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Abstract. In this paper we give a characterization of log J; belongs to ﬁp or G~2p spaces for any locally
univalent sense-preserving harmonic mappings f defined in the unit disk, using the Schwarzian derivative

of f and Carleson measure. In addition, we introduce the classes 87, and Q7 ,, based on the Jacobian
operator, and initiate a study of these spaces.

1. Introduction and preliminaries

The Besov spaces 8, have been extensively studied since their introduction by Zhu in [20]. These spaces
can be considered a special case of weighted Bergman spaces, defined as the analytic functions on the unit
disk whose derivatives are integrable with respect to the weight measure (1 — |z[?)?, in this case, @ = p — 2.
Readers may refer to the excellent book by P. Duren and A. Schuster [8] for more information on Bergman
spaces. On the other hand, the Q, spaces introduced by J. Xiao in [17] are also defined for those analytic
functions f such that sup f]D If'2)*(1 — |oa(2)?)PdA(z) is finite. In this brief manuscript, we will focus on
exploring the relationship between these spaces, the Schwarzian derivative, and Carleson measures in the
context of complex harmonic functions that preserve orientation. More specifically, we will extend the
following results that account for these relationships in the realm of analytic functions:

Theorem A. Let f : ID — Q be a conformal map such that f(dD) is a closed Jordan curve. Then

i) If1 <p < oo, log f isin B, ifand only if f ISF(2)F(1 = |2y 2dA(z) < co.
D
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i) If0 <p <1,log fisin Qp if and only if |Sf(2)*(1 — |z1*)**PdA(z) is a vanishing p-Carleson measure.

Theorem B. Let 0 < p < coand f : ID — Q be a conformal map, then log f' € Q, if and only if |Sf(z)*(1 —
|zI?)**PdA(z) is a p-Carleson measure.

These results appear in [15] and [14], respectively.

In Subsection 1.2, we focus on the definition of the spaces of Besov f~3p and Zzp for smooth mappings F
such that the derivatives with respect to z and z exist in ID. Based on these definitions, in Section?2 our
efforts are dedicated to proving Theorems A and B for these types of spaces. Finally, in Section 3 functions

called Besov type and @, type are introduced in a similar manner to what is done in [9], and we note, in
Remark 3.4, the difficulties that these types of functions present.

As we have already mentioned, in these brief notes we address the aforementioned results but in the
context of locally univalent complex harmonic functions defined on the unit disk. Using the Schwarzian
derivative as a principal tool, defined in [11] for this kinds of mappings, and we defined the corresponding

Besov and Q, spaces for this scenario.

1.1. Planar harmonic mappings

In this section we introduce some notation and we present several classical results concerning harmonic
mappings in the plane. We refer to [7] and to the references therein for more details about this topic.

Let f be a planar harmonic mapping defined on the unit disk ID = {z : |z] < 1}. In this case, f has the
canonical representation f = h + g, where I and g are analytic functions in ID; the representation is unique
under the condition that g(zp) = 0 for some zj fixed in ID. Here we will assume the condition #(0) = g(0) = 0.
It is well known that f is locally univalent if and only if its Jacobian J; = || = |g’|* does not vanish. Thus, if
f is locally univalent, it is either sense-preserving or sense-reversing depending on the conditions J; > 0 or
Jr < 0 throughout its domain, respectively. Along this paper we will consider sense-preserving harmonic
mappings on ID, case in which the analytic part / is locally univalent in ID and the second complex dilatation
of f,w = g’/l, is an analytic function in ID satisfying the condition |w(z)| < 1, for all z € ID. We define the
function F = log J;. By using the operators d, and ¢z, defined by

d.:==(dx—id,) and  9::= 5 (dy+idy),

NI =
N =

wehave F; = F,

_ii_ W' and o= h_”'_ w" 3 w' 2 1)
T 1P = \w) 1-wpP \1-wp)

Note that F, coincides with the Pre-Schwarzian derivative of the harmonic function f, denoted by Py,
which was introduced in [11]. In that same paper the authors define the Schwarzian derivative of f by
Sf = d.Py — 3(Py)?. It follows from (1) that

1
Sf =F; - E(Fz)2

L@ () 3w Y &
TR e \T 2\1-wp) ’

where S;, denotes the Schwarzian derivative of the analytic function /i, which is given by

’ 2
hl/ 1 hl/
s=(57) -2
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As in the analytic case, the Pre-Schwarzian and Schwarzian norms of f are given by

IP#ll := Su]]})){(l ~lZP)IPr)}  and |18/l := Sun})){(l ~ 2P (21},

respectively. Both in the analytic case and in the harmonic case these norms are closely related with the
notion of uniformly locally univalent functions on the unit disk, that is, those harmonic functions f : D — C
for which there is a constant 0 < p := p(f) < oo, such that f is univalent in each hyperbolic disk with center
a € ID and hyperbolic radius p, which will be denoted by D(a, p). Note that f is univalent if p = co. We
remember that the hyperbolic distance in ID is defined by

1+p(z <)

1_73(2/6)’ '

dn(z, &) = élog where p(z,&) =

1-¢&z

When f is analytic, in [18] is proven that f is uniformly locally univalent if and only if ||P|| is finite, which
also is equivalent to ||S|| finite. A generalization to the harmonic case can be found in [11], where it is also
proven that for a locally univalent harmonic mapping f = h + g, [|S¢|| is finite if and only if ||S|| is finite; we
will use these facts later without further comment.

1.2. Some spaces of harmonic mappings

Now we define the functions spaces that we will use in this paper. We start recalling that if A(ID) denotes
the space of analytic functions in ID, the analytic Bloch space is defined by

B ={heAD): hllg := sup(l — [z (z)| < oo}

zeD

and the little analytic Bloch space is the subspace of B given by

By :={heA(D): |llirrl1_(1 — |z (z)] = 0}.
For 1 < p < oo, we say that i € A(ID) belongs to the analytic Besov space 8, if
Il = f W @F(1 - 2P ?dA() < o, 3)
D

where dA is the element of the Lebesgue area measure on ID. The space Qp, 0 < p < oo, consists of all
functions h € A(ID) satisfying the condition

sup fD I @R~ lpu(DPYAAG) < o,

acD

where @,(z) := {=. Note that ¢, is an automorphism of D satisfying ¢,(a) = 0, 9,(0) = a, (1 — HRIARIEE
1 - lpa(z)l?, and @, ! = ¢,. We will say that a function i € A(D) belongs to the space Q, if

tim [ @R~ lp@PPdAG) =0

Throughout the paper, we use a < b (2 2 b) to denote a < Cb (a > Cb), being C a constant independent of a
and b. We also write a ~ b, if a < b and a 2 b. With this notation we have the following results, which will
be a key ingredient in the proofs of the proposed results. The first of them, see for example [14], establishes
thatif 0 <p <ocoand -1 < a < oo,

f @I (1 — 12)*dA(z) = f W @P(1 - 2P} dAE) + hO)F, (4)
D D
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for all h € A(D). The second, which is proven in [4, Theorem 1], says that forn > 1and 0 <p < oo, h € Q,, if
and only if

sup [ OGP (1= g, @R (1 = P 24AG) < . 6)
aeD JD

The classical theory of analytic functions spaces has a natural extension to the setting of smooth functions
from D into C, which has been being investigated in the last years. For some works on this topic, we refer
to the reader to [1, 6, 9, 19]. In particular, in [6] is studied the harmonic extension of 8 and it is shown that
a harmonic function F : ID — C belongs to the harmonic Bloch space if and only if

suﬂl;{(l = zP)(F=(2)] + [Fz(2)])} < o0. ©

This definition clearly can be extended to include the whole family of smooth functions from D into C.

Thus, a smooth function F : ID — C is said to be a Bloch function if it satisfies (6). We will use 8 to denote
the space of such Bloch functions.

In a similar way to the previous case, we use the definition proposed in [1] of harmonic Besov spaces to
include smooth functions from ID into C. For 1 < p < oo, if a smooth function F : D — C satisfies

fD ()] + @) (L = 2PV 2AR) < oo, )

we will say that it belongs to the Besov space ﬁp.

Remark 1.1. If f = h + g is a harmonic function and F = log J 7, then (1) gives us

P (@l Y
T=TwP) ’

1 < p < c0. Hence, if |[w|| := supflw(z)| : z € D} < 1and w € B, then F € EEP if and only if logh’ € B,.

hll

h/

14 |w/w| p W
s|FZ|P+(1_|w|2) and |FF < |7

By following the same line as in [12], a smooth function F : ID — C belongs to the space Q,,0< p <o,
if it satisfies

sup | (F:(2)] + [F:D*(1 = lpa(2)P)'dA(z) < oo (8)
aclD JD

and F € ép,o, if

lim fD (E(2)] + [FD2(1 = lpaDRYAA) = .

la|—1-

1.3. Carleson measures

With a similar notation to that used in [14, 15], given an arc I C JD, we write |I| for the normalized
arclength of I and we define the set

SH:=f{z=ré"eD:1-r<|I| and ¢* eI}

Let u be a positive Borel measure on ID and p > 0. p is said to be a p—Carleson measure on ID, if

o p(S(1))
llully := sup < 00,
icop P
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which is equivalent to the condition

(@ du(z) < . 9)

sup
aeD

A p—Carleson measure p on D is called a p-vanishing Carleson measure on D if

i FED)
n—-o |I|P
This is equal to
: ’ P
lim @) du) =

la] -1~

see [3, Lemma 2.1]. We are now ready to address the main theme of the paper.

2. Relationship between Besov spaces §p and 5,, spaces and the Schwarzian derivative

In this section we will study in the setting of harmonic mappings some of the results presented in [15]
for the case of analytic functions. We start with the following theorem, which is a harmonic version of one
of the implications of part i) of Theorem A (Theorem 1 in [15]).

Theorem 2.1. Let1 <p < coand f : ID — C be a uniformly locally univalent harmonic map with dilatation w € B,
satisfying |[wl|| < 1. If F = log | € B, then

I(f) = fD ISP (1 - 227 2dA) (10)
is finite.

Proof. We suppose that F = log ] € Egp and we write f in the standard form / + g. By equation (2) one has
that

1) < fD Eo@)P (1~ [P 2dAG) + fD EPP(1 - 2PV 2dA). an)

On the other hand, the condition ||w|| < 1 and (4) imply

f (1 - Py (Z)w(zi 1@ s [ wr@p - ERP )
< f W' 2)lP (1 = 2P ~*dA(z) - [w(O),
D
which is finite since w € B,
Next, from ||w|| < 1 we have the estimate
wE@wE [ (1= P @)
1-— 2\2p—2 | 22 TR < (1= 2\p=2].,,, p |\ =W\
(1 =1z T w@E| S (1= 21w’ () - @R
It follows from the Schwarz-Pick inequality and w € B,, that




H. Arbeldez et al. / Filomat 39:35 (2025), 12445-12459 12450
On the other hand, we note that in virtue of (4),

- I’ZI'(Z) ’ h”(Z) P
1—222”2(—) (_ 4AG) <
i e @) | =y
since by hypothesis and Remark 1.1, logh’ € 8B,. We conclude from this, (1), (12), and (13), that the first

integral in (11) is finite.
With respect to the second integral of (11), we observe that

p P

h/l (Z)
(z)

]’1”(0)

2\p—2
(-lPydA-| 3o

< 00,

P
1@ = [ -y
D

F2)P (1L = 22?2 = (F@)I1 - 2P IF2)P (1 = 122, (14)

Now, the fact that f is uniformly locally univalent guarantees us that ||S¢|| < co and therefore [|S;|| < oo [11,
Theorem 6]. Hence, & is uniformly locally univalent, or equivalently, ||Py|| < co. It follows from (1) and the
Schwarz-Pick inequality that the first factor of the right side of (14) is bounded. In consequence,

f P (- 2D 2dAR) < f EP(1 - 2P 2dA() < oo,
D D

since F € gp. We conclude that I(f) < co, which ends the proof. [

Remark 2.2. Following similar arguments to that given in the above proof, one can show that under the same
conditions on w, I(f) is finite if and only if I(h) is finite. We will use this fact to give other alternative approximation
of part i) of Theorem A. To this end we will consider a linear combination of the form @, := h + Ag, A € dD, where
f = h+g. We note that the relationship between the analytic function @, and the harmonic function f has been
extensively used by various authors to derive properties of f from those of ¢,. An important example of this fact is
the called shear construction, which was introduced in [5] to construct sense preserving univalent harmonic map-
pings in the unit disk. See also [10] for other results relating properties of ¢, with those of the corresponding function f.

Theorem 2.3. Let 1 <p <ocoand f =h+7g:1D — C be a univalent harmonic map such that its dilatation w € B,
satisfies ||wl|| < 1 and assume that ¢ := @, = h + Ag is a conformal map with ¢(dD) a closed Jordan curve for some

A € dD. Then F = log | € B, if and only if I(f) is finite.

Proof. That F = log ] € ﬁp implies I(f) < oo, is the statement of the above theorem. To the converse, from
the definition of ¢, we obtain
" N Aw’

¢ =h1+Aw) and ?_W+1+Aw'

from which we get, after a straightforward calculation, that

Sh=S<p+

’” ’ ’ 2 7
Q" Aw 1( Aw ) Aw (15)

?1+/\w+§ 1+Aw) 1+ Aw
We conclude, following the same arguments as in the proof of Theorem 2.1, that I(h) < oo if and only if
I(p) < oo. Since Remark2.2 and the hypothesis imply I(h) < oo, it follows that I(p) < co. Now we use
Theorem 1 in [15] to obtain that log ¢” € 8B, which implies that

logh’ = log ¢’ —log(1 + Aw) € B,.

The theorem follows by using Remark 1.1. [
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Example 2.4. To illustrate Theorem 2.3, we consider the shear f = h + J of the identity function ¢(z) = z with
dilatation w(z) = pz,0 < p < 1. Then h— g = @ and g’ = wh’, whence

/ 1 / pz
h(z)=1_—pz and g(z)=1_pz.

Moreover, it is clear that ||w|| < 1 and w € B, for all p > 1. Note that logh’ € B, and therefore Remark 1.1 implies
that log | s € By, for all p > 1. We conclude from Theorem 2.3 that I(f) < oo.

Remark 2.5. In relation with the assumption ||w|| < 1, we highlight that this condition is not so restrictive; it in
general can not be omitted from the statement of the above results. For example, we will show that most of harmonic

function f = h + g, with dilatation w(z) = z, satisfy log | ¢ B,, for all p. Indeed, if w(z) = z one has that
logJy € Z~3,, if and only if f |8Z log ]f(z))p (1 - |z 2dA(z) < oo,
D

whence log | € E?p if and only if

TN L ) B o
[ Ja-epid -4 a-eprtaae <o (16)

However, assuming for example that h”’ [l has finite angular limit at some point & € D (this is essentially the case
for most of meromorphic functions in ID, except possibly those with a behaviour very bad at almost all points of JD,
see Plessner’s Theorem in [16]), it can be proven that the integral in (16) diverges. In effect, in this case we can choose
a Stolz angle at & of the form

A={zeD:|arg(l - &) <aand |z - & < p <1/2},
with0<a<%,0<p<2cosa,and 0 < 6y < 2p/3 such that

h// (Z)
W)

1 1

1
>ll-52(-p)-5=5-p

z 2

-

forall z € AN B(E, d), where B(a, r) denote the euclidean ball of radius v > 0 and center a. Thus, for all 0 < 0 < 0o,

’ 22 1V dA(z) 1 1
L a-eane 2 (3-o) [ G2 0) g o e

where Qs := AN B(&, 0). In consequence,

I,

for some constant C independent of 6. By taking limit when 6 — 0 it follows that the integral in (16) must be divergent
and therefore log Jr ¢ B, for all p.
The same argument shows that most of harmonic function f = h+ g, with dilatation an automorphism of the disk,

satisfy log | ¢ Z~3,,,for all p.

hl/ (Z) s

(- kM

hl! (Z)
W)

14 62
(1 -1z z' (1 -z 2dA(z) > c4

5 — 46% + 6%

Next, we will prove results similar to the previous ones but this time in spaces Elp. To this end we need
a version in the setting of uniformly locally univalent analytic functions of one of the implications of
Theorem B; more precisely we require the following result:

Proposition 2.6. Suppose that 0 < p < oo and h is a uniformly locally univalent analytic function in the unit disk.
If ISu(2)*(1 — [2*)**? is a p—Carleson measure, then logh’ € Q,.
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The proof of the proposition is a slight modification of the proof of (b) implies (a) in [14, Theorem 1] and
we will omit it. We remark that except for the value of the constants, the previous results required for the
proof of (b) implies (a) in [14, Theorem 1] are also true for uniformly locally univalent analytic function.
For example, for functions / in this class there is M > 0 such that (1 - |zI*)?|S;(z)] < M, for all z € D (compare
with Lemma A in [14]). For the sake of completeness we prove in this context a version of Lemma 4 in [14].

Lemma 2.7. Let h be a uniformly locally univalent analytic function in ID and suppose that there is zg € 1D such that
(1 = Iz0P*)*ISu(z0)| > .

Then there is a positive constant ¢ = c¢(6,h) < 1 such that

0
L) L
(L= kPS> 35,

for all z € B(zo, c(1 — |zo/%)).

Proof. Let p > 0 such that & is univalent in each hyperbolic disk D(a, p), with a € ID, and we choose 0 < r < 1
satisfying p = d;,(0, r). Then the analytic function y(z) = h(¢g_,(rz)) is univalent in ID and

Sy(2) = Su(@= (r2)(¢, (r2))’r?, z €D,
whence
1Sy (0)] = ISn(z0)I(1 = |zo[)*r* > 617
We conclude from Lemma 4 in [14] that there is 0 < ¢ = ¢(5, r) < 1 such that

or?
1— 2\2 -
(1= BPYIS, @) > o
for all z € B(0,¢), and therefore

5 2
(L= EPISips (2Dl ()P > 2,

for all z € B(0, ¢). Thus, by properties of the automorphisms of the disk we have

(1~ s (12 PYSu(@2n (2))] > 3%

for all z € B(0, ¢). In consequence, by defining { = ¢,(rz), one has that

0
212
(A = 1)K > 35

for all C € D(zp, ﬁ), where ﬁ = d4(0,7c). The lemma follows having into account that the hyperbolic disk
D(zo, p) contains the euclidean ball B(zo, rc(1 — |z0?)/4). O

Theorem 2.8. Let 0 <p < coand f : ID — C be a uniformly locally univalent harmonic map with dilatation w € Q,
satisfying |lwl| < 1. Then F = log ] € Q, if and only if u = |S¢(z)*(1 — |2I*)**" is a p—Carleson measure.

Proof. We suppose that (8) holds, or equivalently,

sup f
aeD JD

@) w@eE |
") T T-@P

(1= lpa ()P dA(z) < co. (17)
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By (9) it is sufficient prove that

sup fD 15/2)P( ~ [Pl P A(R) < oo, (18)

acD

If we denote by A(f, a) the integral

fD 1S/ — P02 AAR),

we obtain, from (2) and the Schwarz-Pick inequality, that
Af0) s fD (F=@P + IE@) (1 - 2P - [ )PV AAG). (19)
Now, on the one hand,
fD F.(2)1*(1 = 12 (1 = lpa(2) PV dA(2) = f}D [(1 = 1ZP)F@)IPIF:(2)P(1 = lpa(2)P) dA(2),
whence
fD IF.(2)I*(1 = [21*)*(1 = lpa(2)PY dA(2) < IIPyI fD IF.(2) (1 = lpa(2)P)'dA(2).
We conclude from (17) and the definition of F, that

sup | IF.(2)I*(1 = 12P)*(1 = lpa(2)P VP dA(2) < co. (20)

On the other hand we show that

sup f}D IF-2(2)(1 = 12P)*(1 ~ lga(2) PV dA(2) < o0, (21)

acD

which is equivalent to prove

2
sup (1= 1221 = |@a(z)P)P dA(z) < oo.

acD JD

@) _w@uE _(weue )
(h’(z) ) - k@R ™ (1= e

To this end we first note that
F=logl'?+logd—[wf) and FEweQ,
imply that logh’ € Q,. Therefore, (5) yields
sup [[|(29)
aeD JD ()

Next, taking into account the conditions w € Q,, ||w|| < 1 and applying again (5), we see that

sup f
aeD JD

2

(1= 121 = lpa(z) PV dA(z) < co. (22)

—2
w” (z)w(z)

T ro@p| ¢ YA le@FYdAR) < co. (23)
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Now we use the Schwarz-Pick inequality to conclude that

J;

which gives

sup f
aeD JD

since w € Q,. From (22), (23), and (24) it follows (21). Hence and (20) we obtain that

W' (2)w(z)
1 - [w(z)P

4
(1= 1221 = lpa(2) PV dA(2) < j;D W' 2)P(1 = lpa(2))'dA(2),

— 4
W' (z2)w(z)

T jwee| @~ F A~ lp@PYdAE <o, 24)

sup A(f,a) < oo,
aelD

and consequently p = |S¢(z)*(1 - |z[*)** is a p—Carleson measure.
To prove the converse, we will first use

—_ _— 2
g g, @ [ M), 3 W
PR T T\ W 21 - wp

to prove that |S,(z)]*(1 — |z[*)?** is a p—Carleson measure.
In view of [|P|| < oo, which is a consequence of the fact that f is uniformly locally univalent, and the
condition ||w|| < 1, we can obtain

J;

whence in virtue of w € Q,, we conclude that

sup f
acD JD

Now we use again |[w|| < 1 to obtain

J;

which, because of (5) and w € Q,, gives

sup f
acD JD

It follows from (24), (25), and (26) that |S,(z)[*(1 — |z]*)**? is a p—Carleson measure. Thus Proposition 2.6
implies that logh’ € Q,, whence in virtue of the equality F = log nP? + log(1 - |w|?) and the hypothesis

w € Q,, it follows that F = log ] € 5,,. O

w(z)
1-Jw(z)P

h'(z)
h'(z)

2 2
w'(z) (1 - 2P lp)(2)PdA(z) < f}D [’ ()P (1 = 1z @ (2)PdA(z),

w(z)
1-lw(z)P

2 ’” 2
WO | ORI EPAAG) < . 5)

w(z)
1= lw@)P

2
[w” (2)* (1 = 2P| (2)PdA() < f [w” () (1 = 2P|} (2)PdA(2),

D

w(z)

2
T @R W’ @)F (1 - 22|l (2)PdA) < oo. o

With some minor changes in the proof of the first implication of Theorem 2.8, we can extend to the setting
of harmonic mappings the implication “only if” of part ii) of Theorem A. In this case, instead of (5) we use
the fact that forn > 1and 0 <p < o0, h € Q0 if and only if

la]—1

lim | hO@)E (1 - lpa@P) (1 - 12P)?"2dA(z) =0, (27)
D

see [4, Theorem 2]. The final result would be the following:
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Theorem 2.9. Let 0 < p < oo and f : ID — C be a uniformly locally univalent harmonic map with dilatation
w € Qpo satisfying |lwl| < 1. If F =log J € Q0, then u = |Sp(2)*(1 — |z1*)*** is a vanishing p—Carleson measure.

Remark 2.10. One can prove that the harmonic function f constructed in Example 2.4 satisfies the hypotheses of the

above theorem for 0 < p < 1, therefore u = |S(2)*(1 — |2|*)**? is a vanishing p—Carleson measure, if 0 < p < 1.

A harmonic version of the other implication of part ii) of Theorem A can be obtained by using the
method employed in Theorem 2.3.

Theorem 2.11. Let0 <p <land f = h+g :ID — C be a univalent harmonic map such that its dilatation w € Qp
satisfies ||wl|| < 1 and assume that ¢ := @, = h + Ag is a conformal map with @(JdD) a closed Jordan curve for some

A € ID. If S¢(2)P(1 — |z1)**PdA(z) is a vanishing p—Carleson measure, then F =log J; € Q0.
Proof. We can verify by a straightforward calculation, using (2), that
duiy = ISP - 2PV dAG)
is a vanishing p—Carleson measure if and only if
du, = 1Si )P (1 ~ 2P dA(z)
is a vanishing p—Carleson measure, which is equivalent to the fact that
ity = 15, (DP(1 ~ PP PAAG)

is a vanishing p—Carleson measure, by (15). In both cases (27) is applied. Then part ii) of Theorem A implies
that log ¢’ € Q, 0, whence

logh’ =log ¢’ —log(l + Aw) € Q.
The conclusion of the theorem follows from
2 L [ Jw 2
1 - [w]?

and the conditions w € @, and ||w|| < 1. O
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2
|FoI= <

3. On harmonic Besov-type and 5,,—type mappings class

Our main objective in this section is to introduce the Besov-type and ép—type classes of harmonic
mappings and study their connection with the Bloch-type class of harmonic mappings defined in [9], see
also [13] for a generalization. A smooth function F : ID — C is said to be Bloch-type if

Pa(F) = SuHIDJ(l ~ 2P VIIF@) < co. (28)

We use 87 to denote this class of functions, which clearly contains the analytic Bloch space 8 and, although
it is not a linear space, it also contains the Bloch space B, being this fact an immediate consequence of
J ;/ 2 <R+ |Fz|. Example 2 in [9] shows that there are harmonic functions in 87 that do not belong to the
space B. It is natural to define BT as the set of all smooth function F : D — C such that

|1|in117(1 ~2P)Jr )" = 0.
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Following these ideas, we define the class of ap—type functions, 0 < p < oo, denoted by Q7 ,, as the class of
smooth functions F : D — C such that

sup |]F(Z)|(1 — pa(2)PYdA(z) < .

a€D
It is clear that Q, C Qp C QT , for all 0 < p < co. Similarly, we will say that F belongs to the class of
Besov-type functions 87, 1 <p < oo, if
B(F) := f Tr@)FP(1 - 217 2dA(z) < . (29)
D
Here also it is easy to see that 8, C E?,,, C BT ).
The following proposition exhibits some important properties of the previous classes.

Proposition 3.1. The classes BT ,, p > 1, and QT p,, p > 0, are affine and linearly invariant.
Proof. For all automorphism o of ID, |Jos(2)| = |] f(o(z))lla’(z)lz, z € ID. Hence,

f Veea (DI = 12 dAGR) = f I @)Plo’ @P (1 - |22 2dA()
D D
= fD @@~ o@PY 2l @PAAR)

_ fD TP - 22y 2dAG),

which shows that the class 87, is linearly invariant. This is, F o 0 € 87, for all automorphism o of ID and

F € BT ;. Also it is easy to see the affine invariance of 87 ,, which means that aF + bF € BT p,foralla,beC
and F € BT This follows from the equality | ..,z = = (|al> - |b*)Jr. To show the second statement we observe
that

f e @I = lpaRPAAG) = f JEEENI = lpuDPY o’ () PAAR)
D D
- fD JHOIA = [pa (o Q)PYAAQ)

_ fD IF@IL ~ [PV AAR),

for some b := b(a, 0) € ID, which implies that Q7" is linearly invariant. The affine invariance of Q7 follows
also of the equality J .,z = (laf* — [b*)Jr. O

We remark that the affine and linear invariance of 87 was proven in [9]. Those properties allow us to prove

the following proposition, which generalizes a statement in [16] page 73.

Proposition 3.2. Let f be a harmonic mapping in € BT and |lw|| < 1, then
1/2

Ba(f)dn(z1, 22),

1+ IIWII)

1) - feal = (g

forall z,z, € D.
Proof. Since o(f) = Ba2(f o 0) for 0 € Aut(ID), we can assume that z; = z and z; = 0. Thus,

1 1
) = FO < [ (a1 + ez ar < | |ﬁ<tz>|<1—|w<tz)|2>”z%

12 1+|w(tz)|) 1+||w|| 12 -
f' (”'( win) = () ﬁz(f)f T—epp”

|z|dt
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After integrating we obtain

1/2 1/2

L ||w||)

1+|Z|)_(1+|IWI|)
2\1 = [fool|

@) - FO)l < pain (1 ) = (1) PoPe0,2)

which ends the proof. [
Example 3.3. Let f = h+ g with h(z) = 2(1 — z)™/2 and w(z) = z, z € ID. We observe that

1— |z
11-zP

J¢(2) = I @) - |2P) =

i) f € BT since

3/2
R 12 _ 1- |z 3/2
a-EP = (g | =2

forallz e D.
ii) f&BTo. Ineffect, if z=x€(-1,1),

lim (1 — )] p(x)"/* = 232,
x—1-

iti) Forp > 1, f € QT . This follows from the fact that

2

_ 2074 — L= . 2\p
[ aa-ip@eraa= [ =Ea-ipepra

122\ N
) fp( 1 —zl) (1 =l )l (2)ldA

<8 fD (1~ |CRY2dA(D) < o,

forall a € D, where C = @,(2).
iv) In part ii) of Remark 3.4 below we will prove that f ¢ BT ,, p > 1.

Remark 3.4. The previous example suggests that we should study how the classes defined above are related.

i) Forp>1,B87 C QT . Ineffect, if F € BT, for all a € D (28) implies
fD Je@I(1 = lpa(2)PVdA(z) = fD Je (@) 2(1 = Z2P)P(1 = 2P 2lp; (2)PdA(z)
<pF [ (- B A @r A
D
~ 2 [ (- 1@ gl RIAG)
D
Hence, the change of variables C = @,(z) gives
[ @0 - ps@rrane < g [ a- it - oo,
D D

where C(F) denotes a constant depending only on F. Thus, F € QT p, for all p > 1.
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i) If f=h+g€BT, p>1and w(z) =z, then f € BT . Indeed, f € BT , implies
[ =R Era - P e <o
D

So, if k' := (W')*/®, then k € Bsy)» and therefore k € By. In consequence,
Jim (1~ [2P)]@)? = lim [0~ P @PPP? = lim [~ =K @ =o0.
Hence, f € BT .
The above statement remains valid if (1 — [w[?) ~ (1 —|z%). In particular,
a) If w(z) = 2",n € N, it is sufficient to observe that
1= 2" = (1= 2P)A + 2P + 2 + -+ 27772 2 1= 2P,

and we proceed as above.

b) Ifw(z) = (z +a)/(1 + az), we consider F = f —af. By Proposition 3.1, if f € BT, then F € BT . Since
wr = 1d, part ii) above implies that F € BT ¢ and so f € BT .

Example 3.5. The authors in [2] introduce the class NHY)

w0 < w <1, of locally univalent sense preserving harmonic
mappings f, defined in the unit disk, for which

[w’ (z)]? - 2u

SO T fry = a—Ep

with V]¢(0,0) = (0,0). By using Theorem 2.2 in [2], for f € NHg with J¢(0) = 1 we have that
i) If u=1then
1-12F < [0 < - 1P7,
whence f € BT and even more Bo(f) = 1.
ii)) If0 < p < 1then

[(1+ Iz])f + (1 — |z])F]? < 12
4(1 — |z?)p-1 i

where B = /1 — . Thus, 1 < Bo(f) < 4.
iif) If 0 < p < 1 it follows from (30) that

4(1 — |zl)F!
[+ |zD)f + (1 - |2])f]?”

(z) <

(30)

[ rrea-epriaase [a-ppyeoa-ppriaa-v [ a- e
D D D

and it is known that the integral on the right side is finite if pp —2 > —1. We conclude that f € BT , ifp > 1/p.

Comments. We believe that the topic introduced in Section 3 could serve as the foundation for a more
extensive study in the future. For instance, the inclusion relationship Q7, € 87, where p > 1, though
presumed, remains unconfirmed. Similarly, the containment of 87, p > 1, in 87y, for any dilation w, is
yet to be established.
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