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New discoveries in the history of Euler’s equation
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Abstract. Much has been written about the history of Euler’s formula and Euler’s equation, but there are
many blank spots left in it. The equality ln(cosx + isinx) = xi was first obtained in verbal form forty-two
years before it appeared in Euler’s work. Was this verbal formula correct? Euler’s equation or Euler’s
identity eiπ = −1 was never written down by Euler himself. Rewritten in the form eiπ + 1 = 0, it connects
the five most important numbers in mathematics, but this formula is not in Euler’s works. Today this
identity attracts wide attention from physicists, philosophers and popularizers of science; it is given an
almost mystical meaning. Who received it for the first time? We will look at all these mathematical events
in order.

1. Early history of complex numbers

1.1. 1545, Gerolamo Cardano, the first appearance of complex numbers
In 1545, in his book Artis magnae, sive de regulis algebraicis [11]), Gerolamo (Hieronymus) Cardano

obtained the roots from negative values in studying the general formula of the cubic equation. As the roots
of the auxiliary quadratic were mutually conjugate and cancelled each other out in the equation, Cardano
regarded them as a useful auxiliary construction.

1.2. 1572, Rafael Bombelli, operations for adding and multiplying complex numbers
In 1572, hydraulic engineer Rafael Bombelli in his book L’algebra parte maggiore dell’aritmetica divisa in

tre libri di Rafael Bombelli da Bologna [10], showed the possibility of determining the ratio of equality, the
sum and production of complex numbers. But the roots of negative values did not yet have physical or
geometric meaning. Traditionally, numbers were not perceived as quantities or ratios, so neither negative
or imaginary numbers found a place in algebra.

1.3. 1614, John Napier, logarithms
In 1614, John Napier published Mirifici Logarithmorum Canonis Descriptio: Ejusque usus, in utraque

Trigonometria; ut etiam in omni Logistica Mathematica, Amplissimi, Facillimi [39] (Description of the Mar-
velous Canon of Logarithms: And its use, in both Trigonometry; as also in all Mathematical Logistics, the
most comprehensive, the most easy), containing the concept of the logarithm and tables of logarithms of
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trigonometric functions for the first quarter of the circle with a step of 1 minute. The need for this new
mathematical tool was especially great among astronomists, forced to multiply large numbers. The loga-
rithm and speed of its change were determined by Napier kinematically, and subsequent mathematicians
calculated it using the squares of the hyperbole, and in 1688 (Logarithmo-technia, Mercator, N.), a formula
also emerged series expansion of a logarithm. A large step in accepting operations on irrational numbers
was the introduction of ten-decimal fractions, which Napier used for approximated calculations and as-
sessment of error. In the 1620s, Oughtred and Wingate constructed a logarithmic line. But the logarithm
retained the role of a regulating means and was not considered to be a function for a long time to come.

1.4. 1637, Rene Descartes on the status of complex numbers
In 1637, Rene Descartes in his work Geometry [20], examined the task of dissecting a circle with a

parabola. The case of the separate position of the parabola and the circle was regarded by Descartes as a
lack of genuine (real), false (negative) roots, and only the presence of imaginary ones. “Neither the true
nor the false roots are always real; sometimes they are imaginary that is, while we can always conceive
of as many roots or each equation as I have already assigned, yet there is not always a definite quantity
corresponding to each root so conceived of” ([20], p. 175). Thanks to Descartes, the algebrization of
geometry began. Algebraic operations began to be carried out on sections and other geometrical objects,
and for us the properties will be important from the algebraic standpoint of the hyperbola, logarithmic
spiral and logistic curve, which will be discussed below.

1.5. 1685, John Wallis, an attempt to interpret complex numbers
In 1685, John Wallis published his treatise A treatise of algebra, both historical and practical [50], where

the first attempt was made to give a geometrical and physical interpretation of negative and imaginary
numbers. Wallis was the first to introduce the numerical line, containing positive numbers, zero and
negative numbers, and then formed the prototype of a complex surface. Initially he examined an imaginary
number as a side of a lost rectangular land plot, then as a medium geometrical between sections divided
into positive and negative sides, i.e. as a vertical section in relation to the real line: “As I mean proportional
between a positive and a negative quantity may be thus exemplified in geometry” ([50], p. 287). Later,
examining the average geometrical in the circle and hyperbola, Wallis found a connection between them
using the imaginary support. This idea was subsequently taken up by A. de Moivre, moving from the
circumference x2 + y2 = 1 to the hyperbola x2

− y2 = 1 by replacing y with y
√
−1.

1.6. 1702, works by I. Newton, A. de Moivre and Joh. Bernoulli to develop methods of integrating rational functions
In the late 17th – early 18th century, with the creation of differential and integral calculation in the works

of I. Newton, G.W. Leibniz, J. Bernoulli, A. de Moivre and R. Cotes, intensive work proceeded on devising
a method for integrating rational functions. Far from all the area or length of a curve may be expressed
in algebraic form, it was said (for example by Newton), that the curve is squared geometrically or in final
form. In a different way, there was an attempt to reduce the task to squaring conic sections. By 1711 Newton
had obtained series expansion of the binomial, sine, cosine, indicator and several other functions.

Primarily, the properties of functions were investigated which were applied to obtaining the quadrature
of the circle and the hyperbola, and also the simplest transcendental functions. It was noted that integration
of rational expressions using imaginary substitutions could be brought to final algebraic expressions of
squares of indefinite sections of a circle and hyperbola. We may especially single out J. Bernoulli’s work
of 1702, Solving the task on integral calculation with certain reductions in relation to this calculation [7]. In
the supplement to this work, A reduced method of transforming complex differentials into simple and back;
and conversely, even simply imaginary differentials into complex real ([8], p. 289–297), Bernoulli writes of the
possibility of transforming an imaginary logarithmic differential into a differential of the real circular sector
using an imaginary substitution.

Cubic equations and those of higher powers solved not only algebraically, but also by the trigonometrical
method, using the sinuses of whole integer arcs. There was an episode when François Viète in 1594 used this
method to solve an algebraic equation of the 45th power. Using known trigonometric rations and moving
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from arcs of the circle to arcs of the hyperbola using imaginary substitution, Moivre reached the formula of
raising to a power and extracting the root of a natural (to the 7th) power from a complex number [36], [37].

Giulio Fagnano used the method of imaginary substitution following Johann Bernoulli [30].
Newton and his colleague, the astronomer R. Cotes developed a table of differentials corresponding to

squares. In Newton’s time, the concept of an indefinite integral as an antiderivative did not exit, and the
Newton-Leibniz formula had not been formalized. Quadratures sought as geometric problems: to express
the length or are for a given curve or the length or area of an already known circular (or hyperbolic) arc or
sector respectively. The indefinite integral, as an antiderivative, acquired an independent meaning only for
Euler.

1.7. 1712, Johann Bernoulli, Gottfried Leibniz, Jean le Rond d’Alembert on the significance of the logarithm of a
negative number

Before 1702, imaginary numbers were regarded merely as roots of negative values. For a long time it
was unclear whether operations on complex numbers led to numbers of the same kind1). In 1749, Euler
showed in the article Investigations on the imaginary roots of equations that operations on complex numbers led
to number of the same kind [24]. The concept of the logarithm was also unclear: it was either an exponent
of an element of some geometric progression, or the quadrature of a hyperbola, or a power series, but not
a function with a clear domain of definition. The profound connections between these manifestations had
not yet been studied. In 1702, Johann Bernoulli encountered the problem of calculating a logarithm of a
negative and complex number. In 1712, Bernoulli and Leibniz argued in their correspondence about what
the logarithm of a negative number was [49]. Leibniz placed x = −2 in the logarithm expansion formula
and concluded that the logarithm from −1 could not be zero. For the positive number a, ln

√
a = 1

2 lna is
correct. Continuing the argument, it may be concluded that lni = ln

√
−1 = 1

2 ln(−1). But what is ln(−1) equal
to? Leibniz suggested that it should be complex (imaginary), but this term did not have a precise definition
for him. Bernoulli, and then d’Alembert [19], believed that logarithms of a negative number should be
positive. Bernoulli’s arguments were based on the integration of the logarithm of (−x) as an interegral from
dz : z, taken between the limits of 1 and (−x), but he conducted the integration through the pole z = 0 and
obtained log(-x)=log(x). Later Euler proved that the logarithm of a negative number would be complex,
adding that the logarithm was multivalued.

1.8. The history of the logarithmic spiral
Navigators know that it is easier and more convenient to go at a constant angle to the North Star. This

curve is loxodroma or a rumb line. Its flat projection is a logarithmic spiral. It was known from 16th century
as a spiral at each point of type ϕ = ϕ0 + 2kπ has the same tangent slope (isogonal spiral). We know it as
ρ = aebφ. It was first described by A. Dürer in 1525 [21]. It was studied by R. Descartes (1638), E. Torricelli
(1644) [46], I. Newton (1687) [41], Jacob I Bernoulli (1691, 1692) ([5], [6]), P. Varignon (1706) [48]. Descartes
established that for the logarithmic (isogonal) spiral, when the angle is changed in arithmetic progression,
the radius vector changes in geometric progression, and showed the equivalence that polar angles for the
points are proportional to the logarithms of radius vectors.

In 1714, the English astronomer and mathematician, editor and publisher of Newton, Roger Cotes
examined the logarithmic spiral which he called the reciprocal spiral, Spiralem Aequaianguam, expanded on
the studies of Varignon. Cotes, based on the study its properties, developed his own calculation method
for solving analysis problems [28].

2. 1714, Roger Cotes, the logarithm of a complex number. The connection between arc and logarithmic
functions

Roger Cotes (1682–1716) made a significant contribution to calculation methods of astronomy and
mathematics. Sometimes he is called the English Euler. In his lifetime he only published one article,

1)In 1702, Leibniz made a mistake in calculations and came to the conclusion that there are imaginaries of a different type [35]
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Logometria. Measurements of ratios (1714) [17]. The continuation, the second and third parts of Logometry,
along with works on calculation methods and the theory of errors in astronomy and geodesy were published
posthumously under the title Harmony of Measurements (1722) [18].

I. Newton examined a large number of integrals containing the root from the quadratic trinomial, and
drew up tables of simple curves comparable by quadrature with the ellipsis and hyperbola, Cotes continued
to develop his methods.

In Harmony of Measurements, for the first time graphs of the tangent and secant were published, tables
of differentials, table of integrals for a large number of algebraic functions, and also the theorem on the
expansion into multipliers of the first and second degree of the binomial an

± bn, proved subsequently by
Moivre. Cotes provided the first printed calculation of the numbers e and 1/e with 12 decimal places, using
continued fractions (Leibniz had eight decimal places, later Euler had 14 and then 23). This work contains
a more detailed clarification of the method of Logometria.

We are obliged to Cotes for introducing the radian, formulas of derivatives of trigonometric functions,
methods of approximation of quadratures, including the Newton-Cotes formulas. On the basis of these
formulas, Cotes calculated for a large number of curves the length of arcs, areas, volumes and surfaces of
bodies of revolution. Cotes applied the results obtained to problems of mechanics, physics and navigation.

Cotes’ method is autonomous in relation to series and fluxes. It is based on proportions, the sue of
the properties of the hyperbola, the logarithmic spiral and the logistic (logarithmic) curve, and also the
correlation of arithmetic and geometric progressions.

The logarithmic (or logistic) curve, which was not yet related to the coordinate axes, was used for
any correlation between arithmetic and geometric progressions, for example compound interest (Jacob
Bernoulli, Some issues of advantage, with a solution of the problem of games of changes, 1690, [5] ).

Cotes gets the same results that could be obtained by the fluxion method, but sometimes his method
is simpler and faster, and often his way of the only one possible for his time2). Although the expansion
of functions into a series and the flux method were already known, the actual concept of the function was
unclear, and so even Newton in Mathematical Principles of Natural Philosophy made very moderate use of
expansions into series using derivatives (for example he obtained the expansion for the sine by reversing the
series of the arcsine, not by differentiation), and made very limited use of the fluxion method. Operations
on series: addition, multiplication by number, differentiation, determination of series convergence, were
yet to be grounded. At the same time, the ratio method, although very complex, was traditionally tested in
Harmonia mensurarum, Cotes compiled tables of complex proportions for different geometric objects. Cotes
made a masterly application of the method of proportions (ratio) for different geometric objects. Cotes
made a mastery application of the ratio method, and due his understanding of the logarithm as a measure
of ratio, to geometric objects.

Curves, apart from polar ones, did not fit the system of coordinates. The concept of a geometric place
of points has only begun to form in the works of J. Bernoulli and G.F. de L’Hôpital. For the values of the
argument and for the values of the unction (as we understand them today), they built straight lines, as
a rule, parallel, on which plotted the values of the argument were placed on one, corresponding to the
value of the function on the other. Then, comparing these values, the curve was constructed outside the
coordinate system. If the argument changed according to the law of geometric progression, a scale was
drawn for it, on which according sections were place. For example, R. Cotes in the problem on the length
of the meridian placed sections with the common origin: 1, (1+ x), (1+ x)2, (1+ x)3, ..., where x is small [29].
On another scale, the values of the according arithmetic progression are placed from the indicators 0, 1, 2,
3, . . . E. Halley went on to construct a logarithmic spiral. With the same conditions Jakob Bernoulli (1690)
[5] demonstrated the law of the compound interest and constructed a logistic curve (now we know it as the
exponent, i.e. it could also look like a logarithmic curve3).

2)For example, the length of the subtangent is determined from triangles. Cotes also calculated the perimeter of the ellipsis, which
did not become accessible using integration until the 19th century.

3)Euler was the first to determine the exponential function as reversable to the logarithm (1743, Euler, The Logarithm of a Negative
Number) [26].
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The third of the curves used, the hyperbola, was constructed relative to its asymptote, and the area was
determined for the hyperbola. It was found that the area proportionate to the logarithm of the relation of
limit abscissae. Therefore, natural logarithms were also called hyperbolic.

Cotes uses the method of proportions when calculated the surface area of a layer of an oblate and
prolate spheroid (geoid, ellipsoid of revolution), and in the second case obtains a formula which in our
notation has the form ln(cosx + isinx) = xi, connecting circular and logarithmic functions, in future called
Euler’s formula (it was 1714, when Euler was 7-years-old). Cotes, whose method allowed him to discover
the connection between circular and logarithmic canons (functions), called this connection the miraculous
harmony of nature: “Here, of course, the field of applications is very wide, where the power of the method
may be tested, especially if Trigonometry is added to Logometry, in which I once observed the strange kinship
between methods coming one after another” ([17], p. 30).

We may note that the length of the arc of the ellipsis could not be calculated before the theory of
elliptic functions appeared. The first approximations are found in I. Newton (1669, 1711) in De analysi per
aequationes numero terminorum infinitas (On Analysis by Equations with an infinite number of terms) [40],
then in Fagnano [30], (1750), in James Ivory [34], in 1798, and in F.V. Bessel in 1825 [9]. Euler addressed the
problem of straightening curves several times, including in the calculation of the arc of the ellipsis, while
Euler used a method that combined geometry, trigonometry and kinematics.

We will cite Cotes’ argument in full, in which Euler’s formula appears. Unfortunately, a detailed
description of his method would require too much space and time, we’ll be brief. The main task of the
method was to express the sought quantity (here the surface of a spheroid) through the surface of a spherical
layer of a known radius, which he finds with the method of proportions. After a translation of Cotes’ text
we will provide our own commentary. Here is Gowing’s English translation ([28], p. 169–170): It will be
allowable to add here the surfaces generated by an ellipse. Let ANB be the ellipse described with centre C,
verticles A and B, focus F, principal semi-axis CB, conjugate semi-axis CA, and at some point X in the axis
CA let the ordinate XN be drawn, which meets the ellipse in N [See Fig. 1, top picture]. In the axis CB let
CE be taken to CA as CA is to CF, and let EX be joined. Then let KL be taken which is to XC as XE to CE,
and LM which is the measure of ratio between EX +XC and CE, to modulus CE; and the surface generated
by the arc BN rotated about the axis CX will be to the circle on CB as the sum KM of the lines KL and LM to
the semi-diameter CB. In order for this last construction to exist, the semi-axis CA about which rotation is
made, must be less than the other semi-axis CB, for otherwise the quantity of the modulus CE, CAq

√
CBq−CAq

(in

modern notation CA2
√

CB2−CA2
- G.S.) will become impossible, and the logometric construction (which generally

arises in this sort of case) becomes trigonometrical, such as that which now follows.
Let ANB [See Fig. 1, bottom picture] be the ellipse described with centre C, vertices A and B, focus

F, principal semi-axis CA, conjugate semi-axis CB; and at some point X in the axis CA the ordinate XN is
drawn, which meets the ellipse in N. With angle CXN let the straight line CE be drawn which is to CA as
CA is to CF. Then KL is taken which is to XC as XE to CE, and LM which is the measure of the angle XEC
to modulus CE, i.e., which is equal to the arc whose sine is XC with radius CE; and the surface generated
by the arc BN rotated about the axis CX, will be to the circle described on CB as semi-diameter, as KM, the
sum of the lines KL and LM, to the semi-diameter CB. It would have been possible to define this surface
by logarithms, but by an impractical method. For if some arc of a quadrant of a circle described with
radius CE has sine CF [See Fig. 1, bottom picture] and the sine of the complement of the quadrant XE,
taking radius CE as modulus, the arc will be the measure of the ratio between EX +XC

√
−1 and CE, the

measure having been multiplied by
√
−1 , but I leave this to be examined in more detail by others who

will think it worthwhile. [Emphasized by me - G.S.]. Moreover, from the foregoing can be understood the
extent of the relationship between the measures of angles and of ratios, further, by simple exchange among
themselves, they are easily converted for different cases of the same problem”([28], p. 169-171).

Here is another translation of the last paragraph: “If any arc of the quarter of the circle, described by the
radius CE, has the sine CX and the sine complement to the quarter of XE, and if the radius CE is accepted
as the modulus, then the arc will be the measure of ratio EX+XC

√
−1&CE, multiplied by

√
−1 ([47], p. 61).
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Figure 1 ([17], p. 31)
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The explanation of the last paragraph is as follows. CE is a radius, The angle XEC = θ, CX
CE = sinθ, EX

CE =

cosθ; EX
CE +

CX
CE

√
−1. The logarithm is a measure of a ratio, i.e. ln( EX

CE +
CX
CE

√
−1) = ln(cosθ+ sinθ

√
−1). The arc

corresponding to angle XEC and radius CE, measured in radians, is θ
√
−1. So ln(cosθ+ sinθ

√
−1) = θ

√
−1.

Owing to differences in translation, the meaning changes: is the left or right side of the equation to be
multiplied by

√
−1? We may note that in Harmonia mensuarum of 1722 this phrase is repeated word for

word, but the difference is a comma, namely: ”Nam si quadrantis circuli quilibet arcus, radio CE descriptus,
sinum habeat CX sinumque complementi ad quadrantem XE : sumendo radium CE pro Modulo, arcus erit
rationis inter EX + CX

√
−1 mensura, ducta in

√
−1”4) ([18]).

Some sources mention an error by Cotes: indeed, if the multiplier
√
−1 is placed not in the right, but

in the left side of the equation, a superfluous minus appears. Cotes’ English researcher Ronald Gowing
believes that the minus side justifiably arises because of Cotes’ ambiguous interpretation of the direction of
the movement of the arc and its complex nature ([28], p. 38). But, as we have now noticed, the misreading
was due to the absence of a comma in the 1714 Cotes publication, restored in the 1722 publication. Thus,
the Cotes wording was correct.

We should note that Cotes was the first to introduce the angle to mathematics which has a measure
always equal to the radius, i.e. providing a relation whose measure is always equal to the module. This
modular ratio is equal to 2.71828. . . , the according angle is 57.295 degrees, which is one radian. It was
thanks to Cotes that the radian measure of angles appeared, without which Euler’s identity could not have
appeared.

Cotes calls this connection the ”marvelous harmony” ([17], p.33).

Cotes never returned to this topic.

Cotes determines the area of the surface of an oblate and prolate spheroid, and rotates the ellipsis around
the vertical axis. Initially, this is an ellipsis with the semiaxes a > b, which gives a oblate spheroid. Here
the element of the arc contains the multiplier CX2

√

CB2−CX2
, which finally leads to the statement that the surface

formed by the arc BN, rotating around the axis CX, will relate to the circle described by the radius CB, as
the sum of the sections KL and LM, comprising KM, to this radius CB, and namely with S as the area of the
upper dome of the oblate spheroid, S

πCR2 =
KL+LM

CB , where KL = XC·XE
CE , LM is the measure of the relation, i.e.

the logarithm of the relation (indicated by l), and namely LM = l( CB
CX +

√

CB2−CX2

CX ), taking into account that
the point X slides along the vertical axis from zero to b, and moving to the natural logarithm, we finally
receive for the upper half of the oblate spheroid S = πa2 + πab2

√

a2−b2
ln( a

b +
√

a2−b2

b ).

Cotes then examines the ellipsis with the semi-axis a < b, the focus on the vertical axis, rotation around
the vertical axis, and examines the arc of the upper dome of the prolate spheroid. As it still has the point
X on the vertical axis, the polar radius is greater than the equatorial radius, and relations are arranged
the same way, a root of a negative value arises, and the measure of the arc XEC, multiplied by

√
−1, is

determined as l( CB
CX +

√

CB2−CX2

CX

√
−1). As we know, this area will be expressed through the arcsine5).

Euler (1747), studying Cotes’s work, found a simpler path: he compared the primitives of the two
integrals

∫
dx
√

1−x2
and
∫

dx
√

1+x2
, and noted that one integral was obtained from the other through imaginary

substitution, after which he compared the antiderivatives6).

Thanks to Cotes, an algebraic formula connecting logarithmic and circular functions first appeared in
geometry and analysis.

4)Note that starting with the works of François Vieta, the word ducere, ductio acquired a broader meaning: not just multiplication,
but product: “the product of A and B is denoted by the word in.”

5)In Cotes’s times there were no symbols or definition of the inverse functions of the trigonometric functions.
6)Note that at the time of Cotes the concept of an indefinite integral as an antiderivative did not yet exist, this is the merit of Euler.



G. I. Sinkovich / Filomat 39:6 (2025), 1927–1944 1934

3. L. Euler

3.1. Laying the Basics of Complex analysis
From 1730, Leonhard Euler developed the theory of elementary functions of a complex variable. In

1734–1735 Euler obtained a condition ∂P
∂x =

∂Q
∂y ; ∂P∂y = −

∂Q
∂x for the function f (z) = P(x, y) + iQ(x, y). After him

in 1752, D’Alembert obtained this condition, then in the 19th century A. Cauchy (1814) and B. Riemann
(1851). It is now known as the Cauchy–Riemann equations. Euler introduces the concept of a complex
variable and its functions, formulates a theorem on the decomposition of a polynomial into factors of the
first and second order, expands functions of a complex variable into generalized power series and infinite
products (“Introduction to an analysis of infinitesimals”, 1748), [23]. He studies conformal transformation
conditions (1777); he applies complex functions to evaluate integrals (1776 and later); he introduces the
concept of the gamma function (the name was given later by Legendre) and several other special functions.

From 1743 Euler goes from point coordinates (x, y) to a complex number p = x±
√
−1y representing it in

polar coordinates p = s(cosω±
√
−1sinω). In 1743, Euler created a method for solving linear differential equa-

tions of higher orders, in which imaginary numbers arise when solving characteristic algebraic equations.
In this case, the general solution of the equation is real. Euler used more convenient designations, namely
the letter e as the basis of the natural logarithm from 1728, the letter πas the relation of the circumference
to the diameter7), from 1736, the letter i as the designation of the imaginary unit from 1777 [27] and gave it
its modern definition (i2 = −1 or 1

i = −i). However, for a long time mathematicians continued to use
√
−1

instead of the letter i.

3.2. 1743, Euler’s formulae
By 1711, Newton had obtained series expansions of the binomial, sine, cosine, exponential and some

other functions. Using the series expansion, Euler obtained expressions of the sine and cosine through the
exponent of a complex number (Euler’s formulae). He wrote about this in letter to Christian Goldbach
(9/12/1741 and 8/05/1742), and to Nicholas II Bernoulli (16/01/1742 and 10/11/1742) (the last letter also
contains formulas for exponentiation in trigonometric form), then published it in 1743.

Euler wrote: “After examination logarithms and exponents of quantities, we should examine the arc of
the circle and their sines and cosines, as they form a new type of transcendent quantities, and also because
they form the actual logarithmic and exponential quantities, when these latter are imaginary numbers”
([23], p. 103–103). And further: ”Here the arc z is infinitesimal, n takes the value of an infinite number
i (NB! Here i this is not an imaginary unit, but a real number), so iz acquires the final value v. So it will

be nz = v and z = v
i . This implies sinz = v

i and cosz = 1; substituting this, we get cosv = (1+ v
√
−1

i )i+(1− v
√
−1

i )i

2

and sinv = (1+ v
√
−1

i )i
−(1− v

√
−1

i )i

2
√
−1

. In the previous chapter we saw that (1 + z
i )i = ez, where e denotes the base

of hyperbolic logarithms; if instead of z we write +v
√
−1 in one case, and −v

√
−1 in another, we get

cosv = e+v
√
−1+e−v

√
−1

2 and sinv = e+v
√
−1
−e−v

√
−1

2
√
−1

. From this it is clear how imaginary exponential quantities lead to

the sines and cosines of real arcs. Exactly, e+v
√
−1 = cosv +

√
−1sinv, e−v

√
−1 = cosv −

√
−1sinv”. You can see

it below:

7)We may note that the number as the ratio of the length of the circumference to the diameter first appeared in 1706 in the work
by W. Jones [33] as an abbreviation of the words “perimeter” or “periphery” of the circle, but entered mathematical usage thanks to
Euler.
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Figure 2, 3. Euler’s representation of the sine and cosine through an exponent ([23], p. 103–103).

Euler also derived the arc formula z = 1

2
√
−1ln 1+

√
−1t1z

1−
√
−1t1z

, which which is equivalent to Euler’s formula.

This concept was used after Euler by Lagrange and other mathematicians in two-dimensional tasks of
hydrodynamics.

3.3. 1749, Euler on logarithms of negative and imaginary numbers

In 1747 (published in 1749), after the death of his teacher J. Bernoulli, Euler delivered a paper at the
Berlin Academy of Sciences On logarithms of negative and imaginary numbers [26], where he gave the formula
ln(−1) = (π ± 2πn)

√
−1 and and its special cases for ±π

√
−1, ±3π

√
−1, , etc., and also the formula for

ln(1 = ln(−1)2, giving the values ±2π
√
−1, ±6π

√
−1, etc.

We now have this formula in the form Lnz = ln|z| + iϕ + qkπi. This is Euler’s description (ibidem, p.
269): “§1. In the correspondence between Leibniz and Johann Bernoulli there was a major debate about
the logarithms of negative and imaginary numbers, both sides stubbornly insisted on their own opinions,
while maintaining full agreement on other issues of analysis”.

As the starting point of the argument, Euler takes the same integrals and their antiderivative, which
Cotes obtained in the problem of the surface of the spheroid, namely the arc sine and the “long” logarithm.

Euler then examines arcs on a single circle, their sines and cosines taking into account periodicity
±2πn + ϕ for the values of the argument π6 ,

π
3 ,
π
2 , π etc. He designates x = sinϕ, y = cosϕ, y =

√

1 − x2, , the
letter l designates the natural logarithm. As dϕ = dx

y =
dx
√

1−x2
, Euler introduces the designation x = z

√
−1

hence dϕ = dz
√
−1

√

1+z2
. Accordingly,

∫
dz
√
−1

√

1+z2
= l(
√

1 + z2 + z) + C. Accordingly, ϕ =
√
−1l(
√

1 − x2 + x
√
−1

) + C.
So, Euler writes, the constant C = 0.

Then ϕ = 1
√
−1

l(
√

1 − x2 − x
√
−1), hence ϕ = 1

√
−1

l(
√

1 − x2 + x
√
−1), or ϕ = 1

√
−1

l(y + x
√
−1). Then

ϕ ± 2πn = 1
√
−1

l(y + x
√
−1) and l(y + x

√
−1) = (ϕ ± 2πn)

√
−1. Returning to the previous designations,
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l(cosϕ + sinϕ
√
−1) = (ϕ ± 2πn)

√
−1 (ibidem, p. 277).

And finally Euler calculates ln(−1).

Figure 4. Euler calculates ln(−1). ([26], p. 277).

As we can see, Euler already has the equation ln(−1) = ±πi. But he does not have the desired expression
through the exponent.

On page 279 Euler notes: “Hence the problem that worried Leibniz and Bernoulli, the problem of
whether logarithms of negative numbers are real or imaginary, is solved in favor of the former, who
insisted they were imaginary, and all of Bernoulli’s objections and protests no longer have any influence
on this conclusion”. We may note that Euler did not allow himself to publish this malicious comment until
one year after the death of his teacher Johann Bernoulli.

From the property of logarithms, Euler expresses the logarithm of a negative number as the sum of the
logarithm of −1 and the logarithm of the module of the respective number; he expresses the logarithm of
the imaginary unit as (±2n + 1

2 )π
√
−1. On the basis of logarithms obtained he proves the exponentiation

formula (cosϕ + sinϕ
√
−1)µ = cosµϕ + sinµϕ

√
−1 and the root extraction formula.

As we can see, it is just a small step to the identity named at the start of our thesis, but Euler does not
do this. Perhaps he did not attach significance to this form as an isolated case.

It was not until after Euler’s death, in the 19th century, that the geometrical interpretation of the complex
number was discovered by Wessel, Argand, and developed in the works of Gauss, Grassman, Hamilton
and other scientists.

4. 1750, Giulio Carlo Fagnano

Marchese Giulio Carlo d’e Toschi di Fagnano, (1682–1766), after receiving a fine education in the
humanities, lived almost entirely on his estate on the coast of the Adriatic Sea. He only became interested in
mathematics at the age of 24. He never spoke with any major mathematician of his time, but after studying
the works of Descartes, Newton, Leibniz; Johann, Jacob and Nicolas I Bernoulli, L’Hospital and many
other, he embarked on mathematical research himself8) and corresponded with many mathematicians.
Fagnano’s first works studied lemniscates and attempted to find their length. The difficult of intergation

8)We may note that from the Catholic church’s standpoint, Leibniz and Bernoulli had only one shortcoming: they were Protestants.
Their works, in particular several issues of Acta eruditorum, were on the index of prohibited books, L’Index librorum prohibitorum
(decrees of 29 March 1690, 4 March 1709, 15 January 1714), and Fagnano was regularly obliged to request permission from Abbot
Guido Grandi to read these books (the books themselves, as Fagnano wrote, were obtained with certain difficulties) ([43], p. 5).
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in the problem posed by Jacob and Johann Bernoulli, because the integral was not expressed elementarily.
Fagnano began to look for other methods and discovered rather simple relations between certain arcs
of leminscates. Later Euler, studying Fagnano’s works, noted the structural properties of corresponding
integrals. Fagnano published his works in Italian in the Venetian journal Giornale dei letterati l’Italia, and in
1750 published a two-volume edition of his works [30], which he sent to the Berlin Academy of Sciences
for review by Euler. Euler was delighted and assisted Fagnano’s election as a foreign member of the Berlin
Academy, and in many ways continued Fagnano’s studies. This applies to Fagnano’s works which were
written around 1719 and covered the development of methods of inegration using imaginary variables,
and also their application to calculating the areas and arcs of several curves, including the elipsis ([30],
p. 469). Fagnano, not encumbered by collegial relations and professional applied tasks, worked on the
purely mathematical aspects and developed several original methods, both in solving algebraic equations,
and on methods of inegration, in particular calculating the arcs of curves without using series, only by
comparing their differences. In solving quadratures, Fagnano first seeks a way to find, by approximation,
a circular sector whose arc is equal to a given hyperbola interval, and then a hyperbolic area equal to the
corresponding circular sector.

Solving the posed problem: to find by approximation, but without using series inversion, a sector of
a circle equal to a given interval between an equilateral hyperbola, an asymptote and two ordinates of
the same asymptote, Fagnano obtains and studies an equation in which Euler later became interested (1)
dt
√
−1

1+tt =
dx
√
−1

1+x ([30], p. 480).

Fagnano obtains the expression of the arctangent through the logarithm, in our notation
∫

dt
1+t2 =

ln((1 − it)
i
2 × (1 + it)−

i
2 ) and also its equivalent forms:

Figure 5. Fagnano, [30], p. 490

Finally, in the last chapter Fagnano raises the issue of calculating the ellipsis arc (or more precisely,
finding this circular or hyperbolic arc, which is equal to the ellipsis arc). Using his method of studying
leminscates, Fagnano noticed the ratio between the arcs on the ellipsis. In solving this problem, an integral
appeared that was later called ellipitical. Fagnano was proud to be the first to use imgainary degrees. His
work served as a stimulus for Euler’s thinking.
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5. 1797, Caspar Wessel, the complex number as a directed segment, geometric interpretation of opera-
tions

In 1797, geodesist and cartographer Caspar Wessel submitted to the Danish Academy of Sciences the
work An essay on the analytical presentation of direction and its applications, primarily to solving flat and spherical
polygons [51], published in 1799. Wessel introduced the concept of a complex number as a directed segment,
defined addition as a parallel displacement of the plane, and multiplication as rotation of the plane with
stretching. Operations on complex numbers were applied to operations on geometric objects. The work was
intended for cartographers, published in Danish, and remained unknown to the mathematical community
for over a century.

6. 1806, 1813/14, Argand. Geometric diagrams

Argand’s biography is the subject of debate, and there is even doubt over his real name. It is believed
that his name was Jean-Robert Argand and that he lived from 1768 to 1822. We recommend that readers
consult the study by G. Schubring [44], although his interpretation also contains contradictions.

In 1806 in France, an anonymous brochure was published with the title An essay on a certain method
of presenting imaginary values in geometric constructions [2] , which developed the geometric theory of the
complex number. In particular, it states that when multiplying complex numbers, their arguments add up,
and the modules extend. The so-called Argand diagrams are introduced in the work, depicting operations
of multiplication on the circumference, raising to a power and extracting root from a complex number. As
it was subsequently confirmed, the author of the brochure was the amateur mathematician Argand. It is
known that A.-M. Legendre highly valued the copy sent to him by the author [45].

Figure 6. Argand’s diagram on raising a complex number to a power [4]
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7. 1813, Jacques Français. The first appearance of the famous formula

At this time there were two brothers living in France, army officers who became teachers of mathematics
after they retired from service. The elder brother, François Joseph Français (1768–1810), taught mathematics
at civil and military academies. He was friendly with L.-F. Arbogast, wrote several unpublished memoirs
about differential calculation and its application in artillery, which was highly valued by A.-M. Legendre,
J.L. Lagrange, S.F. Lacroix and J.B. Biot. Legendre gave him a copy of Argand’s anonymous brochure of 1806.
The younger brother, Jacques Frédéric Français (1775–1833) served in the engineers’ corps, and then was a
professor of military science in Metz. He wrote works on the integration of partial differential equations,
and on analytical geometry, including on the transforming oblique coordinates and their application to
solving the problem of finding a sphere tangent to four given spheres. After the death of his elder brother
in 1810, Jacques Français studied his mathematical archive and continued his mathematical researches. He
published four memoirs on his brother’s ideas, adding to them in such a way that it difficult to tell the
contributions of each brother apart. In September 1813 in the second issue of the 4th volume of Gergonne’s
journal New principles of positional geometry and interpretation of imaginary symbols [32], in which he gave a
geometric presentation of complex numbers with interesting applications. This publication was preceded
by a furious discussion between J. Francais, Argand and F. Servois. Français and Argand argued for
the correctness of geometric presentation, while Servois claimed that complex numbers should only be
interpreted using pure algebra.

In his work, J. Français referred to Argand’s anonymous brochure of 1806: “In fairness, I must state that
the basis of these new ideas does not belong to me. I found this in a letter by Legendre to my late brother,
which the great geometer told him about. Accordingly, my contribution comes down to the method of
explaining and demonstrating these principles, to the designation and the idea of indicating the position
. . . I publish the results I have obtained in the hope that the first author of these ideas will make himself
known”.

It was in this article, on page 64, that Jacques Français writes: +1 = e0π
√
−1, and −1 = e±π

√
−1. This is the

first clear description of Euler’s identity. It is displayed in Figure 7.

In November 1813 in the fifth issue of the 4th volume of this journal, Argand responded with his article
Thoughts on the new theory of imaginary numbers with subsequent application to providing the theorem of analysis
[3], where he admitted his authorship of the anonymous brochure of 1806, mentioned that Legendre was
familiar with it and had a high opinion the brochure, and also set out with several clarifications his new
proof of the main theorem of algebra, and introduced the term “module of a complex number” in its modern
meaning.

In Gergonne’s journal Annales de mathématiques pures et appliquées before 1832 there were several articles
with examples of calculations of logarithms and exponential functions of a complex variable. Other French
and German mathematical journals of the period of 1830-1875 did not devote any attention to Euler’s
identity.

8. Augustin Cauchy

8.1. 1821, Analyse algébrique
In 1821, Augustin Cauchy gave a course of lectures of analysis at the Polytechnic School. Cauchy

expresses the logarithm of -1: l(−1) = ±(2k + 1)π
√
−1 ([12], p. 315), but does not give an explanatory note.

He proposes to denote the main value of the logarithm (with k = 0) as l(a) or simply la. Cauchy has no
geometric interpretation of complex numbers and operations on them. This was a study course, not a
scientific research. In his description Cauchy holds to the main points of Euler’s article On the logarithm of
the negative number [26].
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Figure 7. The first appearance of Euler’s famous identity, 1813.
Français, J. F. Nouveaux principes ([32], p. 64)

Here is a fragment on the calculation of the logarithm of minus one:

Figure 8. Cauchy. ([12], p. 316)
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Figure 9. Cauchy. ([12], p. 318)

8.2. Subsequent works
Later, in 1829–1832 Cauchy made a great contribution to the theory of complex variable functions – he

created the theory of residues. In works on this topic Cauchy often used the illustrative form of presentation
both for proving continuity (On expansion of functions into ordered sequences by rising variables) ([13]), when
calculating contour integrals.

He repeatedly addressed the topic of representing numbers and functions in exponential form. In
1831–1832, in emigration in Turin, Cauchy published a lithographed edition in two notebooks Résumés
Analytiques, which he republished several times after returning to France [14]. This resume contained the
results of various fields of his studies, including §XV. Imaginary Exponents. Expansion through the functions
cosx, sinx [15]. Here on p. 140 Euler’s identity is found in the form eπ

√
−1 = −1. In 1846, Cauchy published

A Memoir on functions of the imaginary variable ([14]), and in 1846 Memoir on a new theory of imaginary
numbers and on symbolic roots of equations and on identities, also published in the 30th issue of Crelle’s journal.
Here Cauchy presents his theory of algebraic equivalence, in which imaginary numbers are examined as
equivalent classes of polynomials with real coefficients according to the module (x2 + 1). The identity that
he gives here and calls symbolic is i2 + 1 = 0 ([16], p. 319).

In subsequent years in European journals, authors did not display great interest in issues of trigonometric
and exponential presentation of complex numbers and their interpretation.

9. William Hamilton

William Hamilton9) was the royal astronomer of Ireland, mathematician, mechanic, physicist, and
examined algebra not as an art, a language, a science on quantity, but as a science on order in certain
series. Hamilton determined the vector as the tranfer. His symbol i means firstly the single vector of the Ox
axis, secondly, an imaginary unit, and thirdly, the rotation operator, the versor. Hamilton wanted to apply
the system of complex numbers to three-dimensional space, but discovered difficulties with determining
multiplication – either the commutative law or the distributive law was violated. This contradicted Peacock
principle of permanence10), until in 1843 Hamilton determined operations on quaternions. Subsequently
his theory of quaternions served as the basis for creating vectoral analysis.

9)William Rowan Hamilton, 1805–1865.
10)”Whatever form is algebraically equivalent to another, when expressed in general symbols, must be true, whatever those symbols

denote” ([42], p. 104).
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10. The mid-19th century, USA. B. Peirce

The American astronomer and mathematician Benjamin Peirce11) made a contribution to celestial and
analytical mechanics, statistics (Peirce’s criteria), number theory, linear algebra, geodesy and the philosophy
of mathematics. It was thanks to his influence that courses on mathematics began to be read in American
universities, and mathematical research was carried out; mathematics became an academic science ([? ]),
[8]. His courses included a study of the classics of mathematics, and expressed great admiration for their
mathematical discoveries. One of his students, W. E. Byerly, subsequently a Harvard University professor
recalled one episode in 1864: “...In one of his lectures he gave a ratio linking π, e and i, in this form: e

π
2 =

i√i,
which evidently dazzled his imagination. He dropped the chalk and eraser, thrust his hands into his
pockets, and after contemplating the formula for several minutes turned to the class and said very slowly
and impressively: “Gentlemen, that is surely true, it is absolutely paradoxical, we can’t understand it, and
we don’t know what it means, but we have proved it, and therefore we know it must be the truth” [1], [38].

Peirce later repeated his ideas about this equation in his —emphLinear Associative Algebra. This
treatise, in the words of Peirce himself, was designed to bring the fundamental principles of science to the
central profound source, and from there take a short path to the most fruitful forms of research.

11. The 20th century

In 1963, Richard Feynman in his famous lecturers on physics called Euler’s equation ”This is a fantastic
fact, which we must leave to the Mathematics Department to prove. The proofs are very beautiful and
very interesting, but certainly not self-evident. [...] The most remarkable formula in mathematics: eiθ =
cosθ + isinθ. This is our jewel” ([31], Vol. I. Lecture 22. Algebra. 22-4, 22-6).

In 1988, mathematician David Wells conducted a survey among readers of The Mathematical Intelligencer,
to choose the most beautiful theorem, one of twenty-four [52]. In 1990 he summed up the results of the
survey in an article [53]. The majority of readers chose Euler’s identity.

12. Conclusion

Thus, we have traced the journey of Eulerś formulas which arose from observations of the corre-
spondence between arithmetic and geometric progressions, expressed geometrically; the emergence of the
algebraic form of the connection between them, the logarithmic and exponential functions and their expres-
sion through series; their auxiliary role in integration. The significance of natural sources of these formulas
was replaced with a working application in mathematics and applied matters, the attempt to strengthen the
algebraic aspect, the wary attitude of logicians and philosophers of mathematics, the enthusiastic attitude
of physicists, and finally the recognition of Eulerś identity as the most beautiful formula in mathematics.
In the 20th century, the apology for this formula grew like the apology for the Golden ratio.
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