–18.
[9] M. G. Crandall, L. C. Evans, R. F. Gariepy, Optimal Lipschitz extensions and the infinity Laplacian, Calc. Var. Partial Differential

Equations 13 (2001), no. 2, 123–139.
[10] M. G. Crandall, H. Ishii, P. L. Lions, User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math.

Soc. (N. S.) 27 (1992), 1–67.
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[12] G. Crasta, I. Fragalà, A C1 regularity result for the inhomogeneous normalized infinity Laplacian, Proc. Amer. Math. Soc. 144 (2016), no.

6, 2547–2558.
[13] L. C. Evans, W. Gangbo, Differential equations methods for the Monge-Kantorovich mass transfer problem, Mem. Amer. Math. Soc. 137

(1999), no. 653, viii+66.
[14] L. C. Evans, O. Savin, C1,α regularity for infinity harmonic functions in two dimensions, Calc. Var. Partial Differential Equations 32

(2008), no. 3, 325–347.
[15] L. C. Evans, C. K. Smart, Everywhere differentiability of infinity harmonic functions, Calc. Var. Partial Differential Equations 42 (2011),

no. 1-2, 289–299.
[16] R. Jensen, Uniqueness of Lipschitz extensions: Minimizing the sup norm of the gradient, Arch. Ration. Mech. Anal. 123 (1993), no. 1,

51–74.
[17] P. Juutinen, Concavity maximum principle for viscosity solutions of singular equations, NoDEA Nonlinear Differential Equations Appl.

17 (2010), no. 5, 601–618.
[18] H. Koch, Y. Zhang, Y. Zhou, An asymptotic sharp Sobolev regularity for planar infinity harmonic functions, J. Math. Pures Appl. 132

(2019), no.9, 457–482.
[19] H. Koch, Y. Zhang, Y. Zhou, Some sharp Sobolev regularity for inhomogeneous infinity Laplace equation in plane, J. Math. Pures Appl.

132 (2019), no.9, 483–521.
[20] R. V. Kohn, S. Serfaty, A deterministic-control-based approach to motion by curvature, Comm. Pure Appl. Math. 59 (2006), no. 3,

344–407.
[21] E. Lindgren, On the regularity of solutions of the inhomogeneous infinity Laplace equation, Proc. Amer. Math. Soc. 142 (2014), no. 1,

277–288.
[22] G. Lu, Q. Miao, Y. Zhou, Viscosity solutions to inhomogeneous Aronsson’s equations involving Hamiltonians ⟨A(x)p, p⟩, Calc. Var. Partial

Differential Equations 58 (2019), no. 1, 1–37.
[23] G. Lu, P. Wang, A PDE perspective of the normalized infinity Laplacian, Comm. Partial Differential Equations 33 (2008), no. 10–12,

1788-1817.
[24] G. Lu, P. Wang, Inhomogeneous infinity Laplace equation, Advances in Math. 217 (2008), no. 4, 1838–1868.
[25] Y. Peres, O. Schramm, S. Sheffield, D. B. Wilson, Tug-of-war and the infinity Laplacian, J. Amer. Math. Soc. 22 (2009), no. 1, 167–210.
[26] O. Savin, C1 regularity for infinity harmonic functions in two dimensions, Arch. Ration. Mech. Anal. 176 (2005), no. 3, 351–361.


	Introduction
	Definitions of viscosity solutions
	Power concavity
	C1-regularity

