Filomat 39:9 (2025), 2929–2940 https://doi.org/10.2298/FIL2509929X

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Moore-Penrose *m*-weak group inverses in rings with involution

Shuxian Xu^a, Jianlong Chen^{a,*}, Yukun Zhou^a

^aSchool of Mathematics, Southeast University, Nanjing 210096, China

Abstract. In 2024, Mosić et al. defined the Moore-Penrose *m*-weak group inverse (MP-*m*-WGI) of a complex matrix by combining the Moore-Penrose inverse with *m*-weak group inverse in an appropriate way. In this paper, we generalize it to rings with involution and define the MP-*m*-WGI of an element in rings with involution. Some expressions and characterizations for this generalized inverse are presented. Then, we establish the relationship between the MP-*m*-WGI and (*b*, *c*)-inverse. Finally, we give some equivalent characterizations when the MP-*m*-WGI coincides with other generalized inverses, such as the Drazin inverse and the pseudo core inverse.

1. Introduction

As a classical generalized inverse, the Moore-Penrose inverse (MP inverse) was introduced by Moore [15] and latter rediscovered independently by Bjerhammar [2] and Penrose [22]. The *m*-weak group inverse (*m*-WGI) introduced in [30] is a new type of generalized inverses. The *m*-WGI covers the core-EP inverse [13], the weak group inverse [25] and the generalized group inverse (or GGI) [6]. For more results of the MP inverse and the *m*-WGI, readers can see [9, 16–18, 22, 23].

Using the MP inverse and the *m*-WGI, Mosić et al.[19] defined the Moore-Penrose *m*-weak group inverse (MP-*m*-WGI) of a complex matrix, which is very significant as a generalization for the MP weak group inverse [24], the MPD inverse [12, 19] and the dual core inverse [1]. For a complex matrix *A* and $m \in \mathbb{N}$, the symbols A^{\dagger} , $A^{\textcircled{m}_m}$ and $A^{\textcircled{m}}$ stand for the MP inverse, the *m*-WGI and the core-EP inverse [13] of *A*, respectively. The MP-*m*-WGI of *A* is defined as

$$A^{\dagger, \mathfrak{M}_m} = A^{\dagger} A^{\mathfrak{M}_m} A$$

and presents uniquely determined solution to matrix equations

$$XAX = X, \quad AX = (A^{\oplus})^{m+1}A^{m+1}, \quad XA = A^{\dagger}(A^{\oplus})^{m+1}A^{m+2}.$$

A number of expressions and characterizations of the MP-m-WGI were given.

Communicated by Dijana Mosić

²⁰²⁰ Mathematics Subject Classification. Primary 15A09; Secondary 16W10.

Keywords. Moore-Penrose *m*-weak group inverse, Moore-Penrose inverse, *m*-weak group inverse, (*b*, *c*)-inverse.

Received: 05 September 2024; Accepted: 21 January 2025

Research supported by the National Natural Science Foundation of China (No. 12171083) and the Jiangsu Provincial Scientific Research Center of Applied Mathematics under Grant No. BK20233002.

^{*} Corresponding author: Jianlong Chen

Email addresses: shuxianxu215@163.com (Shuxian Xu), jlchen@seu.edu.cn (Jianlong Chen), 2516856280@qq.com (Yukun Zhou) ORCID iDs: https://orcid.org/0009-0002-5530-7133 (Shuxian Xu), https://orcid.org/0000-0002-6798-488X (Jianlong Chen), https://orcid.org/0000-0001-9470-2748 (Yukun Zhou)

Motivated by the work of Mosić above, we put forward the notion of MP-*m*-WGI in rings with involution as a generalization for both *m*-WGI in rings and MP-*m*-WGI for complex matrices.

This paper is organized as follows. In Section 2, we present some necessary definitions and auxiliary lemmas. In Section 3, we define the MP-*m*-WGI in rings with involution and give some expressions for MP-*m*-WGI. In Section 4, we investigate the relationship between the MP-*m*-WGI and other generalized inverses in rings, such as the (b, c)-inverse, the inverse along an element, the Drazin inverse and the pseudo core inverse.

2. Preliminaries

Let *R* be a ring with involution. An involution * in *R* is an anti-isomorphism of degree 2, i.e. for any $r, s \in R$,

$$(r^*)^* = r$$
, $(rs)^* = s^*r^*$, $(r+s)^* = r^* + s^*$.

Definition 2.1. [22] An element $a \in R$ is said to be Moore-Penrose invertible if there exists $x \in R$ satisfying the following equations

(1)
$$axa = a$$
, (2) $xax = x$, (3) $(ax)^* = ax$, (4) $(xa)^* = xa$.

Such an x is unique when it exists, and is called the Moore-Penrose inverse (MP inverse) of a and denoted by a^{\dagger} .

Moreover, *x* is called a {1}-inverse of *a* (or *a* is regular) if the equation (1) holds. If *x* satisfies equations (1) and (3), then *x* is called a {1,3}-inverse of *a* and denoted by $a^{(1,3)}$. If *x* satisfies equations (1) and (4), then *x* is called a {1,4}-inverse of *a* and denoted by $a^{(1,4)}$.

Definition 2.2. [3] Let $a \in R$. If there exist $x \in R$ and $k \in \mathbb{N}^+$ such that

$$xa^{k+1} = a^k$$
, $ax^2 = x$, $xa = ax_k$

then a is called Drazin invertible. Such an x is unique and denoted by a^{D} when it exists.

The smallest positive integer *k* satisfying above equations is called the Drazin index of *a*, denoted by i(a). In particular, if i(a) = 1, *x* is called the group inverse of *a* and denoted by $a^{\#}$.

Definition 2.3. [7] Let $a \in R$. If there exist $x \in R$ and $k \in \mathbb{N}^+$ such that

$$xa^{k+1} = a^k$$
, $ax^2 = x$, $(ax)^* = ax$,

then x is called the pseudo core inverse of a. It is unique and denoted by $a^{\textcircled{}}$ when the pseudo core inverse exists.

The smallest positive integer *k* satisfying above equations is called the pseudo core index of *a*. If *a* is pseudo core invertible, then it must be Drazin invertible, and the pseudo core index coincides with the Drazin index [7]. In particular, *x* is called the core inverse of *a* and denoted by $a^{\textcircled{0}}$ when k = 1 [1, 23].

The dual pseudo core inverse [7] was defined similarly.

Definition 2.4. [30] Let $a \in R$ and $m \in \mathbb{N}$. If there exist $x \in R$ and $k \in \mathbb{N}^+$ such that

$$xa^{k+1} = a^k$$
, $ax^2 = x$, $(a^k)^*a^{m+1}x = (a^k)^*a^m$,

then x is called the m-weak group inverse (m-WGI) of a. When the m-WGI of a exists and is unique, it is denoted by a^{\bigotimes_m} .

The smallest positive integer *k* satisfying above equations is called the *m*-weak group index of *a*. If *a* is *m*-weak group invertible, then *a* is Drazin invertible and the *m*-weak group index is equal to the Drazin index.

The symbols $R^{\{1\}}$, $R^{\{1,3\}}$, $R^{\{1,4\}}$, R^{\dagger} , R^{D} , $R^{\textcircled{0}}$, $R^{\textcircled{0}}$, $R_{\textcircled{0}}$ denote sets of all regular, $\{1,3\}$ -invertible, $\{1,4\}$ -invertible, Moore-Penrose invertible, Drazin invertible, *m*-weak group invertible, pseudo core invertible and dual pseudo core invertible elements in *R*, respectively.

Recall that $x \in R$ is a minimal weak Drazin inverse [27] of $a \in R$ if $xa^{k+1} = a^k$ for some $k \in \mathbb{N}$ and $ax^2 = x$. Many generalized inverses such as Drazin inverse, pseudo core inverse, *m*-WGI and DMP inverse [12] are special cases of minimal weak Drazin inverses. So the following Lemmas 2.5 and 2.6 can efficiently simplify some proofs.

Lemma 2.5. [7] Let $a \in R$. If there exist $x \in R$ and $k \in \mathbb{N}$ such that

$$xa^{k+1} = a^k, \quad ax^2 = x,$$

then we have

- (1) $ax = a^m x^m$ for arbitrary positive integer m;
- (2) xax = x;
- (3) *a is Drazin invertible,* $a^D = x^{k+1}a^k$ and $i(a) \le k$.

Lemma 2.6. [29] Let $a \in \mathbb{R}^D$ and $k_1, \ldots, k_n, s_1, \ldots, s_n \in \mathbb{N}$. If x_1, \ldots, x_n are minimal weak Drazin inverses of a and $s_n \neq 0$, then

$$\prod_{i=1}^{n} a^{k_i} x_i^{s_i} = a^k x_n^{s_i},\tag{1}$$

where $k = \sum_{i=1}^{n} k_i$ and $s = \sum_{i=1}^{n} s_i$.

Lemma 2.7. [7] Let $a \in R$ and $l, k \in \mathbb{N}^+$ with $l \ge k$. Then $a \in R^{\oplus}$ with i(a) = k if and only if $a \in R^D$ with i(a) = k and $a^l \in R^{\{1,3\}}$. In this case, $a^{\oplus} = a^D a^l (a^l)^{(1,3)}$.

Applying Lemmas 2.6 and 2.7, we get the following corollary immediately.

Corollary 2.8. [20] Let $a \in \mathbb{R}^{\mathbb{D}}$ with i(a) = k and $l \in \mathbb{N}^+$ with $l \ge k$. Then

$$(a^{\textcircled{D}})^m = (a^D)^m a^l (a^l)^{(1,3)}$$
 for $m \in \mathbb{N}^+$.

Lemma 2.9. [30] Let $a \in R$ and $m \in \mathbb{N}$. If $a \in R^{\odot}$, then

$$a^{\otimes_m} = (a^{\odot})^{m+1} a^m.$$
⁽²⁾

Proof. It follows by [30, Corollaries 4.3, 4.9 and 4.11]. \Box

Lemma 2.10. [9] Let $a \in R$. Then

- (1) $Ra = Ra^*a$ if and only if $a \in R^{\{1,3\}}$;
- (2) $aR = aa^*R$ if and only if $a \in R^{\{1,4\}}$.

3. MP-m-WGI in rings with involution

In this section, we introduce the MP-*m*-WGI in *R* using the MP inverse and the *m*-WGI, which generalize the MP-*m*-WGI of a complex matrix.

Theorem 3.1. Let $a \in R^{\dagger} \cap R^{\textcircled{D}}$ and $m \in \mathbb{N}$. The system of equations

$$xax = x, \quad ax = (a^{\textcircled{0}})^{m+1}a^{m+1}, \quad xa = a^{\dagger}(a^{\textcircled{0}})^{m+1}a^{m+2}$$
 (3)

has a unique solution: $x = a^{\dagger}a^{\bigotimes_m}a = a^{\dagger}aa^{\bigotimes_{m+1}} = a^{\dagger}(a^{\bigotimes})^{m+1}a^{m+1}$.

Proof. First, by [30, Proposition 4.8], $(a^{\bigotimes_m})^2 a = a^{\bigotimes_{m+1}}$, then we have

$$a^{\dagger}a^{\bigotimes_m}a = a^{\dagger}a(a^{\bigotimes_m})^2a = a^{\dagger}aa^{\bigotimes_{m+1}}a$$

In addition, it follows from Lemma 2.9 that

$$a^{\dagger}a^{\bigotimes_{m}}a \stackrel{(2)}{=} a^{\dagger}(a^{\textcircled{D}})^{m+1}a^{m+1}.$$

Take $x = a^{\dagger}a^{\bigotimes_m}a$. Then by Lemmas 2.5 and 2.6,

$$ax = aa^{\dagger}(a^{\textcircled{D}})^{m+1}a^{m+1} \stackrel{(1)}{=} aa^{\dagger}aa^{D}(a^{\textcircled{D}})^{m+1}a^{m+1} = aa^{D}(a^{\textcircled{D}})^{m+1}a^{m+1} \stackrel{(1)}{=} (a^{\textcircled{D}})^{m+1}a^{m+1},$$
$$xax = a^{\dagger}(a^{\textcircled{D}})^{m+1}a^{m+1}(a^{\textcircled{D}})^{m+1}a^{m+1} = a^{\dagger}(a^{\textcircled{D}})^{m+1}aa^{\textcircled{D}}a^{m+1} \stackrel{(1)}{=} a^{\dagger}(a^{\textcircled{D}})^{m+1}a^{m+1},$$

and

$$xa = a^{\dagger}(a^{\mathbb{D}})^{m+1}a^{m+2}.$$

Therefore, $x = a^{\dagger}a^{\bigotimes_m}a = a^{\dagger}aa^{\bigotimes_{m+1}} = a^{\dagger}(a^{\bigotimes})^{m+1}a^{m+1}$ is a solution to the system (3).

Next, we prove the uniqueness of the solution. Suppose that x is a solution to the system (3). Then by Lemmas 2.5 and 2.9, we have

$$x = xax = (xa)x = a^{\dagger}(a^{\textcircled{D}})^{m+1}a^{m+2}x = a^{\dagger}(a^{\textcircled{D}})^{m+1}a^{m+1}(ax)$$
$$= a^{\dagger}(a^{\textcircled{D}})^{m+1}a^{m+1}(a^{\textcircled{D}})^{m+1}a^{m+1} = a^{\dagger}(a^{\textcircled{D}})^{m+1}a^{m+1} \stackrel{(2)}{=} a^{\dagger}a^{\textcircled{W}_m}a$$

Definition 3.2. Let $a \in R^{\dagger} \cap R^{\textcircled{D}}$ and $m \in \mathbb{N}$. The Moore-Penrose *m*-weak group inverse (MP-*m*-WGI for short) of *a* is defined as

$$a^{\dagger, \mathfrak{W}_m} = a^{\dagger} a^{\mathfrak{W}_m} a.$$

Similar to the cases of complex matrices in [19], many generalized inverses are special cases of MP-*m*-WGI in *R*:

- For m = 1, $a^{\dagger, \bigotimes_1} = a^{\dagger} a^{\bigotimes} a$ is the MPWGI [24];
- For m = 2, $a^{\dagger, \otimes_2} = a^{\dagger} a^{\otimes_2} a$ is the MP-2-WGI (MPGGI) ;
- For $m \ge i(a)$, $a^{\bigotimes_m} = a^D$ by [30], $a^{\dagger,\bigotimes_m} = a^{\dagger}aa^D = a^{\dagger,D}$ is the MPD inverse;
- For $m \ge 1 = i(a)$, $a^{\bigotimes_m} = a^{\#}$ and $a^{\dagger,\bigotimes_m} = a^{\dagger}aa^{\#}$ is the dual core inverse [28];

The following proposition gives a expression for the MP-(m + 1)-WGI using the MP-*m*-WGI and the MPD inverse in *R*.

Proposition 3.3. Let $a \in \mathbb{R}^+ \cap \mathbb{R}^{\mathbb{D}}$ and $m \in \mathbb{N}$. Then

$$a^{\dagger,\bigotimes_{m+1}} = a^{\dagger,D}a^{\dagger,\bigotimes_m}a.$$

Proof. Since $a^{D}aa^{\bigotimes_{m+1}} \stackrel{(1)}{=} a(a^{\bigotimes_{m+1}})^2 = a^{\bigotimes_{m+1}}$, it follows that

$$a^{\dagger, \bigotimes_{m+1}} = a^{\dagger} a^{\bigotimes_{m+1}} a = a^{\dagger} a^{D} a a^{\bigotimes_{m+1}} a$$

= $a^{\dagger} a^{D} a a^{\dagger} a a^{\bigotimes_{m+1}} a = (a^{\dagger} a^{D} a)(a^{\dagger} a a^{\bigotimes_{m+1}}) a$
= $a^{\dagger, D} a^{\dagger, \bigotimes_{m}} a$.

The following result gives a expression of the MP-*m*-WGI in *R* in terms of {1}-inverse.

Proposition 3.4. Let $a \in \mathbb{R}^+ \cap \mathbb{R}^{\oplus}$ with i(a) = k and $m \in \mathbb{N}$. Then $(a^k)^* a^{k+m+1} \in \mathbb{R}^{\{1\}}$ and

$$a^{\dagger, \mathfrak{M}_m} = a^{\dagger} a^k ((a^k)^* a^{k+m+1})^{-} (a^k)^* a^{m+1}.$$

Proof. First, since

$$\begin{split} &(a^k)^* a^{k+m+1} (a^{k+m+1})^{(1,3)} ((a^k)^{(1,3)})^* (a^k)^* a^{k+m+1} \\ &= (a^k)^* (a^{k+m+1} (a^{k+m+1})^{(1,3)})^* (a^k (a^k)^{(1,3)})^* a^{k+m+1} \\ &= (a^{k+m+1} (a^{k+m+1})^{(1,3)} a^k)^* a^k (a^k)^{(1,3)} a^{k+m+1} = (a^k)^* a^{k+m+1}, \end{split}$$

it follows that $(a^k)^* a^{k+m+1} \in R^{\{1\}}$.

Next, taking $p = ((a^k)^* a^{k+m+1})^- (a^k)^* a^{k+m+1}$, we have $p^2 = p$ and

$$Rp = R((a^k)^* a^{k+m+1})^{-} (a^k)^* a^{k+m+1} = R(a^k)^* a^{k+m+1}$$
$$= R(a^k)^* a^k a^{m+1} = Ra^k a^{m+1} = Ra^k,$$

where $R(a^k)^*a^k = Ra^k$ is obtained from $a^k \in R^{\{1,3\}}$ by Lemmas 2.7 and 2.10. So, $a^k = a^k p$. Therefore, by Lemma 2.5, we have

$$\begin{aligned} a^{\dagger, \mathfrak{W}_m} &= a^{\dagger} a a^{\mathfrak{W}_{m+1}} = a^{\dagger} a^k (a^{\mathfrak{W}_{m+1}})^k = a^{\dagger} a^k p (a^{\mathfrak{W}_{m+1}})^k \\ &= a^{\dagger} a^k ((a^k)^* a^{k+m+1})^{-} (a^k)^* a^{k+m+1} (a^{\mathfrak{W}_{m+1}})^k \\ &= a^{\dagger} a^k ((a^k)^* a^{k+m+1})^{-} (a^k)^* a^{m+2} a^{\mathfrak{W}_{m+1}} \\ &= a^{\dagger} a^k ((a^k)^* a^{k+m+1})^{-} (a^k)^* a^{m+1}. \end{aligned}$$

The following result gives a expression of the MP-m-WGI in R in terms of Drazin inverse and $\{1,3\}$ -inverse.

Proposition 3.5. Let $a \in \mathbb{R}^+ \cap \mathbb{R}^{\oplus}$ with i(a) = k and $m \in \mathbb{N}$. If $l \in \mathbb{N}^+$ with $l \ge k$, then

$$a^{\dagger, \mathfrak{M}_m} = a^{\dagger} (a^D)^{m+1} a^l (a^l)^{(1,3)} a^{m+1} = a^{\dagger} a^l (a^{l+m+1})^{(1,3)} a^{m+1}$$

Proof. Since $a \in \mathbb{R}^{(D)}$ and $l \ge k$, it follows from Lemma 2.7 that $a^{l}, a^{l+m+1} \in \mathbb{R}^{\{1,3\}}$. Then by Corollary 2.8, we have

$$a^{\bigotimes_m} \stackrel{(2)}{=} (a^{\textcircled{D}})^{m+1} a^m = (a^D)^{m+1} a^l (a^l)^{(1,3)} a^m.$$

In addition, since

$$a^{l}(a^{l})^{(1,3)}R = a^{l+m+1}(a^{l+m+1})^{(1,3)}R,$$

it follows that

$$a^{\textcircled{0}_m} = (a^D)^{m+1} a^l (a^l)^{(1,3)} a^m = (a^D)^{m+1} a^{l+m+1} (a^{l+m+1})^{(1,3)} a^m = a^l (a^{l+m+1})^{(1,3)} a^m.$$

Therefore,

$$a^{\dagger, \bigotimes_m} = a^{\dagger} a^{\bigotimes_m} a = a^{\dagger} (a^D)^{m+1} a^l (a^l)^{(1,3)} a^{m+1} = a^{\dagger} a^l (a^{l+m+1})^{(1,3)} a^{m+1}$$

A new expression for $a^{\dagger, \bigotimes_m}$ can be given in terms of idempotents $e = 1 - aa^{\dagger, \bigotimes_m}$ and $f = 1 - a^{\dagger, \bigotimes_m} a$.

Theorem 3.6. Let $a \in R^{\dagger} \cap R^{\textcircled{0}}$ and $m \in \mathbb{N}$. For elements $e = 1 - aa^{\dagger, \textcircled{0}_m} = 1 - aa^{\textcircled{0}_{m+1}}$ and $f = 1 - a^{\dagger, \textcircled{0}_m}a$, the following statements hold:

- (1) $a \pm e \in R^{-1} and a \pm f \in R^{-1};$
- (2) $a^{\dagger, \bigotimes_m} = (1 f)(a \pm e)^{-1}(1 e).$

Proof. (1) Let i(a) = k. First, we have

$$e = 1 - aa^{\dagger, \mathfrak{M}_m} = 1 - aa^{\dagger}aa^{\mathfrak{M}_{m+1}} = 1 - aa^{\mathfrak{M}_{m+1}}.$$

Notice that $a^{\bigotimes_{m+1}}$ is a minimal weak Drazin inverse of *a*. Then by [27, Theorem 3.10], we have $a \pm e \in R^{-1}$ with

$$(a+e)^{-1} = (a+(1-aa^{\circledast_{m+1}}))^{-1} = a^{\circledast_{m+1}} + (1-a^{\circledast_{m+1}}a)\sum_{i=0}^{k-1} (-a)^i,$$
$$(a-e)^{-1} = (a-(1-aa^{\circledast_{m+1}}))^{-1} = a^{\circledast_{m+1}} - (1-a^{\circledast_{m+1}}a)\sum_{i=0}^{k-1} a^i.$$

Now, recall the Jacobson's lemma [10]: Let $a, b \in R$. If 1 - ab is invertible, then so is 1 - ba and $(1 - ba)^{-1} = 1 + b(1 - ab)^{-1}a$. Thus, by Jacobson's lemma, $a \pm f \in R^{-1}$ with

$$(a + f)^{-1} = (a + (1 - a^{\dagger, \mathfrak{M}_m} a))^{-1}$$

= 1 + (a^{\dagger, \mathfrak{M}_m} - 1)(a + (1 - aa^{\dagger, \mathfrak{M}_m}))^{-1}a
= 1 + (a^{\dagger, \mathfrak{M}_m} - 1)(a + e)^{-1}a,
$$(a - f)^{-1} = (a - (1 - a^{\dagger, \mathfrak{M}_m} a))^{-1}$$

= -1 + (a^{\dagger, \mathfrak{M}_m} + 1)(a - (1 - aa^{\dagger, \mathfrak{M}_m}))^{-1}a
= -1 + (a^{\dagger, \mathfrak{M}_m} + 1)(a - e)^{-1}a.

(2) It is direct to verify that

$$(1 - f)(a + e)^{-1}(1 - e)$$

= $a^{\dagger, \mathfrak{W}_m} a(a^{\mathfrak{W}_{m+1}} + (1 - a^{\mathfrak{W}_{m+1}}a) \sum_{i=0}^{k-1} (-a)^i)aa^{\dagger, \mathfrak{W}_m}$
= $a^{\dagger} aa^{\mathfrak{W}_{m+1}} a(a^{\mathfrak{W}_{m+1}} + (1 - a^{\mathfrak{W}_{m+1}}a) \sum_{i=0}^{k-1} (-a)^i)aa^{\mathfrak{W}_{m+1}}$
= $a^{\dagger} aa^{\mathfrak{W}_{m+1}} aa^{\mathfrak{W}_{m+1}} = a^{\dagger, \mathfrak{W}_m},$

where $a^{\bigotimes_{m+1}} a a^{\bigotimes_{m+1}} = a^{\bigotimes_{m+1}}$ is obtained from Lemma 2.5.

Similarly, it can be verified that $(1 - f)(a - e)^{-1}(1 - e) = a^{\dagger, \bigotimes_m}$. \Box

2934

Theorem 3.1 indicates that $a^{\dagger, \mathfrak{M}_m}$ is a solution to the system (3). Motivated by [19, Corollary 2.2, Theorem 2.2], the following theorem shows that $a^{\dagger, \mathfrak{M}_m}$ is also a solution to the following systems of equations.

Theorem 3.7. Let $a \in \mathbb{R}^+ \cap \mathbb{R}^{\oplus}$ with i(a) = k and $m \in \mathbb{N}$. Then the following statements are equivalent:

(2)
$$xax = x, xa = a^{\dagger}(a^{D})^{m+1}a^{l}(a^{l})^{(1,3)}a^{m+2}$$
 and $ax = (a^{D})^{m+1}a^{l}(a^{l})^{(1,3)}a^{m+1}$ for $l \in \mathbb{N}^{+}$ with $l \ge k$;
(3) $xax = x, xa = a^{\dagger}a^{l}(a^{l+m+1})^{(1,3)}a^{m+2}$ and $ax = a^{l}(a^{l+m+1})^{(1,3)}a^{m+1}$ for $l \in \mathbb{N}^{+}$ with $l \ge k$;
(4) $xax = x, axa = (a^{\textcircled{0}})^{m+1}a^{m+2}, ax = (a^{\textcircled{0}})^{m+1}a^{m+1}, xa = a^{\dagger}(a^{\textcircled{0}})^{m+1}a^{m+2}$;
(5) $a^{\dagger}ax = x, ax = (a^{\textcircled{0}})^{m+1}a^{m+1}$;
(6) $a^{\dagger}ax = x, a^{\dagger}ax = a^{\dagger}(a^{\textcircled{0}})^{m+1}a^{m+1}$;
(7) $xa^{\dagger}a = x, xa^{\dagger} = a^{\dagger}(a^{\textcircled{0}})^{m+1}a^{m+1}a^{\dagger}$;
(8) $x(a^{\textcircled{0}})^{m+1}a^{m+1} = x, xa = a^{\dagger}(a^{\textcircled{0}})^{m+1}a^{m+2}$;
(9) $a^{\dagger}(a^{\textcircled{0}})^{m+1}a^{m+2}x = x, ax = (a^{\textcircled{0}})^{m+1}a^{m+1}$.

Proof. (1) \Leftrightarrow (2) \Leftrightarrow (3) follows by Theorem 3.1 and Proposition 3.5. (1) \Rightarrow (4) : Suppose $x = a^{\dagger, \mathfrak{M}_m}$. Then by Theorem 3.1, x satisfies xax = x, $ax = (a^{\textcircled{D}})^{m+1}a^{m+1}$, $xa = a^{\dagger}(a^{\textcircled{D}})^{m+1}a^{m+2}$, and thus $axa = (a^{\textcircled{D}})^{m+1}a^{m+2}$.

(4) \Rightarrow (1) : It is obvious by Theorem 3.1. (4) \Rightarrow (5) : Since $ax = (a^{\textcircled{D}})^{m+1}a^{m+1}$, it follows that $a^{\dagger}ax = a^{\dagger}(a^{\textcircled{D}})^{m+1}a^{m+1} = a^{\dagger,\textcircled{W}_m} = x$. (5) \Rightarrow (6) : Obviously. (6) \Rightarrow (1) : Suppose $a^{\dagger}ax = x$ and $a^{\dagger}ax = a^{\dagger}(a^{\textcircled{D}})^{m+1}a^{m+1}$. Then

$$x = a^{\dagger}ax = a^{\dagger}(a^{\bigcirc})^{m+1}a^{m+1} = a^{\dagger, \bigotimes_{m}}.$$

The rest part can be proved similarly. \Box

Remark 3.8. Recall from [23, Theorem 2.8] that $Ra^{\dagger} = Ra^{*}$ and $a^{\dagger}R = a^{*}R$. So, we obtain more equivalent characterizations for $x = a^{\dagger, \bigotimes_{m}}$ in Theorem 3.7 immediately. For example:

(6') $a^{\dagger}ax = x, a^{*}ax = a^{*}(a^{\textcircled{D}})^{m+1}a^{m+1};$ (7') $xa^{\dagger}a = x, xa^{*} = a^{\dagger}(a^{\textcircled{D}})^{m+1}a^{m+1}a^{*}.$

(1) $x = a^{\dagger, \bigotimes_m};$

4. Relationships with other generalized inverses

In this section, we wish to investigate the relationships between the MP-*m*-WGI and other generalized inverses in *R*. Before that, recall the following two known definitions.

Definition 4.1. [14] Let $a, d, x \in R$. Then x is the inverse of a along d if

xad = d = dax and $Rx \subseteq Rd$, $xR \subseteq dR$.

Definition 4.2. [4] Let $a, b, c, x \in R$. Then x is called a (b, c)-inverse of a if

 $x \in bRx \cap xRc$ and xab = b, cax = x.

Actually, [4, Proposition 6.1] provided the following equivalent characterization for (*b*, *c*)-inverse.

Lemma 4.3. [4] Let $a, b, c, x \in R$. Then x is a (b, c)-inverse of a if and only if

xax = x, xR = bR, Rx = Rc.

As proved in [4], the inverse along an element is a particular case of (b, c)-inverse when b = c. So according to Lemma 4.3, we obtain the following immediately.

Lemma 4.4. Let $a, d, x \in R$. Then x is the inverse of a along d if and only if

$$xax = x$$
, $xR = dR$, $Rx = Rd$.

The right annihilator of *a* is denoted by a° and is defined by $a^{\circ} = \{x \in R : ax = 0\}$. Similarly, the left annihilator of *a* is the set ${}^{\circ}a = \{x \in R : xa = 0\}$. The following theorem reveals the relationship between the MP-*m*-WGI and the (*b*, *c*)-inverse in *R*.

Theorem 4.5. Let $a \in \mathbb{R}^{\dagger} \cap \mathbb{R}^{\textcircled{0}}$ with i(a) = k and $m \in \mathbb{N}$. Then the following statements are equivalent:

- (1) $x = a^{\dagger, \bigotimes_m};$
- (2) x is the $(a^{\dagger}a^{k}, (a^{k})^{*}a^{m+1})$ -inverse of a;
- (3) xax = x, $xR = a^{\dagger}a^{k}R$, $Rx = R(a^{k})^{*}a^{m+1}$;

(4)
$$xax = x$$
, $^{\circ}x = ^{\circ}(a^{\dagger}a^{k})$, $x^{\circ} = ((a^{k})^{*}a^{m+1})^{\circ}$.

Proof. (2) \Leftrightarrow (3) follows by Lemma 4.3.

(1) \Rightarrow (3) : Suppose $x = a^{\dagger, \bigotimes_m}$. Then by Theorem 3.1, xax = x.

Recall that if $y \in R$ is a minimal weak Drazin inverse of a, then $yR = a^kR$ and $Ry^* = R(a^k)^*$ by [27]. Since $a^{\bigotimes_{m+1}}$ and a^{\bigotimes} are both minimal weak Drazin inverses of a, it follows that $a^{\bigotimes_{m+1}}R = a^kR$ and $R(a^{\bigotimes})^* = R(a^k)^*$. Then we have

$$xR = a^{\dagger, \bigotimes_m} R = a^{\dagger} a a^{\bigotimes_{m+1}} R = a^{\dagger} a a^k R = a^{\dagger} a^k R$$

and

$$Rx = Ra^{\dagger, \bigotimes_{m}} = Ra^{\dagger}(a^{\bigotimes})^{m+1}a^{m+1} = R(a^{\bigotimes})^{m+1}a^{m+1}$$

= $Raa^{\bigotimes}a^{m+1} = R(a^{\bigotimes})^{*}a^{*}a^{m+1} = R(a^{k})^{*}a^{*}a^{m+1} = R(a^{k})^{*}a^{m+1}.$

(3) \Rightarrow (1) : Suppose xax = x, $xR = a^{\dagger}a^{k}R$ and $Rx = R(a^{k})^{*}a^{m+1}$. From the above proof, we have $a^{\dagger, \mathfrak{M}_{m}}$ satisfies these three equations. Then by the uniqueness of (b, c)-inverse [4], $x = a^{\dagger, \mathfrak{M}_{m}}$.

(3) \Leftrightarrow (4) : First, we get that *x* is regular by xax = x. In addition,

$$\begin{aligned} &(a^{k})^{*}a^{m+1}(a^{D})^{m+1}((a^{k})^{(1,3)})^{*}(a^{k})^{*}a^{m+1} \\ &= (a^{k})^{*}aa^{D}(a^{k}(a^{k})^{(1,3)})^{*}a^{m+1} \\ &= (a^{k})^{*}a(a^{D}a^{k}(a^{k})^{(1,3)})a^{m+1} \\ &= (a^{k})^{*}aa^{\textcircled{}}a^{m+1} = (a^{k})^{*}a^{m+1}, \end{aligned}$$

which implies that $(a^k)^* a^{m+1}$ is regular. Also, since $a^{\dagger} a^k (a^D)^k a a^{\dagger} a^k = a^{\dagger} a^k (a^D)^k a^k = a^{\dagger} a^k$, it follows that $a^{\dagger} a^k$ is regular. Thus, by [23, Lemmas 2.5 and 2.6], the proof is completed. \Box

Inspired by Theorem 4.5, the following results provide the relationship between the idempotent aa^{\dagger, \otimes_m} and the (b, c)-inverse, as well as the idempotent $a^{\dagger, \otimes_m}a$ and the (b, c)-inverse.

Proposition 4.6. Let $a \in \mathbb{R}^+ \cap \mathbb{R}^{\oplus}$ with i(a) = k and $m \in \mathbb{N}$. Then the following statements are equivalent:

- (1) $x = aa^{\dagger, \bigotimes_m};$
- (2) *x* is the $(a^k, (a^k)^*a^{m+1})$ -inverse of 1;
- (3) $x^2 = x$, $xR = a^k R$, $Rx = R(a^k)^* a^{m+1}$;

(4) $x^2 = x$, $^{\circ}x = ^{\circ}(a^k)$, $x^{\circ} = ((a^k)^* a^{m+1})^{\circ}$.

Proof. The proof is similar to Theorem 4.5. \Box

Proposition 4.7. Let $a \in \mathbb{R}^+ \cap \mathbb{R}^{\oplus}$ with i(a) = k and $m \in \mathbb{N}$. Then the following statements are equivalent:

- (1) $x = a^{\dagger, \bigotimes_m} a;$
- (2) *x* is the $(a^{\dagger}a^{k}, (a^{k})^{*}a^{m+2})$ -inverse of 1;
- (3) $x^2 = x$, $xR = a^{\dagger}a^kR$, $Rx = R(a^k)^*a^{m+2}$;
- (4) $x^2 = x$, $^{\circ}x = ^{\circ}(a^{\dagger}a^k)$, $x^{\circ} = ((a^k)^*a^{m+2})^{\circ}$.

Proof. The proof is similar to Theorem 4.5. \Box

Notice that $a \in R^{\dagger} \cap R^{\textcircled{D}}$ in Theorem 4.5, Furthermore, if $a \in R^{\dagger} \cap R^{\textcircled{D}} \cap R_{\textcircled{D}}$, we obtain the following relationship between the MP-*m*-WGI and the inverse along an element in *R*.

Theorem 4.8. Let $a \in \mathbb{R}^+ \cap \mathbb{R}^{\oplus} \cap \mathbb{R}_{\oplus}$ with i(a) = k and $m \in \mathbb{N}$. Then the following statements are equivalent:

- (1) $x = a^{\dagger, \bigotimes_m};$
- (2) *x* is the inverse of *a* along $a^{\dagger}a^{k}(a^{k})^{*}a^{m+1}$;
- (3) xax = x, $xR = a^{\dagger}a^{k}(a^{k})^{*}a^{m+1}R$, $Rx = Ra^{\dagger}a^{k}(a^{k})^{*}a^{m+1}$;
- (4) xax = x, $^{\circ}x = ^{\circ}(a^{\dagger}a^{k}(a^{k})^{*}a^{m+1})$, $x^{\circ} = (a^{\dagger}a^{k}(a^{k})^{*}a^{m+1})^{\circ}$.

Proof. (2) \Leftrightarrow (3) follows by Lemma 4.4.

(1) \Rightarrow (3) : Suppose $x = a^{\dagger, \bigotimes_m}$. Then by Theorem 3.1, xax = x.

Since $a \in \mathbb{R}^{\textcircled{0}} \cap \mathbb{R}_{\textcircled{0}}$, it follows that $a^{k} \in \mathbb{R}^{\{1,3\}} \cap \mathbb{R}^{\{1,4\}}$ by Lemma 2.7. Moreover, by Lemma 2.10, we have $\mathbb{R}a^{k} = \mathbb{R}(a^{k})^{*}a^{k}$ and $\mathbb{R}a^{k}(a^{k})^{*} = \mathbb{R}(a^{k})^{*}$. Thus,

$$a^{\dagger}a^{k}(a^{k})^{*}a^{m+1}R = a^{\dagger}a^{k}(a^{k})^{*}R = a^{\dagger}a^{k}R$$

and

$$Ra^{\dagger}a^{k}(a^{k})^{*}a^{m+1} = Ra^{k}(a^{k})^{*}a^{m+1} = R(a^{k})^{*}a^{m+1}$$

Thus, by Theorem 4.5, $xR = a^{\dagger}a^{k}(a^{k})^{*}a^{m+1}R$ and $Rx = Ra^{\dagger}a^{k}(a^{k})^{*}a^{m+1}$.

(3) \Rightarrow (1) : Suppose xax = x, $xR = a^{\dagger}a^{k}(a^{k})^{*}a^{m+1}R$, $Rx = Ra^{\dagger}a^{k}(a^{k})^{*}a^{m+1}$. From the above proof, we have $a^{\dagger, \bigotimes_{m}}$ satisfies these three equations. Thus, $x = a^{\dagger, \bigotimes_{m}}$ follows by the uniqueness of the inverse along an element [14].

(3) \Leftrightarrow (4) : First, *x* is regular by xax = x. Moreover, it is direct to verify that

$$a^{\dagger}a^{k}(a^{k})^{*}a^{m+1}((a^{D})^{m+1}((a^{k})^{(1,3)})^{*}(a^{k})^{(1,4)}a)a^{\dagger}a^{k}(a^{k})^{*}a^{m+1} = a^{\dagger}a^{k}(a^{k})^{*}a^{m+1}$$

which implies that $a^{\dagger}a^{k}(a^{k})^{*}a^{m+1}$ is regular. Thus, by [23, Lemmas 2.5 and 2.6], the proof is completed.

Let *A* be a complex matrix with index *k*. Recall that *A* is called *k*-EP [11] if it satisfies $A^{\dagger}A^{k} = A^{k}A^{\dagger}$. Some equivalent characterizations of *k*-EP matrices are presented in [5]. In addition, Zou et al.[31] proved that *A* is *k*-EP if and only if $A^{\dagger}A^{k+1} = A^{k} = A^{k+1}A^{\dagger}$. As one side case of *k*-EP matrix, it was proved in [26] that *A* is left *k*-EP (or left power-EP) if and only if $A^{\dagger}A^{k+1} = A^{k}$. Now we have the following results in the ring context.

Lemma 4.9. Let $a \in R^+ \cap R^D$ with i(a) = k. If $x, y \in R$ are minimal weak Drazin inverses of a, then $a^+ax = y$ if and only if $a^+a^{k+1} = a^k$ and x = y.

2937

Proof. Suppose that $a^{\dagger}ax = y$. Then $a^{\dagger}a^{k+1} = a^{\dagger}aa^k = a^{\dagger}axa^{k+1} = ya^{k+1} = a^k$. In addition, since $ax = aa^{\dagger}ax = ay$, it follows that $x \stackrel{(1)}{=} a^Dax = a^Day = y$.

Conversely, suppose that $a^{\dagger}a^{k+1} = a^k$ and x = y. Then by Lemma 2.5, we have $a^{\dagger}ax = a^{\dagger}a^{k+1}x^{k+1} = a^kx^{k+1} = x = y$. \Box

Applying Lemma 4.9, some equivalent characterizations are given in the following proposition when the MP-*m*-WGI coincides with the Drazin inverse.

Proposition 4.10. Let $a \in R^+ \cap R^{\oplus}$ with i(a) = k and $m, n \in \mathbb{N}$ with m + 1 < n. Then the following statements are equivalent:

- (1) $a^{\dagger, \bigotimes_m} = a^D;$
- (2) $a^{\dagger}a^{k+1} = a^k$ and $a^{\bigotimes_{m+1}} = a^D$;
- (3) $a^{\dagger,D} = a^D$ and $a^{\bigotimes_{m+1}}a = aa^{\bigotimes_{m+1}};$
- (4) $a^{\dagger,D} = a^{\bigotimes_{m+1}};$
- (5) $a^{\dagger, \bigotimes_m} = a^{\bigotimes_n};$
- (6) $a^{\dagger, \bigotimes_{n-1}} = a^{\bigotimes_{m+1}}$.

In this case, $a^{\dagger, \bigotimes_l} = a^D$ for $l \in \mathbb{N}$ with $l \ge m$.

Proof. (1) \Leftrightarrow (2) \Leftrightarrow (4) follows by Lemma 4.9.

(2) \Leftrightarrow (3) : By Lemma 4.9, we get that $a^{\dagger,D} = a^{\dagger}aa^{D} = a^{D}$ is equivalent to $a^{\dagger}a^{k+1} = a^{k}$. Then by [30, Theorem 4.13], $a^{\bigotimes_{m+1}} = a^{D}$ is equivalent to $a^{\bigotimes_{m+1}}a = aa^{\bigotimes_{m+1}}a$.

(1) \Leftrightarrow (5) : By [30, Theorem 4.13], $a^{\bigotimes_{m+1}} = a^D$ is equivalent to $a^{\bigotimes_{m+1}} = a^{\bigotimes_n}$, which implies that $a^{\dagger,\bigotimes_m} = a^D$ is equivalent to $a^{\dagger,\bigotimes_m} = a^{\bigotimes_n}$ by Lemma 4.9.

(5) \Leftrightarrow (6) : It follows from Lemma 4.9 that $a^{\dagger, \mathfrak{M}_m} = a^{\dagger}aa^{\mathfrak{M}_{m+1}} = a^{\mathfrak{M}_n}$ is equivalent to $a^{\mathfrak{M}_{m+1}} = a^{\mathfrak{M}_n}$ and $a^{\dagger}a^{k+1} = a^k$. Similarly, $a^{\mathfrak{M}_{m+1}} = a^{\mathfrak{M}_n}$ and $a^{\dagger}a^{k+1} = a^k$ is also equivalent to $a^{\dagger, \mathfrak{M}_{n-1}} = a^{\dagger}aa^{\mathfrak{M}_n} = a^{\mathfrak{M}_{m+1}}$. Thus, the proof is completed.

In this case, since $a^{\bigotimes_{m+1}} = a^D$, it follows from [30, Proposition 4.8] that $a^{\bigotimes_{l+1}} = a^D$ for $l \in \mathbb{N}$ with $l \ge m$. Thus, $a^{\dagger,\bigotimes_l} = a^D$ for $l \in \mathbb{N}$ with $l \ge m$. \Box

Remark 4.11. For a complex matrix A with index k, it follows from Proposition 4.10 that $A^{\dagger, \bigotimes_m} = A^D$ if and only if A is left k-EP (or left power-EP) and $A^{\bigotimes_{m+1}} = A^D$. More equivalent conditions are omitted in the complex matrix context.

Recall that an element $a \in R$ is called *-DMP [21] with index k if k is the smallest positive integer such that $(a^k)^{\#}$ and $(a^k)^{\ddagger}$ exist with $(a^k)^{\#} = (a^k)^{\ddagger}$. The following proposition presents conditions under which the MP-m-WGI coincides with the pseudo core inverse.

Proposition 4.12. Let $a \in \mathbb{R}^+ \cap \mathbb{R}^{\oplus}$ with i(a) = k and $m \in \mathbb{N}$. Then the following statements are equivalent:

- (1) $a^{\dagger, \bigotimes_m} = a^{\bigotimes};$
- (2) *a is* *-DMP;
- (3) $a^{\dagger}aa^{\textcircled{D}} = a^{\textcircled{M}_n}$ for some positive integer *n*.

Proof. (1) \Rightarrow (2) : Suppose $a^{\dagger, \bigotimes_m} = a^{\bigotimes}$. First, by Lemma 4.9, $a^{\dagger, \bigotimes_m} = a^{\dagger}aa^{\bigotimes_{m+1}} = a^{\bigotimes}$ if and only if $a^{\dagger}a^{k+1} = a^k$ and $a^{\bigotimes_{m+1}} = a^{\bigotimes}$. Then by [30, Corollary 4.14], $a^{\bigotimes_{m+1}} = a^{\bigotimes}$ if and only if $a^{\bigotimes} = a^D$. Thus, *a* is *-DMP by [8, Lemma 2.3].

(2) \Rightarrow (1) : Suppose *a* is *-DMP. Then by [8, Lemma 2.3], $a^{\textcircled{D}} = a^{D}$, which is equivalent to $a^{\textcircled{D}} = a^{\textcircled{M}_{m+1}}$ by [30, Corollary 4.14]. Moreover, since $a \in \mathbb{R}^{\dagger}$ and *a* is *-DMP, it follows that *a* is *k*-EP by [31, Theorem 3.19], which implies that $a^{\dagger}a^{k+1} = a^{k}$. Thus, $a^{\dagger,\textcircled{M}_{m}} = a^{\textcircled{D}}$.

(2) \Leftrightarrow (3) is similar to (1) \Leftrightarrow (2).

The proof is completed. \Box

From the proof of Proposition 4.12, we know that $a^{\dagger, \mathfrak{M}_m} = a^{\mathbb{D}}$ (or *a* is *-DMP) can imply $a^{\dagger, \mathfrak{M}_m} = a^D$. So it is natural to consider whether they are equivalent. However, the following example shows that $a^{\dagger, \mathfrak{M}_m} = a^D$ may not imply $a^{\dagger, \mathfrak{M}_m} = a^{\mathbb{D}}$ (or *a* is *-DMP).

Example 4.13. Let $R = M_4(\mathbb{Z})$ and take the involution as the transpose, where \mathbb{Z} stands for the set of all integers. $\begin{pmatrix} 1 & 0 & 0 & 1 \end{pmatrix}$

Set $a = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \in R$ with i(a) = 2. By computation, we have

$a^{\dagger} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$	0 1 0 0	$-1 \\ 0 \\ 0 \\ 1$	$\begin{pmatrix} 0\\0\\0\\0 \end{pmatrix}$,	$a^D = \begin{pmatrix} 1\\0\\0\\0\\0 \end{pmatrix}$	0 1 0 0	0 0 0 0	$\begin{pmatrix} 1\\ 0\\ 0\\ 0 \end{pmatrix}$
$a^{(D)} = \begin{pmatrix} a \\ a \\ a \end{pmatrix}$	1 0 0 1 0 0 0 0	0 0 0 0	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$,	$a^{(i)} = \begin{pmatrix} 1\\0\\0\\0\\0 \end{pmatrix}$	0 1 0 0	0 0 0 0	$\begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}$.

Thus, $a^{\dagger}a^{3} = a^{2}$ and $a^{\otimes} = a^{D}$, which implies that $a^{\dagger,\otimes_{m}} = a^{D}$ for $m \in \mathbb{N}$ by Proposition 4.10. However, since $a^{\otimes} \neq a^{D}$, it follows that a is not *-DMP by [8, Lemma 2.3].

Acknowledgment

The authors wish to thank the editor and reviewers sincerely for their constructive comments and suggestions that have improved the quality of the paper.

References

- [1] O.M. Baksalary, G. Trenkler, Core inverse of matrices, Linear Multilinear Algebra 58(6) (2010) 681–697.
- [2] A. Bjerhammar, Application of calculus of matrices to method of least squares; with special reference to geodetic calculations, Trans. Roy. Inst. Tech. Stockholm 1951(49) (1951) 86 pp.
- [3] M.P. Drazin, Pseudo-inverses in associative rings and semigroups, Amer. Math. Monthly 65 (1958) 506–514.
- [4] M.P. Drazin, A class of outer generalized inverses, Linear Algebra Appl. 436(7) (2012) 1909–1923.
- [5] D.E. Ferreyra, F.E. Levis, N. Thome, Characterizations of k-commutative equalities for some outer generalized inverses, Linear Multilinear Algebra 68(1) (2020) 177–192.
- [6] D.E. Ferreyra, S.B. Malik, A generalization of the group inverse. Quaest. Math. 46(10) (2023) 2129–2145.
- [7] Y.F. Gao, J.L. Chen, Pseudo core inverses in rings with involution, Comm. Algebra 46(1) (2018) 38–50.
- [8] Y.F. Gao, J.L. Chen, Y.Y. Ke, *-DMP elements in *-semigroups and *-rings, Filomat 32(9) (2018) 3073–3085.
- [9] R.E. Hartwig, Block generalized inverses, Arch. Rational Mech. Anal. 61(3) (1976) 197-251.
- [10] N. Jacobson, The radical and semi-simplicity for arbitrary rings, Amer. J. Math. 67 (1945) 300–320.
- [11] S.B. Malik, L. Rueda, N. Thome, The class of *m*-EP and *m*-normal matrices. Linear Multilinear Algebra 64(11) (2016) 2119–2132.
- [12] S.B. Malik, N. Thome, On a new generalized inverse for matrices of an arbitrary index, Appl. Math. Comput. 226 (2014) 575–580.
- [13] K. Manjunatha Prasad, K.S. Mohana, Core-EP inverse, Linear Multilinear Algebra 62(6) (2014) 792–802.
- [14] X. Mary, On generalized inverses and Green's relations, Linear Algebra Appl. 434(8) (2011) 1836–1844.
- [15] E.H. Moore, On the reciprocal of the general algebraic matrix, Bull. Amer. Math. Soc. 26 (1920) 394–395.
- [16] D. Mosić, P.S. Stanimirović, L.A. Kazakovtsev, The *m*-weak group inverse for rectangular matrices, Electron. Res. Arch. 32(3) (2024) 1822–1843.
- [17] D. Mosić, P.S. Stanimirović, L.A. Kazakovtsev, Application of *m*-weak group inverse in solving optimization problems, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 118(1) (2024) Paper No. 13, 21 pp.
- [18] D. Mosić, D.C. Zhang, New representations and properties of the *m*-weak group inverse, Results Math.78(3) (2023) Paper No. 97, 19 pp.
- [19] D. Mosić, D.C. Zhang, P.S. Stanimirović, An extension of the MPD and MP weak group inverses, Appl. Math. Comput. 465(2024) Paper No. 128429, 16 pp.
- [20] D. Mosić, D.C. Zhang, J.P. Hu, On operators whose core-EP inverse is *n*-potent, Miskolc Math. Notes 25(2) (2024) 921–932.
- [21] P. Patrício, R. Puystjens, Drazin-Moore-Penrose invertibility in rings, Linear Algebra Appl. 389 (2004) 159–173.
- [22] R. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc. 51 (1955) 406–413.

- [23] D.S. Rakić, N.Č. Dinčić, D.S. Djordjević, Group, Moore-Penrose, core and dual core inverse in rings with involution, Linear Algebra Appl. 463 (2014) 115–133.
- [24] C.C. Wang, X.J. Liu, H.W. Jin, The MP weak group inverse and its application, Filomat 36(18) (2022) 6085-6102.
- [25] H.X. Wang, J.L. Chen, Weak group inverse, Open Math. 16(1) (2018) 1218-1232.
- [26] C. Wu, J.L. Chen, Left and right power-EP matrices, Linear Multilinear Algebra 71(15) (2023) 2527–2542.
- [27] S.X. Xu, J.L. Chen, C. Wu, Minimal weak Drazin inverses in semigroups and rings, Mediterr. J. Math. 21(3) (2024) Paper No. 119, 15 pp.
- [28] S.Z. Xu, J.L. Chen, X.X. Zhang, New characterizations for core inverses in rings with involution, Front. Math. China 12(1) (2017) 231-246.
- [29] Y.K. Zhou, J.L. Chen, Weak core inverses and pseudo core inverses in a ring with involution, Linear Multilinear Algebra 70(21) (2022) 6876–6890.
- [30] Y.K. Zhou, J.L. Chen, M.M. Zhou, *m*-weak group inverses in a ring with involution, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM. 115(1) (2021) Paper No. 2, 13 pp.
- [31] H.L. Zou, J.L. Chen, P. Patrício, Characterizations of m-EP elements in rings. Linear Multilinear Algebra 66(6) (2018) 1244–1256.