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Multiplicatively hyperbolic type convex functions and some related
integral inequalities

Serap Ozcan?

?Department of Mathematics, Faculty of Art and Science, Kirklareli University, 39100 Kirklareli, Turkey

Abstract. In this work, we introduced and explored the concept of multiplicatively hyperbolic type convex
functions, examining several of their fundamental algebraic properties. We established Hermite-Hadamard
(HH) inequalities for this newly defined class of functions and further derived novel HH type inequali-
ties for both the product and quotient of multiplicatively hyperbolic type convex functions. Furthermore,
we obtained new multiplicative integral-based inequalities involving the product and quotient of multi-
plicatively hyperbolic type convex functions and classical convex functions. In addition, by utilizing the
Holder-Iscan integral inequality, we developed several new HH type integral inequalities specifically for
multiplicatively hyperbolic type convex functions. Finally, we conducted a comparative analysis with
existing results, demonstrating that our findings offer notable improvements over previously known in-

equalities. The results of this study have the potential to inspire further research in various scientific
disciplines.

1. Introduction and preliminaries

The function ® : I ¢ R — R is said to be convex if the following inequality holds for all »x,y € I and
w€[0,1]:

BO(wn + (1 — w)y) < wO() + (1 — w)BO(y).
The function ® is said to be concave if —® is convex.

Convexity theory has been instrumental in the development of inequality theory. Numerous promi-
nent findings in the realm of inequalities can be obtained by utilizing the convex properties of functions
(see [6] [14, 17, 20} 27, 34, 35]). A widely researched outcome related to convex functions is the Her-
mite-Hadamard inequality ([11]). This inequality establishes a key relationship between convexity and
inequalities, providing significant understanding into the behavior of convex functions.

The HH inequality states that if a function ® : I — R is convex in I for vq,v, € I with v; < v, and
© € L[v1,v,], then the inequality

V1 + V) 1 V2 ®(V1) + G)(VZ)
@( ’ )sz—vlfvl O(dx < 2, (1)

holds.
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Many scholars have shown a keen interest in inequality (I), prompting the introduction of numerous
generalizations, extensions, and enhancements in academic works. Those looking for more in-depth
information can consult [9, 31]] and the references included therein. Furthermore, various refinements of
the HH inequality for convex functions have been documented in [7} 18} 21} 23] [26] 28} 29] [32].

Now, we will give some basic definitions and results.

In [36]], Toplu et al. introduced the class of hyperbolic type convex functions and derived HH inequalities
for this class of functions as follows:

Definition 1.1. The function © : I C R — R is said to be hyperbolic type convex, if

sinh w sinh1 - sinh w

Blwx + {1 -wy) < sinh 1 O + sinh 1

O(y),

forall n,y € Iand w € [0, 1].

In [1], Ali et al. gave the definition of multiplicatively convex function and HH inequality for this class
of functions:

Definition 1.2. A function © : I — (0, oo) is said to be multiplicatively or log convex, if
Bwx + (1 - Hw) < [OGYI“[OW)]',
forallvi, vy € Iand w € [0,1].

Theorem 1.3. Let © be a positive and multiplicatively convex function on interval [v1,v,]. Then

o1t ( il 2(@@))”)"_” <G(O(m), Ow),

where G(.,.) is the geometric mean.

In [12], Iscan established the Holder-Iscan integral inequality which is a refinement of the Holder’s
integral inequality as follows:

Theorem 1.4. Let p > 1and 1/p + 1/q = 1. If f and g are real functions defined on interval [v1,v,] and |OF , |Y|T
are integrable functions on [vy, V2] then

Vo Vo 1/p 1% 1/q
f ©G)TOldx < — {( f (Vz—%)l®(%)|”d%) ( f (vZ—wwm)wd}t)
i V2 =W i Vi

Vo 1/p 1) 1/q
+ (f (%—v1)|®(x)|pd%) (f (%—vl)lY(k)l"d}t) }

In [13], Kadakal et al. gave a refinement of power-mean integral inequality which is called improved
power-mean integral inequality as follows:

Theorem 1.5. Let q > 1. If f and g are real functions defined on interval [v1,v,] and if |©|,|©||Y|? are integrable
functions on [v1,v,] then

Vo Vo 1-1/q vy 1/q
f ©COTCdn < — {( f (Vz—%)IG)(%)Id%) ( f (vZ—xn@(%»mand%)

" V2 =W

Vo 1-1/q vy 1/q
+( f (x—vm@(%»dx) ( f (x—vl>|@<x>|nr<x>wd}t) }
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2. Multiplicative calculus

In the 17th century, Isaac Newton and Gottfried Wilhelm Leibniz independently developed the founda-
tions of differential and integral calculus. These revolutionary contributions have since become cornerstones
in the fields of analysis and calculus. The core processes of differentiation and integration allow for the
manipulation of quantities at an infinitesimally small scale.

In a notable shift from traditional methods, a new form of calculus was introduced between 1967 and
1970 by Grossman and Katz. This innovative system redefined the conventional concepts of addition
and subtraction, replacing them with division and multiplication as the primary operations. Known as
“multiplicative calculus,” this framework is specifically designed for positive functions. Due to its limited
applicability, multiplicative calculus has not achieved the same widespread recognition as the calculus
developed by Leibniz and Newton. However, it has produced fascinating results in various areas.

The groundwork for multiplicative calculus was first established by [10] in the 1970s, as they revisited
and adapted the classical calculus formulated by Newton and Leibniz. Although its application is restricted
to positive functions, multiplicative calculus has demonstrated significant potential, as seen in its diverse
uses.

For example, in [3], Bashirov etal. presented a key theorem that serves as the foundation of multiplicative
calculus. Additionally, Bashirov and Riza pioneered the idea of complex multiplicative calculus in [4]. The
study of stochastic multiplicative calculus was explored in [8], where various properties were investigated.
For a detailed examination of the applications and scope of this field, readers can consult [2} 5, [15} 16} 22|
24,125,130, 133} 137 and the associated references.

2.1. Multiplicative derivatives and integrals

Recall multiplicative derivative which can be found in [3].

Definition 2.1. Assume that © : R — R is a positive function. The multiplicative derivative of the function © is

stated as
a0
dw

(@R
SRLCNE
Recall that the concept of multiplicative integral or * integral is denoted by fv 11/2 (O(%))™ while the

ordinary integral is denoted by fv YZ(®(%))d%. This is because the sum of the terms of product is used in the

definition of a classical Riemann integral of ® on [v1,v;], the product of terms raised to certain powers is
used in the definition of * integral of ® on [v1,v2]. The following properties of *differentiable exists:

Theorem 2.2. Let © and Y be *differentiable functions. If « is arbitrary constant, then functions a®, ©Y, © + Y,
©/Y and O are *differentiable and

. (a0) (w) = a®" (w),

(@) () = € (@) T (),

L@+ ) (@) = © ()T T@ Y (@) T,
(9 =39,

. (@Y)* (w) - ® (w)Y(a)) [c) (a))Y’(m).

Ol = W N =

There is the following relation between Riemann integral and * integral ([3]):

Proposition 2.3. If © is positive and Riemann integrable on [v1,v,], then © is * integrable on [v1,v;] and

wfq@wnwzeﬁ@wwﬂ

V1



S. Ozcan / Filomat 39:35 (2025), 12409-12423 12412
In [3], Bashirov et al. show that * integral has the following results and notations:

Proposition 2.4. If© is positive and Riemann integrable on [v1,v,], then © is multiplicatively integrable on [v1, v,]
and

L[ (©6oyy™ = [* (©coy™),
2. [2@COYe0)™ = [H@0)y™ - [*(r(a)y™,
o Ly ©car*

v01) = Teceoor
4. j]:z(®(}t))d% — j]‘fll(@(%))dx . f;z(@(}())d%,vl <u<w,
5. f: ©()™ =1 and ff(@)(x))d% = (fV:“ (@(%))du)‘l

V1

3. Multiplicatively hyperbolic type convexity and some algebraic properties

In this section we give a new definition, which is called multiplicatively hyperbolic type convex function
and study some of its basic algebraic properties.

Definition 3.1. A positive function ® : I — R is called multiplicatively hyperbolic type convex if for every »,y € I
and w € [0,1]

smh l smh @

O (wx + (1= w)y) < @O (O (y) ™
We will denote by MHC(I) the class of all multiplicatively hyperbolic type convex functions on I.

Theorem 3.2. Let ©,Y : [x,y] — R be two multiplicatively hyperbolic type convex functions, then ©.Y is
multiplicatively hyperbolic type convex function.
Proof. Let © and Y be multiplicatively hyperbolic type convex functions. Then

OY)(wx+(1-w)y) Olwn+(1-wy) Y(wx+(1-wy)

(6 %) 551[]11]1“;) (6 (]/)) 5‘“h1 5‘"1“ (Y }() Smh(f (T (]/)) 5‘“1:}“ 51th
(@ (%) Y (%)) Slnhl (@ (y) T (y)) Smhsln s1lnhg

sinh w sinh 1-sinh

(©.7) GOy . (©.7) (y) =

IA

O

Theorem 3.3. Let © : [ — [ is convex and Y : | — R is a multiplicatively hyperbolic type convex function and
increasing, then Y o © : I — R is a multiplicatively hyperbolic type convex function.

Proof. For »,y € I and w € [0, 1], one gets
Yo®) (wx+(1-w)y) YO (wn+(1-w)y))

Y (0O (x) + (1 - 0)O(y))

[ (© o) m@ (y))r‘“‘“

[(Y 0 ©) )]

IA

IN

smh 1 smh @

O

Theorem 3.4. Let ©; : [, y] — R bean arbitrary family of multiplicatively hyperbolic type convex functions and let
© () =sup;®; (»).If [ = {r € [»,y] : ©(r) < oo} # @, then [ is an interval and © is a multiplicatively hyperbolic
type convex function on |J.
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Proof. Forall #,y € ] and w € [0, 1], one has

O(wx+(1-w)y) qu®i (wn+(1-w)y)

IN

Sup [(@) (%)) SRt .(©; (y))»mh; o ]

smh 1 smh @

sup (©; (30) -sup ©i(y)) =

IA

sinhw nhl sinh

@G .(O(y) = < co.

Thus, © is a multiplicatively hyperbolic type convex function on J. This completes the proof. [

4. Hermite-Hadamard inequalities for multiplicatively hyperbolic type convex functions

In this section we derive integral inequalities of HH type for multiplicatively hyperbolic type convex
functions and convex functions in the framework of multiplicative calculus.

Theorem 4.1. Let © : [v1,v2] — R be a multiplicatively hyperbolic type convex function on [vi,v2]. If © €
L[vi,vs], then

1

o(%52)=( [~ @eor) " < @) @y

2

Proof. Note that

1n®(v1+vz) _ ln(®(wv1+(1—a))vz+a)vz+(1—a))v1))
2 2
_ ln(®(wv1+(1—a))vz+wvz+(12—a))v1))
ﬁ sinh 1-sinh
_ sinh1 _ sinh1
< In (®(wv1+(12 w)vz)) .(G(wvz+(12 a))vl))

sinh 1 wvi +(1—w)v,) sinh1-sinh} wvy + (1 —w)ny
sinh11n®( 2 T sinh1 “®( 2 '

Integrating the above inequality with respect to w on [0, 1], one has

inh1 (1 - inh1-sinhj; (1 -
m@(w;w) . sin zfln@(w)dwufm(w)dw
0 0

~ sinhl 2 sinh 1 2

sinh % 1 V2 sinh 1 — sinh % 1 V2
= f In® (x)dxn + f In® (»)dx
V1 Vi

sinh1 v, — 14 sinh 1 Vo — 11

= ! f In® () dx.

V2 —W1

Thus,

®(V1 + Vz) < e(‘/zl"l f1‘12 III@(%)d%)

= ( f b © (x))d%)vzl‘“ :
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Hence,

Consider the second inequality:

Uw@wwy” @ﬁWWﬂWI

(2 o)

— e vp—v1

e(f[)] InO(wv, +(1—w)vz)dm)

1 sinhw sinh 1-sinh w
. I ln[(@(vl)) SnhT (@(vy)) " Sih ]d(u

efo [1235:11) inh w+ 5%:12) (smhl—sinh(u)]dw

cosh1-1 el
eln[(ewl» T (v i |
7

where

1
f sinh wdw = cosh1 -1,
0

fl (sinh1 - sinh w) dw = %.
Henc:e,0

(f"Z © (%))dk)vz_v1 < (© ()T (© (v) 7 . )
Combining the inequalities (2) and (3), we have

o%52)=( [~ @eor) " < @) @y,

O

Corollary 4.2. Let the functions ©® and Y be multiplicatively hyperbolic type convex on [v1,v;]. Then

o(“ 52 r(52) < ([ @cor [ arcoy yﬂ < [O ) Y ()] [0 () Y (v

Corollary 4.3. Let the functions © and Y be multiplicatively hyperbolic type convex on [v1,v,]. Then

o)
T<V1+V2)

2 ©0o)y™
7o egy™

Theorem 4.4. Let the functions ® and Y be convex and multiplicatively hyperbolic type convex, respectively. Then

“”<@mqmw®mw®
Y (v1) Y (v2) '

1
S o) \ 862)-80)
V2 Adu \ v—v (®(V2)) 2 2
f © ()™ ) B ((@(Vl))e(vl))
oo™ ) 7 e (r ) (r o)
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Proof. Note that

1

_1 . L

j:z (@ (%))d}{ vp-vq e(ﬁlz ln@(%)d}t) =
V2 v i —
S er o) (o]

1

_ (e(fv\lfz In @(n)d%,jf‘l? In Y(%)d%)) o=

E(f[)] In®(v2+w(vy —1/2))11“)_f01 InY(2+a(v —vz))dw)

sinhw sinh 1-sinh @
B ( ) @) +0(@(w1)-O()dw- ) 1n[mvn> S (r(y) ]dw)
< €

1
[ln( 52?2;;:2:; )@(vz)—e(vl) _1—1n((Y(V1)) SEIAT (V) kT )]
"1

( L) )o-@z)le(vl)
(©())°1)

e. (Y (v1)) ST (Y ()T
O

Theorem 4.5. Let the functions © and Y be multiplicatively hyperbolic type convex and convex, respectively. Then

sz © ()™ )= _e©®@) TR (O (vg)) T .

f (Y (»)) d“ - ((Y(vz))Y(VZ))Yi(vz)*v("l)
(0701

Proof. Note that,

1

f © (%)) d% o [ f ln@(%)dx N

f 2 1nY( u)d%

ff (O ()™

1
e ‘21n® (o[ 1nr(x)dx))V2"l

( [ @@ +wn—va))dw- [ InY(wa+aw(n —vz))dw)

|
5y

sinhw sinh1-sinhw
( I ln(@(vl)) @) M ]dm— s ln<r<vZ>+m<Y<vl)—Y(vz)»dm]
e

((@(Vl)) Smhl (©(n))7 mhl ) ((Y(vz))iz‘l@; )Y(\z) Y(vq) +1
= ¢ (r(v)) 1
cosh1-1

e.(©®(v)) =7 (© (V2))“‘“'” ‘

( (Y(r2))"¢2) ) )T
()"0

O

Theorem 4.6. Let the functions © and Y be convex and multiplicatively hyperbolic type convex, respectively. Then

C) O(vp) E @(V ) osh
1 (E@E:j;;@(_ll) ) 2 1 (T (Vl)) smhl (’Y (VZ)) csmhl

([ @cor [arcar) T < e
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Proof. Note that

( f " @G0 f Cor (%»”’“)”1”

p 1
fvllz In©®()dx .efvzz In Y(x)dx ) va-vy

e

—_—
3

g 1
Ji2 n@Godx+ 2 lnY(x)d%) 27

(fol In®(v2+w(vy —vz))daH—fOl InY(va+w(n —vz))da))

|
5

sinhw sinh1-sinh@
[ I @) +(©1)-Owa))dar- [} 1n(mw NI r)) )dm]
e

]n( (©(1)?02) )7902)1@("1)

“1+1In((Y () ST (Y(vy)) e
(0(1))°"1)

©(1))°'1)

(S ree (0 () B (1 o)

e
O

5. Some new inequalities for multiplicatively hyperbolic type convexity

Lemma 5.1. Let © : [° € R — R* be a multiplicative differentiable mapping on I°, v1,v, € I° with vy < v,. If ©* is
multiplicative integrable on [v1,v,], then one has

2"

OO _ [ f (10 (w1 + (1 - ) Vz>11‘2“’)dw]z
(j;/z (@ (%))d}t)vz*‘/l 0

Theorem 5.2. Let © : [° C R — R* be a multiplicative differentiable mapping on I°, v, v, € I° with vi < v,. If ©
is increasing on [v1,v2] and ©" is multiplicatively hyperbolic type convex on [vq,Vvs], then one has

e (Vl) © (VZ) < [(6* (V]))(COSh 1-2sinh 1+4 sinh %—1) (@* (1/2))% sinh 1—-cosh 1-4 sinh %+1] Zim T
1 = .
(j:l/z (@ (%))d}t) v2=v1
Proof. Using Lemma.T} one gets
P
O()O 1 dw|] 2
0Ot | [ [ (@ @n + @ -y ]
() ©Goy™)= °
< 2 ' In(@ (@1 +(1-w)v2)' 2 |dw
— evz;yl folll—Zwllln @*(wv1+(1—w)vz)|dw‘ (4)

Since the function ©" is multiplicatively hyperbolic type convex, one gets

f 1 -2w/In® (wv1 + (1 — w) ) dw

sinhw smhl sinh w
f 120010 (© )™ @ 020" o

= fll—Zl

sinh 1 — sinh w

Soh1 In®* (v,) dw

1
ln®*(v1)da)+f 1 - 20|
0
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In® () . In® () [ . .
sinh1 [1 - 2w|sinh wdw + Snh1 J, [1 — 2w| (sinh 1 - sinh w) dw
In©* (1) ( . .1 ) In©" (v,) (5 ' o )
Sinh 1 cosh1 —2sinh1 + 4sinh > 1)+ sohl \2 sinh1 — cosh1 —4sinh > +1], (5)

where

1
1
f |1 — 2w|sinh wdw = cosh1 —2sinh1 +4sinh§ -1,
0

1
f |1 - 2w|(sinh 1 - sinh w) dw = gsinhl —cosh1 —4sinh% +1.
0

If one substitutes the inequality (5) in (), one obtains

()] (Vl) G) (VZ)l < e\'z;q fol|ln(@*(w1/1+(1—(U)Vz))l_2w|dw
V. dn\ vy
(L @Eoy™)=™

In®*(v1)
sinh 1

+ ( 2 sinh 1-cosh 1-4sinh 1 +1) ln:);}(‘?) )

. 2 .((cosh 1-2sinh 1+4sinh 1 -1)

IA

vp=v1

* cosh 1-2sinh 1+4 sinh 3 -1 * 3 sinh 1—-cosh 1-4sinh 1 +1 | 2sinh1
(©" (1)) (0 (1n))? 2 -

O

Theorem 5.3. Let © : [° C R — R* be a multiplicative differentiable mapping on I°, v, v, € I° with vi < v,. If ©
is increasing on [vq,v,] and (In®*)" is hyperbolic type convex on [vq,v,], then one has

1 1
a1 ) P ( 1 ) q
2 p+l sinh1

O ()0 (1) < [(6* (vl))(cosh1-1)% © (vz))(sinm—coshlﬂ)%] , (6)

(fviz © (x))dﬂ)ﬁ

1,1
where + + = =1.
P q

Proof. Using Lemmal5.T|and the Holder’s inequality it follows that

CIDE) ! wl] T
0Ot | [ [ e @n+ - w2 ]
(L7 ©@Ggy™)= °
< ress 12010 ©" (@vi +(1-w)v2)ldw
< e%(fol|1—2m|"’zilw)fJ (j: (In(®* (wvy +(1—w)vz)))‘7dw)7. (7)
Using the hyperbolic type convexity of (In®*)7, one obtains
1 1, . . .
. sinh w . sinh 1 — sinh w .
f(; (In© (wv; + (1 —w) ) Tdw < f [m (In® (1)) + bl (In® (V2))q] dw
_ (cosh1-1)(In®" (v1))" + (sinh1 - cosh1 + 1) (In®" (v,))’ ®)
- sinh 1 ’

where

1 1
f 1-2wffdw=—,
0 p+1
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1
f sinh wdw = cosh1 -1,
0
1
f (sinh1 - sinh w)dw = sinh1 — cosh 1 + 1.
0
By combining (7) and (8), one gets

@ (V‘l) @ (Vz) e%(p%l)% [(a::ﬁil )(ln®*(vl))q+(Si]‘hlszsﬁslhl+1 )(11’16*(\/2))[7]%
1
v dn\ 73
(L @Gay™)="

1 1

e%(ﬂ%)’j (sm]T ) q [(cosh 1—1)% In(®*(v1))+(sinh 1-cosh 1+1)% In(®* (vz))]

IN

1 1
va=vi(_ 1 \P ( 1 )W
2 p+1 sinh1

|:(®>e (Vl))(coshlfl)% (@* (Vz))(Sinh1C0Shl+l)$:|

O

Theorem 5.4. Let © : I° C R — R* be a multiplicative differentiable mapping on I1°, v,v, € I° with vi < v,. If ©
is increasing on [vq,v,] and (In®*)", g > 1 is hyperbolic type convex on [vq,v,], then

©)

L2 (3)
O ((v1)O (1) e VE-2-4 43 %ezswsw)r}

: S P ) e ICHUS
([, @Coy™)=

Proof. Assume first that g > 1. Using Lemma[5.T} power mean inequality and the hyperbolic type convexity
of (In®*)7, one has

2"
G (Vl) C) (VZ) ! * 1-20)4@ ’
we= IR || A (CRCRYIRSIS oy
A\ vp-v
([ @Goy™)=
< B 20 e @i+(1-w)ldo
_1 1
< evz;'l (fo] |1—2a)|dm)1 1 (fol \1—2wllln(®*(a}v1+(1—(u)vz))\’ﬁi(u)[7
h - -1 . o 1
< (' n=20lde) " ( f11-201] S5 0n © () + SElshhe (n € (7)) o)

S

1- l . . .
e (hn-20ld0) " (ner ) =201kt do+ (@ ()" 120l S5bdssmbe o)

Since,

1 1
f 1 -2w|ldw = =,
O 2

f1|1_2w|5inha)da)= —e* +4eve—2e—4+e+3
0

2e
1 2
3ec —8eve+4de+8+e—7
f |1 — 2w|(sinh 1 - sinh w) dw = Ve Ve ,
0 4e
it follows that

1

()] (V1) (G (Vz) < 6“2%”(%)1'% [(M)(111@*(1/1))q+(w>(ln®*ﬁ/2»q] 1

(" ©Goy™)=™
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1 1
o= 1-1 I e—a~er3 \T . 302 A .
2(4) A(Sinlm)”[(if2 S 2B T (@ (v T ) T (vz))}
e

© (Vl))( ) (@ (Vz))( “

211y 9
1 1 2 \2
—e2+4e \e—2e—4e+3 \ 1 3e2—8e \e+de+8e-7 ) q }

For g = 1, one uses the estimates from the proof of Theorem So, the proof is completed. [

Now, we will prove the Theoremby using Holder-Iscan integral inequality. Then we will show the
newly obtained inequality is better approach than the inequality (6).

Theorem 5.5. Let ® : [° € R — R* be a multiplicative differentiable mapping on I°, v, v, € I° with vi < v,. If ©
is increasing on [v1,v2] and (In©®*) is hyperbolic type convex on [v1,v2], then one has

1

) S

LI P P SEel) o (=) )
(f, ©@Gay™)=

, (10)
1.1
where p T = 1.

Proof. Using Lemma the Holder-Iscan integral inequality and hyperbolic type convexity of (In®)7, it
follows that

O (v1)O (17)
1
([ ©Goy™)=
< evz;"l fol‘1_2w|lln®”(aﬂ/1+(1—(U)V2)|d“’
< e%(ﬂﬂ—w)ll-zwww)%(Ll(l-m)|1n®*(arvl+(1—w>V2>'”d“’)%
Xe 2 (fo1 wll—ZwIVdﬂ’)% (fol wlln @*(wvl*'u_“’)vz)lqdwﬁ
< e%(ﬁfu-mu_zw\gdw)%(ﬂ(l-w)[%m@*m>>q+%<m@*<vz>’q]d“’)%

1 1
o (1 ’ inha inh 1 sinhas (1 @ U
Xe”zz‘l( § =207 da)” (| o] S5 (0 © ()4 sodzsithe (n () |do)

1 1
Vo -V P * X
e%(fol(l—w)ll—Za)\pdw)p ( (lncjmh] fo (1-w) sinh wdw+ (ln(:n(h?)) fol(l—w)(sinh 1-sinh a))da)) !

S

1
_ 1 (o)) (o))
%(fol wll—Zml’”dm)p (% j(;l w sinh mda)+% j(;l w(sinh 1-sinh a))da))

xe

d e\ "?'l(m)%(sﬁ)%
@ o"F) (@ ()= )}

-

(g ()

«| @ w® @ )| F )q]

-

ot i )
- (6*(“))(( 4 ()](@*wz))[(T) )
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where
1 1 1
1-w)1-2wfdw = f w|l-20wf do = ————,
j(: 0 2(p+1)
1 2 _ _
f (1 - w) sinh wdw = w,
0 2e
1 2
f (1 -w)(sinh1-sinhw)dw = %,
0

1 1
f wsinh wdw = -,
0

e

e2-5
4e

1
f w (sinh1 - sinhw)dw =
0
|

Remark 5.6. The inequality gives better result than the inequality (6). Let us show that

' e ) @
© (vl>>((T) +(E)q)<@* (vm[(T) )|

1 1
324 (o)} )
2 p+1 sinh1

[ 1 . 1
< (G)* (Vl))(coshl—l)’i (@* (Vz))(51nh1—cosh1+1)’4]

Using multiplicatively concavity of the function i : [0,00) —» R, fi (x) = x7, 0 < © < 1 by sample calculation one gets

1
B 1
Va1 1 Pr 1 Vg
§ 1 N ( ) (1)
221 )r] +(l)%) —e? 44t )‘7 +(ez—5 )‘7 ) 2A(p+1) s
2e e

»(6* (w))(( © (w»(( - *

1 1? 1

@ o) F) (@ )

IN

o 1 1 1
}2“2”(;)”(,,11)” ()"

1 1
ﬂ(i)p(L)ﬁ
2 p+1 sinh1

7

— >(®* (Vl))(COShl_l)% (@* (Vz))(sinhl—coshl+l)‘l7

where

(e—1)
2

coshl-1=

-1
sinh1l—coshl+1= e—.
e

Theorem 5.7. Let © : I° € R — IR* be a multiplicative differentiable mapping on I°, v1,v, € I° with vi < v If ©
is increasing on [vq,v,] and (In®*)" is hyperbolic type convex on [vq,v,], then one has

L R )
®(V1)®(Vi s[(@)* (Vl))(m]m(cm) © (V2))((czw+(cm) ’ 1)
(L7 ©Ggy™)=
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where

G = f(l w) |1 = 2w| sinh wdw = 5\/_+3E—§ —%—5,

G = fl(l w) |1 = 2w| (sinh 1 — sinh w) dw = Ee B—5\/_——+5

SN BERE” Ve
! 4 5

G = fcu|1—2cu|sinha)da)=e+——3\/5——+4,
0 e Ve
1 7 33

Gy = foa)|1 2w|(sinh 1 — sinh w) dw = 3\/_+7—§ —5—4.

Proof. Firstly, assume g > 1. Using Lemma improved power-mean integral inequality and hyperbolic
type convexity of (In©*)7, it follows that

O (v1) O (1)
1
v, =
([ @©Goy™)=
V1
< o ' 1-20(n € (@vi +(1-w)v2)ldw
i -1 1
< e“z;m (fo (1—a))|1—2(u\dw) 1 (fo (1—w)|1—2a)|\ln®*(wv1+(1—w)vz)|‘7da))q
h ' 1 -1 1 1
Xe%(fo a)|172a)|dw) 1 (fo w|172a)||ln®*(wv1+(17a))v2)|'7d(u)q
-1 1
< S (' a-wn-2eido) " ( f(1-w)1-201] 52h% (0 ©())-+ Soikibe (n 6 (v2)) e

-1 1
221 ) wlt-20idw) " ( [ wlt-20]] S5 (n @ ())+ ol (n @ () ]dw)

xe

S

- “1/ (mer (v )] (o))
_ elle(%)l a(w [ a-@-20]sinh wda+ 02 J 1=@)1-20i(sinh 1-sinh @)

=

. -Li(mer(v 0" (v5))7
%(%)1 ’7((l o ()" j(} w|1- 2a)\smhwdw+(ln(s)m(hf)) fol m|1—2w|(sinh1—sinhw)da})

sinh 1
1
2 ‘l( ) q(smhl 1

S CODRNCIEEY

x [(@* @)@ (vZ»((C‘“%)]

- L)
[(@* (vl))(@lm(cz 7)(8 " ))((czw(cm)]

where [ (1- @)1 - 20ldw = [ @[l -20ldo = 1. O

Now, let g = 1. Then we use the estimates from the proof of Theorem 5.7, which also follow step by step
the above estimates. Thus, the proof is completed.

Remark 5.8. The inequality (T1) gives better result than the inequality (9). Let us show that

==

v -2
G (i

© ( vl))((cnh(cs)%) © (vz))((@)h@%)]
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1
| vp—v] (l)l_ﬁ
1177 \2
—e2+de \e—2e—4e+3 362 8¢ \e+de+8 Ve-7 ) q

< @ )\ TTE) @ wl T

Using multiplicatively concavity of the function Ii : [0, 00) = R, fi (x) = x7, 0 < © < 1 bu sample calculation one gets

vy g n2=2 1
221 (1) (k)

» (@ +@?) (@1 +@?)
(©" (1)) (©" (1)
) 2 1
1 1 1 NP2 (3) T ()T
(1)1 +(0)1) (CESERERA
< |© (V1))( (©" (12))
2 1

i 1 TR (k)

< & (vl))(%(llﬂh)ﬁ G (VZ))(;(C2+C4))5} e "
: no(1yoh
(@* ( ))(—ez+4c\/Ez—Ze—4\/5+3)% (@ ( ))(&:Lsz\ﬁzymxﬁq)% 2 (Z)

- V1 e * VZ e

where
2
- +4dee—2e—4+fe+3
+3= ,
G+ %
3¢ —8ee+4e+8+e—7
+ (4= )
G+ Gy "
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