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Groups of Lie type in C++
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Abstract. We are looking at groups of Lie type from the point of view of efficient algorithms and efficient
data structures. We compute the automorphism group of a Lie group and convert the representation of
elements from matrices to words in the generators and back. Our work is based on our own computer
algebra system Orbiter, which is a C++ class library with a small front end. The language C++ encourages
abstraction and object oriented programming, which are well-suited for mathematical data types. We

illustrate this by showing how orbit algorithms for very different groups can be run through the same
software interface.

1. Introduction

Working with groups of Lie type offers many computational challenges, which can benefit from com-
puter algebra systems. Many software projects focus on the representations of these groups. Some of
which are Lie [45], the GAP package LIE [19],[21], atlasofliegroups [1], and Chevie [30]. Problems that
require computing orbits of Lie groups require a somewhat different approach, focusing more on the group
elements themselves. For instance, orbits on sets or orbits on subspaces require computing the orbits of a
group on a partially ordered set (“poset”), such as the set of subsets or the set of subspaces. In these, we
assume that the group G acts on the poset, and we compute orbits by using the G-invariant relation between
different levels in the poset. Many problems in combinatorics relate to this, as well as problems in finite
geometry. The vector spaces often carry a form, and so groups of Lie type arise naturally in this setting. In
previous work, we discussed the classification of geometric objects in projective spaces such as BLT-sets [5],
cubic surfaces [11], packings [6], unitals in projective planes [4] and others. In each case, the computational
bottleneck is the computation of orbits of a certain group of Lie type. For this reason, we wish to discuss
some of the relevant techniques and tools that are relevant. The goal is to build a universal orbit algorithm
that can work with different groups and different actions, in particular for orbits on partially ordered sets.

We propose an approach in which the representation and the permutation action are tightly coupled.
A group element may be stored in the representation, but the action may be on a permutation action.
The permutation action may be the natural action associated with the vector space, or with the associated
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projective space. But it is possible that the permutation action is derived in some way from this “basic”
action. For instance, we may have an action on the exterior square of the underlying vector space. The
matrix representation offers a compact way of storing the group element (provided the dimension is low).
The permutation representation offers the ability to store the group in the form of a stabilizer chain. Thus,
both representations are needed, and it is very important to be able to choose the best representation for
the problem at hand. We are suggesting to piggy-back the permutation representation on top of the matrix
representation. The present paper will highlight Orbiter [8] and its functionality for groups of Lie type.
Related problems are that of creating groups of Lie type in the first place. To do so, we need to construct
a base and stabilizer chain for a suitable permutation action. This way, we can avoid storing long arrays
of images associated with permutations. Whenever we need to evaluate an image, we compute the image
from scratch using the matrix representation.

While it would be possible to solve these problems in GAP [28] and Magma [13], writing code in C++
offers an advantage in efficiency. We are not trying to replace these general-purpose systems, rather we
are offering highly efficient solutions to orbit problems that go beyond what a general-purpose system can
offer. We already touched upon the problem of computing orbits in previous work [7].

Another computational approach to groups of Lie type is [17]. Further approaches to the representatione
of Lie algebras are the Mathematica package called LieART [26] as well as the software RealLie [12].
There are probably many other software packages that should be mentioned here. Another approach to
Computational Group Theory in C++ is PermLib [38], see also [39].

For background on finite simple groups, see [46] or [32]. For an account of the geometry of the classical
groups, see [44]. For computational aspects in the theory of linear algebraic groups, see [22]. For background
on representation theory, see [27]. For a background on computational group theory, see [34] or [41] or [14].
For background on Lie theory, with an emphasis on computational methods, see [20].

2. Algebra and Geometry

We start with some definitions and notation. Let G be a finite group with identity element e. An element
g € G, g # e, is called an involution if g = e. In general, the order of an element g € G is the least positive
integer h such that g" = e. We denote the order of g as |g|. So, an involution is an element g with |g] = 2. If g
and h are two elements of a group G, we can form a new element ki~ gh which is called the h-conjugate of
g. The set {h~'gh | h € G} is called the conjugacy class of g in G. The group G is partitioned into conjugacy
classes. The elements of a given class share many properties. In particular, they have the same order. For
this reason, looking at the conjugacy classes of a group is a good way to get to know a given group. The
class of g is the orbit of g under the action of G on itself by conjugation. We use ATLAS [18] notation for
conjugacy classes. So, we will be using the order of elements in the class and a capital letter to distinguish
between classes of elements of the same order. For instance, the classes of involutions are denoted 2A, 2B,
2C and so on.

The orthogonal groups are the stabilizers of nondegenerate quadrics. They come in two versions, as they
can be considered in affine and in projective space. Here, we consider these quadrics over finite fields only.
Over a finite field, there are two different types of quadrics if the number of variables is even. Accordingly,
there are two different types of orthogonal groups in even dimension. After a possible change of basis, one
can assume a quadratic form to be in a canonical form. Once the quadratic form is chosen, the associated
bilinear form is fixed. There are some complications in even characteristic. Namely, in odd characteristic
the bilinear form determines the quadratic form. This is not true in characteristic two.

Let V = V(m,q) =~ Fy' be the m-dimensional vector space over the field IF;. Let PG(m — 1,9) be the
associated projective space. Its elements are the subspaces of V, apart from the zero subspace, ordered
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with respect to inclusion. Let x = (Xo, ..., X,-1) be a coordinate vector, and let P(x) be the corresponding
projective point. Note that the coordinate vector of a point in PG(#, q) has n + 1 entries.

Let Q(x) be a quadratic form, i.e. a mapping V — IF, with
Q(Ax) = A2Q(x), forallxe V, A € IF,.

The associated bilinear form is
B(x,y) := Qx +y) = Q(x) = Q(y).
By definition,
B(x,x) = 2Q(x).

This means that § defines Q, unless the characteristic of the field is even. In a finite dimensional vector
space, and after choosing a basis, we can define the form matrix of a bilinear form. Using row vector
convention, the form matrix of f8 is the matrix B such that

Bx,y)=x-B-y' 1)

for any two vectors x, y.

A point P(x) with Q(x) = 0 is called singular (otherwise non-singular). We will also say that a singular
point lies on the quadric. Likewise, a non-singular point is a point off the quadric. A subspace U consisting
exclusively of singular points is called totally singular. The bilinear form allows to introduce a notion of
perpendicularity. For a point P(x), the perp is defined as

P(x)" = {P(y) | B(x,y) = 0}.
More generally, for a subspace U we put
U* = {P(y) | B(x,y) = 0 for all x € U}.

The set V* is of interest when it comes to determine whether Q is non-degenerate. Namely, we say that Q
is non-degenerate if V* contains no singular vector. When the characteristic is not two, this corresponds to
p being non-degenerate, i.e. V* = 0.

For n even, there are two types of nondegenerate quadratic forms. They are called hyperbolic (or plus
type) and elliptic (or minus type). The canonical form of a nondegenerate quadric of plus type in PG(n—1, q)
may be chosen to be

XoX1+XX3+--+X,0X,.1=0

For n odd, there is only one type called parabolic. We write Q°(n,q) for the nondegenerate quadric in
PG(n,q). Here € = 1, -1, 0 indicates a plus, minus, and parabolic type, respectively.

Next, we discuss the groups. The orthogonal group associated with V and Q is

O(V,Q) = {f € GL(n,q) | Q(f(x)) = Q(x) for all x € V}.

The full orthogonal group, denoted I'O(V, Q) consists of all o-semilinear transformations f such that

Q(f(x)) = ac(Q(x)) forall x e V

for some a € IF; \ {0}. The general orthogonal group is

GO(V, Q) :=T'O(V, Q) N GL(V).
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If Q in nondegenerate on V, we indicate the type of the group using a triple (€, 1, g). € is in {0, 1}, and
indicates the type of quadratic form 0 means parabolic, +1 is hyperbolic, and —1 is elliptic. The parameters
n and q are the dimension of the vector space and the order of the field. So, for instance, PTO"(n, g) is the
orthogonal group on a nondegenerate form in n variables of hyperbolic type and # is even.

The group acts on the equation by (semi-)linear substitution of the variables. The collineation group
PTO*(n,q) contains as a normal subgroup the projective stabilizer PGO™ (1, ¢). If q is prime, the two groups
coincide. Otherwise, the factor group is isomorphic to the group of field automorphisms of IF;. If g = p°,
then Aut(IF,) is a cyclic group of order e, generated by the Frobenius automorphism which sends x to x”.
The Frobenius automorphism induces an automorphism of the projective space, namely the map which
sends P(x,...,x,) to P(xg, ..., xb). This map is called the automorphic collineation. A collineation is an
automorphism of the underlying projective space. The automorphism group of the projective space is
called the collineation group.

We let Q°(n—1, q) be the orthogonal geometry defined by a non-degenerate quadratic form in PG(n—1, g).
We let PI'L¢(n, q) be the associated collineation group. This is the stabilizer of the quadratic form in the
collineation group PTL(, g).

Next, we introduce group elements that will be useful to generate these groups. We start with orthogonal
reflections and then move on to Siegel transformations.

To every point P(z) not on the quadric, we associate an orthogonal reflection ¢, by putting

B,
Q@
Following [44, Corollary 11.42], we know that the orthogonal reflections generate the orthogonal group

O¢(n, q) (with the exception of GO*(4, 2)). By taking quotients modulo the center, we find that the same is
true for the projective group.

()

0,(x) =x

Let u be a singular vector and v € (u)*. The Siegel transformation associated with u and v is

Puv(X) = x+ B(x, v)u — (x, u)v — Q(V)B(x, w)u,
see [44, Equation (11.17)].

3. Groups of Lie Type

What is a group of Lie type? Chevalley in [16] constructed a special basis for all the complex simple
Lie algebras. Using this basis, the corresponding algebraic groups can be defined over the integers. Using
the reduction modulo a prime number p, this gives finite groups of Lie type in a unified context. While
some of these groups were known before, several new ones were found specifically in this context. These
groups play an important role in the classification of finite simple groups. In fact, it is now known (using
the classification of finite simple groups) that every finite simple group is a group of Lie type, except for
the cyclic groups of prime order, the alternating groups, the Tits group, and the 26 sporadic simple groups.
The groups of Lie type are also known as the Chevalley groups. For a survey, see [15].

Dynkin diagrams are a tool to classify finite dimensional simple Lie algebras. They characterize root
systems, which are sets of vectors in Euclidean space admitting only angles of 90 and 120 (and 180) degrees
between any two. The root system comes with a group of Euclidean reflections, and these reflections
generate a group that is called the the Weyl group. Groups generated by reflections have then been studied
by Coxeter, and the Dynkin diagrams describe the finite Coxeter groups. When we study Lie groups over
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finite field, we no longer have an Euclidean reflection group. However, we have some finite field analogues,
such as points off quadrics, as we shall see. Dynkin diagrams are named after [23] and [24] (the former
is only available in Russian). According to the AMS MathSciNet review by Freudenthal, the types have
already been known to Cartan.

The groups of Lie type fall into several types or families, some finite and some infinite. These types are
parametrized with the Dynkin diagrams, which have names such an A,, B,, C, and so forth. The types
Ay, By, C, and D,,, are infinite families and correspond to the classical groups. The classical groups are the
groups of matrices that arise from the general linear group when a form (bilinear, alternating or hermitian)
is preserved. The exceptional types are Eg, E7, Es, F4, and G,. Further groups of Lie type (twisted type) were
found by Steinberg and Ree. For more details, we refer to [46].

Figure 1 shows the relevant types of Dynkin diagrams.

Figure 1: Dynkin Diagrams. The subscript is the number of nodes.

Once we select a finite field, we indicate its order after the Lie group symbol in parenthesis. So, for
instance, we write A,(q) for the group of Lie type A, over the field IF,.

For more background on Lie algebras and Chevalley groups, see the notes by Geck [29].



Y. Alanazi, A. Betten / Filomat 39:35 (2025), 12461-12483 12466
4. Piggy-backing the permutation representation

The matrix representation is a very efficient way to work with groups. However, for most of the common
group algorithms, we need a stabilizer chain with respect to a permutation action. A stabilizer chain is de-
fined by a base, which is a set of points which when stabilized leave only the trivial subgroup. Constructing
a base and stabilizer chain for a given permutation group is a main requirement for computational group
theory.

What do we mean by piggy-backing the permutation representation? Traditionally, a permutation rep-
resentation is realized by storing the images of the elements in the domain under the group element in
question. The data structure is a vector (or list) of integers, essentially a table. In case two group elements
need to be multiplied, we concatenate the mappings and produce another vector of images. When the
element needs to be inverted, we read the mapping backwards. This kind of premutation representation
has one disadvantage: Multiplication and inversion of group elements is expensive because an array of
length N needs to be examined completely. Here, N is the permutation degree. The point is that finite
matrix groups often have large permutation domains, which renders this approach to permutation groups
ineffective.

Let us consider a finite matrix group G. it has a representation on a vector space [Fj of degree N = g". The
group action is given by vector-matrix multiplication. The group multiplication is multiplication of matrices,
or perhaps slightly more complicated including field automorphisms. The permutation representation is
based on an enumeration of the vectors. An enumeration is a fixed bijection between the set of vectors
and a suitable interval of integers of size N called the domain. We may assume that the domain is
D ={0,1,...,N—1}. The bijection is implicitly defined by means of two conversion algorithms, called Rank
and Unrank. Ranking and unranking is a technique that is very common in computer algebra system, as
it helps alleviate the need for tables. Rank takes a vector and returns the associated integer in D. Unrank
takes an integer in D and returns the associated vector. The process of ranking and unranking a set of
objects is called enumeration. Piggy-backing and enumerations are available among others in GAP [28]
and Magma [13], and also in Orbiter and Fining [3]. In Magma, enumerations are provided by indexing
objects. Tables take time to be set up and cost memory. Enumerations help to avoid this at the price of
a small slowdown in evaluating the permutation action. Namely, whenever we want to know what the
group element g does to the integer 7, we first turn i into a vector using the enumeration, we then multiply
the matrix to the vector to get a new vector, and we then convert that second vector back into an integer j
using the enumeration.

In Figure 2, we show the schematic approach to piggy-backing the permutation action.

The top row shows the user interfacing input and output numbers. Below that is the matrix represen-
tation. The group element is stored as a matrix, possibly with a field automorphism (in case of semilinear
group actions). The advantage is the efficient storage of group elements as matrices. Piggy-backing is also
helpful when exploiting the representation of the group. Things like computing eigenvectors are impossible
in the permutation representation. On the other hand, stabilizer chains are necessary to represent groups
on a computer, so the permutation representation is needed. So, piggy-backing serves both goals at the
same time.
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matrix representation

vector vector

~ 7

matrix + field automorphism

Figure 2: Computing the image in a permutation representation of a matrix group.

5. Generators for the Groups of Lie Type

How to create these groups of Lie type explicitly? It depends a bit on what kind of generating system
we want and which of the versions of a given group we want. Do we want the simple group of do we
want one of the various extension? It was shown by Steinberg [42] that all nonabelian simple groups can be
generated by two elements (the case of abelian simple groups is trivial, and corresponds to cyclic groups
which are generated by one element). Generating systems for specific types of groups were given by in [40]
and [35].

However, in most cases, a generating system is not good enough, as we need to establish a stabilizer
chain (also known as a Sims chain) for the group with respect to a chosen permutation representation.
This means we are looking for a base and strong generating set. This can be done using the Schreier-Sims
algorithm, see [34] of [41]. But them it seems reasonable to describe a base and strong generating set
directly. In [10, Chapter 9], we find a description of a base and strong generating set for the general linear
group over a finite field (and the associated collineation group). This has been implemented in Orbiter.
For the orthogonal groups, we can use Siegel transformations to generate the simple group and orthogonal
reflections for the full group.

A different approach of creating the orthogonal groups or the unitary groups is to create the associated
variety first and then to use an algorithm to compute its group (see [2]). Of course, this may be much more
difficult, but it is good to know that such an algorithm exists. This work relies on indexing of points and
lines of the finite projective geometry. Using these, the incidence matrix of the geometry is established: the
indexing provides a fixed ordering of the rows and columns of the incidence matrix. Next, the decorated
matrix is computed to include information about the combinatorial object (the variety). The incidence
matrix is extended by one additional row and one additional column. This additional row and column
is used to distinguish the points of the geometry. After that, a bipartite graph, known as Levi graph, is
defined from the decorated incidence matrix. One class of vertices corresponding to rows of the decorated
incidence matrix, and the other class corresponding to the columns. The automorphism group of the Levi
graph is computed using Nauty [36], a graph canonization software. Nauty also computes a base and
strong generators for the automorphism group of the graph. The generators obtained from Nauty are
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permutations of the vertices of the Levi graph. They can be lifted to semilinear mappings of the underlying
projective space. Once this is done for the original strong generating set, we perform a randomized Schreier
Sims to get a new strong generating set with respect to the standard base of the appropriate (semilinear)
general linear group.

5.1. The Klein Quadric

The Klein quadric defines the Q* (5, q) variety. For our purposes, the canonical equation may be taken
as

XoX1 + XoX3 + X4 X5 = 0. 3)

With respect to the standard basis, the associated form matrix (1) is given by

4)

ol eNoNoel el
S OO OO
SO OO O
S OO R OO
_ O OO oo
O, OO oo

The associated orthogonal group is PGO™ (6, 9). Under the Klein correspondence (Pliicker coordinates)
the points on the quadric correspond one-to-one to the lines of PG(3, 4). The group PGL(4, 9) associated with
projective space PG(3, ) embeds as a subgroup of index two into PGO* (6, 9). The coset of this subgroup
in the full group PGO*(6,9) correspond to the polarities of PG(3,9). A polarity is a inclusion-reversing
automorphism of the underlying projective space of order two.

Let us look at the group and the geometry for g = 2. In this case, the variety has 35 singular points and
28 points which are non-singular. The group PGO*(6,2) has order 40320. A list of the 22 conjugacy classes
of elements is shown in Table 1.

The group is generated by the 28 elements of class 2A, which are the orthogonal reflections defined by
the 28 points off the quadric. Table 2 shows the coordinate vectors of the 28 points off the quadric. Table 3
shows representatives for the two conjugacy classes of Siegel transformations:

P uvys P u,vp

with v; singular and v, non-singular. In Table 1, the class containing py v, is called Siegel i. There are two
classes of Siegel transformations in this group.

5.2. The Study Quadric
Consider next the orthogonal group PGO™ (8, 9) and its action on the Study quadric, given by the equation

XoX1 + XoX3 + Xy X5 + X X7 = 0. (5)

Study [43] uses the quadric to represent Euclidean motions in three dimensional Euclidean space. This
work is still relevant in the theory of Kinematic (see [31],[25],[37]). For more on quadrics over a finite field,
see [33].
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1A
2A
2B
2C
2D
3A
3B
4A
4B
4C
4D
5A
6A
6B
6C
6D
6E
7A
8A
10A
12A
15A

1

28
105
210
420
112
1120
420
1260
1260
2520
1344
1120
1120
1680
3360
3360
5760
5040
4032
3360
2688

40320 40320

1440
384
192

96
360
36
96
32
32
16
30
36
36
24
12
12
7
8
10
12
15

1440
384
192

96
720
72
192
64
64
32
120
72
72
48
24
24
42
32
40
48
120

orth. refl.
Siegel 1
Siegel 2

Table 1: Classes of elements of PGO™ (6, 2)

011110
110001
111001
110101
001101
101101

011101
000011
100011
010011
001011
101011

Table 2: The 28 points off the Klein quadric Q*(5,2)

u=(1,0,0,0,0,0),

p uv; =

1

SO, OO

0

SO OO

0

SO O P -
[ Nen o NN

V1= (01 0/ 1/ O/ OI 0)/

0

SR OO OO
O OO o0o

P uvy, =

OO R ===

0

oo NoNel el
SO O =

Table 3: Some associated Siegel transformations

[eNeN Hel =

0

O = OO O

V2 = (0/ 0/ 1/ 1/ O/ O)/

0

= O O oo

011011
000111
100111
010111

12469

Let us consider the group PGO™(8,2) of order 348364800. The group PGO™ (8, 2) stabilizes the quadric
defined by (5) inside PG(7,2). The 255 points of PG(7,2) fall into two classes. The quadric defines 135
singular points and 120 non-singular points. For reference, Table 4 shows the coordinate vectors of the 120

points off the quadric.
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11000000 00101100 11010110 11101001 00000011 10000111
11100000 10101100 00110110 11011001 10000011 01000111
11010000 01101100 10110110 00111001 01000011 00100111
00110000 00011100 01110110 10111001 00100011 10100111
10110000 10011100 00001110 01111001 10100011 01100111
01110000 01011100 10001110 11000101 01100011 00010111
11001000 11111100 01001110 11100101 00010011 10010111
11101000 11000010 00101110 11010101 10010011 01010111
11011000 11100010 10101110 00110101 01010011 11110111
00111000 11010010 01101110 10110101 11110011 11001111
10111000 00110010 00011110 01110101 00001011 11101111
01111000 10110010 10011110 00001101 10001011 11011111
11000100 01110010 01011110 10001101 01001011 00111111
11100100 11001010 11111110 01001101 00101011 10111111
11010100 11101010 11000001 00101101 10101011 01111111
00110100 11011010 11100001 10101101 01101011

10110100 00111010 11010001 01101101 00011011

01110100 10111010 00110001 00011101 10011011

00001100 01111010 10110001 10011101 01011011

10001100 11000110 01110001 01011101 11111011

01001100 11100110 11001001 11111101 00000111

Table 4: The 120 points off the Study quadric Q*(7,2)

The Orbiter command to create the group will be discussed in Section 8.1.

Next, we turn to conjugacy classes of elements in the orthogonal group. We find 67 conjugacy classes.
The classes of elements of order at most 4 are listed in Table 5. The columns are the number of the class,
the order of elements in the class, an ATLAS style label for the class, the size of the class, the order of the
centralizer of an element of the class, the order of the normalizer of the group generated by an element of
the class.

0 1 1A 1 348364800 348364800
1 2 2A 120 2903040 2903040
2 2 2B 1575 221184 221184
3 2 2C 3780 92160 92160
4 2 2D 7560 46080 46080
5 2 2E 37800 9216 9216
6 2 2F 56700 6144 6144
7 3 3A 2240 155520 311040
8§ 3 3B 4480 77760 155520
9 3 3C 89600 3888 7776
10 3 3D 268800 1296 2592

Table 5: Classes of elements of order at most 3 of PGO™ (8, 2)

The 120 elements in conjugacy class 2A are in one-to-one correspondence to the 120 orthogonal reflections
as defined in 2, where P(z) is any of the 120 elements off the quadric as shown in Table 4.
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0 1 1A 1 174182400 174182400
1 2 2A 1575 110592 110592
2 2 2B 3780 46080 46080
3 2 2C 3780 46080 46080
4 2 2D 3780 46080 46080
5 2 2E 56700 3072 3072
6 3 3A 2240 77760 155520
7 3 3B 2240 77760 155520
8§ 3 3C 2240 77760 155520
9 3 3D 89600 1944 3888
10 3 3E 268800 648 1296

Table 6: Classes of elements of order at most 4 of PQ*(8,2)

5.3. The Simple Group

In general, the groups PGO®(n, q) are not simple. However, in most cases they contain a simple subgroup
PQ¥(n, q). In some cases, the simple group can be obtained by taking the derived group. Recall that for a
group G, and for g and & elements of G, the commutator is

[g,h] = g_lh_lgh.

The commutator subgroup of G, denoted as G, is the group generated by all commutators in G. It is known
to be the smallest normal subgroup of G such that the factor group is abelian.

The derived group of PGO*(8,2) is the group PGO™(8,2)’ also known as PQ*(8,2). It has index two in
PGO™(8,2) as has order 174182400. As we pass to the derived subgroup, some of the conjugacy classes of
PGO7(8,2) disappear. Others split into two. The classes of elements of order at most 3 are listed in Table 6.

5.4. The Graph on the Set of Involutions

The graph I'; has as vertices the elements of class 2A (120 elements). Two vertices are adjacent in I'; if
the product of the associated elements has order i (for i = 2,3). Each of these relations defines a strongly
regular graph (srg). The parameters of a strongly regular graph are denoted as srg(v, k, A, 1). We have the
following result, which can be easily verified by Orbiter, for instance. Of course, this result is well-known.
We will need these graphs in Section 6.

Theorem 5.1. 1. The graph T, is a srg(120, 63, 30, 36).
2. The graph I's is a srg(120, 56, 28, 24).
3. The graphs Ty and I's are complements of each other.
4. The automorphism group of T, for each of i = 2,3, is PGO™ (8, 2) of order 348364800.

6. The Dynkin Diagram of type Dg

Let G be a group with associated Dynkin diagram X. Temporarily label the nodes of the Dynkin diagram
with the integers 1, ...,n. A valid labeling of X with labels in G is an assignment of involutions from G to
the nodes of X, i  g;, such that the order of g,g; is equal to the order implied by the Dynkin diagram.
Now, regarding the order implied by the diagram, two adjacent nodes imply that the order is three. Two
non-adjacent nodes imply that the order is two. If there is a number written along the edge, then the order



Y. Alanazi, A. Betten / Filomat 39:35 (2025), 12461-12483 12472

implied is this number. The Dynkin diagram of type Dg implies that the order of products of pairs is either
two or three.

The Dynkin diagram of type Dg is shown in Figure 3.

Figure 3: The Dynkin diagram of type Dg

In order to make it easier to talk about possible labelings, a numbering of nodes has been chosen.

Next, we will use the graphs from Section 5.4 to find all valid labelings of the Dynkin diagram of type
Dg. To search for all labelings, we use the following algorithm:

Algorithm 6.1.

Let C be the conjugacy class 2A of size 120 in PGO* (8, 2).
Let C1:=C
For each g1 € C;
Let Cp :={g € C\ {g1} | lg191 = 3}.
For each g, € C,.
Let C3 := {g € C\ {91, 92} | lg19] = 3, 19291 = 2}.
For each g5 € Cs.
Let Cy:={g € C\ {91, 92,95} | 19191 = 3,19291 = 2,
lgagl = 2}.
For each g4 € Cy.
Let Cs :={g € C\ {91,92, 93,94} | lg19] = 2,
19291 = 2,1939] = 2,|949! = 3}.
For each gs € Cs.
Let Cs := {9 € C\ {91, 92, 93, 94, g5} |
lg191 = 2,1929| = 2,1939 = 2,1919] = 2, 19591 = 3}.
For each ge € Cs.
Let C7 :={g € C\ {91, 92,93, 94,95, 96} |
lg191 = 2,1929] = 2, 19391 = 2,1929] = 2, 9591 = 2,
lgegl = 3}.
For each g; € C;.
Let Cs := {g € C\ {91, 92,93, 94, 95, 96, 97} |
19191 = 2,1929] = 2,19391 = 2,1929] = 2,
lg591 = 2,1969| = 2, 19791 = 3}.
For each gs € Cs.
Found a valid labeling
(gl/ 92,93, 94,95, 96,97, 98)
end for.
end for.
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end for.
end for.
end for.
end for.
end for.
end for.

The large number of loops makes us worry about the running time of the algorithm. As we will see in
the proof of the following theorem, we can use the symmetry in the conjugacy class to our benefit. Namely,
we can make one choice arbitrary, which eliminates one loop. The remaining search turns out to be doable.
Here is the result:

Theorem 6.2. There are 696729600 valid labelings of the Dg Dynkin diagram with respect to generators from the
conjugacy class of orthogonal reflections of PGO™ (8, 2) of size 120. These labelings correspond to the elements of the
automorphism group of PGO* (8, 2).

Proof. The group G = PGO™(8,2) of order 348364800 has one conjugacy class of orthogonal reflections of
size 120 (class 2A in Table 6). Because the group acts transitively on the conjugacy class, we may pick one
representative o and construct the valid labelings of the Dynkin diagram of type Dg with o, the label of
a fixed node of the diagram. We pick element 10101011 from the list of external points of the quadric in
Table 4, so

z=P(1,0,1,0,1,0,1,1)

This element is assigned to node 1. The labeling algorithm 6.1 produces a list of 5806080 completions. Since
the element z is one of 120 different choices, each of which would lead to the same number of completions,
we can estimate the total number of solutions. Namely, we find that the number of valid labelings is

696729600 = 120 - 5806080.
Since
696729600 = 2 - 348364800,
we have created a group which is twice bigger than the group PGO*(8,2). The elements arise from the
labelings in such a way: Fix one labeling, say
Ogare-vr 0z
Any second labeling
Owyse s Owg,

defines an automorphism of G. Namely, take any element g of G. Since G is generated by orthogonal
reflections, we can find an expression
g =0g 0,

with 4; indices into the 120 elements of class 2A. We may assume that

Simply replace g by
g = O_ng . ng[
to define an automorphism of PGO™ (8, 2). The automorphism group of PGO* (8, 2) has order twice the order

of PGO™(8,2). This is because of the presence of a graph automorphism of the Dynkin diagram (nodes 2
and 3 can be exchanged). O
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The order of all products of pairs can be precomputed and the data can be stored in the form of graphs.
We use the graphs graphs I'; and I'; from Section 5.4.

As an example, let us look at one labeling from the list that was produced by the algorithm. Using
o; to denote the orthogonal reflection associated with the external point P; from Table 4, we find that the
following assignment from nodes to involutions is valid:

o o o 0
(1,2,3,4,5,6,7,8) 10101011, 011000000, 900110000, 900001100~
011111011, 011001111, 011111110, 000000011

For completeness, the external points involved in this labeling are (the subscript to P in the first column
indicates the Orbiter number of the point)

P> = P(1,0,1,0,1,0,1,1),
Py = P(1,1,0,0,0,0,0,0),
P = P(0,0,1,1,0,0,0,0),
P, = P(0,0,0,0,1,1,0,0),

P» = P(1,1,1,1,1,0,1,1),
Ps = P(1,1,0,0,1,1,1,1),
Ps = P(1,1,1,1,1,1,1,0),
P; = P(0,0,0,0,0,0,1,1).

The matrices of the associated orthogonal reflections are given next:

1 0 0 0 0 0 0 07 0 1 0 0 0 0 0 07
1 1101011 1 0000 O0O0O0
001 00 O0O0TO0 001 0O0O0O0TO0
1 01 11011 00 01O0O0O0TO0
010101011 = 0000100 0]!| 011000000 = 000O0T10U0O0]|
1 01 01111 00 0 0 O01O00O0
1 01 01 001 000 O0O0O0OT1TFO
11 01 01 0 1 0] | 0000 OO 0 1]
1 0 0 0 0 0 0 07 1 0 0 0 0 0 0 07
01 0 0O0O0O0TO 01 0 0O0O0O0TO
0001 0 O0O0TO 0 001 0O0O0O0TO
001 00 O0O0OTO0 00 01O0O0O0TO0
000110000 = 0000100 0]| 000001100 = 000O0O0T1GO0TO0]!|
0 00OOO1T 0O 00 0 010 00O0
0 00 OO O T1TUO 000 O0O0O0OT1TFO
L0 0O 0O OO 0 0 1] | 0000 OO 0 1]
ro 11 1 1 0 1 17 01 0 01 1 1 17
1 01 11011 1 0001 111
1 1 011011 001 0O0O0O0TO0
1 1101011 00 0100 O00O0
011111011 = 00001000l 011001111 = 110001111
1 1111111 11001011
1 1111001 11001101
1111 1 1 0 1 0] |11 0 01 1 1 0]
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011111110 = » 000000011 =
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7. The Word Tree

The main problem we wish to address is that of converting from the matrix representation to the
representation as word in a chosen set of generators. As already mentioned, the orthogonal reflections
generate the orthogonal group in most cases. We will now express the elements of G as words in these
generators. A word is an expression of the form

si sfkk (6)
with si; an element of the chosen generating set and €, € {£1}. In the case of involutorial generators, we
may dispense with the €i; as every element is its own inverse. The length of a word is the integer k in
the expression (6). A word is reduced if there are no possible cancellations among consecutive terms. The
length of a group element g (w.r.t. the chosen generating set) is the shortest length of a word that expresses
g in terms of the given generators. We are interested in the word length of the elements of an orthogonal
group in terms of specific generating sets.

The following result gives the word length of all elements of PGO* (6, 2) in terms of the generating set
of orthogonal reflections. In the case of G = PGO™(6,2), there are 28 orthogonal reflection, and they form
conjugacy class 2A in Table 1.

Theorem 7.1. The word length s a class property if the generating set is a union of conjugacy classes. For PGO™ (6, 2),
the possible word lengths are listed in Table 7, using the labeling of classes given in Table 1.

classes

1A

2A

2C, 3A

2D, 4A, 6B

2B, 3B, 4D, 5A, 6C
4B, 6A, 6E, 10A, 12A
4C, 6D, 7A, 15A

8A

(0]
=}
aQ
(=
=

N[O\ O | WM~ O

Table 7: Word length in PGO™ (6, 2) by classes

Proof. Suppose that
€k

- el DY
9= Sil Sik

is an expression for g as a word in the generators. Conjugation by & yields

7' =) )™
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By assumption, the generating set is invariant under conjugation, so the

h

i
are themselves elements in the generating set. So, the expression for g" is a word in the given set of
generators, obviously of the same length as the original word. This means that the distance from the

identity is a well-defined function on the conjugacy classes.

We can compute the orbit of a group on a set by using the technique of Schreier trees. The nodes of the
tree are the elements of the group. The edges are labeled by generators. The root of the tree corresponds to
the identity element. From any node, a set of successors is generated by right multiplication of the group
element by exactly one generator at a time. So, if g represents a node, and s a generator, then gs considered
for possible addition. If gs is already part of the tree, it is discarded. Otherwise, gs is added as a new node
and an edge is created from g to gs, labeled by the generator s. This process is repeated by looping over the
generators in a fixed order and by looping over all nodes as they are discovered. A FIFO queue is used to
keep track of the nodes that have been discovered by not yet extended. By following the unique path from
the root to any node, we can recover a word in the generators that expresses the group element. Because
of the way that Schreier trees are built, this word is reduced. This means that the Schreier tree is in fact the
word tree of the group.

Once the word tree is computed, we form the level sets. The level set L; contains all elements g which
are listed at distance 7 from the root in the tree. This means that L; consists of those group elements whose
word length is i. Once the level sets L; are computed, we intersect them with the conjugacy classes. The
data is summarized in Table 8. Row i represents level set L;. The column # is the number of group elements
in L;. The columns to the right are sizes of the intersection of L; with each of the conjugacy classes. The

length # | 1A |2A | 2B | 2C | 2D | 3A 3B | 4A 4B 4C 4D
1| 28| 105 | 210 | 420 | 112 | 1120 | 420 | 1260 | 1260 | 2520

0 1 1 0 0 0 0 0 0 0 0 0 0

1 28 0] 28 0 0 0 0 0 0 0 0 0

2 322 0 0 0 | 210 0| 112 0 0 0 0 0

3| 1960 0 0 0 0 | 420 0 0 | 420 0 0 0

41 6769 0 0 | 105 0 0 0 | 1120 0 0 0 | 2520

5 | 13132 0 0 0 0 0 0 0 0 | 1260 0 0

6 | 13068 0 0 0 0 0 0 0 0 0 | 1260 0

7 | 5040 0 0 0 0 0 0 0 0 0 0 0
length 5A 6A 6B 6C 6D 6E 7A 8A | 10A | 12A | 15A
1344 | 1120 | 1120 | 1680 | 3360 | 3360 | 5760 | 5040 | 4032 | 3360 | 2688

0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0

3 0 0 | 1120 0 0 0 0 0 0 0 0

4 | 1344 0 0 | 1680 0 0 0 0 0 0 0

5 0 | 1120 0 0 0 | 3360 0 0 | 4032 | 3360 0

6 0 0 0 0 | 3360 0 | 5760 0 0 0 | 2688

7 0 0 0 0 0 0 0 | 5040 0 0 0

Table 8: Shortest words in PGO™* (6, 2) by classes

theorem is immediate from this table. O
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8. Why C++?

There are many advantages to using C++. For starters, the language is has stood the test of time and
offers a robust and stable environment. Development tools are plentiful. Supportis excellent. Compatibility
to old versions is outstanding. Many libraries exist, and the language itself supports large software projects,
efficient data structures, abstraction, namespaces and most of all, classes. Classes embed into larger concepts
like abstraction, data encapsulation, and code decoupling. Namespaces address the problem of symbol
space pollution, which is one big disadvantage of C. Namespaces allow to write modular code, which is
important in large software projects. In Orbiter, we utilize namespace nesting (up to four levels deep) to
organize a huge code base of over one million lines of code. For comparison, in 2020, the Linux project
had about 28 million lines of code. The ability to write very efficient code supported by efficient data
structures is a big draw. The latter is important for problems like that of working with groups of Lie type.
Memory efficiency is particularly important for large orbit computations. This is especially true for poset
classification, which is an algorithm to compute orbits of a group on partially ordered sets. We have already
talked about piggy-backing permutation representations on matrix representations. The language C++
supports abstract data types, so techniques like piggy-backing can be implemented and offer the benefit of
a simpler interface to permutation groups.

In Computer Algebra, computations are often time critical and memory intense. Dynamic memory
allocation is important for this. In C++, the memory is managed by the programmer. Other systems try to
hide the memory management from the programmer. The problem is not the memory allocation but the
release of unused memory back to the system. Garbage collection is used by many systems, but it comes at a
cost. The running times becomes unpredictable, as the system may interrupt to do garbage collection at any
time. Having the programmer responsible for returning unused memory eliminates the need for garbage
collection, but it demands more attention on the side of the programmer. A drawback is the potential to
create memory leaks, which arise when data is not returned to the system by mistake. Memory leaks are
often difficult to detect and fix, though there are tools to support leak detection.

In Orbiter, abstraction is used to provide a uniform interface to groups and group actions. There is a set
of standard functions that is offered for any group object. The permutation action is decoupled from the
group implementation, and one group can appear with multiple actions. New actions can be created from
old. The orbit algorithms build on this uniform interface. One could say that the orbit algorithm computes
orbits of groups without knowing what kind of group it is. For a discussion of the orbit algorithms,
see [7]. Orbit algorithms tie into posets with group action. Available posets are the poset of subsets of
a set and the poset of subspaces of a vector space. The poset classification algorithm is memory hungry.
It needs to store a large about of group elements either as generators of subgroups or as isomorphisms
of substructures. Orbiter offers several representations of group elements. On the one hand, there is the
matrix representation, where a matrix is a two dimensional array, which is linearized in the row-major form
(which is also the default in C and C++). On the other hand, there is the compact representation, where a
group element (matrix) is coded as a bit-vector. Here, we utilize the fact that we are working over a finite
field IF,. We need approximately n?log,(q) bits to represent a group element in a matrix representation of
degree n. The compact representation comes at a cost. Namely, the group element must be converted back
and from the compact state to be used for computations. Nevertheless, the benefit in memory savings
outweighs this additional level of complication. More importantly, the conversion to and from the compact
representation happens inside the orbit algorithms, which is inside the Orbiter library. So, the user of the
Orbiter library does not have to worry about it.

Orbiter also has a command-processor user interface, so it can be used as a computer algebra system
with its own small language (called Orbiter dash code). Thus, Orbiter is in fact two things in one. On the
one hand, it is a class library that can be used to write code. On the other hand, Orbiter can be used as a
computer algebra system using the existing commands. For a description of the Orbiter dash code, see the
user’s guide [9] or Section 8.1 below. Describing the features of the Orbiter library is beyond the scope of
this paper, unfortunately.
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Consider an example. We create the group PGO*(6, 2). The stabilizer chain is shown in Table 9. The

| Level [ Base pt | Orbit length | Subgroup order |

0 0 35 40320
1 1 16 1152
2 2 9 72

3 3 1 8

4 4 1 8

5 5 4 8

6 9 2 2

7 1

Table 9: Stabilizer chain for the group PGO* (6, 2) in the permutation action on the Klein quadric.

group order is 40320. The degree of the action is 35, the number of singular points (i.e., points on the Klein
quadric). The base points are

P(1,0,0,0,0,0),
= P(0,1,0,0,0,0),
= P(0,0,1,0,0,0),
= P(1,0,1,0,0,0),
P(0,1,1,0,0,0),
= P(0,0,0,1,0,0),
= P(0,0,0,0,1,0).

0

O U1 = W N =
|

A strong generating set is

1000007 [1000007 [100000] [1000007 [1000001 [1000001 [100000] [010110] [001111] [000010
010000( {010000{ {010000| {010000| {010000| |011111| J010100| [001000{ |101000( (101111
001000{ {001000| {001000| |000110| |000100| |100010( |101001| [010000| {011111| (101010
000100]”{001111|"|{000110|”|000001 |”|001010{”{100001|"{000100|"|{101010{"|111100{"|100110{"

000001 {001001{ (001001 (001001 {0O0010{ {101000{ {000110{ |000010| {010101| |100000
000010 [001010| [000010] |[000100] |000101] |100100]| |000001| |011001f [010110f [111110

8.1. The Orbiter Dash Code Language

The Orbiter command line processor offers its own very basic language for symbolic algebra. It has a
symbol table for storing objects. The syntax of the Orbiter dash code language is very easy. There are only
4 types of instructions:

1. Definitions: A new object can be defined and put in the symbol table. Various parameters and options
can be set. Example: We can define a linear group or a projective space, a polynomial ring, an algebraic
variety or a combinatorial object.

2. Activity: Given one or more objects, an activity is a command that applies to the given objects.
Example: Given a variety, we can compute the automorphism group

3. Assignment: Some activities return new objects. These new objects can be put in the symbol table
under a new name.
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4. Global command: A global command is a command that does not need any input object.

Orbiter commands resemble Unix command line arguments, with a dash preceding keywords (hence
the name dash code). Let us look at an example. The following Orbiter command sequence can be used to
create the group PGO™ (6, 2) from the equation given in (3). To begin with, we encode the equation of the
variety as makefile variable in algebraic form. The equation is written in algebraic form in plain text. All
multiplication symbols must be written as star symbols.

Op_6_eqn="X0*X1+X2*X3+X4*X5"

The next command creates the variety and the group:

Op_6_2_group:

$(ORBITER) -v 6 \

> -define F -finite_field -q 2 -end \

-define P -projective_space -n 5 -field F -v 0 -end \
-define R -polynomial_ring \

-field F \

-number_of_variables 6 \

-homogeneous_of_degree 2 \

-monomial ordering partition \

-variables "X0,X1,X2,X3,X4,X5" "X 0,X1,X2,X3,X4,X5

vV VvV vV V V V V VYV
vV VvV vV V V VvV V

VvV V V V V

-~

-end \

-define V -variety \

-projective_space P \

-ring R \

-equation_in_algebraic_form \

> $(0p_6_egn) \

-label _txt Op_6.2 \

-label_tex "{\\rm Op\_6\_2}" \

-end \

-with V -do -variety_activity -compute_group \

> -nauty_control -save_orbit_of_equations eqn_ -end \
-end \

-with V -do -variety_activity -singular_points -end \
-with V -do -variety_activity -report -end

pdflatex variety Op_6_2 _report.tex

open variety Op_6_2_report.pdf

V VvV VvV V V VvV VvV VvV Vy
V V V V VvV V

vV vV V vV V V V V VvV VvV vV VvV VYV

The command consists of the following sequence of Orbiter commands:

1. An object of type -draw_options is defined to control the graphical output in the reporting functions
later.

2. An object of type -finite_field is defined to represent the field IF,. The order of the field is specified
using the -q option.

3. An object of type -projective_space is defined to represent the projective space PG(5,2). The
projective dimension is specified using the -n option. The field is specified using the -field option.
The label F refers to the field object defined in step 2.
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An object of type -polynomial_ring is defined to represent the quadratic component of the polyno-
mial ring F>[Xp, X3, ..., X5]. An ordering of the monomials is chosen.

An object of type -variety is defined to represent the algebraic variety cut out by equation (3). The
equation is pulled from the makefile variable using the $(NAME) syntax, where NAME is the name of
a makefile variable defined earlier. This syntax is the syntax of unix shell commands. Here, we use
$(Op_6_eqn) to refer to the makefile variable defined previously.

An object of type -modified_group is defined to represent the stabilizer of the variety. The group is
computed using the algorithm described in [2]. The command -nauty_control can be used to set
options for Nauty. Nauty is a C-library which is a toolbox for graph canonization, see [36]. Nauty is
required to compute the automorphism group of a variety.

A group theoretic activity is invoked for the group of the variety, which has been stored in the variable
G. The activity asks to produce a report of the variety. The report is a latex file which summarizes
known properties of the variety. Known properties include the automorphism group order, the
number of points, the points, possible singularities, and other things.

Once the Orbiter command finishes, the makefile invokes pdflatex to translate the latex command and
open to show the document on the screen. This finishes the session.

8.2. Abstraction

How does abstraction look like in Orbiter? Let is look at the code to compute the orbits of a group on a

set. We will look at two different group actions and compare the Orbiter dash code. Here is the first code
example. We create the group PGO™ (6, 2) and produce a latex report for it:

Op_6_2_report:
$(ORBITER) -v 10 \

V V VvV vV Vv vV VvV vV VvV VYV

>

V V vV V V V V V Vv

-define Do -draw_options \

> -radius 200 -line_width 0.3 \

-end \

-define F -finite_field -q 2 -end \
-define G -linear_group -PGOp 6 F -end \
-with G -do \

-group_theoretic_activity \

> -report Do \

-end \

-print_symbols

pdflatex PGOp_6_2_report.tex
open PGOp_6_2_report.pdf

The second code example creates the same group, but then we also create the generating set formed by

the orthogonal reflections associated with the 28 points off the quadric. At first, we store the Orbiter index
values of these 28 points as points in PG(5, 2) inside a makefile variable. These points have been computed
by the code example Op_6_2_group above.

ORTHOGONAL _OP_6_2_POINTS_OFF="6,7,10,13,14,15,16,20,24,28,29,
30,31,35,39,43, 44, 45, 46, 48, 49, 50, 52, 53, 54, 56, 57, 5

8"
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Next, we create the group and the action on itself by right-multiplication. This is done by creating a
new group called R. This group R is not a completely new group. Instead, it is a modification of an existing
group. The internal representation of the group remains, but the action changes. We then create the orbit
tree using a Schreier algorithm, based on the generating set consisting of the orthogonal reflections.

Op_6_2 orbits:

$(ORBITER) -v 4 \

> -define F -finite_field -q 2 -end \
-define G -linear_group -PGOp 6 F -end \
-define Pts -vector \

> -dense $(ORTHOGONAL_OP_6_2_POINTS_OFF) \
-end \

-define 0 -orthogonal_space 1 6 F -end \
-with O -do -orthogonal_space_activity \

> -create_orthogonal reflection Pts \
-end \

-define gens -vector_ge \

> -action G \

> -read_csv 0_1.6_2_orthogonal reflections.csv Element \
-end \

-define R -modified_group -from G \

> -action_on_self by rightmultiplication \
-end \

-define Orb -orbits -group R \

> -on_points with generators gens \

> -print_interval 100 \

-end

vV VvV vV VvV vV vV vV VvV VvV VvV VvV VvV VvV VvV Vvey

vV VvV vV VvV vV vV vV VvV vV VvV vV VvV VvV VvVvy

The computation shown in this example was the basis for the example presented in Section 7. Namely,
from the group orbit, we can compute the reduced words of all elements, from which Table 7 follows. Note
that the word length is a class function, because our generating set is the whole class of involutions 2A.

9. Conclusion

We have discussed the C++ library Orbiter for algebraic computations, in particular orbits of groups
of Lie type under finite group actions. We discussed the specific needs of an orbit algorithm for orbits
on a partially orcdered set. We looked at two applications. The first is computing the labelings of a
Dynkin diagram of type D,,. This allows us to compute the automorphism group of an orthogonal group
over of plus type which is defined over a finite field. A second application was the computation of word
trees in Coxeter groups. We looked at the orthogonal group PGO*(6,2) of order 40320 and its set of 28
orthogonal reflections. Based on this generating set, which is fully invariant under automorphisms, we
found that the word tree is invariant also, and we were able to express the elements of each level as union of
conjugacy classes of the group. Finally, we discussed the role of abstraction in computer algebra systems.
We illustrated this by orbit algorithms for various types of groups and group actions in Orbiter, using a
unified command syntax. Thoughout, we discussed the basic ideas of C++ programming, though much
more would remain to be said.
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