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Abstract. In this study, we analyze the approximation characteristics of the operators based on Laguerre
polynomials. Initially, we present moments and central moments followed by certain results viz. asymptotic
formula and difference estimates. Furthermore, we modify these operators to preserve linear functions and
we prove that our modified operators have a finer error estimate than the original operators. Also, we
demonstrate the convergence of both the operators with graphical illustrations.

1. Introduction

Sucu et al. [18] proposed the subsequent operators for x ∈ [0,∞):

(Sαn f )(x) = e
−nx

2 2−α−1
∞∑
j=0

2− jLαj

(
−nx

2

)
f
(

j
n

)
, α > −1, n ∈ N,

where Lαj (−x) are the modified Laguerre polynomials defined by

Lαj (−x) =
j∑

s=0

(α + j)!
( j − s)!(α + s)!s!

xs.

As the extension of the work on the operator Sαn , Gupta [10] obtained the new operators as follows:

(Qαn f )(x) = I0

(
2
√

2nx
√

3

) ∞∑
j=0

e−nx

2α+ j

Lαj
(
−1
3

)
3

f
(

j
n

)
, (1)
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where I0(z) represents a modified Bessel’s function of first kind i.e.

I0(z) =
∞∑
j=0

( 1
4 z2) j

( j!)2 .

The approximation properties of various operators have been analysed by researchers in [7], [8], [16] and
many more. The examination of several approximation characteristics of the operators defined in (1) is
the primary purpose of this manuscript. We derive certain explicit results, such as quantitative asymptotic
formulae and difference estimates. Furthermore, we observe here that these operators do not preserve
linear functions. Hence, we introduce the modification of Qαn and prove that the modified operators have
better error estimate. Also, we display the rate of convergence of both the operators using graphs.

2. Auxiliary Results

We apply the subsequent findings in the sequel. In this paper, we indicate that er(m) = mr, r = 0, 1, 2, ....

Lemma 2.1. For the operators (1), the moment generating function is indicated below:

(QαneAt)(x) =
1

(2 − eA/n)α(3 − 2eA/n)
exp

(
nx

(
eA/n
− 1

3 − 2eA/n

))
.

Proof. Regarding the computations, see [10].

Remark 2.2. Using Mathematica to extend the right side of Lemma 2.1, we obtain

(QαneAt)(x) = 1 +
A(2 + α + nx)

n
+

A2
(
10 + 6α + α2 + 9nx + 2αnx + n2x2

)
2n2 +

A3

6n3

{
74 + 48α

+12α2 + α3 + 97nx + 33αnx + 3α2nx + 21n2x2 + 3αn2x2 + n3x3
}
+

A4

24n4

{
730 + 490α

+144α2 + 20α3 + α4 + 1257nx + 520αnx + 78α2nx + 4α3nx + 403n2x2 + 96αn2x2

+6α2n2x2 + 38n3x3 + 4αn3x3 + n4x4
}
+

A5

120n5

{
9002 + 6140α + 1950α2 + 340α3 + 30α4

+α5 + 19201nx + 8895αnx + 1690α2nx + 150α3nx + 5α4nx + 8145n2x2 + 2495αn2x2

+270α2n2x2 + 10α3n2x2 + 1145n3x3 + 210αn3x3 + 10α2n3x3 + 60n4x4 + 5αn4x4 + n5x5
}

+
A6

720n6

{
133210 + 91574α + 30270α2 + 5950α3 + 690α4 + 42α5 + α6 + 338889nx

+168966αnx + 36855α2nx + 4280α3nx + 255α4nx + 6α5nx + 178771n2x2 + 63870αn2x2

+9105α2n2x2 + 600α3n2x2 + 15α4n2x2 + 33370n3x3 + 8130αn3x3 + 690α2n3x3 + 20α3n3x3

+2615n4x4 + 390αn4x4 + 15α2n4x4 + 87n5x5 + 6αn5x5 + n6x6
}
+O

(
A7

)
.

Lemma 2.3. The outcome that follows is valid:

(Qαne0)(x) = 1,

(Qαne1)(x) =
2 + α + nx

n
,

(Qαne2)(x) =
10 + 6α + α2 + 9nx + 2αnx + n2x2

n2 ,

(Qαne3)(x) =
1
n3

{
74 + 48α + 12α2 + α3 + 97nx + 33αnx + 3α2nx + 21n2x2 + 3αn2x2 + n3x3

}
,
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(Qαne4)(x) =
1
n4

{
730 + 490α + 144α2 + 20α3 + α4 + 1257nx + 520αnx + 78α2nx + 4α3nx

+403n2x2 + 96αn2x2 + 6α2n2x2 + 38n3x3 + 4αn3x3 + n4x4
}
,

(Qαne5)(x) =
1
n5

{
9002 + 6140α + 1950α2 + 340α3 + 30α4 + α5 + 19201nx + 8895αnx

+1690α2nx + 150α3nx + 5α4nx + 8145n2x2 + 2495αn2x2 + 270α2n2x2

+10α3n2x2 + 1145n3x3 + 210αn3x3 + 10α2n3x3 + 60n4x4 + 5αn4x4 + n5x5
}
,

(Qαne6)(x) =
1
n6

{
133210 + 91574α + 30270α2 + 5950α3 + 690α4 + 42α5 + α6 + 338889nx

+168966αnx + 36855α2nx + 4280α3nx + 255α4nx + 6α5nx + 178771n2x2

+63870αn2x2 + 9105α2n2x2 + 600α3n2x2 + 15α4n2x2 + 33370n3x3 + 8130αn3x3

+690α2n3x3 + 20α3n3x3 + 2615n4x4 + 390αn4x4 + 15α2n4x4 + 87n5x5 + 6αn5x5 + n6x6
}
.

Proof. Since we are aware that the coefficient of Ar

r! in the moment generating function expansion represents
the r − th order moment, we may derive the required outcome from Remark 2.2.

Lemma 2.4. We indicate µαn,m(x) = (Qαn(e1 − xe0)m)(x), so

µαn,0(x) = 1,

µαn,1(x) =
2 + α

n
,

µαn,2(x) =
10 + 6α + α2 + 5nx

n2 ,

µαn,3(x) =
74 + 48α + 12α2 + α3 + 67nx + 15αnx

n3 ,

µαn,4(x) =
730 + 20α3 + α4 + 961nx + 75n2x2 + 6α2(24 + 5nx) + α(490 + 328nx)

n4 .

Proof. Lemma 2.3 makes the proof simple to understand.

Lemma 2.5. Let f be bounded on [0,∞) with || f || = sup
x∈[0, ∞)

| f (x)|, then

∣∣∣(Qαn f )(x)
∣∣∣ ≤ || f ||.

3. Asymptotic Formula

The space containing all bounded and uniformly continuous functions on [0,∞) is denoted by CB([0,∞))
and

C∗∗B [0,∞) =
{
1 ∈ CB([0,∞)) : 1′, 1′′ ∈ CB([0,∞))

}
.

The K− functional is given as

K2( f , β) = in f
{
|| f − 1|| + β||1′′||

}
, β > 0

where 1 ∈ C∗∗B ([0,∞)). Then K2( f , β) ≤ Cω2( f , β
1
2 ), where C is a positive absolute constant and ω2 represents

the second-order modulus of continuity. Refer to [9, pp. 177, Theorem 2.4] for further details.
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Theorem 3.1. If f ∈ CB([0,∞)), then∣∣∣(Qαn f )(x) − f (x)
∣∣∣ ≤ Cω2( f ,

√
γn(x)) + ω

(
f ,

2 + α
n

)
,

where

γn(x) =
24 + 16α + 3α2 + 10nx

2n2

and ω is modulus of continuity of first order.

Proof. We start by defining the operators Q̂αn : CB([0,∞))→ CB([0,∞)) as

(Q̂αn f )(x) = (Qαn f )(x) − f
(2 + α + nx

n

)
+ f (x).

These operators obviously preserve linear functions in light of Lemma 2.3. With the help of Taylor’s
formula, we can express

1(t) = 1(x) + (t − x)1′(x) +
∫ t

x
(t − v)1′′(v)dv,

where 1 ∈ C∗∗B ([0,∞)) and x, t ∈ [0,∞).
Thus, ∣∣∣(Q̂αn1)(x) − 1(x)

∣∣∣ ≤ (
Q̂αn

∣∣∣∣∣∣
∫ t

x
(t − v)1′′(v)dv

∣∣∣∣∣∣
)

(x)

≤

(
Qαn

∣∣∣∣∣∣
∫ t

x
(t − v)1′′(v)dv

∣∣∣∣∣∣
)

(x) +

∣∣∣∣∣∣∣
∫ 2+α+nx

n

x

(2 + α + nx
n

− v
)
1′′(v)dv

∣∣∣∣∣∣∣
≤ µαn,2(x)||1′′|| +

∣∣∣∣∣∣∣
∫ 2+α+nx

n

x

(2 + α + nx
n

− v
)

dv

∣∣∣∣∣∣∣ ||1′′||.
Now, applying Lemma 2.4 gives∣∣∣(Q̂αn1)(x) − 1(x)

∣∣∣ ≤ {
µαn,2(x) +

(2 + α)2

2n2

}
||1′′||

=
{10 + 6α + α2 + 5nx

n2 +
(2 + α)2

2n2

}
||1′′||

:= γn(x)||1′′||.

Using Lemma 2.5 and the definition of the operators Q̂αn , we are led to

||(Q̂αn f )(x)|| ≤ ||(Qαn f )(x)|| + 2|| f || ≤ 3|| f ||.

In conclusion, we can state that∣∣∣(Qαn f )(x) − f (x)
∣∣∣ ≤ ∣∣∣(Q̂αn1)(x) − 1(x)

∣∣∣ + ∣∣∣(Q̂αn( f − 1))(x) − ( f − 1)(x)
∣∣∣ + ∣∣∣∣∣ f (2 + α + nx

n

)
− f (x)

∣∣∣∣∣
≤ γn(x)||1′′|| + 4|| f − 1|| +

∣∣∣∣∣ f (2 + α + nx
n

)
− f (x)

∣∣∣∣∣
≤ C

{
γn(x)||1′′|| + || f − 1||

}
+ ω

(
f ,

2 + α
n

)
.

Using the condition of K-functional and taking infimum over 1 ∈ C∗∗B ([0,∞)), we establish the required
claim.
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We consider C∗([0,∞)) as the collection of all those 1which satisfy |1(x)| ≤ N(1+ x2),where N (constant)
is independent of x and depends on 1. C∗([0,∞)) is a space with the norm

||1||∗ = sup
x∈[0, ∞)

1(x)(1 + x2)−1.

The weighted modulus of continuity [17] be defined as

Ω(1, ζ) = sup
|h|<ζ,x∈[0, ∞)

|1(x + h) − 1(x)|
(
(1 + h2)(1 + x2)

)−1
,

where 1 ∈ C([0,∞)) ∩ C∗([0,∞)). According to Ω(1, ζ), the below inequality is true:

|1(t) − 1(x)| ≤ 2[1 + (t − x)2][1 + |t − x|ζ−1](1 + x2)(1 + ζ2)Ω(1, ζ), (2)

where x, t ∈ [0,∞).
We now establish the asymptotic result of Voronovskaya type, that has been thoroughly examined by
several investigators in [1], [2], [3], [6] etc.

Theorem 3.2. If f ′, f ′′ belong to ∈ C([0,∞)) ∩ C∗([0,∞)), then∣∣∣∣∣∣(Qαn f )(x) − f (x) − f ′(x)
[2 + α

n

]
−

f ′′(x)
2

[
10 + 6α + α2 + 5nx

n2

]∣∣∣∣∣∣
≤ 8.O(n−1)(1 + x2)Ω( f ′′,n

−1
2 ).

Proof. Using Taylor’s formula,

f (u) = f (x) + f ′(x)(u − x) +
f ′′(x)

2
(u − x)2 + ξ(u, x)(u − x)2,

where θ ∈ (x,u) and ξ(u, x) = 1
2 ( f ′′(θ) − f ′′(x)) is a function that is continuous and vanishes at 0.

When we apply the operator Qαn to the inequality indicated above, we get∣∣∣∣∣∣(Qαn f )(x) − f (x) − f ′(x)
[2 + α

n

]
−

f ′′(x)
2

[
10 + 6α + α2 + 5nx

n2

]∣∣∣∣∣∣ ≤ (
Qαn(|ξ(u, x)|(u − x)2)

)
(x).

From Lemma 2.4, we obtain(
Qαn(|ξ(u, x)|(u − x)2)

)
(x) = 8(1 + x2)Ω( f ′′, ζ)

[
µαn,2(x) + ζ−4µαn,6(x)

]
= 8(1 + x2)Ω( f ′′, ζ)

[
O(n−1) + ζ−4O(n−3)

]
.

Suppose we assume ζ = n
−1
2 , then(

Qαn(|ξ(u, x)|(u − x)2)
)

(x) ≤ 8(1 + x2)Ω( f ′′,n
−1
2 )O(n−1),

which enable us to get the intended outcome.

Corollary 3.3. If f ′, f ′′ ∈ C([0,∞)) ∩ C∗([0,∞)), then

lim
n→∞

n
∣∣∣(Qαn f )(x) − f (x)

∣∣∣ = f ′(x) [2 + α] −
5x
2

f ′′(x).
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4. Difference of Operators

Many researchers have been studying the differences of operators in the last few years; current studies
may be found in [4], [5], [11], [13], [14] and [15] among other places. In this section, we obtain the quantitative
estimates for the differences of the operators Qαn with the Baskakov operators and their Kantorovich variant.

It is defined that the Baskakov operators are

(Vn f )(x) =
∞∑
j=0

vn, j(x)Fn, j( f ), (3)

where vn, j(x) =
(n+ j−1

j

) x j

(1+x)n+ j and Fn, j( f ) = f ( j
n ).

Remark 4.1. We have

bFn, j = Fn, j(e1) =
j
n
,

µ
Fn, j

2 = Fn, j(e1 − bFn, j e0)2 = 0.

Below are few moments of Baskakov operators:

(Vne0)(x) = 1, (Vne1)(x) = x, (Vne2)(x) =
(n + 1)x2 + x

n

and
(Vn(e1 − x)2)(x) =

x(1 + x)
n

.

For x ∈ [0,∞), the Baskakov-Kantorovich operators (refer to [19]) are expressed as follows:

(Kn f )(x) =
∞∑
j=0

vn, j(x)Jn, j( f ). (4)

Here

Jn, j( f ) = n
∫ j+1

n

j
n

f (t)dt

and vn, j is the Baskakov basis function defined in (3).

Also, the operators defined in (1) can be expressed as

(Qαn f )(x) =
∞∑
j=0

qαn, j(x)Fn, j( f ),

where

qαn, j(x) =
(

2
√

2nx
√

3

) ∞∑
i=0

(1/4z2)i

(i!)2

e−nx

2α+ j

1
3

j∑
s=0

(α + j)!
( j − s)!(α + s)!s!

(1
3

)s

and

Fn, j( f ) = f
(

j
n

)
.

We apply the following result for the difference of positive linear operators with different bases, as given
by Gupta [11] and Gupta-Acu [12]:
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Theorem A. If Un :=
∑
∞

j=0 un, j(x)Ln, j( f ) and Wn :=
∑
∞

j=0 wn, j(x)Mn, j( f ), then

|((Un −Wn) f )(x)| ≤
C(x)

2
|| f ′′|| + 2ω( f , γ1) + 2ω( f , γ2),n ∈ N,

where C(x) =
∑
∞

j=0 un, j(x)µLn, j

2 +
∑
∞

j=0 wn, j(x)µMn, j

2 ,

γ2
1 =

∞∑
j=0

un, j(x)
(
Ln, j(e1) − x

)2

and

γ2
2 =

∞∑
j=0

wn, j(x)
(
Mn, j(e1) − x

)2

with

µ
Hn, j
r =

r∑
i=0

(
r
i

)
(−1)iHn, j(er−i)(Hn, j(e1))i.

Remark 4.2. If L2
n, j(e1) ≤ Ln, j(e2

1) and M2
n, j(e1) ≤Mn, j(e2

1) then Theorem A takes the form

|((Un −Wn) f )(x)| ≤ 2ω( f , ν1) + 2ω( f , ν2),n ∈ N,

where
ν2

1(x) = (Ln(e1 − x)2)(x)

and
ν2

2(x) = (Mn(e1 − x)2)(x).

With the help of Remark 4.2, the difference of Baskakov operators Vn and the operators Qαn is derived
as:

Theorem 4.3. If f ∈ CB([0,∞)), x ∈ [0,∞) and n ∈ N, then

|((Vn −Qαn) f )(x)| ≤ 2ω

 f ,

√
x(x + 1)

n

 + 2ω

 f ,

√
10 + 6α + α2 + 5nx

n2

 .
Now, we derive the estimate of the difference between Baskakov-Kantorovich operators Kn f and the

operators Qαn . In light of Theorem A, it follows:

Theorem 4.4. If f ∈ CB([0,∞)), then for Baskakov-Kantorovich operators specified as

(Kn f )(x) =
∑
∞

j=0 vn, j(x)Jn, j( f )

and for the operators specified as

(Qαn f )(x) =
∑
∞

j=0 qαn, j(x)Fn, j( f ), we get

|((Kn −Qαn) f )(x)| ≤
1

24n2 || f
′′
|| + 2ω

 f ,

√
1

4n2 +
x(n + 1)

n

 + 2ω

 f ,

√
α2 + 6α + 5nx + 10

n2

 .
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Proof. We have

bJn, j = Jn, j(e1) =
2 j + 1

2n
.

Also,

µ
Jn, j

2 = Jn, j(e2) − 2[Jn, j(e1)]2 + [Jn, j(e1)]2

=
n
3

( j + 1
n

)3

−

(
j
n

)3 − (
2 j + 1

2n

)2

=
1

12n2 .

Next, we have bFn, j is Fn, j(e1) whose value is j
n , and µFn, j

r = 0, r ∈ N. Using values mentioned above, we
obtain

C(x) =

∞∑
j=0

vn, j(x)µJn, j

2 +

∞∑
j=0

qαn, j(x)µFn, j

2

=

∞∑
j=0

vn, j(x)
1

12n2

=
1

12n2 .

Further, we have

γ2
1 =

∞∑
j=0

vn, j(x)
(
Jn, j(e1) − x

)2

=

∞∑
j=0

vn, j(x)
(

2 j + 1
2n

− x
)2

=
1

4n2 +
x(n + 1)

n
and

γ2
2 =

∞∑
j=0

qαn, j(x)
(
Fn, j(e1) − x

)2

=

∞∑
j=0

qαn, j(x)
(

j
n
− x

)2

=
α2 + 6α + 5nx + 10

n2 .

Hence the result follows.

5. Modified Operators Preserving Linear Functions

We can see that linear functions are not preserved by the operators defined in (1). We were inspired to
investigate this further, and in this section, we suggest modifying these operators. The modified form of
(1), for f ∈ C([0,∞)), can be defined as follows if we take rn(x) = nx−(2+α)

n , into consideration:

(Q̃αn f )(x) = I0

2
√

2nrn(x)
√

3

 ∞∑
j=0

e−nrn(x)

2α+ j

Lαj
(
−1
3

)
3

f
(

j
n

)
. (5)

Out of Lemmas 2.3 and 2.4, the following lemmas follow:
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Lemma 5.1. The following is true for the operators defined in (5):

(Q̃αne0)(x) = 1,

(Q̃αne1)(x) = x,

(Q̃αne2)(x) =
−3α + n2x2 + 5nx − 4

n2 ,

(Q̃αne3)(x) =
−α(9nx + 31) + n3x3 + 15n2x2 + 25nx − 44

n3 ,

(Q̃αne4)(x) =
27α2

− α
(
18n2x2 + 214nx + 267

)
+ n4x4 + 30n3x3 + 199n2x2 + 69nx − 460

n4 ,

(Q̃αne5)(x) =
1
n5

(
15α2(9nx + 62) − α

(
30n3x3 + 760n2x2 + 3995nx + 1791

)
+ n5x5 + 50n4x4

+705n3x3 + 2635n2x2
− 1479nx − 5052

)
.

Lemma 5.2. For the operators defined in (5), there hold:

(Q̃αn(e1 − xe0))(x) = 0,

(Q̃αn(e1 − xe0)2)(x) =
−3α + 5nx − 4

n2 .

Theorem 5.3. For f ∈ C[0,∞], we can write

lim
n→∞

(Q̃(1/n)
n f )(x) = f (x).

Proof. As a consequence of Lemma 5.1, it is clear that

lim
n→∞

(Q̃αne0)(x) = 1,

lim
n→∞

(Q̃αne1)(x) = x

and
lim
n→∞

(Q̃αne2)(x) = x2.

Hence, on applying Korovkin theorem, we may conclude the result.

Theorem 5.4. For f ∈ C([0,∞)), it implies

|(Q̃αn f )(x) − f (x)| ≤ 2ω
(

f , η
)
,

where η =
√

(Q̃αn(e1 − xe0)2)(x).

Proof. For η > 0, the modulus of continuity has the below mentioned property:

| f (y) − f (x)| ≤ ω( f , η)
(
1 + η−2(y − x)2

)
. (6)

Thus,

|(Q̃αn f )(x) − f (x)| ≤ (Q̃αn | f (y) − f (x)|, x)

≤ ω( f , η)
(
1 + η−2(Q̃αn(e1 − xe0)2)(x)

)
.

Lemma 5.2, provides
lim
n→∞

(Q̃αn(e1 − xe0)2)(x) = 0.

Hence, if we select η =
√

(Q̃αn(e1 − xe0)2)(x), the desired result follows.
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On the same lines, we have

Theorem 5.5. If f ∈ C([0,∞)), then

|(Qαn f )(x) − f (x)| ≤ 2ω( f , γ),

where γ =
√

10+6α+α2+5nx
n2 .

Remark 5.6. The error estimate for our modified operators in Theorem 5.4 is finer than the one taken into account
for the original operators Qαn because, if we assume, for α > −1,

η ≤ γ

⇔
−4 − 3α + 5nx

n2 ≤
10 + 6α + α2 + 5nx

n2

⇔
−(14 + 9α + α2)

n2 ≤ 0

which is valid for all x and for any n ∈ N. We find that our modified operator provides a better approximation as a
result.

6. Graphical Representation

The next two graphs are provided below to illustrate the convergence of the operators stated by (1) and
modified operators stated by (5):

f(x)

n=30

n=60

n=150

0.5 1.0 1.5 2.0 2.5

2

4

6

8

Figure 1: Convergence of (Qαn f )(x) for f (x) = x4
− 5x3 + 5x2 + 5x (black) is demonstrated for α = 2 and n = 30, 60 and 150.
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f(x)

n=30

n=60

n=150

0.5 1.0 1.5 2.0 2.5

2

4

6

Figure 2: Convergence of (Q̃αn f )(x) for f (x) = x4
− 5x3 + 5x2 + 5x (black) is demonstrated for α = 2 and n = 30, 60 and 150.
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