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Hugo Arbeláeza, Rodrigo Hernándezb,∗, Willy Sierrac

aUniversidad Nacional de Colombia, Sede Medellı́n, Colombia
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Abstract. In this paper we give a characterization of log J f belongs to B̃p or Q̃p spaces for any locally
univalent sense-preserving harmonic mappings f defined in the unit disk, using the Schwarzian derivative
of f and Carleson measure. In addition, we introduce the classes BT p and QT p, based on the Jacobian
operator, and initiate a study of these spaces.

1. Introduction and preliminaries

The Besov spacesBp have been extensively studied since their introduction by Zhu in [20]. These spaces
can be considered a special case of weighted Bergman spaces, defined as the analytic functions on the unit
disk whose derivatives are integrable with respect to the weight measure (1 − |z|2)α, in this case, α = p − 2.
Readers may refer to the excellent book by P. Duren and A. Schuster [8] for more information on Bergman
spaces. On the other hand, the Qp spaces introduced by J. Xiao in [17] are also defined for those analytic
functions f such that sup

∫
D
| f ′(z)|2(1 − |σa(z)|2)pdA(z) is finite. In this brief manuscript, we will focus on

exploring the relationship between these spaces, the Schwarzian derivative, and Carleson measures in the
context of complex harmonic functions that preserve orientation. More specifically, we will extend the
following results that account for these relationships in the realm of analytic functions:

Theorem A. Let f : D→ Ω be a conformal map such that f (∂D) is a closed Jordan curve. Then

i) If 1 < p < ∞, log f ′ is in Bp if and only if
∫
D

|S f (z)|p(1 − |z|2)2p−2dA(z) < ∞.
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ii) If 0 < p ≤ 1, log f ′ is in Qp,0 if and only if |S f (z)|2(1 − |z|2)2+pdA(z) is a vanishing p-Carleson measure.

Theorem B. Let 0 < p < ∞ and f : D → Ω be a conformal map, then log f ′ ∈ Qp if and only if |S f (z)|2(1 −
|z|2)2+pdA(z) is a p-Carleson measure.

These results appear in [15] and [14], respectively.

In Subsection 1.2, we focus on the definition of the spaces of Besov B̃p and Q̃p for smooth mappings F
such that the derivatives with respect to z and z exist in D. Based on these definitions, in Section 2 our
efforts are dedicated to proving Theorems A and B for these types of spaces. Finally, in Section 3 functions
called Besov type and Q̃p type are introduced in a similar manner to what is done in [9], and we note, in
Remark 3.4, the difficulties that these types of functions present.

As we have already mentioned, in these brief notes we address the aforementioned results but in the
context of locally univalent complex harmonic functions defined on the unit disk. Using the Schwarzian
derivative as a principal tool, defined in [11] for this kinds of mappings, and we defined the corresponding
Besov and Q̃p spaces for this scenario.

1.1. Planar harmonic mappings

In this section we introduce some notation and we present several classical results concerning harmonic
mappings in the plane. We refer to [7] and to the references therein for more details about this topic.

Let f be a planar harmonic mapping defined on the unit disk D = {z : |z| < 1}. In this case, f has the
canonical representation f = h + 1, where h and 1 are analytic functions inD; the representation is unique
under the condition that 1(z0) = 0 for some z0 fixed inD. Here we will assume the condition h(0) = 1(0) = 0.
It is well known that f is locally univalent if and only if its Jacobian J f = |h′|2− |1′|2 does not vanish. Thus, if
f is locally univalent, it is either sense-preserving or sense-reversing depending on the conditions J f > 0 or
J f < 0 throughout its domain, respectively. Along this paper we will consider sense-preserving harmonic
mappings onD, case in which the analytic part h is locally univalent inD and the second complex dilatation
of f , w = 1′/h′, is an analytic function in D satisfying the condition |w(z)| < 1, for all z ∈ D. We define the
function F = log J f . By using the operators ∂z and ∂z, defined by

∂z :=
1
2

(
∂x − i∂y

)
and ∂z :=

1
2

(
∂x + i∂y

)
,

we have Fz = Fz,

Fz =
h′′

h′
−

w′w̄
1 − |w|2

, and Fzz =

(
h′′

h′

)′
−

w′′w̄
1 − |w|2

−

(
w′w̄

1 − |w|2

)2

. (1)

Note that Fz coincides with the Pre-Schwarzian derivative of the harmonic function f , denoted by P f ,
which was introduced in [11]. In that same paper the authors define the Schwarzian derivative of f by
S f = ∂zP f −

1
2 (P f )2. It follows from (1) that

S f = Fzz −
1
2

(Fz)2

= Sh +
w̄

1 − |w|2

(
w′

h′′

h′
− w′′

)
−

3
2

(
w′w̄

1 − |w|2

)2

,
(2)

where Sh denotes the Schwarzian derivative of the analytic function h, which is given by

Sh =

(
h′′

h′

)′
−

1
2

(
h′′

h′

)2

.
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As in the analytic case, the Pre-Schwarzian and Schwarzian norms of f are given by

∥P f ∥ := sup
z∈D
{(1 − |z|2)|P f (z)|} and ∥S f ∥ := sup

z∈D
{(1 − |z|2)2

|S f (z)|},

respectively. Both in the analytic case and in the harmonic case these norms are closely related with the
notion of uniformly locally univalent functions on the unit disk, that is, those harmonic functions f : D→ C
for which there is a constant 0 < ρ := ρ( f ) ≤ ∞, such that f is univalent in each hyperbolic disk with center
a ∈ D and hyperbolic radius ρ, which will be denoted by D(a, ρ). Note that f is univalent if ρ = ∞. We
remember that the hyperbolic distance inD is defined by

dh(z, ξ) =
1
2

log
1 + p(z, ξ)
1 − p(z, ξ)

, where p(z, ξ) =

∣∣∣∣∣∣ z − ξ

1 − ξz

∣∣∣∣∣∣ .
When f is analytic, in [18] is proven that f is uniformly locally univalent if and only if ∥P f ∥ is finite, which
also is equivalent to ∥S f ∥ finite. A generalization to the harmonic case can be found in [11], where it is also
proven that for a locally univalent harmonic mapping f = h+ 1, ∥S f ∥ is finite if and only if ∥Sh∥ is finite; we
will use these facts later without further comment.

1.2. Some spaces of harmonic mappings
Now we define the functions spaces that we will use in this paper. We start recalling that if A(D) denotes

the space of analytic functions inD, the analytic Bloch space is defined by

B = {h ∈ A(D) : ∥h∥B := sup
z∈D

(1 − |z|2)|h′(z)| < ∞}

and the little analytic Bloch space is the subspace of B given by

B0 := {h ∈ A(D) : lim
|z|→1−

(1 − |z|2)|h′(z)| = 0}.

For 1 < p < ∞, we say that h ∈ A(D) belongs to the analytic Besov space Bp if

∥h∥p
Bp

:=
∫
D

|h′(z)|p(1 − |z|2)p−2dA(z) < ∞, (3)

where dA is the element of the Lebesgue area measure on D. The space Qp, 0 < p < ∞, consists of all
functions h ∈ A(D) satisfying the condition

sup
a∈D

∫
D

|h′(z)|2(1 − |φa(z)|2)pdA(z) < ∞,

where φa(z) := a−z
1−az . Note that φa is an automorphism of D satisfying φa(a) = 0, φa(0) = a, (1 − |z|2)|φ′a(z)| =

1 − |φa(z)|2, and φ−1
a = φa. We will say that a function h ∈ A(D) belongs to the space Qp,0 if

lim
|a|→1−

∫
D

|h′(z)|2(1 − |φa(z)|2)pdA(z) = 0.

Throughout the paper, we use a ≲ b (a ≳ b) to denote a ≤ Cb (a ≥ Cb), being C a constant independent of a
and b. We also write a ≃ b, if a ≲ b and a ≳ b. With this notation we have the following results, which will
be a key ingredient in the proofs of the proposed results. The first of them, see for example [14], establishes
that if 0 < p < ∞ and −1 < α < ∞,∫

D

|h(z)|p(1 − |z|2)αdA(z) ≃
∫
D

|h′(z)|p(1 − |z|2)p+αdA(z) + |h(0)|p, (4)
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for all h ∈ A(D). The second, which is proven in [4, Theorem 1], says that for n ≥ 1 and 0 < p < ∞, h ∈ Qp if
and only if

sup
a∈D

∫
D

|h(n)(z)|2
(
1 − |φa(z)|2

)p
(1 − |z|2)2n−2dA(z) < ∞. (5)

The classical theory of analytic functions spaces has a natural extension to the setting of smooth functions
fromD into C, which has been being investigated in the last years. For some works on this topic, we refer
to the reader to [1, 6, 9, 19]. In particular, in [6] is studied the harmonic extension of B and it is shown that
a harmonic function F : D→ C belongs to the harmonic Bloch space if and only if

sup
z∈D
{(1 − |z|2)(|Fz(z)| + |Fz̄(z)|)} < ∞. (6)

This definition clearly can be extended to include the whole family of smooth functions from D into C.
Thus, a smooth function F : D→ C is said to be a Bloch function if it satisfies (6). We will use B̃ to denote
the space of such Bloch functions.

In a similar way to the previous case, we use the definition proposed in [1] of harmonic Besov spaces to
include smooth functions fromD into C. For 1 < p < ∞, if a smooth function F : D→ C satisfies∫

D

(|Fz(z)| + |Fz̄(z)|)p(1 − |z|2)p−2dA(z) < ∞, (7)

we will say that it belongs to the Besov space B̃p.

Remark 1.1. If f = h + 1 is a harmonic function and F = log J f , then (1) gives us∣∣∣∣∣h′′h′

∣∣∣∣∣p ≲ |Fz|
p +

(
|w′w|

1 − |w|2

)p

and |Fz|
p ≲

∣∣∣∣∣h′′h′

∣∣∣∣∣p + (
|w′w|

1 − |w|2

)p

,

1 < p < ∞. Hence, if ∥w∥ := sup{|w(z)| : z ∈ D} < 1 and w ∈ Bp, then F ∈ B̃p if and only if log h′ ∈ Bp.

By following the same line as in [12], a smooth function F : D→ C belongs to the space Q̃p, 0 < p < ∞,
if it satisfies

sup
a∈D

∫
D

(|Fz(z)| + |Fz̄|)2(1 − |φa(z)|2)pdA(z) < ∞ (8)

and F ∈ Q̃p,0, if

lim
|a|→1−

∫
D

(|Fz(z)| + |Fz̄|)2(1 − |φa(z)|2)pdA(z) = 0.

1.3. Carleson measures

With a similar notation to that used in [14, 15], given an arc I ⊆ ∂D, we write |I| for the normalized
arclength of I and we define the set

S(I) := {z = reit
∈ D : 1 − r < |I| and eit

∈ I}.

Let µ be a positive Borel measure onD and p > 0. µ is said to be a p−Carleson measure onD, if

∥µ∥p := sup
I⊆∂D

µ(S(I))
|I|p

< ∞,
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which is equivalent to the condition

sup
a∈D

∫
D

∣∣∣φ′a(z)
∣∣∣p dµ(z) < ∞. (9)

A p−Carleson measure µ onD is called a p-vanishing Carleson measure onD if

lim
|I|→0

µ(S(I))
|I|p

= 0.

This is equal to

lim
|a|→1−

∫
D

∣∣∣φ′a(z)
∣∣∣p dµ(z) = 0,

see [3, Lemma 2.1]. We are now ready to address the main theme of the paper.

2. Relationship between Besov spaces B̃p and Q̃p spaces and the Schwarzian derivative

In this section we will study in the setting of harmonic mappings some of the results presented in [15]
for the case of analytic functions. We start with the following theorem, which is a harmonic version of one
of the implications of part i) of Theorem A (Theorem 1 in [15]).

Theorem 2.1. Let 1 < p < ∞ and f : D→ C be a uniformly locally univalent harmonic map with dilatation w ∈ Bp

satisfying ∥w∥ < 1. If F = log J f ∈ B̃p, then

I( f ) :=
∫
D

|S f (z)|p(1 − |z|2)2p−2dA(z) (10)

is finite.

Proof. We suppose that F = log J f ∈ B̃p and we write f in the standard form h + 1. By equation (2) one has
that

I( f ) ≲
∫
D

|Fzz(z)|p(1 − |z|2)2p−2dA(z) +
∫
D

|Fz(z)|2p(1 − |z|2)2p−2dA(z). (11)

On the other hand, the condition ∥w∥ < 1 and (4) imply∫
D

(1 − |z|2)2p−2

∣∣∣∣∣∣w′′(z)w(z)
1 − |w(z)|2

∣∣∣∣∣∣
p

dA(z) ≲
∫
D

|w′′(z)|p (1 − |z|2)p+(p−2)dA(z)

≲

∫
D

|w′(z)|p(1 − |z|2)p−2dA(z) − |w(0)|p,

(12)

which is finite since w ∈ Bp.
Next, from ∥w∥ < 1 we have the estimate

(1 − |z|2)2p−2

∣∣∣∣∣∣ w′(z)w(z)
1 − |w(z)|2

∣∣∣∣∣∣
2p

≲ (1 − |z|2)p−2
|w′(z)|p

∣∣∣∣∣∣ (1 − |z|2)w′(z)
1 − |w(z)|2

∣∣∣∣∣∣p .
It follows from the Schwarz-Pick inequality and w ∈ Bp, that∫

D

(1 − |z|2)2p−2

∣∣∣∣∣∣ w′(z)w(z)
1 − |w(z)|2

∣∣∣∣∣∣
2p

dA(z) < ∞. (13)
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On the other hand, we note that in virtue of (4),∫
D

(1−|z|2)2p−2

∣∣∣∣∣∣
(

h′′(z)
h′(z)

)′∣∣∣∣∣∣p dA(z) =
∫
D

(1−|z|2)p+(p−2)

∣∣∣∣∣∣
(

h′′(z)
h′(z)

)′∣∣∣∣∣∣p dA(z) ≲
∫
D

∣∣∣∣∣h′′(z)
h′(z)

∣∣∣∣∣p (1−|z|2)p−2dA−
∣∣∣∣∣h′′(0)
h′(0)

∣∣∣∣∣p < ∞,
since by hypothesis and Remark 1.1, log h′ ∈ Bp. We conclude from this, (1), (12), and (13), that the first
integral in (11) is finite.

With respect to the second integral of (11), we observe that

|Fz(z)|2p(1 − |z|2)2p−2 =
(
|Fz(z)|(1 − |z|2)

)p
|Fz(z)|p(1 − |z|2)p−2. (14)

Now, the fact that f is uniformly locally univalent guarantees us that ∥S f ∥ < ∞ and therefore ∥Sh∥ < ∞ [11,
Theorem 6]. Hence, h is uniformly locally univalent, or equivalently, ∥Ph∥ < ∞. It follows from (1) and the
Schwarz-Pick inequality that the first factor of the right side of (14) is bounded. In consequence,∫

D

|Fz(z)|2p(1 − |z|2)2p−2dA(z) ≲
∫
D

|Fz(z)|p(1 − |z|2)p−2dA(z) < ∞,

since F ∈ B̃p. We conclude that I( f ) < ∞, which ends the proof.

Remark 2.2. Following similar arguments to that given in the above proof, one can show that under the same
conditions on w, I( f ) is finite if and only if I(h) is finite. We will use this fact to give other alternative approximation
of part i) of Theorem A. To this end we will consider a linear combination of the form φλ := h + λ1, λ ∈ ∂D, where
f = h + 1. We note that the relationship between the analytic function φλ and the harmonic function f has been
extensively used by various authors to derive properties of f from those of φλ. An important example of this fact is
the called shear construction, which was introduced in [5] to construct sense preserving univalent harmonic map-
pings in the unit disk. See also [10] for other results relating properties ofφλ with those of the corresponding function f .

Theorem 2.3. Let 1 < p < ∞ and f = h + 1 : D→ C be a univalent harmonic map such that its dilatation w ∈ Bp
satisfies ∥w∥ < 1 and assume that φ := φλ = h + λ1 is a conformal map with φ(∂D) a closed Jordan curve for some
λ ∈ ∂D. Then F = log J f ∈ B̃p if and only if I( f ) is finite.

Proof. That F = log J f ∈ B̃p implies I( f ) < ∞, is the statement of the above theorem. To the converse, from
the definition of φ, we obtain

φ′ = h′(1 + λw) and
φ′′

φ′
=

h′′

h′
+

λw′

1 + λw
,

from which we get, after a straightforward calculation, that

Sh = Sφ +
φ′′

φ′
λw′

1 + λw
+

1
2

(
λw′

1 + λw

)2

−
λw′′

1 + λw
. (15)

We conclude, following the same arguments as in the proof of Theorem 2.1, that I(h) < ∞ if and only if
I(φ) < ∞. Since Remark 2.2 and the hypothesis imply I(h) < ∞, it follows that I(φ) < ∞. Now we use
Theorem 1 in [15] to obtain that logφ′ ∈ Bp, which implies that

log h′ = logφ′ − log(1 + λw) ∈ Bp.

The theorem follows by using Remark 1.1.
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Example 2.4. To illustrate Theorem 2.3, we consider the shear f = h + 1̄ of the identity function φ(z) = z with
dilatation w(z) = ρz, 0 < ρ < 1. Then h − 1 = φ and 1′ = wh′, whence

h′(z) =
1

1 − ρz
and 1′(z) =

ρz
1 − ρz

.

Moreover, it is clear that ∥w∥ < 1 and w ∈ Bp, for all p > 1. Note that log h′ ∈ Bp and therefore Remark 1.1 implies
that log J f ∈ B̃p, for all p > 1. We conclude from Theorem 2.3 that I( f ) < ∞.

Remark 2.5. In relation with the assumption ∥w∥ < 1, we highlight that this condition is not so restrictive; it in
general can not be omitted from the statement of the above results. For example, we will show that most of harmonic
function f = h + 1̄, with dilatation w(z) = z, satisfy log J f < B̃p, for all p. Indeed, if w(z) = z one has that

log J f ∈ B̃p if and only if
∫
D

∣∣∣∂z log J f (z)
∣∣∣p (1 − |z|2)p−2dA(z) < ∞,

whence log J f ∈ B̃p if and only if∫
D

∣∣∣∣∣(1 − |z|2)
h′′(z)
h′(z)

− z̄
∣∣∣∣∣p (1 − |z|2)−2dA(z) < ∞. (16)

However, assuming for example that h′′/h′ has finite angular limit at some point ξ ∈ ∂D (this is essentially the case
for most of meromorphic functions inD, except possibly those with a behaviour very bad at almost all points of ∂D,
see Plessner’s Theorem in [16]), it can be proven that the integral in (16) diverges. In effect, in this case we can choose
a Stolz angle at ξ of the form

∆ = {z ∈ D : | arg(1 − ξz)| < α and |z − ξ| < ρ < 1/2},

with 0 < α < π
2 , 0 < ρ < 2 cosα, and 0 < δ0 < 2ρ/3 such that∣∣∣∣∣(1 − |z|2)

h′′(z)
h′(z)

− z̄
∣∣∣∣∣ ≥ |z| − 1

2
≥ (1 − ρ) −

1
2
=

1
2
− ρ,

for all z ∈ ∆ ∩ B(ξ, δ0), where B(a, r) denote the euclidean ball of radius r > 0 and center a. Thus, for all 0 < δ < δ0,∫
Ωδ

∣∣∣∣∣(1 − |z|2)
h′′(z)
h′(z)

− z̄
∣∣∣∣∣p (1 − |z|2)−2dA(z) ≥

(1
2
− ρ

)p ∫
Ωδ

dA(z)
(1 − |z|2)2 ≥

(1
2
− ρ

)p 1

(1 − (1 − δ)2)2

∫
Ωδ

dA(z),

where Ωδ := ∆ ∩ B(ξ, δ). In consequence,∫
Ωδ

∣∣∣∣∣(1 − |z|2)
h′′(z)
h′(z)

− z̄
∣∣∣∣∣p (1 − |z|2)−2dA(z) ≥ C

δ2

4δ2 − 4δ3 + δ4 ,

for some constant C independent of δ. By taking limit when δ→ 0 it follows that the integral in (16) must be divergent
and therefore log J f < B̃p, for all p.

The same argument shows that most of harmonic function f = h+ 1̄, with dilatation an automorphism of the disk,
satisfy log J f < B̃p, for all p.

Next, we will prove results similar to the previous ones but this time in spaces Q̃p. To this end we need
a version in the setting of uniformly locally univalent analytic functions of one of the implications of
Theorem B; more precisely we require the following result:

Proposition 2.6. Suppose that 0 < p < ∞ and h is a uniformly locally univalent analytic function in the unit disk.
If |Sh(z)|2(1 − |z|2)2+p is a p−Carleson measure, then log h′ ∈ Qp.
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The proof of the proposition is a slight modification of the proof of (b) implies (a) in [14, Theorem 1] and
we will omit it. We remark that except for the value of the constants, the previous results required for the
proof of (b) implies (a) in [14, Theorem 1] are also true for uniformly locally univalent analytic function.
For example, for functions h in this class there is M > 0 such that (1− |z|2)2

|Sh(z)| ≤M, for all z ∈ D (compare
with Lemma A in [14]). For the sake of completeness we prove in this context a version of Lemma 4 in [14].

Lemma 2.7. Let h be a uniformly locally univalent analytic function inD and suppose that there is z0 ∈ D such that

(1 − |z0|
2)2
|Sh(z0)| > δ.

Then there is a positive constant c = c(δ, h) < 1 such that

(1 − |z|2)2
|Sh(z)| >

δ
32
,

for all z ∈ B(z0, c(1 − |z0|
2)).

Proof. Let ρ > 0 such that h is univalent in each hyperbolic disk D(a, ρ),with a ∈ D, and we choose 0 < r < 1
satisfying ρ = dh(0, r). Then the analytic function ψ(z) = h(φz0 (rz)) is univalent inD and

Sψ(z) = Sh(φz0 (rz))(φ′z0
(rz))2r2, z ∈ D,

whence

|Sψ(0)| = |Sh(z0)|(1 − |z0|
2)2r2 > δr2.

We conclude from Lemma 4 in [14] that there is 0 < c̃ = c̃(δ, r) < 1 such that

(1 − |z|2)2
|Sψ(z)| >

δr2

32
,

for all z ∈ B(0, c̃), and therefore

(1 − |z|2)2
|Sh(φz0 (rz))||φ′z0

(rz)|2r2 >
δr2

32
,

for all z ∈ B(0, c̃). Thus, by properties of the automorphisms of the disk we have

(1 − |φz0 (rz)|2)2
||Sh(φz0 (rz))| >

δ
32
,

for all z ∈ B(0, c̃). In consequence, by defining ζ = φz0 (rz), one has that

(1 − |ζ|2)2
||Sh(ζ)| >

δ
32
,

for all ζ ∈ D(z0, ρ̃), where ρ̃ = dh(0, r̃c). The lemma follows having into account that the hyperbolic disk
D(z0, ρ̃) contains the euclidean ball B(z0, r̃c(1 − |z0|

2)/4).

Theorem 2.8. Let 0 < p < ∞ and f : D→ C be a uniformly locally univalent harmonic map with dilatation w ∈ Qp

satisfying ∥w∥ < 1. Then F = log J f ∈ Q̃p if and only if µ = |S f (z)|2(1 − |z|2)2+p is a p−Carleson measure.

Proof. We suppose that (8) holds, or equivalently,

sup
a∈D

∫
D

∣∣∣∣∣∣h′′(z)
h′(z)

−
w′(z)w(z)
1 − |w(z)|2

∣∣∣∣∣∣
2

(1 − |φa(z)|2)pdA(z) < ∞. (17)



H. Arbeláez et al. / Filomat 39:35 (2025), 12445–12459 12453

By (9) it is sufficient prove that

sup
a∈D

∫
D

|S f (z)|2(1 − |z|2)2+p
|φ′a(z)|pdA(z) < ∞. (18)

If we denote by A( f , a) the integral∫
D

|S f (z)|2(1 − |z|2)2+p
|φ′a(z)|pdA(z),

we obtain, from (2) and the Schwarz-Pick inequality, that

A( f , a) ≲
∫
D

(
|Fzz(z)|2 + |Fz(z)|4

)
(1 − |z|2)2(1 − |φa(z)|2)pdA(z). (19)

Now, on the one hand,∫
D

|Fz(z)|4(1 − |z|2)2(1 − |φa(z)|2)pdA(z) =
∫
D

[(1 − |z|2)|Fz(z)|]2
|Fz(z)|2(1 − |φa(z)|2)pdA(z),

whence∫
D

|Fz(z)|4(1 − |z|2)2(1 − |φa(z)|2)pdA(z) ≤ ∥P f ∥
2
∫
D

|Fz(z)|2(1 − |φa(z)|2)pdA(z).

We conclude from (17) and the definition of Fz that

sup
a∈D

∫
D

|Fz(z)|4(1 − |z|2)2(1 − |φa(z)|2)pdA(z) < ∞. (20)

On the other hand we show that

sup
a∈D

∫
D

|Fzz(z)|2(1 − |z|2)2(1 − |φa(z)|2)pdA(z) < ∞, (21)

which is equivalent to prove

sup
a∈D

∫
D

∣∣∣∣∣∣∣
(

h′′(z)
h′(z)

)′
−

w′′(z)w(z)
1 − |w(z)|2

−

 w′(z)w(z)
1 − |w(z)|2

2∣∣∣∣∣∣∣
2

(1 − |z|2)2(1 − |φa(z)|2)pdA(z) < ∞.

To this end we first note that

F = log |h′|2 + log(1 − |w|2) and F,w ∈ Q̃p

imply that log h′ ∈ Qp. Therefore, (5) yields

sup
a∈D

∫
D

∣∣∣∣∣∣
(

h′′(z)
h′(z)

)′∣∣∣∣∣∣2 (1 − |z|2)2(1 − |φa(z)|2)pdA(z) < ∞. (22)

Next, taking into account the conditions w ∈ Qp, ∥w∥ < 1 and applying again (5), we see that

sup
a∈D

∫
D

∣∣∣∣∣∣w′′(z)w(z)
1 − |w(z)|2

∣∣∣∣∣∣
2

(1 − |z|2)2(1 − |φa(z)|2)pdA(z) < ∞. (23)
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Now we use the Schwarz-Pick inequality to conclude that∫
D

∣∣∣∣∣∣ w′(z)w(z)
1 − |w(z)|2

∣∣∣∣∣∣
4

(1 − |z|2)2(1 − |φa(z)|2)pdA(z) ≤
∫
D

|w′(z)|2(1 − |φa(z)|2)pdA(z),

which gives

sup
a∈D

∫
D

∣∣∣∣∣∣ w′(z)w(z)
1 − |w(z)|2

∣∣∣∣∣∣
4

(1 − |z|2)2(1 − |φa(z)|2)pdA(z) < ∞, (24)

since w ∈ Qp. From (22), (23), and (24) it follows (21). Hence and (20) we obtain that

sup
a∈D

A( f , a) < ∞,

and consequently µ = |S f (z)|2(1 − |z|2)2+p is a p−Carleson measure.
To prove the converse, we will first use

Sh = S f −
w

1 − |w|2

(
w′

h′′

h′
− w′′

)
+

3
2

(
w′w

1 − |w|2

)2

to prove that |Sh(z)|2(1 − |z|2)2+p is a p−Carleson measure.
In view of ∥Ph∥ < ∞, which is a consequence of the fact that f is uniformly locally univalent, and the

condition ∥w∥ < 1, we can obtain∫
D

∣∣∣∣∣∣ w(z)
1 − |w(z)|2

∣∣∣∣∣∣
2 ∣∣∣∣∣w′(z)

h′′(z)
h′(z)

∣∣∣∣∣2 (1 − |z|2)2+p
|φ′a(z)|pdA(z) ≲

∫
D

|w′(z)|2(1 − |z|2)p
|φ′a(z)|pdA(z),

whence in virtue of w ∈ Qp, we conclude that

sup
a∈D

∫
D

∣∣∣∣∣∣ w(z)
1 − |w(z)|2

∣∣∣∣∣∣
2 ∣∣∣∣∣w′(z)

h′′(z)
h′(z)

∣∣∣∣∣2 (1 − |z|2)2+p
|φ′a(z)|pdA(z) < ∞. (25)

Now we use again ∥w∥ < 1 to obtain∫
D

∣∣∣∣∣∣ w(z)
1 − |w(z)|2

∣∣∣∣∣∣
2

|w′′(z)|2 (1 − |z|2)2+p
|φ′a(z)|pdA(z) ≲

∫
D

|w′′(z)|2 (1 − |z|2)2+p
|φ′a(z)|pdA(z),

which, because of (5) and w ∈ Qp, gives

sup
a∈D

∫
D

∣∣∣∣∣∣ w(z)
1 − |w(z)|2

∣∣∣∣∣∣
2

|w′′(z)|2 (1 − |z|2)2+p
|φ′a(z)|pdA(z) < ∞. (26)

It follows from (24), (25), and (26) that |Sh(z)|2(1 − |z|2)2+p is a p−Carleson measure. Thus Proposition 2.6
implies that log h′ ∈ Qp, whence in virtue of the equality F = log |h′|2 + log(1 − |w|2) and the hypothesis
w ∈ Qp, it follows that F = log J f ∈ Q̃p.

With some minor changes in the proof of the first implication of Theorem 2.8, we can extend to the setting
of harmonic mappings the implication “only if” of part ii) of Theorem A. In this case, instead of (5) we use
the fact that for n ≥ 1 and 0 < p < ∞, h ∈ Qp,0 if and only if

lim
|a|→1

∫
D

|h(n)(z)|2
(
1 − |φa(z)|2

)p
(1 − |z|2)2n−2dA(z) = 0, (27)

see [4, Theorem 2]. The final result would be the following:
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Theorem 2.9. Let 0 < p < ∞ and f : D → C be a uniformly locally univalent harmonic map with dilatation
w ∈ Qp,0 satisfying ∥w∥ < 1. If F = log J f ∈ Q̃p,0, then µ = |S f (z)|2(1 − |z|2)2+p is a vanishing p−Carleson measure.

Remark 2.10. One can prove that the harmonic function f constructed in Example 2.4 satisfies the hypotheses of the
above theorem for 0 < p < 1, therefore µ = |S f (z)|2(1 − |z|2)2+p is a vanishing p−Carleson measure, if 0 < p < 1.

A harmonic version of the other implication of part ii) of Theorem A can be obtained by using the
method employed in Theorem 2.3.

Theorem 2.11. Let 0 < p ≤ 1 and f = h+ 1 : D→ C be a univalent harmonic map such that its dilatation w ∈ Qp,0
satisfies ∥w∥ < 1 and assume that φ := φλ = h + λ1 is a conformal map with φ(∂D) a closed Jordan curve for some
λ ∈ ∂D. If |S f (z)|2(1 − |z|2)2+pdA(z) is a vanishing p−Carleson measure, then F = log J f ∈ Q̃p,0.

Proof. We can verify by a straightforward calculation, using (2), that

dµ f := |S f (z)|2(1 − |z|2)2+pdA(z)

is a vanishing p−Carleson measure if and only if

dµh := |Sh(z)|2(1 − |z|2)2+pdA(z)

is a vanishing p−Carleson measure, which is equivalent to the fact that

dµφ := |Sφ(z)|2(1 − |z|2)2+pdA(z)

is a vanishing p−Carleson measure, by (15). In both cases (27) is applied. Then part ii) of Theorem A implies
that logφ′ ∈ Qp,0, whence

log h′ = logφ′ − log(1 + λw) ∈ Qp,0.

The conclusion of the theorem follows from

|Fz|
2 ≲

∣∣∣∣∣h′′h′

∣∣∣∣∣2 + (
|w′w|

1 − |w|2

)2

and the conditions w ∈ Qp,0 and ∥w∥ < 1.

3. On harmonic Besov-type and Q̃p−type mappings class

Our main objective in this section is to introduce the Besov-type and Q̃p−type classes of harmonic
mappings and study their connection with the Bloch-type class of harmonic mappings defined in [9], see
also [13] for a generalization. A smooth function F : D→ C is said to be Bloch-type if

β2(F) := sup
z∈D

(1 − |z|2)
√
|JF(z)| < ∞. (28)

We useBT to denote this class of functions, which clearly contains the analytic Bloch spaceB and, although
it is not a linear space, it also contains the Bloch space B̃, being this fact an immediate consequence of
J1/2
F ≤ |Fz| + |Fz|. Example 2 in [9] shows that there are harmonic functions in BT that do not belong to the

space B̃. It is natural to define BT 0 as the set of all smooth function F : D→ C such that

lim
|z|→1−

(1 − |z|2)|JF(z)|1/2 = 0.
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Following these ideas, we define the class of Q̃p−type functions, 0 < p < ∞, denoted by QT p, as the class of
smooth functions F : D→ C such that

sup
a∈D

∫
D

|JF(z)|(1 − |φa(z)|2)pdA(z) < ∞.

It is clear that Qp ⊆ Q̃p ⊆ QT p, for all 0 < p < ∞. Similarly, we will say that F belongs to the class of
Besov-type functions BT p, 1 < p < ∞, if

β(F) :=
∫
D

|JF(z)|p/2(1 − |z|2)p−2dA(z) < ∞. (29)

Here also it is easy to see that Bp ⊆ B̃p ⊆ BT p.
The following proposition exhibits some important properties of the previous classes.

Proposition 3.1. The classes BT p, p > 1, and QT p, p > 0, are affine and linearly invariant.

Proof. For all automorphism σ ofD, |J f◦σ(z)| = |J f (σ(z))||σ′(z)|2, z ∈ D. Hence,∫
D

|JF◦σ(z)|p/2(1 − |z|2)p−2dA(z) =
∫
D

|JF(σ(z))|p/2|σ′(z)|p(1 − |z|2)p−2dA(z)

=

∫
D

|JF(σ(z))|p/2(1 − |σ(z)|2)p−2
|σ′(z)|2dA(z)

=

∫
D

|JF(z)|p/2(1 − |z|2)p−2dA(z),

which shows that the class BT p is linearly invariant. This is, F ◦ σ ∈ BT p, for all automorphism σ ofD and
F ∈ BT p. Also it is easy to see the affine invariance of BT p, which means that aF+ bF ∈ BT p, for all a, b ∈ C
and F ∈ BT p. This follows from the equality JaF+bF = (|a|2− |b|2)JF. To show the second statement we observe
that ∫

D

|JF◦σ(z)|(1 − |φa(z)|2)pdA(z) =
∫
D

|JF(σ(z))|(1 − |φa(z)|2)p
|σ′(z)|2dA(z)

=

∫
D

|JF(ζ)|(1 − |φa(σ−1(ζ))|2)pdA(ζ)

=

∫
D

|JF(z)|(1 − |φb(z)|2)pdA(z),

for some b := b(a, σ) ∈ D,which implies thatQT p is linearly invariant. The affine invariance ofQT p follows
also of the equality JaF+bF = (|a|2 − |b|2)JF.

We remark that the affine and linear invariance ofBT was proven in [9]. Those properties allow us to prove
the following proposition, which generalizes a statement in [16] page 73.

Proposition 3.2. Let f be a harmonic mapping in ∈ BT and ∥w∥ < 1, then

| f (z1) − f (z2)| ≤
(1 + ∥w∥

1 − ∥w∥

)1/2

β2( f )dh(z1, z2),

for all z1, z2 ∈ D.

Proof. Since β2( f ) = β2( f ◦ σ) for σ ∈ Aut(D), we can assume that z1 = z and z2 = 0. Thus,

| f (z) − f (0)| ≤
∫ 1

0

∣∣∣( fz(tz)z + fz(tz)z)
∣∣∣ dt ≤

∫ 1

0
| fz(tz)|(1 − |w(tz)|2)1/2 1 + |w(tz)|

(1 − |w(tz)|2)1/2
|z|dt

=

∫ 1

0
|J1/2

f (tz)|
(

1 + |w(tz)|
1 − |w(tz)|

)1/2

|z|dt ≤
(1 + ∥w∥

1 − ∥w∥

)1/2

β2( f )
∫ 1

0

|z|
1 − t2|z|2

dt.
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After integrating we obtain

| f (z) − f (0)| ≤
1
2

(1 + ∥w∥
1 − ∥w∥

)1/2

β2( f ) ln
(1 + |z|

1 − |z|

)
=

(1 + ∥w∥
1 − ∥w∥

)1/2

β2( f )dh(0, z),

which ends the proof.

Example 3.3. Let f = h + 1 with h(z) = 2(1 − z)−1/2 and w(z) = z, z ∈ D. We observe that

J f (z) = |h′(z)|2(1 − |z|2) =
1 − |z|2

|1 − z|3
.

i) f ∈ BT since

(1 − |z|2)J f (z)1/2 =

(
1 − |z|2

|1 − z|

)3/2

≤ 23/2,

for all z ∈ D.

ii) f < BT 0. In effect, if z = x ∈ (−1, 1),

lim
x→1−

(1 − x2)J f (x)1/2 = 23/2.

iii) For p > 1, f ∈ QT p. This follows from the fact that∫
D

J f (z)(1 − |φa(z)|2)pdA =
∫
D

1 − |z|2

|1 − z|3
(1 − |φa(z)|2)pdA

=

∫
D

(
1 − |z|2

|1 − z|

)3

(1 − |φa(z)|2)p−2
|φ′a(z)|2dA

≤ 8
∫
D

(1 − |ζ|2)p−2dA(ζ) < ∞,

for all a ∈ D, where ζ = φa(z).

iv) In part ii) of Remark 3.4 below we will prove that f < BT p, p > 1.

Remark 3.4. The previous example suggests that we should study how the classes defined above are related.

i) For p > 1, BT ⊆ QT p. In effect, if F ∈ BT , for all a ∈ D (28) implies∫
D

|JF(z)|(1 − |φa(z)|2)pdA(z) =
∫
D

|JF(z)1/2(1 − |z|2)|2(1 − |z|2)p−2
|φ′a(z)|pdA(z)

≤ β2(F)2
∫
D

(1 − |z|2)p−2
|φ′a(z)|pdA(z)

= β2(F)2
∫
D

(1 − |φa(z)|2)p−2
|φ′a(z)|2dA(z).

Hence, the change of variables ζ = φa(z) gives∫
D

|JF(z)|(1 − |φa(z)|2)pdA(z) ≤ β2(F)2
∫
D

(1 − |ζ|2)p−2dA(ζ) = C(F),

where C(F) denotes a constant depending only on F. Thus, F ∈ QT p, for all p > 1.
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ii) If f = h + 1 ∈ BT p, p > 1, and w(z) = z, then f ∈ BT 0. Indeed, f ∈ BT p implies∫
D

[(1 − |z|2)3/2
|h′(z)|]p(1 − |z|2)−2dA(z) < ∞.

So, if k′ := (h′)2/3, then k ∈ B3p/2 and therefore k ∈ B0. In consequence,

lim
|z|→1−

(1 − |z|2)J f (z)1/2 = lim
|z|→1−

[(1 − |z|2)|h′(z)|2/3]3/2 = lim
|z|→1−

[(1 − |z|2)|k′(z)|]3/2 = 0.

Hence, f ∈ BT 0.

The above statement remains valid if (1 − |w|2) ∼ (1 − |z|2). In particular,

a) If w(z) = zn,n ∈N, it is sufficient to observe that

1 − |zn
|
2 = (1 − |z|2)(1 + |z|2 + |z|4 + · · · + |z|2n−2) ≥ 1 − |z|2,

and we proceed as above.

b) If w(z) = (z + a)/(1 + az), we consider F = f − a f . By Proposition 3.1, if f ∈ BT p then F ∈ BT p. Since
wF = Id, part ii) above implies that F ∈ BT 0 and so f ∈ BT 0.

Example 3.5. The authors in [2] introduce the class NH0
µ, 0 < µ ≤ 1, of locally univalent sense preserving harmonic

mappings f , defined in the unit disk, for which

|S f (z)| +
|w′(z)|2

(1 − |w(z)|2)2 ≤
2µ

(1 − |z|2)2 ,

with ∇J f (0, 0) = (0, 0). By using Theorem 2.2 in [2], for f ∈ NH0
µ with J f (0) = 1 we have that

i) If µ = 1 then

1 − |z|2 ≤ J1/2
f (z) ≤ (1 − |z|2)−1,

whence f ∈ BT and even more β2( f ) = 1.

ii) If 0 < µ < 1 then

[(1 + |z|)β + (1 − |z|)β]2

4(1 − |z|2)β−1 ≤ J1/2
f (z) ≤

4(1 − |z|2)β−1

[(1 + |z|)β + (1 − |z|)β]2
, (30)

where β =
√

1 − µ . Thus, 1 ≤ β2( f ) ≤ 4.

iii) If 0 < µ < 1 it follows from (30) that∫
D

Jp/2
f (z)(1 − |z|2)p−2dA ≤ 4p

∫
D

(1 − |z|2)p(β−1)(1 − |z|2)p−2dA = 4p
∫
D

(1 − |z|2)pβ−2dA,

and it is known that the integral on the right side is finite if pβ−2 > −1. We conclude that f ∈ BT p if p > 1/β.

Comments. We believe that the topic introduced in Section 3 could serve as the foundation for a more
extensive study in the future. For instance, the inclusion relationship QT p ⊆ BT , where p > 1, though
presumed, remains unconfirmed. Similarly, the containment of BT p, p > 1, in BT 0, for any dilation w, is
yet to be established.
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