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Abstract. This paper examines discrete-time systems, which are sometimes used to explain nonlinear
natural phenomena in the sciences. Specifically, we investigate the boundedness, oscillation, stability, and
exact solutions of nonlinear difference equations. We obtain these solutions using the standard iteration
method and test the stability of equilibrium points using well-known theorems. We also provide numer-
ical examples to validate our theoretical work and implement the numerical component using Wolfram
Mathematica. The method presented can be easily applied to other rational recursive problems.

In this paper, we explore the dynamics of adhering to rational difference formula

xn+1 =
xn−23

±1 ± xn−5xn−11xn−17xn−23
,

where the initials are arbitrary nonzero real numbers.

1. Introduction

Differential equations are commonly employed to describe the evolution of various natural phenomena
over time. However, discrete time steps, modeled using difference equations, find application in ad-
dressing real-life problems. Recursive equations play a crucial and potent role in mathematics, effectively
exploring applications across engineering, physics, biology, economics, and more. Notably, they have been
instrumental in modeling diverse phenomena, including population size, the Fibonacci sequence, drug
distribution in the blood system, information transmission, commodity pricing, and the growth of annual
plants [11].

Furthermore, scholars have utilized difference equations to numerically solve certain differential equa-
tions. The discretization of a given differential equation results in a difference equation, exemplified by
the derivation of the Runge-Kutta scheme from a first-order differential equation. This prompts inquiries
into the convergence of the difference scheme to the differential equation solution and the correspondence
between the properties of their solutions.

Addressing these concerns, [27] focuses on conserving a solution bounded across the entire axis during
the transition from differential to difference equations and vice versa. Similarly, [8] explores the preservation
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of the oscillatory property of solutions to second-order equations. The advent of technology has spurred
the application of recurrence equations as approximations to partial differential equations. Fractional order
difference equations frequently find use in investigating nonlinear phenomena in the sciences.

Numerous researchers have extensively delved into properties of recursive expressions, investigating
stability, periodicity, boundedness, and solutions of recursive equations. Noteworthy works include Alay-
achi et al., examined the periodicity and global attractivity in solving sixth order difference equations,
obtaining precise solutions with the aid of the Fibonacci sequence. [4]. Sanbo and Elsayed present findings
on the stability and solutions of a fifth-order recursive sequence in [34]. Almatrafi and Alzubaidi [5] have
examined the dynamic behaviors of an eighth-degree difference equation and presented the results 2D
graphics. Ahmed et al. [3] contribute by discovering new solutions and conducting a dynamical anal-
ysis for certain nonlinear fifteenth-order difference relations. Further discussions on nonlinear recursive
problems can be found in [1–42].

This article is motivated by the study of eighteenth-order difference equations presented in [31]. We
are now delving into more intricate rational difference equations of the twenty-fourth order. Hence, the
objective of this study is to examine various dynamical properties including equilibrium points, local and
global behaviors, boundedness, and analytical solutions of the nonlinear recursive sequences,

xn+1 =
xn−23

±1 ± xn−5xn−11xn−17xn−23
. (1)

Here, the initial values x−23, x−22, x−21, . . . , x−2, x−1, x0, are arbitrary non-zero real numbers. In this work,
we also illustrate some 2D figures with the help of Wolfram Mathematica to validate the obtained results.

Assume I is an interval of real numbers, and let f : Ik+1
→ I be a continuously differentiable function.

For any set of initial conditions x−k, x−k+1, . . . , x0 ∈ I, the following difference equation

xn+1 = f (xn, xn−1, . . . , xn−k), n = 0, 1, 2, . . . , (2)

has a unique solution {xn}
∞

n=−k [29]. An equilibrium point x ∈ I is defined for equation (2) if

x = f (, x, x, . . . , x).

In other words, xn = x for n ≥ 0 constitutes a solution to equation (2), or equivalently, x is a fixed point of f .

2. Preliminaries

Definition 2.1. (Stability)

1. The equilibrium point x of equation (2) is called locally stable if for every ϵ > 0, there exists δ > 0 such
that for all x−k, x−k+1, ..., x−1, x0 ∈ I,with

|x−k − x| + |x−k+1 − x| + ... + |x0 − x| < δ,

we have

|xn − x| < ϵ for all n ≥ k.

2. The equilibrium point x of equation (2) is called locally asymptotically stable if x is a locally stable
solution of equation (2) and there exists γ > 0, such that for all x−k, x−k+1, ..., x−1, x0 ∈ I,with

|x−k − x| + |x−k+1 − x| + ... + |x0 − x| < γ,

we have

lim
n→∞

xn = x.
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3. The equilibrium point x of equation (2) is called a global attractor if for all x−k, x−k+1, ..., x−1, x0 ∈ I, we
have

lim
n→∞

xn = x.

4. The equilibrium point x of equation (2) is called a global asymptotically stable if x is locally stable and
x is also a global attractor of equation (2).

5. The equilibrium point x of equation (2) is called unstable if x is not locally stable. The linearized
equation of equation (2) about the equilibrium x is the linear difference equation

yn+1 =

k∑
i=0

∂ f (x, x, ..., x)
∂xn−i

yn−i.

Theorem 2.2. (see[28]) Assume that p, q ∈ R and k ∈N0. Then

|p| + |q| < 1

is a sufficient condition for the asymptotic stability of the difference equation

xn+1 + pxn + qxn−k = 0, n ∈N0.

Remark 2.3. Theorem 2.2 can be easily extended to general linear equations of the form

xn+k + p1xn+k−1 + ... + pkxn = 0, n ∈N0, (3)

where, p1, p2, ..., pk ∈ R and k ∈N. Then (3) is asymptotically stable provided that

k∑
i=1

|pi| < 1.

Definition 2.4. The equilibrium point x is said to be hyperbolic if | f (x)| , 1. If | f (x)| = 1, x is non hyperbolic.

3. On the difference equation xn+1 =
xn−23

1+xn−5xn−11xn−17xn−23

In this section, we give a specific form of the solutions of the difference equation below, provided that
the initial conditions are arbitrary real numbers.

xn+1 =
xn−23

1 + xn−5xn−11xn−17xn−23
, (4)

where,

x−23 = A23, x−22 = A22, x−21 = A21, x−20 = A20, x−19 = A19, x−18 = A18,

x−17 = A17, x−16 = A16, x−15 = A15, x−14 = A14, x−13 = A13, x−12 = A12,

x−11 = A11, x−10 = A10, x−9 = A9, x−8 = A8, x−7 = A7, x−6 = A6, (5)
x−5 = A5, x−4 = A4, x−3 = A3, x−2 = A2, x−1 = A1, x0 = A0.
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Theorem 3.1. Let {xn}
∞

n=−23 be a solution of (4). Then,

x24n+1 =
A23
∏n−1

i=0 (1 + 4iA5A11A17A23)∏n
i=0(1 + (4i + 1)A5A11A17A23)

, x24n+2 =
A22
∏n−1

i=0 (1 + 4iA4A10A16A22)∏n
i=0(1 + (4i + 1)A4A10A16A22)

,

x24n+3 =
A21
∏n−1

i=0 (1 + 4iA3A9A15A21)∏n
i=0(1 + (4i + 1)A3A9A15A21)

, x24n+4 =
A20
∏n−1

i=0 (1 + 4iA2A8A14A20)∏n
i=0(1 + (4i + 1)A2A8A14A20)

,

x24n+5 =
A19
∏n−1

i=0 (1 + 4iA1A7A13A19)∏n
i=0(1 + (4i + 1)A1A7A13A19)

, x24n+6 =
A18
∏n−1

i=0 (1 + 4i)A0A6A12A18)∏n
i=0(1 + (4i + 1)A0A6A12A18)

,

x24n+7 =
A17
∏n

i=0(1 + (4i + 1)A5A11A17A23)∏n
i=0(1 + (4i + 2)A5A11A17A23)

, x24n+8 =
A16
∏n

i=0(1 + (4i + 1)A4A10A16A22)∏n
i=0(1 + (4i + 2)A4A10A16A22)

,

x24n+9 =
A15
∏n

i=0(1 + (4i + 1)A3A9A15A21)∏n
i=0(1 + (4i + 2)A3A9A15A21)

, x24n+10 =
A14
∏n

i=0(1 + (4i + 1)A2A8A14A20)∏n
i=0(1 + (4i + 2)A2A8A14A20)

,

x24n+11 =
A13
∏n

i=0(1 + (4i + 1)A1A7A13A19)∏t
i=0(1 + (4i + 2)A1A7A13A19)

, x24n+12 =
A12
∏n

i=0(1 + (4i + 1)A0A6A12A18)∏n
i=0(1 + (4i + 2)A0A6A12A18)

,

x24n+13 =
A11
∏n

i=0(1 + (4i + 2)A5A11A17A23)∏n
i=0(1 + (4i + 3)A5A11A17A23)

, x24n+14 =
A10
∏n

i=0(1 + (4i + 2)A4A10A16A22)∏n
i=0(1 + (4i + 3)A4A10A16A22)

,

x24n+15 =
A9
∏n

i=0(1 + (4i + 2)A3A9A15A21)∏n
i=0(1 + (4i + 3)A3A9A15A21)

, x24n+16 =
A8
∏n

i=0(1 + (4i + 2)A2A8A14A20)∏n
i=0(1 + (4i + 3)A2A8A14A20)

,

x24n+17 =
A7
∏n

i=0(1 + (4i + 2)A1A7A13A19)∏n
i=0(1 + (4i + 3)A1A7A13A19)

, x24n+18 =
A6
∏n

i=0(1 + (4i + 2)A0A6A12A18)∏n
i=0(1 + (4i + 3)A0A6A12A18)

,

x24n+19 =
A5
∏n

i=0(1 + (4i + 3)A5A11A17A23)∏n
i=0(1 + (4i + 4)A5A11A17A23)

, x24n+20 =
A4
∏n

i=0(1 + (4i + 3)A4A10A16A22)∏n
i=0(1 + (4i + 4)A4A10A16A22)

,

x24n+21 =
A3
∏n

i=0(1 + (4i + 3)A3A9A15A21)∏n
i=0(1 + (4i + 4)A3A9A15A21)

, x24n+22 =
A2
∏n

i=0(1 + (4i + 3)A2A8A14A20)∏n
i=0(1 + (4i + 4)A2A8A14A20)

,

x24n+23 =
A1
∏n

i=0(1 + (4i + 3)A1A7A13A19)∏n
i=0(1 + (4i + 4)A1A7A13A19)

, x24n+24 =
A0
∏n

i=0(1 + (4i + 3)A0A6A12A18)∏n
i=0(1 + (4i + 4)A0A6A12A18)

,

where, x0, . . . , x−23 defines as in (5).

Proof. The proof of each formula are carried out in similar way. So, we will demonstrate proof using one
of the formula. We will employ the mathematical induction method. Suppose that n > 0 and that our
assumption holds for n = 1. That is,

x24n−23 =
A23
∏n−2

i=0 (1 + 4iA5A11A17A23)∏n−1
i=0 (1 + (4i + 1)A5A11A17A23)

, x24n−22 =
A22
∏n−2

i=0 (1 + 4iA4A10A16A22)∏n−1
i=0 (1 + (4i + 1)A4A10A16A22)

,

x24n−21 =
A21
∏n−2

i=0 (1 + 4iA3A9A15A21)∏n−1
i=0 (1 + (4i + 1)A3A9A15A21)

, x24n−20 =
A20
∏n−2

i=0 (1 + 4iA2A8A14A20)∏n−1
i=0 (1 + (4i + 1)A2A8A14A20)

,

x24n−19 =
A19
∏n−2

i=0 (1 + 4iA1A7A13A19)∏n−1
i=0 (1 + (4i + 1)A1A7A13A19)

, x24n−18 =
A18
∏n−2

i=0 (1 + 4i)A0A6A12A18)∏n−1
i=0 (1 + (4i + 1)A0A6A12A18)

,

x24n−17 =
A17
∏n−1

i=0 (1 + (4i + 1)A5A11A17A23)∏n−1
i=0 (1 + (4i + 2)A5A11A17A23)

, x24n−16 =
A16
∏n−1

i=0 (1 + (4i + 1)A4A10A16A22)∏n−1
i=0 (1 + (4i + 2)A4A10A16A22)

,
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x24n−15 =
A15
∏n−1

i=0 (1 + (4i + 1)A3A9A15A21)∏n−1
i=0 (1 + (4i + 2)A3A9A15A21)

, x24n−14 =
A14
∏n−1

i=0 (1 + (4i + 1)A2A8A14A20)∏n−1
i=0 (1 + (4i + 2)A2A8A14A20)

,

x24n−13 =
A13
∏n−1

i=0 (1 + (4i + 1)A1A7A13A19)∏n−1
i=0 (1 + (4i + 2)A1A7A13A19)

, x24n−12 =
A12
∏n−1

i=0 (1 + (4i + 1)A0A6A12A18)∏n−1
i=0 (1 + (4i + 2)A0A6A12A18)

,

x24n−11 =
A11
∏n−1

i=0 (1 + (4i + 2)A5A11A17A23)∏n−1
i=0 (1 + (4i + 3)A5A11A17A23)

, x24n−10 =
A10
∏n−1

i=0 (1 + (4i + 2)A4A10A16A22)∏n−1
i=0 (1 + (4i + 3)A4A10A16A22)

,

x24n−9 =
A9
∏n−1

i=0 (1 + (4i + 2)A3A9A15A21)∏n−1
i=0 (1 + (4i + 3)A3A9A15A21)

, x24n−8 =
A8
∏n−1

i=0 (1 + (4i + 2)A2A8A14A20)∏n−1
i=0 (1 + (4i + 3)A2A8A14A20)

,

x24n−7 =
A7
∏n−1

i=0 (1 + (4i + 2)A1A7A13A19)∏n−1
i=0 (1 + (4i + 3)A1A7A13A19)

, x24n−8 =
A6
∏n−1

i=0 (1 + (4i + 2)A0A6A12A18)∏n−1
i=0 (1 + (4i + 3)A0A6A12A18)

,

x24n−5 =
A5
∏n−1

i=0 (1 + (4i + 3)A5A11A17A23)∏n−1
i=0 (1 + (4i + 4)A5A11A17A23)

, x24n−4 =
A4
∏n−1

i=0 (1 + (4i + 3)A4A10A16A22)∏n−1
i=0 (1 + (4i + 4)A4A10A16A22)

,

x24n−3 =
A3
∏n−1

i=0 (1 + (4i + 3)A3A9A15A21)∏n−1
i=0 (1 + (4i + 4)A3A9A15A21)

, x24n−2 =
A2
∏n−1

i=0 (1 + (4i + 3)A2A8A14A20)∏n−1
i=0 (1 + (4i + 4)A2A8A14A20)

,

x24n−1 =
A1
∏n−1

i=0 (1 + (4i + 3)A1A7A13A19)∏n−1
i=0 (1 + (4i + 4)A1A7A13A19)

, x24n =
A0
∏n−1

i=0 (1 + (4i + 3)A0A6A12A18)∏n−1
i=0 (1 + (4i + 4)A0A6A12A18)

.

Now, using the main (4), one has

x24n+1 =
x24n−23

1 + x24n−5x24n−11x24n−17x24n−23
,

=

A23
∏n−2

i=0 (1+4iA5A11A17A23)∏n−1
i=0 (1+(4i+1)A5A11A17A23)

1 + A5
∏n−1

i=0 (1+(4i+3)A5A11A17A23)∏n−1
i=0 (1+(4i+4)A5A11A17A23)

A11
∏n−1

i=0 (1+(4i+2)A5A11A17A23)∏n−1
i=0 (1+(4i+3)A5A11A17A23)

A17
∏n−1

i=0 (1+(4i+1)A5A11A17A23)∏n−1
i=0 (1+(4i+2)A5A11A17A23)

A23
∏n−2

i=0 (1+4iA5A11A17A23)∏n−1
i=0 (1+(4i+1)A5A11A17A23)

.

Hence, we have

x24n+1 =
A23
∏n−1

i=0 (1 + 4iA5A11A17A23)∏n
i=0(1 + (4i + 1)A5A11A17A23)

.

Similarly,

x24n+2 =
x24n−22

1 + x24n−4x24n−10x24n−16x24n−22
,

=

A22
∏n−2

i=0 (1+4iA4A10A16A22)∏n−1
i=0 (1+(4i+1)A4A10A16A22)

1 + A4
∏n−1

i=0 (1+(4i+3)A4A10A16A22)∏n−1
i=0 (1+(4i+4)A4A10A16A22)

A10
∏n−1

i=0 (1+(4i+2)A4A10A16A22)∏n−1
i=0 (1+(4i+3)A4A10A16A22)

A16
∏n−1

i=0 (1+(4i+1)A4A10A16A22)∏n−1
i=0 (1+(4i+2)A4A10A16A22)

A22
∏n−2

i=0 (1+4iA4A10A16A22)∏n−1
i=0 (1+(4i+1)A4A10A16A22)

.

Therefore, we have

x24n+2 =
A22
∏n−1

i=0 (1 + 4iA4A10A16A22)∏n
i=0(1 + (4i + 1)A4A10A16A22)

.

Other relations can also be obtained in a similar way, and thus the proof is complete.

Theorem 3.2. The equation (4) has unique equilibrium point which is the number zero and this equilibrium is not
locally asymptotically stable. Also x is non hyperbolic.
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Proof. For the equilibriums of equation (4), we have

x =
x

1 + x4 ,

then

x + x5
= x, x5

= 0.

Thus the equilibrium point of (4), is x = 0.
Let f : (0,∞)4

→ (0,∞) be the function defined by

f (l, o, t,w) =
l

1 + lotw
.

Therefore it follows that,

fl(l, o, t,w) =
1

(1 + lotw)2 , fo(l, o, t,w) =
−l2tw

(1 + lotw)2 ,

ft(l, o, t,w) =
−l2ow

(1 + lotw)2 , fw(l, o, t,w) =
−l2ot

(1 + lotw)2 .

We see that

fl(x, x, x, x) = 1, fo(x, x, x, x) = 0, ft(x, x, x, x) = 0, fw(x, x, x, x) = 0.

The proof now follows by using Theorem 3.1.

4. On the difference equation xn+1 =
xn−23

1−xn−5xn−11xn−17xn−23

In this part, we give a specific form of the solutions of the difference equation below, provided that the
initial conditions are arbitrary real numbers,

xn+1 =
xn−23

1 − xn−5xn−11xn−17xn−23
, (6)

where, x0, . . . , x−23 defines as in (5).

Theorem 4.1. Let {xn}
∞

n=−23 be a solution of equation (6). Then,

x24n+1 =
A23
∏n−1

i=0 (1 − 4iA5A11A17A23)∏n
i=0(1 − (4i + 1)A5A11A17A23)

, x24n+2 =
A22
∏n−1

i=0 (1 − 4iA4A10A16A22)∏n
i=0(1 − (4i + 1)A4A10A16A22)

,

x24n+3 =
A21
∏n−1

i=0 (1 − 4iA3A9A15A21)∏n
i=0(1 − (4i + 1)A3A9A15A21)

, x24n+4 =
A20
∏n−1

i=0 (1 − 4iA2A8A14A20)∏n
i=0(1 − (4i + 1)A2A8A14A20)

,

x24t+5 =
A19
∏n−1

i=0 (1 − 4iA1A7A13A19)∏n
i=0(1 − (4i + 1)A1A7A13A19)

, x24n+6 =
A18
∏n−1

i=0 (1 − 4i)A0A6A12A18)∏n
i=0(1 − (4i + 1)A0A6A12A18)

,

x24n+7 =
A17
∏n

i=0(1 − (4i + 1)A5A11A17A23)∏n
i=0(1 − (4i + 2)A5A11A17A23)

, x24n+8 =
A16
∏n

i=0(1 − (4i + 1)A4A10A16A22)∏n
i=0(1 − (4i + 2)A4A10A16A22)

,

x24n+9 =
A15
∏n

i=0(1 − (4i + 1)A3A9A15A21)∏n
i=0(1 − (4i + 2)A3A9A15A21)

, x24n+10 =
A14
∏n

i=0(1 − (4i + 1)A2A8A14A20)∏n
i=0(1 − (4i + 2)A2A8A14A20)

,

x24n+11 =
A13
∏n

i=0(1 − (4i + 1)A1A7A13A19)∏t
i=0(1 − (4i + 2)A1A7A13A19)

, x24n+12 =
A12
∏n

i=0(1 − (4i + 1)A0A6A12A18)∏n
i=0(1 − (4i + 2)A0A6A12A18)

,

x24n+13 =
A11
∏n

i=0(1 − (4i + 2)A5A11A17A23)∏n
i=0(1 − (4i + 3)A5A11A17A23)

, x24n+14 =
A10
∏n

i=0(1 − (4i + 2)A4A10A16A22)∏n
i=0(1 − (4i + 3)A4A10A16A22)

,
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x24n+15 =
A9
∏n

i=0(1 − (4i + 2)A3A9A15A21)∏n
i=0(1 − (4i + 3)A3A9A15A21)

, x24n+16 =
A8
∏n

i=0(1 − (4i + 2)A2A8A14A20)∏n
i=0(1 − (4i + 3)A2A8A14A20)

,

x24n+17 =
A7
∏n

i=0(1 − (4i + 2)A1A7A13A19)∏n
i=0(1 − (4i + 3)A1A7A13A19)

, x24n+18 =
A6
∏n

i=0(1 − (4i + 2)A0A6A12A18)∏n
i=0(1 − (4i + 3)A0A6A12A18)

,

x24n+19 =
A5
∏n

i=0(1 − (4i + 3)A5A11A17A23)∏n
i=0(1 − (4i + 4)A5A11A17A23)

, x24n+20 =
A4
∏n

i=0(1 − (4i + 3)A4A10A16A22)∏n
i=0(1 − (4i + 4)A4A10A16A22)

,

x24n+21 =
A3
∏n

i=0(1 − (4i + 3)A3A9A15A21)∏n
i=0(1 − (4i + 4)A3A9A15A21)

, x24n+22 =
A2
∏n

i=0(1 − (4i + 3)A2A8A14A20)∏n
i=0(1 − (4i + 4)A2A8A14A20)

,

x24n+23 =
A1
∏n

i=0(1 − (4i + 3)A1A7A13A19)∏n
i=0(1 − (4i + 4)A1A7A13A19)

, x24n+24 =
A0
∏n

i=0(1 − (4i + 3)A0A6A12A18)∏n
i=0(1 − (4i + 4)A0A6A12A18)

,

holds.

Proof. Suppose that n > 0 and that our assumption holds for n = 1. That is,

x24n−23 =
A23
∏n−2

i=0 (1 − 4iA5A11A17A23)∏n−1
i=0 (1 − (4i + 1)A5A11A17A23)

, x24n−22 =
A22
∏n−2

i=0 (1 − 4iA4A10A16A22)∏n−1
i=0 (1 − (4i + 1)A4A10A16A22)

,

x24n−21 =
A21
∏n−2

i=0 (1 − 4iA3A9A15A21)∏n−1
i=0 (1 − (4i + 1)A3A9A15A21)

, x24n−20 =
A20
∏n−2

i=0 (1 − 4iA2A8A14A20)∏n−1
i=0 (1 − (4i + 1)A2A8A14A20)

,

x24n−19 =
A19
∏n−2

i=0 (1 − 4iA1A7A13A19)∏n−1
i=0 (1 − (4i + 1)A1A7A13A19)

, x24n−18 =
A18
∏n−2

i=0 (1 − 4i)A0A6A12A18)∏n−1
i=0 (1 − (4i + 1)A0A6A12A18)

,

x24n−17 =
A17
∏n−1

i=0 (1 − (4i + 1)A5A11A17A23)∏n−1
i=0 (1 − (4i + 2)A5A11A17A23)

, x24n−16 =
A16
∏n−1

i=0 (1 − (4i + 1)A4A10A16A22)∏n−1
i=0 (1 − (4i + 2)A4A10A16A22)

,

x24n−15 =
A15
∏n−1

i=0 (1 − (4i + 1)A3A9A15A21)∏n−1
i=0 (1 − (4i + 2)A3A9A15A21)

, x24n−14 =
A14
∏n−1

i=0 (1 − (4i + 1)A2A8A14A20)∏n−1
i=0 (1 − (4i + 2)A2A8A14A20)

,

x24n−13 =
A13
∏n−1

i=0 (1 − (4i + 1)A1A7A13A19)∏n−1
i=0 (1 − (4i + 2)A1A7A13A19)

, x24n−12 =
A12
∏n−1

i=0 (1 − (4i + 1)A0A6A12A18)∏n−1
i=0 (1 − (4i + 2)A0A6A12A18)

,

x24n−11 =
A11
∏n−1

i=0 (1 − (4i + 2)A5A11A17A23)∏n−1
i=0 (1 − (4i + 3)A5A11A17A23)

, x24n−10 =
A10
∏n−1

i=0 (1 − (4i + 2)A4A10A16A22)∏n−1
i=0 (1 − (4i + 3)A4A10A16A22)

,

x24n−9 =
A9
∏n−1

i=0 (1 − (4i + 2)A3A9A15A21)∏n−1
i=0 (1 − (4i + 3)A3A9A15A21)

, x24n−8 =
A8
∏n−1

i=0 (1 − (4i + 2)A2A8A14A20)∏n−1
i=0 (1 − (4i + 3)A2A8A14A20)

,

x24n−7 =
A7
∏n−1

i=0 (1 − (4i + 2)A1A7A13A19)∏n−1
i=0 (1 − (4i + 3)A1A7A13A19)

, x24n−6 =
A6
∏n−1

i=0 (1 − (4i + 2)A0A6A12A18)∏n−1
i=0 (1 − (4i + 3)A0A6A12A18)

,

x24n−5 =
A5
∏n−1

i=0 (1 − (4i + 3)A5A11A17A23)∏n−1
i=0 (1 − (4i + 4)A5A11A17A23)

, x24n−4 =
A4
∏n−1

i=0 (1 − (4i + 3)A4A10A16A22)∏n−1
i=0 (1 − (4i + 4)A4A10A16A22)

,

x24n−3 =
A3
∏n−1

i=0 (1 − (4i + 3)A3A9A15A21)∏n−1
i=0 (1 − (4i + 4)A3A9A15A21)

, x24n−2 =
A2
∏n−1

i=0 (1 − (4i + 3)A2A8A14A20)∏n−1
i=0 (1 − (4i + 4)A2A8A14A20)

,

x24n−1 =
A1
∏n−1

i=0 (1 − (4i + 3)A1A7A13A19)∏n−1
i=0 (1 − (4i + 4)A1A7A13A19)

, x24n =
A0
∏n−1

i=0 (1 − (4i + 3)A0A6A12A18)∏n−1
i=0 (1 − (4i + 4)A0A6A12A18)

.

Now, using the main equation (6), one has
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x24n+1 =
x24n−23

1 − x24n−5x24n−11x24n−17x24n−23
,

=

A23
∏n−2

i=0 (1−4iA5A11A17A23)∏n−1
i=0 (1−(4i+1)A5A11A17A23)

1 − A5
∏n−1

i=0 (1−(4i+3)A5A11A17A23)∏n−1
i=0 (1−(4i+4)A5A11A17A23)

A11
∏n−1

i=0 (1−(4i+2)A5A11A17A23)∏n−1
i=0 (1−(4i+3)A5A11A17A23)

A17
∏n−1

i=0 (1−(4i+1)A5A11A17A23)∏n−1
i=0 (1−(4i+2)A5A11A17A23)

A23
∏n−2

i=0 (1−4iA5A11A17A23)∏n−1
i=0 (1−(4i+1)A5A11A17A23)

.

Hence, we have

x24n+1 =
A23
∏n−1

i=0 (1 − 4iA5A11A17A23)∏n
i=0(1 − (4i + 1)A5A11A17A23)

.

Similarly,

x24n+2 =
x24n−22

1 + x24n−4x24n−10x24n−16x24n−22
,

=

A22
∏n−2

i=0 (1−4iA4A10A16A22)∏n−1
i=0 (1−(4i+1)A4A10A16A22)

1 − A4
∏n−1

i=0 (1−(4i+3)A4A10A16A22)∏n−1
i=0 (1−(4i+4)A4A10A16A22)

A10
∏n−1

i=0 (1−(4i+2)A4A10A16A22)∏n−1
i=0 (1−(4i+3)A4A10A16A22)

A16
∏n−1

i=0 (1−(4i+1)A4A10A16A22)∏n−1
i=0 (1−(4i+2)A4A10A16A22)

A22
∏n−2

i=0 (1−4iA4A10A16A22)∏n−1
i=0 (1−(4i+1)A4A10A16A22)

.

Therefore, we have

x24n+2 =
A22
∏n−1

i=0 (1 − 4iA4A10A16A22)∏n
i=0(1 − (4i + 1)A4A10A16A22)

.

Similarly, it is easily obtained in other relationships.

Theorem 4.2. The equation (6) has a unique equilibrium point x = 0, which is not locally asymptotically stable.

Proof. The proof is the same as the proof of Theorem 3.2 and hence is omitted.

5. On the difference equation xn+1 =
xn−23

−1+xn−5xn−11xn−17xn−23

In this case, we give a specific form of the solutions of the difference equation below, provided that the
initial conditions are arbitrary real numbers,

xn+1 =
xn−23

−1 + xn−5xn−11xn−17xn−23
(7)

where, x0, . . . , x−23 defines as in (5) with x−5x−11x−17x−23 , 1, x−4x−10x−16x−22 , 1, x−3x−9x−15x−21 , 1,
x−2x−8x−14x−20 , 1,x−1x−7x−13x−19 , 1, x0x−6x−12x−18 , 1.

Theorem 5.1. Let {xn}
∞

n=−23 be a solution of (7). Then,

x24n+1 =
A23

(−1 + A5A11A17A23)n+1 , x24n+2 =
A22

(−1 + A4A10A16A22)n+1 ,

x24n+3 =,
A21

(−1 + A3A9A15A21)n+1 , x24n+4 =
A20

(−1 + A2A8A14A20)n+1 ,

x24n+5 =
A19

(−1 + A1A7A13A19)n+1 , x24n+6 =
A18

(−1 + A0A6A12A18)n+1 ,

x24n+7 = A17(−1 + A5A11A17A23)n+1, x24n+8 = A16(−1 + A4A10A16A22)n+1,

x24n+9 = A15(−1 + A3A9A15A21)n+1, x24n+10 = A14(−1 + A2A8A14A20)n+1,

x24n+11 = A13(−1 + A1A7A13A19)n+1, x24n+12 = A12(−1 + A0A6A12A18)n+1,
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x24n+13 =
A11

(−1 + A5A11A17A23)n+1 , x24n+14 =
A10

(−1 + A4A10A16A22)n+1 ,

x24n+15 =,
A11

(−1 + A3A9A15A21)n+1 , x24n+16 =
A8

(−1 + A2A8A14A20)n+1 ,

x24n+17 =
A7

(−1 + A1A7A13A19)n+1 , x24n+18 =
A6

(−1 + A0A6A12A18)n+1 ,

x24n+19 = A5(−1 + A5A11A17A23)n+1, x24n+20 = A4(−1 + A4A10A16A22)n+1,

x24n+21 = A3(−1 + A3A9A15A21)n+1, x24n+22 = A2(−1 + A2A8A14A20)n+1,

x24n+23 = A1(−1 + A1A7A13A19)n+1, x24n+24 = A0(−1 + A0A6A12A18)n+1.

Proof. Suppose,

x24n−23 =
A23

(−1 + A5A11A17A23)n , x24n−22 =
A22

(−1 + A4A10A16A22)n ,

x24n−21 =,
A21

(−1 + A3A9A15A21)n , x24n−20 =
A20

(−1 + A2A8A14A20)n ,

x24n−19 =
A19

(−1 + A1A7A13A19)n , x24n−18 =
A18

(−1 + A0A6A12A18)n ,

x24n−17 = A17(−1 + A5A11A17A23)n, x24n−16 = A16(−1 + A4A10A16A22)n,

x24n−15 = A15(−1 + A3A9A15A21)n, x24n−14 = A14(−1 + A2A8A14A20)n,

x24n−13 = A13(−1 + A1A7A13A19)n, x24n−12 = A12(−1 + A0A6A12A18)n,

x24n−11 =
A11

(−1 + A5A11A17A23)n , x24n−10 =
A10

(−1 + A4A10A16A22)n ,

x24n−9 =,
A11

(−1 + A3A9A15A21)n , x24n−8 =
A8

(−1 + A2A8A14A20)n ,

x24n−7 =
A7

(−1 + A1A7A13A19)n , x24n−6 =
A6

(−1 + A0A6A12A18)n ,

x24n−5 = A5(−1 + A5A11A17A23)n, x24n−4 = A4(−1 + A4A10A16A22)n,

x24n−3 = A3(−1 + A3A9A15A21)n, x24n−2 = A2(−1 + A2A8A14A20)n,

x24n−1 = A1(−1 + A1A7A13A19)n, x24n = A0(−1 + A0A6A12A18)n.

Now, it follows from equation (7) that

x24n+1 =
x24n−23

−1 + x24n−5x24n−11x24n−17x24n−23
,

=

A23
(−1+A5A11A17A23)n ,

−1 + A5(−1 + A5A11A17A23)n A11
(−1+A5A11A17A23)n A17(−1 + A5A11A17A23)n A23

(−1+A5A11A17A23)n

.

Then, we have

x24n+1 =
A23

(−1 + A5A11A17A23)n+1 .

Other relation can be given by the same way.

Theorem 5.2. The equation (7) has three equilibrium points which are 0,± 4√2, and these equilibrium points are not
locally asymptotically stable.

Proof. The proof is the same as the proof of Theorem 3.2 and hence is omitted.
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6. On the difference equation xn+1 =
xn−23

−1−xn−5xn−11xn−17xn−23

In this section, we give a specific form of the solutions of the difference equation below, provided that
the initial conditions are arbitrary real numbers,

xn+1 =
xn−23

−1 − xn−5xn−11xn−17xn−23
, (8)

where, x0, . . . , x−23 defines as in (5) with x−5x−11x−17x−23 , −1, x−4x−10x−16x−22 , −1, x−3x−9x−15x−21 , −1,
x−2x−8x−14x−20 , −1,x−1x−7x−13x−19 , −1, x0x−6x−12x−18 , −1.

Theorem 6.1. Let {xn}
∞

n=−23 be a solution of (8). Then,

x24n+1 =
A23

(−1 − A5A11A17A23)n+1 , x24n+2 =
A22

(−1 − A4A10A16A22)n+1 ,

x24n+3 =,
A21

(−1 − A3A9A15A21)n+1 , x24n+4 =
A20

(−1 − A2A8A14A20)n+1 ,

x24n+5 =
A19

(−1 − A1A7A13A19)n+1 , x24n+6 =
A18

(−1 − A0A6A12A18)n+1 ,

x24n+7 = A17(−1 − A5A11A17A23)n+1, x24n+8 = A16(−1 − A4A10A16A22)n+1,

x24n+9 = A15(−1 − A3A9A15A21)n+1, x24n+10 = A14(−1 − A2A8A14A20)n+1,

x24n+11 = A13(−1 − A1A7A13A19)n+1, x24n+12 = A12(−1 − A0A6A12A18)n+1,

x24n+13 =
A11

(−1 − A5A11A17A23)n+1 , x24n+14 =
A10

(−1 − A4A10A16A22)n+1 ,

x24n+15 =,
A11

(−1 − A3A9A15A21)n+1 , x24n+16 =
A8

(−1 − A2A8A14A20)n+1 ,

x24n+17 =
A7

(−1 − A1A7A13A19)n+1 , x24n+18 =
A6

(−1 − A0A6A12A18)n+1 ,

x24n+19 = A5(−1 − A5A11A17A23)n+1, x24n+20 = A4(−1 − A4A10A16A22)n+1,

x24n+21 = A3(−1 − A3A9A15A21)n+1, x24n+22 = A2(−1 − A2A8A14A20)n+1,

x24n+23 = A1(−1 − A1A7A13A19)n+1, x24n+24 = A0(−1 − A0A6A12A18)n+1.

holds.

Proof. Suppose

x24n−23 =
A23

(−1 − A5A11A17A23)n , x24n−22 =
A22

(−1 − A4A10A16A22)n ,

x24n−21 =,
A21

(−1 − A3A9A15A21)n , x24n−20 =
A20

(−1 − A2A8A14A20)n ,

x24n−19 =
A19

(−1 − A1A7A13A19)n , x24n−18 =
A18

(−1 − A0A6A12A18)n ,

x24n−17 = A17(−1 − A5A11A17A23)n, x24n−16 = A16(−1 − A4A10A16A22)n+1,

x24n−15 = A15(−1 − A3A9A15A21)n, x24n−14 = A14(−1 − A2A8A14A20)n,

x24n−13 = A13(−1 − A1A7A13A19)n, x24n−12 = A12(−1 − A0A6A12A18)n,

x24n−11 =
A11

(−1 − A5A11A17A23)n , x24n−10 =
A10

(−1 − A4A10A16A22)n ,

x24n∗9 =,
A11

(−1 − A3A9A15A21)n , x24n−8 =
A8

(−1 − A2A8A14A20)n ,
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x24n−7 =
A7

(−1 − A1A7A13A19)n , x24n−6 =
A6

(−1 − A0A6A12A18)n ,

x24n−5 = A5(−1 − A5A11A17A23)n, x24n−4 = A4(−1 − A4A10A16A22)n,

x24n−3 = A3(−1 − A3A9A15A21)n, x24n−2 = A2(−1 − A2A8A14A20)n,

x24n−1 = A1(−1 − A1A7A13A19)n, x24n = A0(−1 − A0A6A12A18)n.

Now, it follows from equation (8) that,

x24n+1 =
x24n−23

−1 − x24n−5x24n−11x24n−17x24n−23
,

=

A23
(−1−A5A11A17A23)n ,

−1 − A5(−1 − A5A11A17A23)n A11
(−1−A5A11A17A23)n A17(−1 − A5A11A17A23)n A23

(−1−A5A11A17A23)n

.

Then, we have

x24n+1 =
A23

(−1 − A5A11A17A23)n+1 .

Other relations can be given by the same way.

Theorem 6.2. The equation (8) has three equilibrium point which are 0,± 4√
−2 and this equilbrium points is not

locally asymptotically stable.

Proof. The proof is the same as the proof of Theorem 3.2 and hence is omitted.

7. Numerical examples

We devote this section to verify the theoretical work obtained in this article.

Example 7.1. For Eq. 4 and 6 we consider following initial conditions.

x−23 = 0.33, x−22 = 0.32, x−21 = 0.31, x−20 = 0.3, x−19 = 0.29, x−18 = 0.28,
x−17 = 0.27, x−16 = 0.26, x−15 = 0.25, x−14 = 0.24, x−13 = 0.23, x−12 = 0.235,
x−11 = 0.245, x−10 = 0.255, x−9 = 0.265, x−8 = 0.275, x−7 = 0.285, x−6 = 0.295,
x−5 = 0.305, x−4 = 0.315, x−3 = 0.325, x−2 = 0.335, x−1 = 0.345, x0 = 0.355.

Example 7.2. For Eq. 7 and 8 we consider following initial conditions.

x−23 = 0.5, x−22 = 0.6, x−21 = 0.55, x−20 = 0.65, x−19 = 0.58, x−18 = 0.57,
x−17 = 0.56, x−16 = 0.49, x−15 = 0.48, x−14 = 0.29, x−13 = 0.63, x−12 = 0.62,
x−11 = 0.26, x−10 = 0.25, x−9 = 0.24, x−8 = 0.23, x−7 = 0.22, x−6 = 0.21,
x−5 = 0.2, x−4 = 0.185, x−3 = 0.295, x−2 = 0.293, x−1 = 0.435, x0 = 0.475.
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Figure 1: plot illustrates the stability of Eq. 4
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Figure 2: plot illustrates the stability of Eq. 6
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Figure 3: plot illustrates the stability of Eq. 7
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Figure 4: plot illustrates the stability of Eq. 8

8. Conclusion

We study the behavior of the difference equation

xn+1 =
xn−23

±1 ± xn−5xn−11xn−17xn−23
,

where the initials are positive real numbers. Local stability is discussed. Moreover,we get the solution of
some special cases. Finally, some numerical examples are given.
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