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Abstract. In this research paper, we generalize the concept of characteristic and lower characteristic of
linear operators on linear relations, examining some properties and elaborating a connection with upper
semi-Fredholm relations.

1. Introduction

Among the importance of studying Fredholm and upper semi-Fredholm relations is to characterize
spectrum and essential spectrum (see [9]). It is know that many problems of mathematical physics (for
example, quantum theory) are reduced to the study of certain conditions of spectrum and essential spectrum.

The notion of Characteristic [L]A and Lower characteristic [L]a for bounded linear operator L was
introduced into the functional analysis by A. Jürgen and all [15]. They investigate some basic properties of
this concept and they find the connection with upper semi-Fredholm operators.

The aim of this work was to extend this result for a more general context, ie considering linear relations.
We organize the paper in the following way. Section 2 contains preliminary and auxiliary properties that
we will need to prove the main results of the other sections. In Section 3, we identify a characteristic
and D-characteristic of linear relations and we provide certain outstanding results and certain prominent
properties. In Section 4, we tackle the definiton of Lower characteristic of linear relations, we exhibit some
pertinent results and eventually we enact a connection with upper semi-Fredholm relations.

2. Preliminary and auxiliary results

The notion of linear relations generalizes the concept of a linear operator to that of a multivalued linear
operator. Linear relations emerged in functional analysis in J. von Neumann [14] triggered by the need to
consider adjoints of non-densely defined operators invested in applications to the theory of generalized
equations [11] as well as the need to consider the inverses of certain operators which are invested, for
instance, in the investigation of certain Cauchy problems related to parabolic type equations in Banach
spaces [1–8, 13]. Certain results that are confirmed in the case of linear operators need to be validated
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within the framework of linear relations, sometimes under supplementary conditions. Let X,Y,Z be vector
spaces over K = R or C. We call a multivalued operator or a relation between X and Y, the mapping T
defined onD(T) ⊆ X with a value in 2Y

\∅ = P(Y)\∅.D(T) = {x ∈ X : T(x) , ∅} is called the domain of T. If T
maps all the point ofD(T) to singletons, then T is called a single-valued or simply an operator. A relation T
is said to be a linear relation, if T(αx+ βy) = αT(x)+ βT(y) ∀ x, y ∈ D(T) and α, β , 0.We denote by LR(X,Y),
the class of all linear relation from X to Y. A linear relation T ∈ LR(X,Y) is entirely defined by its graph,
G(T),which is expressed by

G(T) = {(x, y) ∈ X × Y : x ∈ D(T), y ∈ Tx}.

The linear relation T−1 is the inverse of T defined by

G(T−1) = {(y, x) ∈ Y × X : (x, y) ∈ G(T)}.

Let M ⊂ X, T ∈ LR(X,Y).We call the range of M by T the set denoted T(M) and defined by

T(M) =
⋃

m∈M∩D(T)

T(m).

In particular, for M = X, T(X) = R(T) is called the range of T. T ∈ LR(X,Y) is said to be surjective if R(T) = Y.
Let T ∈ LR(X,Y), ∅ , H ⊂ Y,we call a reciprocal range of H by T the set T−1(H) defined by

T−1(H) =
⋃
{T−1(y) : y ∈ D(T−1) ∩H}

= {x ∈ D(T) : T(x) ∩H , ∅}.

In particular, for y ∈ R(T), we get T−1(y) = {x ∈ D(T), y ∈ Tx}

D(T−1) = R(T), R(T−1) = D(T).

We call the kernel of T the subset of X indicated by

N(T) = {x ∈ X : 0 ∈ Tx} = T−1(0).

If N(T) = 0, that is, T−1 is uni-value, we say that T is an injective relation. The identity relation defined on
the subset E of X is denoted by IE or simply I. It is represented in terms of

G(IE) = {(e, e) : e ∈ E}.

Let S,T ∈ LR(X,Y), λ ∈ K∗. The relation S + T is defined by

∀ x ∈ D(S + T) (S + T)x = Sx + Tx.

D(S + T) = D(S) ∩D(T).

G(S + T) = {(x, y), x ∈ D(S) ∩D(T) : y = y1 + y2 : (x, y1) ∈ G(S), (x, y2) ∈ G(T)}.

We define the relation λT by
∀ x ∈ D(λT) (λT)x = λTx.

D(λT) = D(T).

G(λT) = {(x, λy) : (x, y) ∈ G(T)}.

For T ∈ LR(X,Y) and S ∈ LR(Y,Z) where R(T) ∩ D(S) , ∅, the linear relation ST is the product of S and T
defined by

ST(x) = S(Tx) (x ∈ X).

D(ST) = {x ∈ X : S(Tx) , ∅}
= {x ∈ X : Tx ∩D(S) , ∅}
= T−1(D(S)).
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G(ST) = {(x, z) ∈ X × Z : ∃ y ∈ Y : (x, y) ∈ G(T), (y, z) ∈ G(S)}.

Let M be a subset of X such that M ∩ D(T) , ∅. The restriction of T to M denoted T|M is the relation in
LR(X,Y) defined by: 

T|Mx = Tx, x ∈M ∩D(T),
D(T|M) = D(T) ∩M,

G(T|M) = G(T) ∩ (M × Y) = {(x, y) ∈ G(T) : x ∈M}.

We can easily infer that T|M = T|M∩D(T).
For a given closed linear subspace E of X, let QX

E (or simply, QE) denote the natural quotient map with
domain X and null space E. We shall denote QY

T(0)
by QT, or simply Q when T is understood. We define{

∥Tx∥ := ∥QTTx∥ (x ∈ D(T))
∥T∥ := ∥QTT∥.

Let A and B be nonempty subsets of a normed space. The distance between A and B is defined by the
formula

d(A,B) = inf
{
∥y − z∥ : y ∈ A, z ∈ B

}
.

If A = {a}, then d(a,B) = inf {∥a − z∥ : z ∈ B} .We define the minimum modulus of T by

γ(T) = inf
{
∥Tx∥

d(x,N(T))
: x ∈ D(T), x < N(T)

}
.

Conventionally, ifD(T) ⊂ N(T), then we get γ(T) = +∞. If ∥T∥ < ∞, T is called continuous and if γ(T) > 0,
T is said to be open. IfD(T) = X, ∥T∥ < ∞, then we said that T is bounded. We denote the class of bounded
linear relations from X to Y by BR(X,Y). The linear relation T is the closure of a linear relation T defined by

G(T) = G(T).

We said that T is closed if its graph G(T) is closed in X × Y, or equivalently, if T = T.We denote by CR(X,Y)
the class of closed linear relations from X to Y. T ∈ LR(X,Y) is said to be compact if QTBX is compact, where
BX := {x ∈ X : ∥x∥ < 1}. We denote by X′, the norm dual of a normed linear space X, i.e., the space of all
continuous functional x′ expressed on X,with norm

∥x′∥ = inf{λ : |x′x| ≤ λ∥x∥ ∀ x ∈ X}.

The linear relation T is invertible if T−1 is a bounded operator. We call the resolvent set of T the set ρ(T)
defined by:

ρ(T) = {λ ∈ C : λ − T is invertible}.

The complement of ρ(T) is called spectrum of T and is denoted
σ(T) = C\ρ(T). A scalar λ such that N(λ − T) , 0 is called an eigenvalue of T.
Let λ be an eigenvalue of T. Then the non zero subspace N(λ−T) is called the eigenspace of T corresponding
to λ. The non zero vectors in N(λ−T) are called eigenvectors. Clearly, if λ is an eigenvalue of T, the λ ∈ σ(T).
The set σ(T) is decomposed into following three adjoint sets:

Pσ(T) := {λ ∈ C : consisting of the eigenvalues of T}.

Rσ(T) := {λ ∈ C : λ − T is injective and R(λ − T) , X}.

Cσ(T) := {λ ∈ C : λ − T is injective and R(λ − T) = X but is not open}.

The subsets Pσ(.) and Rσ(.) are the point and residual spectrum, and Cσ(.) denotes the continuous
spectrum.
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Let T ∈ CR(X,Y). The graph norm ∥.∥T of x ∈ D(T), is indicated by
∥x∥T = ∥x∥ + ∥Tx∥.We have XT = (D(T), ∥.∥T) is a Banach space.

Let X̃ denote the completion of the normed space X and let T̃ denote the linear relation in LR(X̃, Ỹ)
whose graph is the completion of G(T). Therefore we call T̃ the completion (or complete closure) of T. Let
T ∈ LR(X,Y).We define the nullity of T by α(T) := dim N(T), the deficiency of T by β(T) := dim Y/R(T), and
the index of T by the quantity i(T) := α(T) − β(T) provided that α(T) and β(T) are not both infinite.

T ∈ LR(X,Y) is upper semi-Fredholm, if and only if there exists a closed, finite, codimensional subspace
M of X, such that the restriction T|M is injective and open. T ∈ LR(X,Y) is said to be a lower semi-Fredholm
linear relation if its conjugate T′ is an upper semi-Fredholm linear relation. We denote the set of upper
semi-Fredholm linear relations by F+(X,Y),which we abbreviate as F+, and the set of lower semi-Fredholm
linear relations by F−(X,Y) (or F−). In the case when X and Y are Banach spaces, we extend the classes of
closed single-valued Fredholm type operators given earlier to include closed multivalued operators. Note
that the definitions of the classes F+(X,Y) and F−(X,Y) are consistent, respectively with

ϕ+(X,Y) := {T ∈ CR(X,Y) : α(T) < ∞ and R(T) is closed in Y}, and

ϕ−(X,Y) := {T ∈ CR(X,Y) : β(T) < ∞ and R(T) is closed in Y},

ϕ(X,Y) = ϕ+(X,Y) ∩ ϕ−(X,Y).

Remark 2.1. [12] For T ∈ LR(X,Y),
(i)T ∈ F+ ⇔ QT ∈ F+.
(ii)T ∈ F− ⇔ QT ∈ F−.

Lemma 2.2. [12] Let X,Y be two linear spaces and T ∈ LR(X,Y). Therefore,
(i) for x ∈ D(T), we get y ∈ Tx⇐⇒ Tx = y + T(0).
In particular, 0 ∈ Tx⇐⇒ Tx = T(0).
(ii) For x1, x2 ∈ D(T), we have the following equivalence:

Tx1 ∩ Tx2 , ∅ ⇐⇒ Tx1 = Tx2.

Lemma 2.3. [12] Let T ∈ LR(X,Y) and S ∈ LR(Y,Z) where X,Y and Z are linear spaces. Thus,

(ST)−1 = T−1S−1.

Lemma 2.4. [12]Let X,Y be two linear spaces and T ∈ LR(X,Y). Therefore,
(i) T(0) = TT−1(0) and T−1(0) = T−1T(0).
(ii) T−1Tx = x + T−1(0) ∀ x ∈ D(T).
(iii) TT−1y = y + T(0) ∀ y ∈ R(T).

Proposition 2.5. [12] We have
N(T) ⊂ N(QT) with equality if T(0) is relatively closed in R(T).
γ(T) ≤ γ(QT) with equality if T(0) is relatively closed in R(T).
If T is open and N(T) is closed, then N(T) = N(QT) and γ(T) = γ(QT).

Proposition 2.6. [12] let T ∈ LR(X,Y). Then,
(i) QTT is single-valued.
(ii) ∥Tx∥ = d(y,T(0)) for any x ∈ D(T), y ∈ Tx.
(iii) ∥Tx∥ = d(Tx,T(0)) = d(Tx, 0) (x ∈ D(T)).
(iv) ∥T∥ = sup

x∈BX∩D(T)
∥Tx∥.

(v) γ(T) = ∥T−1
∥
−1
.
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Definition 2.7. Let X be a Banach space and M ⊂ X a bounded subset. The (Hausdorff) measure of noncompactness
of M is defined by

o(M) = in f {ε : ε > 0,Mhas a finite ε − net inX},

where by a finite ε-net for M we mean, as usual, a finite set {z1, ..., zm} ⊂ X with the property that

M ⊂ {z1 + Bε(X)} ∪ ... ∪ {zm + Bε(X)}.

Here and throughout the following we use the notation

Br(X) := {x ∈ X : ∥x∥ ≤ r}

for the closed ball in X, and
Sr(X) := {x ∈ X : ∥x∥ ≤ r}

for the corresponding sphere. In case r = 1 we simply write B1(X) =: B(X) and S1(X) =: S(X).

In the following Proposition we recall some properties of the (Hausdorff) measure of noncompactness.

Proposition 2.8. [15] The measure of noncompactness has the following properties (M,N ⊂ X, λ ∈ K, z ∈ X) :

(a) o(M) = 0 if and only if M is relatively compact, i.e. has compact closure.

(b) |o(M) − o(N)| ≤ o(M +N) ≤ o(M) + o(N).

(c) o(λM) = |λ|o(M).

(d) o(M + {z}) = o(M).

(e) o(co(M)) = o(M), where co(M) is the convex closure of M.

( f ) o(M ∪N) = max{o(M), o(N)}.

(1) o(Br(X)) = o(Sr(X)) = 0 if dim X < ∞ and = r if dim X = ∞.

(h) If M1 ⊇ M2 ⊇ ... ⊇ Mn ⊇ ... is a decreasing sequence of closed sets in X with o(Mn) → 0 as n → ∞, then

M∞ :=
∞⋂

n=1

Mn is nonempty and compact.

3. Characteristic and D-Characteristic

3.1. Characteristic
Definition 3.1. Let T ∈ LR(X,Y) where X,Y are Banach space. Let M a bounded subset ofD(T),QTT(M) a bounded
subset of Y/T(0).We define the characteristic by:

[T]A := sup{k : k > 0, o(QTT(M)) ≤ ko(M)}.

Remark 3.2. i) In particular, in case [T]A < 1 the relation T is called o-contractive. Intuitively speaking, the
condition [T]A < 1 means that the image QTT(M) of any bounded set M ⊂ X is more compact than M itself.
ii) We observe that this definition is equivalent to:

[T]A = sup
o(M)>0

o(QTT(M))
o(M)

if the space X is infinite dimensional. In finite dimensional spaces this does not make sense, since all bounded sets are
precompact, and so there are no sets M satisfying 0 < o(M) < ∞.
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Proposition 3.3. Let T,L ∈ LR(X,Y) and λ ∈ K. The characteristics have the following properties:
(i) [T]A = 0 if and only if T is compact.
(ii) [T + L]A ≤ [T]A + [L]A.
(iii) [λT]A = |λ|[T]A.
(iv) [T]A ≤ ∥T∥.

Proof. The properties (i), (ii) and (iii) are immediate consequences of the definitions 3.1 and the properties
of the measure of noncompactness proved in Proposition 2.8.
(iv) From the definition 2.7 of the measure of noncompactness it follows then that o(QTT(M)) ≤ ko(M) for
any bounded subset M ⊂ X, where at least k = ∥QTT∥. In fact, if {z1, ..., zm} is a finite ε-net for M, then
obviously {QTT(z1), ...,QTT(zm)} is a finite ∥QTT∥ε-net for QTT(M).We have ∥T∥ = ∥QTT∥, then
o(QTT(M)) ≤ ∥T∥o(M). Thus [T]A ≤ ∥T∥.

Proposition 3.4. Let T ∈ LR(X) with [T]A < 1, the following is true:
(i) For any ε > 0, the set {λ ∈ Pσ(T) : |λ| ≥ [T]A + ε} is finite.
(ii) If λ with |λ| > [T]A is not an eigenvalue of T, then λI − T : X 7→ X is an isomorphism.
(iii) Every point λ ∈ σ(T) with |λ| > [T]A is an eigenvalue of T.

Proof. To prove (i), suppose that there exists a sequence (λn)n of distinct eigenvalues of T with |λn| ≥ [T]A+ε,
and let (xn)n be a corresponding sequence of eigenvectors. Since T is o-contractive, we may find k ∈N such
that [T]A

k < 1
2 . Since all eigenvalues are distinct, the sequence of spaces Xn spanned by {x1, ..., xn} is strictly

increasing. By the well-known Riesz lemma we may find a sequence (en)n in S(Xn) such that ∥xn − en∥ ≤
1
2

for all xn ∈ Xn−1. From the fact that en lies in the linear hull of {x1, ..., xn} it follows that

QTTk(en) − λn
ken ∈ Xn−1

and

zn,m := en −
QTTk(en)

λn
k
+

QTTk(em)

λm
k
∈ Xn−1

for n > m. Consequently,

∥QTTk(
en

λn
k
) −QTTk(

em

λm
k
)∥ = ∥en − zn,m∥ ≥

1
2

(n > m).

Now, since the set M := {λ1
ke1, λ2

ke2, λ3
ke3, ...} is included in the closed ball Br(X) of radius r = ([T]A + ε)−1,

we conclude that

o(QTTk(M)) ≤ [T]Ao(M) <
1
2
.

On the other hand, we shows that o(QTTk(M)) ≥ 1
2 , a contradiction. To prove (ii) we show first that the

range R(λI − T) of λI − T is closed in X. Let (yn)n be a sequence in R(QT(λI − T)) which converges to some
y ∈ Y/T(0), and choose xn ∈ X with λxn − QTT(xn) = yn. We claim that the sequence (xn)n is bounded. In
fact, suppose that ∥xn∥ → ∞ and put en := xn

∥xn∥
. Then en ∈ S(X) and λen −QTT(en) = yn

∥xn∥
, hence

∥λen −QTT(en)∥ =
∥yn∥

∥xn∥
→ 0(n→∞).

Moreover,

o({e1, e2, ...}) ≤
[T]A

|λ|
o({e1, e2, ...}) +

1
|λ|

o({y1, y2, ...})

=
[T]A

|λ|
o({e1, e2, ...}),
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which implies that o({e1, e2, e3, ...}) = 0, by our assumption |λ| > [T]A. So (en)n admits a convergent
subsequence, say enk → e ∈ S(X) as k→∞. The continuity of T implies that λe−QTTe = 0, contradicting the
fact that λ < Pσ(L). So we have proved that the sequence (xn)n is bounded. Repeating the same reasoning
as before for (xn)n instead of (en)n we obtain a convergent subsequence xnk → x as k → ∞, and again by
continuity we get y = λx −QTTx ∈ R(QT(λI − T)). The boundedness of the resolvent operator R(λ; QTT) on
R(QT(λI − T)) follows as usual from the closed graph theorem. So R(QT(λI − T)) is closed. Thus R(λI − T)
is closed. Now we show that λI − T is onto, so actually R(λI − T) = X. Since λ < σ(T), so (λI − T)−1 is a
bounded operator. Then, λI − T is injective and surjective. The assertion (iii) is only a reformulation of (ii),
and so the proof is complete.

3.2. D-Characteristic
Definition 3.5. Let T ∈ LR(X,Y) where X,Y are Banach space. Let M a bounded subset ofD(T),QTT(M) a bounded
subset of Y/T(0) and D is a closed subspace of N(T).We define the D-characteristic by:

[T]AD := sup{k : k > 0, o(QTT(M)) ≤ ko(QD(M))}.

Remark 3.6. i) In particular, in case [T]AD < 1 the relation T is called o-D-contractive (D-condensing see [10]).
ii) We observe that this definition is equivalent to:

[T]A = sup
o(QD(M))>0

o(QTT(M))
o(QD(M))

if the space X is infinite dimensional. In finite dimensional spaces this does not make sense, since all bounded sets are
precompact, and so there are no sets QD(M) satisfying 0 < o(QD(M)) < ∞.
iii) The D-characteristic [T]AD satisfy the properties (i), (ii) and (iii) in Proposition 3.3.

4. Lower characteristic

Definition 4.1. Let T ∈ LR(X,Y) where X,Y are Banach space. Let M a bounded subset ofD(T),QTT(M) a bounded
subset of Y/T(0).We define the lower characteristic by:

[T]a := sup{k : k > 0, o(QTT(M)) ≥ ko(M)}.

Remark 4.2. We observe that this definition is equivalent to:

[T]a = inf
o(M)>0

o(QTT(M))
o(M)

if the space X is infinite dimensional. In finite dimensional spaces this does not make sense, since all bounded sets are
precompact, and so there are no sets M satisfying 0 < o(M) < ∞.

Proposition 4.3. Let T ∈ LR(X,Y). [T]a > 0 if and only if T ∈ ϕ+(X,Y).

Proof. Suppose that [T]a > 0, and fix k ∈]0, [T]a[. Since the set
M := N(QTT) ∩ B(X) is mapped into QTT(M) = {0},we get

o(M) ≤
1
k

o(QTT(M)) = 0,

which shows that M is precompact, and hence N(QTT) is finite dimensional. Thus, N(T) is finite dimensional.
We prove now that the range R(T) of T is closed. Since dimN(QTT) < ∞, there exists a closed subspace
X0 ⊂ X such that X = X0⊕N(QTT). Let (yn)n be a sequence in R(QTT) converging to some y∗ ∈ Y, and choose
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(xn)n in X with QTT(xn) = yn. Now we distinguish two cases. First, suppose that (xn)n is bounded. With
k > 0 as before we get then

o(x1, x2, x3, ...) ≤
1
k

o(y1, y2, y3, ...) = 0,

and hence xnk → x∗ for some subsequence (xnk )k of (xn)n and suitable x∗ ∈ X. By continuity we see that
QTT(x∗) = y∗, and so y∗ ∈ R(QTT). On the other hand, suppose that ∥xn∥ → ∞. Set en := xn

∥xn∥
and E :=

{e1, e2, e3, ...}. Then clearly E ⊂ S(X) and

QTT(en) =
QTT(xn)
∥xn∥

=
yn

∥xn∥
→ 0 (n→∞),

hence o(QTT(E)) = 0. On the other hand, o(QTT(E)) ≥ ko(E), by definition, and thus o(E) = 0.Without loss
of generality we may assume that the sequence (en)n converges to some element e ∈ S(X0). So QTT(e) = 0,
contradicting the fact that X0 ∩ N(QTT) = {0}. So R(QTT) is closed and hence R(T) is closed. Now we
prove that the closedness of R(T) and the fact that N(T) is finite dimensional imply that [T]a > 0. Since
dimN(T) < ∞ we may find a closed subspace X0 of X with X = X0 ⊕ N(T). The projection P : X −→ X0
satisfies [P]a = 1, since I − P is compact. Consider the canonical isomorphism L : X0 −→ R(T). Since T = LP
and [L]a > 0,we conclude that also [T]a ≥ [L]a[P]a > 0.
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