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Abstract. In this work, we introduced and explored the concept of multiplicatively hyperbolic type convex
functions, examining several of their fundamental algebraic properties. We established Hermite–Hadamard
(HH) inequalities for this newly defined class of functions and further derived novel HH type inequali-
ties for both the product and quotient of multiplicatively hyperbolic type convex functions. Furthermore,
we obtained new multiplicative integral-based inequalities involving the product and quotient of multi-
plicatively hyperbolic type convex functions and classical convex functions. In addition, by utilizing the
Hölder–İşcan integral inequality, we developed several new HH type integral inequalities specifically for
multiplicatively hyperbolic type convex functions. Finally, we conducted a comparative analysis with
existing results, demonstrating that our findings offer notable improvements over previously known in-
equalities. The results of this study have the potential to inspire further research in various scientific
disciplines.

1. Introduction and preliminaries

The function Θ : I ⊂ R → R is said to be convex if the following inequality holds for all κ, y ∈ I and
ω ∈ [0, 1] :

Θ(ωκ + (1 − ω)y) ≤ ωΘ(κ) + (1 − ω)Θ(y).

The function Θ is said to be concave if −Θ is convex.
Convexity theory has been instrumental in the development of inequality theory. Numerous promi-

nent findings in the realm of inequalities can be obtained by utilizing the convex properties of functions
(see [6, 14, 17, 20, 27, 34, 35]). A widely researched outcome related to convex functions is the Her-
mite–Hadamard inequality ([11]). This inequality establishes a key relationship between convexity and
inequalities, providing significant understanding into the behavior of convex functions.

The HH inequality states that if a function Θ : I → R is convex in I for ν1, ν2 ∈ I with ν1 < ν2 and
Θ ∈ L[ν1, ν2], then the inequality

Θ
(
ν1 + ν2

2

)
≤

1
ν2 − ν1

∫ ν2

ν1

Θ(κ)dκ ≤
Θ(ν1) + Θ(ν2)

2
, (1)

holds.
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Many scholars have shown a keen interest in inequality (1), prompting the introduction of numerous
generalizations, extensions, and enhancements in academic works. Those looking for more in-depth
information can consult [9, 31] and the references included therein. Furthermore, various refinements of
the HH inequality for convex functions have been documented in [7, 18, 21, 23, 26, 28, 29, 32].

Now, we will give some basic definitions and results.
In [36], Toplu et al. introduced the class of hyperbolic type convex functions and derived HH inequalities

for this class of functions as follows:

Definition 1.1. The function Θ : I ⊂ R→ R is said to be hyperbolic type convex, if

Θ(ωκ + (1 − ω)y) ≤
sinhω
sinh 1

Θ(κ) +
sinh 1 − sinhω

sinh 1
Θ(y),

for all κ, y ∈ I and ω ∈ [0, 1].

In [1], Ali et al. gave the definition of multiplicatively convex function and HH inequality for this class
of functions:

Definition 1.2. A function Θ : I→ (0,∞) is said to be multiplicatively or log convex, if

Θ(ωκ + (1 − t)ω) ≤ [Θ(κ)]ω[Θ(y)]1−ω,

for all ν1, ν2 ∈ I and ω ∈ [0, 1].

Theorem 1.3. Let Θ be a positive and multiplicatively convex function on interval [ν1, ν2]. Then

Θ
(
ν1 + ν2

2

)
≤

(∫ ν2

ν1

(Θ(κ))dκ
) 1
ν2−ν1

≤ G (Θ(ν1),Θ(ν2)) ,

where G(.,.) is the geometric mean.

In [12], İşcan established the Hölder-İşcan integral inequality which is a refinement of the Hölder’s
integral inequality as follows:

Theorem 1.4. Let p > 1 and 1/p + 1/q = 1. If f and 1 are real functions defined on interval [ν1, ν2] and |Θ|p , |Υ|q

are integrable functions on [ν1, ν2] then∫ ν2

ν1

|Θ (κ)Υ (κ)| dκ ≤
1

ν2 − ν1


(∫ ν2

ν1

(ν2 − κ) |Θ (κ)|p dκ
)1/p (∫ ν2

ν1

(ν2 − κ) |Υ (κ)|q dκ
)1/q

+

(∫ ν2

ν1

(κ − ν1) |Θ (κ)|p dκ
)1/p (∫ ν2

ν1

(κ − ν1) |Υ (κ)|q dκ
)1/q

 .
In [13], Kadakal et al. gave a refinement of power-mean integral inequality which is called improved

power-mean integral inequality as follows:

Theorem 1.5. Let q ≥ 1. If f and 1 are real functions defined on interval [ν1, ν2] and if |Θ| , |Θ| |Υ|q are integrable
functions on [ν1, ν2] then∫ ν2

ν1

|Θ (κ)Υ (κ)| dκ ≤
1

ν2 − ν1


(∫ ν2

ν1

(ν2 − κ) |Θ (κ)| dκ
)1−1/q (∫ ν2

ν1

(ν2 − κ) |Θ (κ)| |Υ (κ)|q dκ
)1/q

+

(∫ ν2

ν1

(κ − ν1) |Θ (κ)| dκ
)1−1/q (∫ ν2

ν1

(κ − ν1) |Θ (κ)| |Υ (κ)|q dκ
)1/q

 .
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2. Multiplicative calculus

In the 17th century, Isaac Newton and Gottfried Wilhelm Leibniz independently developed the founda-
tions of differential and integral calculus. These revolutionary contributions have since become cornerstones
in the fields of analysis and calculus. The core processes of differentiation and integration allow for the
manipulation of quantities at an infinitesimally small scale.

In a notable shift from traditional methods, a new form of calculus was introduced between 1967 and
1970 by Grossman and Katz. This innovative system redefined the conventional concepts of addition
and subtraction, replacing them with division and multiplication as the primary operations. Known as
”multiplicative calculus,” this framework is specifically designed for positive functions. Due to its limited
applicability, multiplicative calculus has not achieved the same widespread recognition as the calculus
developed by Leibniz and Newton. However, it has produced fascinating results in various areas.

The groundwork for multiplicative calculus was first established by [10] in the 1970s, as they revisited
and adapted the classical calculus formulated by Newton and Leibniz. Although its application is restricted
to positive functions, multiplicative calculus has demonstrated significant potential, as seen in its diverse
uses.

For example, in [3], Bashirov et al. presented a key theorem that serves as the foundation of multiplicative
calculus. Additionally, Bashirov and Riza pioneered the idea of complex multiplicative calculus in [4]. The
study of stochastic multiplicative calculus was explored in [8], where various properties were investigated.
For a detailed examination of the applications and scope of this field, readers can consult [2, 5, 15, 16, 22,
24, 25, 30, 33, 37] and the associated references.

2.1. Multiplicative derivatives and integrals
Recall multiplicative derivative which can be found in [3].

Definition 2.1. Assume that Θ : R→ R+ is a positive function. The multiplicative derivative of the function Θ is
stated as

d∗Θ
dω

(ω) = Θ∗ (ω) = lim
k→0

(
Θ (ω + k)
Θ (ω)

) 1
k

.

Recall that the concept of multiplicative integral or * integral is denoted by
∫ ν2

ν1
(Θ(κ))dκ while the

ordinary integral is denoted by
∫ ν2

ν1
(Θ(κ))dκ. This is because the sum of the terms of product is used in the

definition of a classical Riemann integral of Θ on [ν1, ν2], the product of terms raised to certain powers is
used in the definition of * integral of Θ on [ν1, ν2]. The following properties of *differentiable exists:

Theorem 2.2. Let Θ and Υ be *differentiable functions. If α is arbitrary constant, then functions αΘ, ΘΥ, Θ + Υ,
Θ/Υ and ΘΥ are *differentiable and

1. (αΘ)∗ (ω) = αΘ∗ (ω) ,
2. (ΘΥ)∗ (ω) = Θ∗ (ω)Υ∗ (ω) ,

3. (Θ + Υ)∗ (ω) = Θ∗ (ω)
Θ(ω)

Θ(ω)+Υ(ω) Υ∗ (ω)
Υ(ω)

Θ(ω)+Υ(ω) ,

4.
(
Θ
Υ

)∗
(ω) = Θ

∗(ω)
Υ∗(ω) ,

5.
(
ΘΥ

)∗
(ω) = Θ∗ (ω)Υ(ω)Θ (ω)Υ

′(ω).

There is the following relation between Riemann integral and * integral ([3]):

Proposition 2.3. If Θ is positive and Riemann integrable on [ν1, ν2], then Θ is * integrable on [ν1, ν2] and∫ ν2

ν1

(Θ(κ))dκ = e
∫ ν2
ν1

(Θ(κ))dκ
.
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In [3], Bashirov et al. show that * integral has the following results and notations:

Proposition 2.4. IfΘ is positive and Riemann integrable on [ν1, ν2], thenΘ is multiplicatively integrable on [ν1, ν2]
and

1.
∫ ν2

ν1
((Θ(κ))p)dκ =

∫ ν2

ν1

(
(Θ(κ))dκ

)p
,

2.
∫ ν2

ν1
(Θ(κ)Υ(κ))dκ =

∫ ν2

ν1
(Θ(κ))dκ

·

∫ ν2

ν1
(Υ(κ))dκ,

3.
∫ ν2

ν1

(
Θ(κ)
Υ(κ)

)dκ
=

∫ ν2
ν1

(Θ(κ))dκ∫ ν2
ν1

(Υ(κ))dκ
,

4.
∫ ν2

ν1
(Θ(κ))dκ =

∫ µ
ν1

(Θ(κ))dκ
·

∫ ν2

µ
(Θ(κ))dκ, ν1 ≤ µ ≤ ν2,

5.
∫ ν1

ν1
(Θ(κ))dκ = 1 and

∫ ν2

ν1
(Θ(κ))dκ =

(∫ ν1

ν2
(Θ(κ))dκ

)−1
.

3. Multiplicatively hyperbolic type convexity and some algebraic properties

In this section we give a new definition, which is called multiplicatively hyperbolic type convex function
and study some of its basic algebraic properties.

Definition 3.1. A positive function Θ : I→ R is called multiplicatively hyperbolic type convex if for every κ, y ∈ I
and ω ∈ [0, 1]

Θ
(
ωκ + (1 − ω) y

)
≤ (Θ (κ))

sinhω
sinh 1

(
Θ

(
y
)) sinh 1−sinhω

sinh 1 .

We will denote by MHC(I) the class of all multiplicatively hyperbolic type convex functions on I.

Theorem 3.2. Let Θ,Υ :
[
κ, y

]
→ R be two multiplicatively hyperbolic type convex functions, then Θ.Υ is

multiplicatively hyperbolic type convex function.

Proof. Let Θ and Υ be multiplicatively hyperbolic type convex functions. Then

(Θ.Υ)
(
ωκ + (1 − ω) y

)
= Θ

(
ωκ + (1 − ω) y

)
.Υ

(
ωκ + (1 − ω) y

)
≤ (Θ (κ))

sinhω
sinh 1

(
Θ

(
y
)) sinh 1−sinhω

sinh 1 . (Υ (κ))
sinhω
sinh 1

(
Υ

(
y
)) sinh 1−sinhω

sinh 1

= (Θ (κ)Υ (κ))
sinhω
sinh 1

(
Θ

(
y
)
Υ

(
y
)) sinh 1−sinhω

sinh 1

= ((Θ.Υ) (κ))
sinhω
sinh 1 .

(
(Θ.Υ)

(
y
)) sinh 1−sinhω

sinh 1 .

Theorem 3.3. Let Θ : I → J is convex and Υ : J → R is a multiplicatively hyperbolic type convex function and
increasing, then Υ ◦Θ : I→ R is a multiplicatively hyperbolic type convex function.

Proof. For κ, y ∈ I and ω ∈ [0, 1], one gets

(Υ ◦Θ)
(
ωκ + (1 − ω) y

)
= Υ

(
Θ

(
ωκ + (1 − ω) y

))
≤ Υ

(
ωΘ (κ) + (1 − ω)Θ

(
y
))

≤ [Υ (Θ (κ))]
sinhω
sinh 1 .

[
Υ

(
Θ

(
y
))] sinh 1−sinhω

sinh 1

= [(Υ ◦Θ) (κ)]
sinhω
sinh 1 .

[
(Υ ◦Θ)

(
y
)] sinh 1−sinhω

sinh 1 .

Theorem 3.4. LetΘi :
[
κ, y

]
→ R be an arbitrary family of multiplicatively hyperbolic type convex functions and let

Θ (κ) = supiΘi (κ) . If J =
{
r ∈

[
κ, y

]
: Θ (r) < ∞

}
, ∅, then J is an interval and Θ is a multiplicatively hyperbolic

type convex function on J.
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Proof. For all κ, y ∈ J and ω ∈ [0, 1], one has

Θ
(
ωκ + (1 − ω) y

)
= sup

i
Θi

(
ωκ + (1 − ω) y

)
≤ sup

i

[
(Θi (κ))

sinhω
sinh 1 .

(
Θi

(
y
)) sinh 1−sinhω

sinh 1

]
≤ sup

i
(Θi (κ))

sinhω
sinh 1 . sup

i

(
Θi

(
y
)) sinh 1−sinhω

sinh 1

= (Θ (κ))
sinhω
sinh 1 .

(
Θ

(
y
)) sinh 1−sinhω

sinh 1 < ∞.

Thus, Θ is a multiplicatively hyperbolic type convex function on J. This completes the proof.

4. Hermite-Hadamard inequalities for multiplicatively hyperbolic type convex functions

In this section we derive integral inequalities of HH type for multiplicatively hyperbolic type convex
functions and convex functions in the framework of multiplicative calculus.

Theorem 4.1. Let Θ : [ν1, ν2] → R be a multiplicatively hyperbolic type convex function on [ν1, ν2] . If Θ ∈
L [ν1, ν2] , then

Θ
(
ν1 + ν2

2

)
≤

(∫ ν2

ν1

(Θ (κ))dκ
) 1
ν2−ν1

≤ (Θ (ν1))
cosh 1−1

sinh 1 (Θ (ν2))
e−1

e sinh 1 .

Proof. Note that

lnΘ
(
ν1 + ν2

2

)
= ln

(
Θ

(
ων1 + (1 − ω) ν2 + ων2 + (1 − ω) ν1

2

))
= ln

(
Θ

(
ων1 + (1 − ω) ν2

2
+
ων2 + (1 − ω) ν1

2

))

≤ ln


(
Θ

(
ων1 + (1 − ω) ν2

2

)) sinh 1
2

sinh 1

.

(
Θ

(
ων2 + (1 − ω) ν1

2

)) sinh 1−sinh 1
2

sinh 1


=

sinh 1
2

sinh 1
lnΘ

(
ων1 + (1 − ω) ν2

2

)
+

sinh 1 − sinh 1
2

sinh 1
lnΘ

(
ων2 + (1 − ω) ν1

2

)
.

Integrating the above inequality with respect to ω on [0, 1] , one has

lnΘ
(
ν1 + ν2

2

)
≤

sinh 1
2

sinh 1

∫ 1

0
lnΘ

(
ων1 + (1 − ω) ν2

2

)
dω +

sinh 1 − sinh 1
2

sinh 1

∫ 1

0
ln

(
ων2 + (1 − ω) ν1

2

)
dω

=
sinh 1

2

sinh 1
1

ν2 − ν1

∫ ν2

ν1

lnΘ (κ) dκ +
sinh 1 − sinh 1

2

sinh 1
1

ν2 − ν1

∫ ν2

ν1

lnΘ (κ) dκ

=
1

ν2 − ν1

∫ ν2

ν1

lnΘ (κ) dκ.

Thus,

Θ
(
ν1 + ν2

2

)
≤ e

(
1

ν2−ν1

∫ ν2
ν1

lnΘ(κ)dκ
)

=

(∫ ν2

ν1

(Θ (κ))dκ
) 1
ν2−ν1

.
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Hence,

Θ
(
ν1 + ν2

2

)
≤

(∫ ν2

ν1

(Θ (κ))dκ
) 1
ν2−ν1

. (2)

Consider the second inequality:(∫ ν2

ν1

(Θ (κ))dκ
) 1
ν2−ν1

=

(
e
(∫ ν2
ν1

lnΘ(κ)dκ
)) 1
ν2−ν1

= e
1

ν2−ν1

(∫ ν2
ν1

lnΘ(κ)dκ
)

= e
(∫ 1

0 lnΘ(ων1+(1−ω)ν2)dω
)

≤ e
∫ 1

0 ln
[
(Θ(ν1))

sinhω
sinh 1 .(Θ(ν2))

sinh 1−sinhω
sinh 1

]
dω

= e
∫ 1

0

[
lnΘ(ν1)

sinh 1 sinhω+
lnΘ(ν2)

sinh 1 (sinh 1−sinhω)
]
dω

= e
ln

[
(Θ(ν1))

cosh 1−1
sinh 1 (Θ(ν2))

e−1
e sinh 1

]
,

where∫ 1

0
sinhωdω = cosh 1 − 1,

∫ 1

0
(sinh 1 − sinhω) dω =

e − 1
e
.

Hence,(∫ ν2

ν1

(Θ (κ))dκ
) 1
ν2−ν1

≤ (Θ (ν1))
cosh 1−1

sinh 1 (Θ (ν2))
e−1

e sinh 1 . (3)

Combining the inequalities (2) and (3), we have

Θ
(
ν1 + ν2

2

)
≤

(∫ ν2

ν1

(Θ (κ))dκ
) 1
ν2−ν1

≤ (Θ (ν1))
cosh 1−1

sinh 1 (Θ (ν2))
e−1

e sinh 1 .

Corollary 4.2. Let the functions Θ and Υ be multiplicatively hyperbolic type convex on [ν1, ν2] . Then

Θ
(
ν1 + ν2

2

)
Υ

(
ν1 + ν2

2

)
≤

(∫ ν2

ν1

(Θ (κ))dκ
∫ ν2

ν1

(Υ (κ))dκ
) 1
ν2−ν1

≤ [Θ (ν1)Υ (ν1)]
cosh 1−1

sinh 1 [Θ (ν2)Υ (ν2)]
e−1

e sinh 1 .

Corollary 4.3. Let the functions Θ and Υ be multiplicatively hyperbolic type convex on [ν1, ν2] . Then

Θ
(
ν1+ν2

2

)
Υ

(
ν1+ν2

2

) ≤ 
∫ ν2

ν1
(Θ (κ))dκ∫ ν2

ν1
(Υ (κ))dκ


1

ν2−ν1

≤

(
Θ (ν1)
Υ (ν1)

) cosh 1−1
sinh 1

(
Θ (ν2)
Υ (ν2)

) e−1
e sinh 1

.

Theorem 4.4. Let the functions Θ and Υ be convex and multiplicatively hyperbolic type convex, respectively. Then


∫ ν2

ν1
(Θ (κ))dκ∫ ν2

ν1
(Υ (κ))dκ


1

ν2−ν1

≤

(
(Θ(ν2))Θ(ν2)

(Θ(ν1))Θ(ν1)

) 1
Θ(ν2)−Θ(ν1)

e. (Υ (ν1))
cosh 1−1

sinh 1 (Υ (ν2))
e−1

e sinh 1

.
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Proof. Note that
∫ ν2

ν1
(Θ (κ))dκ∫ ν2

ν1
(Υ (κ))dκ


1

ν2−ν1

=

 e
(∫ ν2
ν1

lnΘ(κ)dκ
)

e
(∫ ν2
ν1

lnΥ(κ)dκ
)


1
ν2−ν1

=

(
e
(∫ ν2
ν1

lnΘ(κ)dκ−
∫ ν2
ν1

lnΥ(κ)dκ
)) 1
ν2−ν1

= e
(∫ 1

0 lnΘ(ν2+ω(ν1−ν2))dω−
∫ 1

0 lnΥ(ν2+ω(ν1−ν2))dω
)

≤ e

∫ 1
0 ln(Θ(ν2)+ω(Θ(ν1)−Θ(ν2)))dω−

∫ 1
0 ln

(Υ(ν1))
sinhω
sinh 1

.(Υ(ν2))
sinh 1−sinhω

sinh 1
dω



= e

ln
(

(Θ(ν2))Θ(ν2)

(Θ(ν1))Θ(ν1)

) 1
Θ(ν2)−Θ(ν1)

−1−ln
(
(Υ(ν1))

cosh 1−1
sinh 1 (Υ(ν2))

e−1
e sinh 1

)

=

(
(Θ(ν2))Θ(ν2)

(Θ(ν1))Θ(ν1)

) 1
Θ(ν2)−Θ(ν1)

e. (Υ (ν1))
cosh 1−1

sinh 1 (Υ (ν2))
e−1

e sinh 1

.

Theorem 4.5. Let the functions Θ and Υ be multiplicatively hyperbolic type convex and convex, respectively. Then
∫ ν2

ν1
(Θ (κ))dκ∫ ν2

ν1
(Υ (κ))dκ


1

ν2−ν1

≤
e. (Θ (ν1))

cosh 1−1
sinh 1 (Θ (ν2))

e−1
e sinh 1(

(Υ(ν2))Υ(ν2)

(Υ(ν1))Υ(ν1)

) 1
Υ(ν2)−Υ(ν1)

.

Proof. Note that,
∫ ν2

ν1
(Θ (κ))dκ∫ ν2

ν1
(Υ (κ))dκ


1

ν2−ν1

=

 e
(∫ ν2
ν1

lnΘ(κ)dκ
)

e
(∫ ν2
ν1

lnΥ(κ)dκ
)


1
ν2−ν1

=

(
e
(∫ ν2
ν1

lnΘ(κ)dκ−
∫ ν2
ν1

lnΥ(κ)dκ
)) 1
ν2−ν1

= e
(∫ 1

0 lnΘ(ν2+ω(ν1−ν2))dω−
∫ 1

0 lnΥ(ν2+ω(ν1−ν2))dω
)

≤ e

∫ 1
0 ln

(Θ(ν1))
sinhω
sinh 1

.(Θ(ν2))
sinh 1−sinhω

sinh 1
dω−

∫ 1
0 ln(Υ(ν2)+ω(Υ(ν1)−Υ(ν2)))dω



= e

ln
(
(Θ(ν1))

cosh 1−1
sinh 1 (Θ(ν2))

e−1
e sinh 1

)
−ln

(
(Υ(ν2))Υ(ν2)

(Υ(ν1))Υ(ν1)

) 1
Υ(ν2)−Υ(ν1)

+1


=

e. (Θ (ν1))
cosh 1−1

sinh 1 (Θ (ν2))
e−1

e sinh 1(
(Υ(ν2))Υ(ν2)

(Υ(ν1))Υ(ν1)

) 1
Υ(ν2)−Υ(ν1)

.

Theorem 4.6. Let the functions Θ and Υ be convex and multiplicatively hyperbolic type convex, respectively. Then

(∫ ν2

ν1

(Θ (κ))dκ
∫ ν2

ν1

(Υ (κ))dκ
) 1
ν2−ν1

≤

(
(Θ(ν2))Θ(ν2)

(Θ(ν1))Θ(ν1)

) 1
Θ(ν2)−Θ(ν1)

(Υ (ν1))
cosh 1−1

sinh 1 (Υ (ν2))
e−1

e sinh 1

e
.
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Proof. Note that(∫ ν2

ν1

(Θ (κ))dκ
∫ ν2

ν1

(Υ (κ))dκ
) 1
ν2−ν1

=
(
e
∫ ν2
ν1

lnΘ(κ)dκ
.e

∫ ν2
ν1

lnΥ(κ)dκ
) 1
ν2−ν1

=
(
e
∫ ν2
ν1

lnΘ(κ)dκ+
∫ ν2
ν1

lnΥ(κ)dκ
) 1
ν2−ν1

= e
(∫ 1

0 lnΘ(ν2+ω(ν1−ν2))dω+
∫ 1

0 lnΥ(ν2+ω(ν1−ν2))dω
)

≤ e

∫ 1
0 ln(Θ(ν2)+ω(Θ(ν1)−Θ(ν2)))dω−

∫ 1
0 ln

(Υ(ν1))
sinhω
sinh 1

.(Υ(ν2))
sinh 1−sinhω

sinh 1
dω



= e

ln
(

(Θ(ν2))Θ(ν2)

(Θ(ν1))Θ(ν1)

) 1
Θ(ν2)−Θ(ν1)

−1+ln
(
(Υ(ν1))

cosh 1−1
sinh 1 (Υ(ν2))

e−1
e sinh 1

)

=

(
(Θ(ν2))Θ(ν2)

(Θ(ν1))Θ(ν1)

) 1
Θ(ν2)−Θ(ν1)

(Υ (ν1))
cosh 1−1

sinh 1 (Υ (ν2))
e−1

e sinh 1

e
.

5. Some new inequalities for multiplicatively hyperbolic type convexity

Lemma 5.1. Let Θ : I◦ ⊆ R→ R+ be a multiplicative differentiable mapping on I◦, ν1, ν2 ∈ I◦ with ν1 < ν2. If Θ∗ is
multiplicative integrable on [ν1, ν2] , then one has√

Θ (ν1)Θ (ν2)(∫ ν2

ν1
(Θ (κ))dκ

) 1
ν2−ν1

=

[∫ 1

0

(
[Θ∗ (ων1 + (1 − ω) ν2)]1−2ω

)dw
] ν2−ν1

2

.

Theorem 5.2. Let Θ : I◦ ⊆ R→ R+ be a multiplicative differentiable mapping on I◦, ν1, ν2 ∈ I◦ with ν1 < ν2. If Θ
is increasing on [ν1, ν2] and Θ∗ is multiplicatively hyperbolic type convex on [ν1, ν2] , then one has∣∣∣∣∣∣∣∣∣

√
Θ (ν1)Θ (ν2)(∫ ν2

ν1
(Θ (κ))dκ

) 1
ν2−ν1

∣∣∣∣∣∣∣∣∣ ≤
[
(Θ∗ (ν1))(cosh 1−2 sinh 1+4 sinh 1

2−1) (Θ∗ (ν2))
5
2 sinh 1−cosh 1−4 sinh 1

2+1
] ν2−ν1

2 sinh 1

.

Proof. Using Lemma 5.1, one gets∣∣∣∣∣∣∣∣∣
√
Θ (ν1)Θ (ν2)(∫ ν2

ν1
(Θ (κ))dκ

) 1
ν2−ν1

∣∣∣∣∣∣∣∣∣ ≤
[∣∣∣∣∣∣
∫ 1

0

(
[Θ∗ (ων1 + (1 − ω) ν2)]1−2ω

)dw
∣∣∣∣∣∣
] ν2−ν1

2

≤ e
ν2−ν1

2

∫ 1
0 |ln(Θ∗(ων1+(1−ω)ν2))1−2ω

|dw

= e
ν2−ν1

2

∫ 1
0 |1−2ω||lnΘ∗(ων1+(1−ω)ν2)|dw. (4)

Since the function Θ∗ is multiplicatively hyperbolic type convex, one gets∫ 1

0
|1 − 2ω| lnΘ∗ (ων1 + (1 − ω) ν2) dω

≤

∫ 1

0
|1 − 2ω| ln

(
(Θ∗ (ν1))

sinhω
sinh 1
. (Θ∗ (ν2))

sinh 1−sinhω
sinh 1

)
dω

=

∫ 1

0
|1 − 2ω|

sinhω
sinh 1

lnΘ∗ (ν1) dω +
∫ 1

0
|1 − 2ω|

sinh 1 − sinhω
sinh 1

lnΘ∗ (ν2) dω
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=
lnΘ∗ (ν1)

sinh 1

∫ 1

0
|1 − 2ω| sinhωdω +

lnΘ∗ (ν2)
sinh 1

∫ 1

0
|1 − 2ω| (sinh 1 − sinhω) dω

=
lnΘ∗ (ν1)

sinh 1

(
cosh 1 − 2 sinh 1 + 4 sinh

1
2
− 1

)
+

lnΘ∗ (ν2)
sinh 1

(5
2

sinh 1 − cosh 1 − 4 sinh
1
2
+ 1

)
, (5)

where∫ 1

0
|1 − 2ω| sinhωdω = cosh 1 − 2 sinh 1 + 4 sinh

1
2
− 1,

∫ 1

0
|1 − 2ω| (sinh 1 − sinhω) dω =

5
2

sinh 1 − cosh 1 − 4 sinh
1
2
+ 1.

If one substitutes the inequality (5) in (4), one obtains∣∣∣∣∣∣∣∣∣
√
Θ (ν1)Θ (ν2)(∫ ν2

ν1
(Θ (κ))dκ

) 1
ν2−ν1

∣∣∣∣∣∣∣∣∣ ≤ e
ν2−ν1

2

∫ 1
0 |ln(Θ∗(ων1+(1−ω)ν2))1−2ω

|dw

≤ e
ν2−ν1

2 .
(
(cosh 1−2 sinh 1+4 sinh 1

2−1) lnΘ∗(ν1)
sinh 1 +( 5

2 sinh 1−cosh 1−4 sinh 1
2+1) lnΘ∗(ν2)

sinh 1

)

=
[
(Θ∗ (ν1))(cosh 1−2 sinh 1+4 sinh 1

2−1) (Θ∗ (ν2))
5
2 sinh 1−cosh 1−4 sinh 1

2+1
] ν2−ν1

2 sinh 1

.

Theorem 5.3. Let Θ : I◦ ⊂ R→ R+ be a multiplicative differentiable mapping on I◦, ν1, ν2 ∈ I◦ with ν1 < ν2. If Θ
is increasing on [ν1, ν2] and (lnΘ∗)q is hyperbolic type convex on [ν1, ν2] , then one has∣∣∣∣∣∣∣∣∣

√
Θ (ν1)Θ (ν2)(∫ ν2

ν1
(Θ (κ))dκ

) 1
ν2−ν1

∣∣∣∣∣∣∣∣∣ ≤
[
(Θ∗ (ν1))(cosh 1−1)

1
q

(Θ∗ (ν2))(sinh 1−cosh 1+1)
1
q

] ν2−ν1
2

(
1

p+1

) 1
p ( 1

sinh 1 )
1
q

, (6)

where 1
p +

1
q = 1.

Proof. Using Lemma 5.1 and the Hölder’s inequality it follows that∣∣∣∣∣∣∣∣∣
√
Θ (ν1)Θ (ν2)(∫ ν2

ν1
(Θ (κ))dκ

) 1
ν2−ν1

∣∣∣∣∣∣∣∣∣ ≤
[∣∣∣∣∣∣
∫ 1

0

(
[Θ∗ (ων1 + (1 − ω) ν2)]1−2ω

)dw
∣∣∣∣∣∣
] ν2−ν1

2

≤ e
ν2−ν1

2

∫ 1
0 |1−2ω||lnΘ∗(ων1+(1−ω)ν2)|dw

≤ e
ν2−ν1

2

(∫ 1
0 |1−2ω|pdω

) 1
p
(∫ 1

0
(ln(Θ∗(ων1+(1−ω)ν2)))qdw

) 1
q
.

(7)

Using the hyperbolic type convexity of (lnΘ∗)q , one obtains∫ 1

0
(ln (Θ∗ (ων1 + (1 − ω) ν2)))q dw ≤

∫ 1

0

[sinhω
sinh 1

(lnΘ∗ (ν1))q +
sinh 1 − sinhω

sinh 1
(lnΘ∗ (ν2))q

]
dw

=
(cosh 1 − 1) (lnΘ∗ (ν1))q + (sinh 1 − cosh 1 + 1) (lnΘ∗ (ν2))q

sinh 1
, (8)

where∫ 1

0
|1 − 2ω|p dω =

1
p + 1

,
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0
sinhωdω = cosh 1 − 1,∫ 1

0
(sinh 1 − sinhω) dω = sinh 1 − cosh 1 + 1.

By combining (7) and (8), one gets∣∣∣∣∣∣∣∣∣
√
Θ (ν1)Θ (ν2)(∫ ν2

ν1
(Θ (κ))dκ

) 1
ν2−ν1

∣∣∣∣∣∣∣∣∣ ≤ e
ν2−ν1

2

(
1

p+1

) 1
p [( cosh 1−1

sinh 1 )(lnΘ∗(ν1))q+( sinh 1−cosh 1+1
sinh 1 )(lnΘ∗(ν2))q]

1
q

≤ e
ν2−ν1

2

(
1

p+1

) 1
p ( 1

sinh 1 )
1
q
[
(cosh 1−1)

1
q ln(Θ∗(ν1))+(sinh 1−cosh 1+1)

1
q ln(Θ∗(ν2))

]

=

[
(Θ∗ (ν1))(cosh 1−1)

1
q

(Θ∗ (ν2))(sinh 1−cosh 1+1)
1
q

] ν2−ν1
2

(
1

p+1

) 1
p ( 1

sinh 1 )
1
q

.

Theorem 5.4. Let Θ : I◦ ⊂ R→ R+ be a multiplicative differentiable mapping on I◦, ν1, ν2 ∈ I◦ with ν1 < ν2. If Θ
is increasing on [ν1, ν2] and (lnΘ∗)q , q ≥ 1 is hyperbolic type convex on [ν1, ν2] , then∣∣∣∣∣∣∣∣∣

√
Θ (ν1)Θ (ν2)(∫ ν2

ν1
(Θ (κ))dκ

) 1
ν2−ν1

∣∣∣∣∣∣∣∣∣ ≤
(Θ∗ (ν1))

(
−e2+4e

√
e−2e−4

√
e+3

2e

) 1
q

(Θ∗ (ν2))
(

3e2
−8e
√

e+4e+8
√

e−7
4e

) 1
q

ν2−ν1

2 ( 1
2 )1− 1

q

. (9)

Proof. Assume first that q > 1.Using Lemma 5.1, power mean inequality and the hyperbolic type convexity
of (lnΘ∗)q , one has∣∣∣∣∣∣∣∣∣

√
Θ (ν1)Θ (ν2)(∫ ν2

ν1
(Θ (κ))dκ

) 1
ν2−ν1

∣∣∣∣∣∣∣∣∣ ≤
[∣∣∣∣∣∣
∫ 1

0

(
[Θ∗ (ων1 + (1 − ω) ν2)]1−2ω

)dω
∣∣∣∣∣∣
] ν2−ν1

2

≤ e
ν2−ν1

2

∫ 1
0 |1−2ω||lnΘ∗(ων1+(1−ω)ν2)|dω

≤ e
ν2−ν1

2

(∫ 1
0 |1−2ω|dω

)1− 1
q
(∫ 1

0 |1−2ω||ln(Θ∗(ων1+(1−ω)ν2))|qdω
) 1

q

≤ e
ν2−ν1

2

(∫ 1
0 |1−2ω|dω

)1− 1
q
(∫ 1

0 |1−2ω|[ sinhω
sinh 1 (lnΘ∗(ν1))q+ sinh 1−sinhω

sinh 1 (lnΘ∗(ν2))q]dω
) 1

q

= e
ν2−ν1

2

(∫ 1
0 |1−2ω|dω

)1− 1
q
(
(lnΘ∗(ν1))q

∫ 1
0 |1−2ω| sinhω

sinh 1 dω+(lnΘ∗(ν2))q
∫ 1

0 |1−2ω| sinh 1−sinhω
sinh 1 dω

) 1
q

.

Since,∫ 1

0
|1 − 2ω| dω =

1
2
,

∫ 1

0
|1 − 2ω| sinhωdω =

−e2 + 4e
√

e − 2e − 4
√

e + 3
2e

,∫ 1

0
|1 − 2ω| (sinh 1 − sinhω) dω =

3e2
− 8e
√

e + 4e + 8
√

e − 7
4e

,

it follows that∣∣∣∣∣∣∣∣∣
√
Θ (ν1)Θ (ν2)(∫ ν2

ν1
(Θ (κ))dκ

) 1
ν2−ν1

∣∣∣∣∣∣∣∣∣ ≤ e
ν2−ν1

2 ( 1
2 )1− 1

q
[(
−e2+4e

√
e−2e−4

√
e+3

2e

)
(lnΘ∗(ν1))q+

(
3e2
−8e
√

e+4e+8
√

e−7
4e

)
(lnΘ∗(ν2))q

] 1
q
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= e
ν2−ν1

2 ( 1
2 )1− 1

q .( 1
sinh 1 )

1
q

( −e2+4e
√

e−2e−4
√

e+3
2e

) 1
q

ln(Θ∗(ν1))+
(

3e2
−8e
√

e+4e+8
√

e−7
4e

) 1
q

ln(Θ∗(ν2))



=

(Θ∗ (ν1))
(
−e2+4e

√
e−2e−4

√
e+3

2e

) 1
q

(Θ∗ (ν2))
(

3e2
−8e
√

e+4e+8
√

e−7
4e

) 1
q

ν2−ν1

2 ( 1
2 )1− 1

q

.

For q = 1, one uses the estimates from the proof of Theorem 5.2. So, the proof is completed.

Now, we will prove the Theorem 5.3 by using Hölder-İşcan integral inequality. Then we will show the
newly obtained inequality is better approach than the inequality (6).

Theorem 5.5. Let Θ : I◦ ⊂ R→ R+ be a multiplicative differentiable mapping on I◦, ν1, ν2 ∈ I◦ with ν1 < ν2. If Θ
is increasing on [ν1, ν2] and (lnΘ∗)q is hyperbolic type convex on [ν1, ν2] , then one has

∣∣∣∣∣∣∣∣∣
√
Θ (ν1)Θ (ν2)(∫ ν2

ν1
(Θ (κ))dκ

) 1
ν2−ν1

∣∣∣∣∣∣∣∣∣ ≤
(Θ∗ (ν1))

( e2
−2e−1
2e

) 1
q
+( 1

e )
1
q


(Θ∗ (ν2))

( −e2+4e+1
4e

) 1
q
+
(

e2
−5

4e

) 1
q

ν2−ν1

2

(
1

2(p+1)

) 1
p ( 1

sinh 1 )
1
q

, (10)

where 1
p +

1
q = 1.

Proof. Using Lemma 5.1, the Hölder-İşcan integral inequality and hyperbolic type convexity of (lnΘ∗)q, it
follows that∣∣∣∣∣∣∣∣∣

√
Θ (ν1)Θ (ν2)(∫ ν2

ν1
(Θ (κ))dκ

) 1
ν2−ν1

∣∣∣∣∣∣∣∣∣
≤ e

ν2−ν1
2

∫ 1
0 |1−2ω||lnΘ∗(ων1+(1−ω)ν2)|dω

≤ e
ν2−ν1

2

(∫ 1
0

(1−ω)|1−2ω|pdω
) 1

p
(∫ 1

0
(1−ω)|lnΘ∗(ων1+(1−ω)ν2)|qdω

) 1
q

×e
ν2−ν1

2

(∫ 1
0 ω|1−2ω|pdω

) 1
p
(∫ 1

0 ω|lnΘ
∗(ων1+(1−ω)ν2)|qdω

) 1
q

≤ e
ν2−ν1

2

(∫ 1
0

(1−ω)|1−2ω|pdω
) 1

p
(∫ 1

0
(1−ω)[ sinhω

sinh 1 (lnΘ∗(ν1))q+ sinh 1−sinhω
sinh 1 (lnΘ∗(ν2))q]dω

) 1
q

×e
ν2−ν1

2

(∫ 1
0 ω|1−2ω|pdω

) 1
p
(∫ 1

0 ω[ sinhω
sinh 1 (lnΘ∗(ν1))q+ sinh 1−sinhω

sinh 1 (lnΘ∗(ν2))q]dω
) 1

q

= e
ν2−ν1

2

(∫ 1
0

(1−ω)|1−2ω|pdω
) 1

p
(

(lnΘ∗(ν1))q

sinh 1

∫ 1
0

(1−ω) sinhωdω+ (lnΘ∗(ν2))q

sinh 1

∫ 1
0

(1−ω)(sinh 1−sinhω)dω
) 1

q

×e
ν2−ν1

2

(∫ 1
0 ω|1−2ω|pdω

) 1
p
(

(lnΘ∗(ν1))q

sinh 1

∫ 1
0 ω sinhωdω+ (lnΘ∗(ν2))q

sinh 1

∫ 1
0 ω(sinh 1−sinhω)dω

) 1
q

=

(Θ∗ (ν1))
(

e2
−2e−1
2e

) 1
q

(Θ∗ (ν2))
(
−e2+4e+1

4e

) 1
q

ν2−ν1

2

(
1

2(p+1)

) 1
p ( 1

sinh 1 )
1
q

×

(Θ∗ (ν1))(
1
e )

1
q

(Θ∗ (ν2))
(

e2
−5

4e

) 1
q

ν2−ν1

2

(
1

2(p+1)

) 1
p ( 1

sinh 1 )
1
q

=

(Θ∗ (ν1))

( e2
−2e−1
2e

) 1
q
+( 1

e )
1
q


(Θ∗ (ν2))

( −e2+4e+1
4e

) 1
q
+
(

e2
−5

4e

) 1
q

ν2−ν1

2

(
1

2(p+1)

) 1
p ( 1

sinh 1 )
1
q

,
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where∫ 1

0
(1 − ω) |1 − 2ω|p dω =

∫ 1

0
ω |1 − 2ω|p dω =

1
2
(
p + 1

) ,
∫ 1

0
(1 − ω) sinhωdω =

e2
− 2e − 1

2e
,∫ 1

0
(1 − ω) (sinh 1 − sinhω) dω =

−e2 + 4e + 1
4e

,∫ 1

0
ω sinhωdω =

1
e
,∫ 1

0
ω (sinh 1 − sinhω) dω =

e2
− 5

4e
.

Remark 5.6. The inequality (10) gives better result than the inequality (6). Let us show that

(Θ∗ (ν1))

( e2
−2e−1
2e

) 1
q
+( 1

e )
1
q


(Θ∗ (ν2))

( −e2+4e+1
4e

) 1
q
+
(

e2
−5

4e

) 1
q

ν2−ν1

2

(
1

2(p+1)

) 1
p ( 1

sinh 1 )
1
q

≤

[
(Θ∗ (ν1))(cosh 1−1)

1
q

(Θ∗ (ν2))(sinh 1−cosh 1+1)
1
q

] ν2−ν1
2

(
1

p+1

) 1
p ( 1

sinh 1 )
1
q

.

Using multiplicatively concavity of the function ℏ : [0,∞)→ R, ℏ (x) = xτ, 0 < τ ≤ 1 by sample calculation one gets

(Θ∗ (ν1))

( e2
−2e−1
2e

) 1
q
+( 1

e )
1
q


(Θ∗ (ν2))

( −e2+4e+1
4e

) 1
q
+
(

e2
−5

4e

) 1
q

ν2−ν1

2

(
1

2(p+1)

) 1
p ( 1

sinh 1 )
1
q

≤

(Θ∗ (ν1))
(

1
2 .

(e−1)2

2e

) 1
q

(Θ∗ (ν2))(
1
2 .

e−1
e )

1
q


2
ν2−ν1

2 ( 1
2 )

1
p
(

1
p+1

) 1
p ( 1

sinh 1 )
1
q

=

[
(Θ∗ (ν1))(cosh 1−1)

1
q

(Θ∗ (ν2))(sinh 1−cosh 1+1)
1
q

] ν2−ν1
2

(
1

p+1

) 1
p ( 1

sinh 1 )
1
q

,

where

cosh 1 − 1 =
(e − 1)2

2e
,

sinh 1 − cosh 1 + 1 =
e − 1

e
.

Theorem 5.7. Let Θ : I◦ ⊂ R → R+ be a multiplicative differentiable mapping on I◦, ν1, ν2 ∈ I◦ with ν1 < ν2.If Θ
is increasing on [ν1, ν2] and (lnΘ∗)q is hyperbolic type convex on [ν1, ν2] , then one has∣∣∣∣∣∣∣∣∣

√
Θ (ν1)Θ (ν2)(∫ ν2

ν1
(Θ (κ))dκ

) 1
ν2−ν1

∣∣∣∣∣∣∣∣∣ ≤
[
(Θ∗ (ν1))

(
(ζ1)

1
q +(ζ3)

1
q
)
(Θ∗ (ν2))

(
(ζ2)

1
q +(ζ4)

1
q
)] ν2−ν1

2 ( 1
2 )2− 2

q ( 1
sinh 1 )

1
q

, (11)
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where

ζ1 =

∫ 1

0
(1 − ω) |1 − 2ω| sinhωdω = 5

√
e +

3
√

e
−

3
2

e −
5
2e
− 5,

ζ2 =

∫ 1

0
(1 − ω) |1 − 2ω| (sinh 1 − sinhω) dω =

13
8

e +
19
8e
− 5
√

e −
3
√

e
+ 5,

ζ3 =

∫ 1

0
ω |1 − 2ω| sinhωdω = e +

4
e
− 3
√

e −
5
√

e
+ 4,

ζ4 =

∫ 1

0
ω |1 − 2ω| (sinh 1 − sinhω) dω = 3

√
e +

5
√

e
−

7
8

e −
33
8e
− 4.

Proof. Firstly, assume q > 1. Using Lemma 5.1, improved power-mean integral inequality and hyperbolic
type convexity of (lnΘ∗)q, it follows that∣∣∣∣∣∣∣∣∣

√
Θ (ν1)Θ (ν2)(∫ ν2

ν1
(Θ (κ))dκ

) 1
ν2−ν1

∣∣∣∣∣∣∣∣∣
≤ e

ν2−ν1
2

∫ 1
0 |1−2ω||lnΘ∗(ων1+(1−ω)ν2)|dω

≤ e
ν2−ν1

2

(∫ 1
0

(1−ω)|1−2ω|dω
)1− 1

q
(∫ 1

0
(1−ω)|1−2ω||lnΘ∗(ων1+(1−ω)ν2)|qdω

) 1
q

×e
ν2−ν1

2

(∫ 1
0 ω|1−2ω|dω

)1− 1
q
(∫ 1

0 ω|1−2ω||lnΘ∗(ων1+(1−ω)ν2)|qdω
) 1

q

≤ e
ν2−ν1

2

(∫ 1
0

(1−ω)|1−2ω|dω
)1− 1

q
(∫ 1

0
(1−ω)|1−2ω|[ sinhω

sinh 1 (lnΘ∗(ν1))q+ sinh 1−sinhω
sinh 1 (lnΘ∗(ν2))q]dω

) 1
q

×e
ν2−ν1

2

(∫ 1
0 ω|1−2ω|dω

)1− 1
q
(∫ 1

0 ω|1−2ω|[ sinhω
sinh 1 (lnΘ∗(ν1))q+ sinh 1−sinhω

sinh 1 (lnΘ∗(ν2))q]dω
) 1

q

= e
ν2−ν1

2 ( 1
4 )1− 1

q
(

(lnΘ∗(ν1))q

sinh 1

∫ 1
0

(1−ω)|1−2ω| sinhωdω+ (lnΘ∗(ν2))q

sinh 1

∫ 1
0

(1−ω)|1−2ω|(sinh 1−sinhω)dω
) 1

q

×e
ν2−ν1

2 ( 1
4 )1− 1

q
(

(lnΘ∗(ν1))q

sinh 1

∫ 1
0 ω|1−2ω| sinhωdω+ (lnΘ∗(ν2))q

sinh 1

∫ 1
0 ω|1−2ω|(sinh 1−sinhω)dω

) 1
q

=

[
(Θ∗ (ν1))(ζ1)

1
q

(Θ∗ (ν2))(ζ2)
1
q

] ν2−ν1
2 ( 1

4 )1− 1
q ( 1

sinh 1 )
1
q

×

[
(Θ∗ (ν1))

(
(ζ3)

1
q
)
(Θ∗ (ν2))

(
(ζ4)

1
q
)] ν2−ν1

2 ( 1
4 )1− 1

q ( 1
sinh 1 )

1
q

=

[
(Θ∗ (ν1))

(
(ζ1)

1
q +(ζ3)

1
q
)
(Θ∗ (ν2))

(
(ζ2)

1
q +(ζ4)

1
q
)] ν2−ν1

2 ( 1
2 )2− 2

q ( 1
sinh 1 )

1
q

,

where
∫ 1

0
(1 − ω) |1 − 2ω| dω =

∫ 1

0 ω |1 − 2ω| dω = 1
4 .

Now, let q = 1. Then we use the estimates from the proof of Theorem 5.7, which also follow step by step
the above estimates. Thus, the proof is completed.

Remark 5.8. The inequality (11) gives better result than the inequality (9). Let us show that

[
(Θ∗ (ν1))

(
(ζ1)

1
q +(ζ3)

1
q
)
(Θ∗ (ν2))

(
(ζ2)

1
q +(ζ4)

1
q
)] ν2−ν1

2 ( 1
2 )2− 2

q ( 1
sinh 1 )

1
q
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≤

(Θ∗ (ν1))
(
−e2+4e

√
e−2e−4

√
e+3

2e

) 1
q

(Θ∗ (ν2))
(

3e2
−8e
√

e+4e+8
√

e−7
4e

) 1
q

ν2−ν1

2 ( 1
2 )1− 1

q

.

Using multiplicatively concavity of the function ℏ : [0,∞)→ R, ℏ (x) = xτ, 0 < τ ≤ 1 bu sample calculation one gets[
(Θ∗ (ν1))

(
(ζ1)

1
q +(ζ3)

1
q
)
(Θ∗ (ν2))

(
(ζ2)

1
q +(ζ4)

1
q
)] ν2−ν1

2 ( 1
2 )2− 2

q ( 1
sinh 1 )

1
q

≤

(Θ∗ (ν1))

(
( 1

2 .ζ1)
1
q +( 1

2 .ζ3)
1
q
)
(Θ∗ (ν2))

(
( 1

2 .ζ2)
1
q +( 1

2 .ζ4)
1
q
)

2
ν2−ν1

2 ( 1
2 )2− 2

q ( 1
sinh 1 )

1
q

≤

[
(Θ∗ (ν1))(

1
2 (ζ1+ζ3))
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2 (ζ2+ζ4))

1
q
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2 ( 1
2 )2− 2

q ( 1
sinh 1 )

1
q

=

(Θ∗ (ν1))
(
−e2+4e

√
e−2e−4

√
e+3

2e

) 1
q

(Θ∗ (ν2))
(

3e2
−8e
√

e+4e+8
√

e−7
4e

) 1
q

ν2−ν1

2 ( 1
2 )1− 1

q

.

where

ζ1 + ζ3 =
−e2 + 4e

√
e − 2e − 4

√
e + 3

2e
,

ζ2 + ζ4 =
3e2
− 8e
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e + 4e + 8
√

e − 7
4e

.

References

[1] M. A. Ali, M. Abbas, Z. Zhang, I. B. Sial and R. Arif, On integral inequalities for product and quotient of two multiplicatively convex
functions, Asian Research J. Math. 12(3) (2019), 1–11.

[2] M. A. Ali, M. Abbas and A. A. Zafer, On some Hermite-Hadamard integral inequalities in multiplicative calculus, J. Ineq. Special Func.
10(1) (2019), 111–122.
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[22] A. Mateen, Z. Zhang, S. Özcan and M. A. Ali, Generalization of Hermite–Hadamard, trapezoid, and midpoint Mercer type inequalities
for fractional integrals in multiplicative calculus, Boundary Value Problems, 2025 (2025), 22.
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[25] S. Özcan, Hermite-Hadamard type inequalities for exponential type multiplicatively convex functions, Filomat, 37(28) (2023), 9777–9789.
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